JP6669290B1 - Stress-strain relationship estimation method - Google Patents

Stress-strain relationship estimation method Download PDF

Info

Publication number
JP6669290B1
JP6669290B1 JP2019029114A JP2019029114A JP6669290B1 JP 6669290 B1 JP6669290 B1 JP 6669290B1 JP 2019029114 A JP2019029114 A JP 2019029114A JP 2019029114 A JP2019029114 A JP 2019029114A JP 6669290 B1 JP6669290 B1 JP 6669290B1
Authority
JP
Japan
Prior art keywords
strain
tensile
stress
tensile load
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019029114A
Other languages
Japanese (ja)
Other versions
JP2020134348A (en
Inventor
智史 澄川
智史 澄川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2019029114A priority Critical patent/JP6669290B1/en
Priority to PCT/JP2019/040069 priority patent/WO2020170496A1/en
Application granted granted Critical
Publication of JP6669290B1 publication Critical patent/JP6669290B1/en
Publication of JP2020134348A publication Critical patent/JP2020134348A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

【課題】金属材料の均一伸びを超えた高ひずみ域における応力とひずみの関係を精度良く推定する応力—ひずみ関係推定方法を提供する。【解決手段】本発明に係る応力−ひずみ関係推定方法は、引張試験片に均一伸びを超えたひずみ域まで引張荷重を作用させて該引張荷重とひずみ分布を取得する引張荷重−ひずみ分布取得ステップS1と、引張試験片の均一伸びまでの応力とひずみの関係を取得する応力−ひずみ関係取得ステップS3と、2種類の硬化則の材料定数を同定する材料定数同定ステップS5と、均一伸びを超えたひずみ域のひずみ分布と、重み係数を用いて前記2種類の硬化則を足し合わせた混合則により求められる相当応力とを用い、引張試験片に作用する引張荷重を推算する引張荷重推算ステップS7と、該推算した引張荷重と前記取得した引張荷重が一致するように前記重み係数の値を決定する重み係数決定ステップS9と、を備えたものである。【選択図】図1PROBLEM TO BE SOLVED: To provide a stress-strain relationship estimation method for accurately estimating the relationship between stress and strain in a high strain region exceeding uniform elongation of a metal material. A stress-strain relationship estimation method according to the present invention is a tensile load-strain distribution acquisition step of applying a tensile load to a tensile test piece up to a strain region beyond uniform elongation to acquire the tensile load and strain distribution. S1, a stress-strain relationship acquisition step S3 for acquiring the stress-strain relationship up to the uniform elongation of the tensile test piece, a material constant identification step S5 for identifying the material constants of the two types of hardening rules, and a uniform elongation is exceeded. Tensile load estimation step S7 of estimating the tensile load acting on the tensile test piece by using the strain distribution in the strain region and the equivalent stress obtained by the mixing rule obtained by adding the two types of hardening rules by using the weighting coefficient. And a weighting factor determining step S9 for determining the value of the weighting factor so that the estimated tensile load and the acquired tensile load match. [Selection diagram] Fig. 1

Description

本発明は、応力−ひずみ関係推定方法に関し、特に、金属材料の均一伸びを超えた高ひずみ域における応力とひずみの関係を精度良く推定することができる応力−ひずみ関係推定方法に関する。   The present invention relates to a stress-strain relationship estimation method, and more particularly, to a stress-strain relationship estimation method capable of accurately estimating the relationship between stress and strain in a high strain region exceeding uniform elongation of a metal material.

近年、地球温暖化の原因となる温室効果ガスの排出量削減のために、自動車産業では自動車車体の軽量化に関する取り組みを積極的に行っている。一方で、乗員保護の観点から自動車の衝突安全性に対する要求も年々厳しくなっている。
これら自動車車体の軽量化と衝突安全性の向上という相反する要求を両立させるために、自動車部品への高張力鋼板の適用が進んでおり、衝突性能を確保しながら部品の薄肉化および部品数の削減が行われている。自動車部品に用いられる鋼板の強度レベルは、過去では340MPa級から780MPa級が主流であったが、近年では鉄鋼材料の開発が進み、優れたプレス成形性を有する980MPa級以上の高張力鋼板が適用され始めている。
2. Description of the Related Art In recent years, in order to reduce greenhouse gas emissions that cause global warming, the automobile industry has been actively working on reducing the weight of automobile bodies. On the other hand, from the viewpoint of occupant protection, the demand for collision safety of automobiles is becoming stricter year by year.
The application of high-strength steel sheets to automotive parts has been progressing in order to satisfy these conflicting demands for reducing the weight of automobile bodies and improving collision safety.Thus, the thickness of parts and the number of parts have been reduced while ensuring collision performance. Reductions have been made. In the past, the strength level of steel sheets used for automotive parts was 340 MPa class to 780 MPa class in the past, but in recent years the development of steel materials has progressed, and high-tensile steel sheets of 980 MPa class or higher with excellent press formability are applied Is starting to be.

自動車部品の多くはプレス成形で製造される。プレス成形とは、材料(ブランク)に金型を押し付けて挟圧することにより、金型の形状をブランクに転写して材料を加工する方法のことである。
高張力鋼板を用いたプレス成形では、プレス成形過程における割れやしわといった成形不良が発生しやすくて大きな問題である。一般的に鋼板の強度が高くなるとプレス成形性は低下するため、強度の低い鋼板と比べ割れやしわの発生頻度は高くなる。そのため、割れやしわを発生させることなくプレス成形するには、金型の修正による試行錯誤を行う必要があり、これには多くの費用と時間がかかってしまうという課題があった。
Many automotive parts are manufactured by press molding. Press molding is a method of processing a material by pressing a mold against a material (blank) and pressing the mold to transfer the shape of the mold to the blank.
In press forming using a high-tensile steel sheet, forming defects such as cracks and wrinkles are apt to occur during the press forming process, which is a major problem. In general, as the strength of a steel sheet increases, the press formability decreases, so that the frequency of occurrence of cracks and wrinkles increases as compared with a steel sheet having a low strength. Therefore, in order to press-mold without generating cracks and wrinkles, it is necessary to perform trial and error by correcting a mold, and there is a problem that it takes a lot of cost and time.

この課題に対し、ここ最近では、有限要素法(FEM)ソフトウェアが広く普及し、コンピュータを用いたプレス成形解析により、事前に割れやしわなどの成形不良を予測し、その予測結果を元に部品形状の修正や工法変更などの対策を講じることが可能となった。これらプレス成形解析の他に、衝突解析、スプリングバック解析などにおいても、FEMによる塑性加工シミュレーションが実施されている。   In response to this problem, finite element method (FEM) software has recently become widespread, and using a computer to perform press forming analysis, predicts molding defects such as cracks and wrinkles in advance, and based on the prediction results, It became possible to take measures such as modifying the shape and changing the construction method. In addition to these press forming analyses, plastic working simulation by FEM is also performed in collision analysis, springback analysis, and the like.

金属材料の塑性加工シミュレーションにおいては、当該金属材料の応力−ひずみ関係が必要不可欠である。特に、プレス成形では金属材料は大きな変形を受けるため、高ひずみ域での応力−ひずみ関係が塑性加工シミュレーションの解析精度に大きな影響を及ぼす。   In the plastic working simulation of a metal material, the stress-strain relationship of the metal material is indispensable. In particular, since the metal material undergoes large deformation in press forming, the stress-strain relationship in a high strain region has a great influence on the analysis accuracy of the plastic working simulation.

金属材料の応力−ひずみ関係を測定する最も一般的な方法として引張試験がある。引張試験においては、図9に示すような平行部3を有する引張試験片1に引張荷重を作用させて引張変形を与え、引張試験片1における評点間の伸びと引張荷重から応力−ひずみ関係を算出する。図10に、引張試験片1を用いた引張試験で得られる応力−ひずみ関係の一例を示す。金属材料の応力が降伏応力(図10中の点A)に達すると塑性変形が開始され、ひずみの進展に伴い金属材料は加工硬化して応力は増加する。そして、点Bで引張荷重は最大となり、その後、引張試験片1にくびれが生じて引張荷重は低下し、破断に至る(図10中の点C)。図10中の点Bでのひずみを均一伸びといい、均一伸びに達するまでは安定した単軸引張変形とみなされ、この領域(図10中の点0(ゼロ)から点Bまでの範囲、均一ひずみ)における応力−ひずみ曲線が有限要素法(FEM)等の塑性加工シミュレーションに用いられてきた。   The most common method for measuring the stress-strain relationship of a metal material is a tensile test. In the tensile test, a tensile load is applied to the tensile test piece 1 having the parallel portion 3 as shown in FIG. 9 to apply tensile deformation, and the stress-strain relationship is calculated from the elongation between the evaluation points and the tensile load in the tensile test piece 1. calculate. FIG. 10 shows an example of a stress-strain relationship obtained in a tensile test using the tensile test piece 1. When the stress of the metal material reaches the yield stress (point A in FIG. 10), plastic deformation starts, and as the strain progresses, the metal material is work-hardened and the stress increases. Then, the tensile load becomes maximum at the point B, and thereafter, the constriction occurs in the tensile test piece 1 and the tensile load decreases, leading to fracture (point C in FIG. 10). The strain at point B in FIG. 10 is referred to as uniform elongation, and is considered to be stable uniaxial tensile deformation until uniform elongation is reached. In this region (the range from point 0 (zero) to point B in FIG. The stress-strain curve at uniform strain has been used for plastic working simulation such as finite element method (FEM).

引張試験により得られる均一伸びは、一般加工鋼で0.20〜0.3、アルミニウム合金で0.15〜0.25である。一方、近年、自動車の骨格部品への適用が進んでいる高張力鋼板は、材料強度が高くなると延性は低下し、590MPa級鋼板では0.14〜0.17程度、980MPa級鋼板では0.07〜0.1程度である。
しかしながら、実際のプレス成形において金属材料が受けるひずみは、上記の引張試験で得られる均一ひずみの範囲を超える。とりわけプレス成形解析における割れ予測においては、金属材料は割れ直前に大きなひずみを受けるため、均一伸びを超えたひずみ域における応力−ひずみ関係(硬化特性)が割れ発生の予測精度に大きな影響を及ぼす。
FEMによるプレス成形解析では、均一伸びを超えた高ひずみ域の応力−ひずみ関係を硬化則(材料の硬化挙動を規定する数式モデル)で外挿する手法が一般的である。しかしながら、これは実測値に基づくものではなく、硬化則の種類や材料定数に依存して応力とひずみの関係が大きく変化し得るという問題がある。
The uniform elongation obtained by the tensile test is 0.20 to 0.3 for general work steel and 0.15 to 0.25 for aluminum alloy. On the other hand, in recent years, ductility of high-strength steel sheets, which have been increasingly applied to frame parts of automobiles, decreases as the material strength increases, and is about 0.14 to 0.17 for 590 MPa grade steel sheets and about 0.07 to 0.1 for 980 MPa grade steel sheets.
However, the strain applied to the metal material in actual press forming exceeds the range of uniform strain obtained in the above-described tensile test. Particularly, in crack prediction in press forming analysis, since a metal material receives a large strain immediately before cracking, the stress-strain relationship (hardening property) in a strain region exceeding uniform elongation has a great influence on the prediction accuracy of crack generation.
In press molding analysis by FEM, a method is generally used in which the stress-strain relationship in a high strain region exceeding uniform elongation is extrapolated by a hardening law (a mathematical model that defines the hardening behavior of a material). However, this is not based on actually measured values, and there is a problem that the relationship between stress and strain can greatly change depending on the type of hardening rule and material constant.

そのため、均一伸びを超えた高ひずみ域における応力−ひずみ関係を得るための材料試験として、過去に様々な方法が提案されている。例えば、せん断試験(特許文献1)や、液圧バルジ試験(非特許文献1)や圧縮試験(非特許文献2)がある。これらの試験によれば、通常の単軸引張変形よりも大きな変形を試験片に与えることができる。   For this reason, various methods have been proposed in the past as material tests for obtaining a stress-strain relationship in a high strain region exceeding uniform elongation. For example, there are a shear test (Patent Document 1), a hydraulic bulge test (Non-Patent Document 1), and a compression test (Non-Patent Document 2). According to these tests, deformation larger than normal uniaxial tensile deformation can be given to the test piece.

特許第5910803号公報Japanese Patent No. 5910803

Gerhard Gutscher、Hsien-Chih Wu、Gracious Ngaile、Taylan Altan、Determination of flow stress for sheet metal forming using the viscous pressure bulge (VPB) test、Journal of Materials Processing Technology、146(2004)、1-7.Gerhard Gutscher, Hsien-Chih Wu, Gracious Ngaile, Taylan Altan, Determination of flow stress for sheet metal forming using the viscous pressure bulge (VPB) test, Journal of Materials Processing Technology, 146 (2004), 1-7. 小坂田宏造、白石光信、村木重節、徳岡雅康:リング圧縮試験による変形抵抗測定法、日本機械学会論文集(C編)、55巻516号(1989)、2213-2220.Kozo Kosaka, Mitsunobu Shiraishi, Shigeji Muraki, Masayasu Tokuoka: Deformation Resistance Measurement Method by Ring Compression Test, Transactions of the Japan Society of Mechanical Engineers (C), Vol. 55, No. 516 (1989), 2213-2220.

上記の先行文献に開示されている方法により得られる結果は、特許文献1ではせん断状態での応力−ひずみ関係、非特許文献1では等二軸状態(面内に等方的に負荷される状態)の応力−ひずみ関係、非特許文献2では圧縮状態の応力−ひずみ関係である。したがって、これらの方法で得られた応力−ひずみ関係をFEMによるプレス成形解析で用いるためには、単軸引張状態での応力−ひずみ関係に変換する必要がある。しかしながら、この変換の際に誤差が生じる可能性があり、変換により得られる応力−ひずみ関係は十分な精度とはいえなかった。また、上記方法の実施には特殊な試験機が必要になるため、汎用性という面で実用的ではなかった。   The results obtained by the methods disclosed in the above-mentioned prior art documents are as follows: a stress-strain relationship in a shearing state in Patent Document 1; ), And in Non-Patent Document 2, the stress-strain relationship in a compressed state. Therefore, in order to use the stress-strain relationship obtained by these methods in press-forming analysis by FEM, it is necessary to convert it into a stress-strain relationship in a uniaxial tensile state. However, errors may occur during this conversion, and the stress-strain relationship obtained by the conversion was not sufficiently accurate. Further, the above method requires a special test machine, which is not practical in terms of versatility.

本発明は、かかる課題を解決するためになされたものであり、特殊な試験機を用いることなく、金属材料の均一伸びを超えた高ひずみ域における応力−ひずみ関係を高精度に推定することができる応力−ひずみ関係推定方法を提供することを目的とする。   The present invention has been made to solve such problems, without using a special tester, it is possible to highly accurately estimate the stress-strain relationship in a high strain region beyond the uniform elongation of the metal material. It is an object of the present invention to provide a method for estimating a stress-strain relationship.

(1)本発明に係る応力−ひずみ関係推定方法は、金属材料の応力とひずみの関係を推定するものであって、平行部を有する引張試験片に引張荷重を作用させて、該引張荷重の作用開始から均一伸びを超えたひずみ域までの引張荷重と前記引張試験片におけるひずみ分布を取得する引張荷重−ひずみ分布取得ステップと、該取得した引張荷重とひずみ分布とに基づいて、前記引張試験片の均一伸びまでの応力とひずみの関係を取得する応力−ひずみ関係取得ステップと、応力とひずみの関係を与える2種類の硬化則を選択し、該2種類の硬化則それぞれの材料定数を、前記応力−ひずみ関係取得ステップで取得した応力とひずみの関係に基づいて同定する材料定数同定ステップと、前記引張荷重−ひずみ分布取得ステップで取得した均一伸びを超えたひずみ域におけるひずみ分布と、前記2種類の硬化則を仮の重み係数を用いて足し合わせた混合則により求められる相当応力とを用いて、前記引張試験片に作用する引張荷重を推算する引張荷重推算ステップと、該引張荷重推算ステップにおいて推算した引張荷重と前記引張荷重−ひずみ分布取得ステップにおいて取得した引張荷重とが一致するように、前記混合則の重み係数の値を決定する重み係数決定ステップと、を備え、前記引張荷重推算ステップは、前記引張試験片の引張直角方向の端部においてくびれが発生したくびれ発生部を特定し、該くびれ発生部の所定位置における引張直角方向に沿って前記引張試験片を複数の微小領域に分割し、前記取得した均一伸びを超えたひずみ域におけるひずみ分布に基づいて、各前記微小領域に引張方向及び引張直角方向のひずみを設定し、各前記微小領域に設定した前記引張方向及び前記引張直角方向のひずみと前記混合則により求められる相当応力とを用いて各微小領域の引張方向の応力を算出し、各前記微小領域に設定した前記引張方向及び前記引張直角方向のひずみに基づいて、各前記微小領域の板厚を算出し、各前記微小領域について算出した前記引張方向の応力と前記板厚とから各前記微小領域に作用する引張荷重を算出し、該算出した各前記微小領域に作用する引張荷重を足し合わせて、均一伸びを超えたひずみ域において前記引張試験片に作用する引張荷重を推算する、ことを特徴とするものである。 (1) The method for estimating a stress-strain relationship according to the present invention is for estimating the relationship between stress and strain of a metal material. A tensile load from the start of action to a strain range exceeding uniform elongation and a tensile load-strain distribution obtaining step of obtaining a strain distribution in the tensile test piece, and the tensile test based on the obtained tensile load and strain distribution. A stress-strain relationship acquisition step of acquiring the relationship between stress and strain up to uniform elongation of the piece, and selecting two types of hardening rules giving the relationship between stress and strain, and material constants of each of the two types of hardening rules, A material constant identification step for identifying based on a stress-strain relationship acquired in the stress-strain relationship acquisition step, and a uniform elongation acquired in the tensile load-strain distribution acquisition step. Estimate the tensile load acting on the tensile test piece using the strain distribution in the exceeded strain range and the equivalent stress determined by the mixing rule obtained by adding the two types of hardening rules using a temporary weighting coefficient. A tensile load estimating step, and a weighting factor for determining a value of the weighting factor of the mixing rule so that the tensile load estimated in the tensile load estimating step matches the tensile load obtained in the tensile load-strain distribution obtaining step. Determination step, wherein the tensile load estimating step specifies a constriction generating portion in which constriction has occurred at an end of the tensile test piece in a direction perpendicular to the tensile direction, and along a tensile normal direction at a predetermined position of the constriction generating portion. The tensile test piece is divided into a plurality of microscopic regions, and each of the fine The strain in the tensile direction and the direction perpendicular to the tensile direction is set in the region, and the tensile direction in each minute region is set using the strain in the tensile direction and the tensile perpendicular direction set in each minute region and the equivalent stress obtained by the mixing rule. Is calculated, based on the strain in the tensile direction and the direction perpendicular to the tension set in each of the micro regions, calculates the plate thickness of each of the micro regions, and calculates the stress in the tensile direction calculated for each of the micro regions. Calculating the tensile load acting on each of the micro regions from the sheet thickness and adding the calculated tensile loads acting on each of the micro regions to act on the tensile test piece in a strain region exceeding the uniform elongation. And estimating a tensile load to be applied.

(2)上記(1)に記載のものにおいて、前記引張荷重推算ステップにおける各前記微小領域の前記引張方向の応力は、以下の手順(a)〜(c)に従って算出することを特徴とするものである。
(a)各前記微小領域に設定した引張方向及び引張直角方向のひずみから、引張方向及び引張直角方向それぞれのひずみ増分の比と、引張直角方向及び板厚方向それぞれのひずみ増分の比を算出する。
(b)該算出した2つのひずみ増分の比から各前記微小領域における引張方向及び引張直角方向の応力比を算出する。
(c)該算出した応力比と、各前記微小領域に設定したひずみから算出される相当ひずみと、前記混合則により求められる相当応力とに基づいて、各前記微小領域の引張方向の応力を算出する。
(2) The method according to (1), wherein the stress in the tensile direction of each of the micro regions in the tensile load estimating step is calculated according to the following procedures (a) to (c). It is.
(A) Calculating the ratio of the strain increment in the tensile direction and the strain perpendicular direction and the ratio of the strain increment in the tensile perpendicular direction and the strain thickness direction, respectively, from the strains in the tensile direction and the tensile perpendicular direction set in each of the micro regions. .
(B) Calculating the stress ratio in the tensile direction and the tensile perpendicular direction in each of the micro regions from the ratio of the calculated two strain increments.
(C) calculating the stress in the tensile direction of each of the minute regions based on the calculated stress ratio, the equivalent strain calculated from the strain set in each of the minute regions, and the equivalent stress determined by the mixing rule. I do.

本発明によれば、金属材料の均一伸びを超えた高ひずみ域における応力とひずみの関係を精度良く推定することができる。   According to the present invention, it is possible to accurately estimate the relationship between stress and strain in a high strain region exceeding the uniform elongation of the metal material.

本発明の実施の形態に係る応力−ひずみ関係推定方法における処理の流れを示すフロー図である。It is a flowchart which shows the flow of a process in the stress-strain relationship estimation method which concerns on embodiment of this invention. 本実施の形態において、引張試験片に均一伸びを超えて引張荷重を作用させたときの引張直角方向におけるひずみの分布を説明する図である。FIG. 3 is a diagram illustrating a distribution of strain in a direction perpendicular to the tensile direction when a tensile load is applied to a tensile test piece exceeding uniform elongation in the present embodiment. 本実施の形態において、引張試験片の均一伸びを超えたひずみ域において取得したひずみ分布から引張荷重を推算する手順の流れを示すフロー図である。FIG. 7 is a flowchart showing a flow of a procedure for estimating a tensile load from a strain distribution acquired in a strain region exceeding a uniform elongation of a tensile test piece in the present embodiment. 本実施の形態において、(a)引張試験片に発生するくびれ、(b)引張試験片に設定する微小領域、(c)該微小領域における応力と板厚、を示す図である。FIG. 4 is a diagram showing (a) a constriction generated in a tensile test piece, (b) a micro area set in the tensile test piece, and (c) a stress and a plate thickness in the micro area in the present embodiment. 実施例において、引張試験片を用いて取得した引張荷重とその推算値の結果を示すグラフである(金属材料:590MPa級鋼板)。5 is a graph showing the results of tensile loads obtained using tensile test pieces and their estimated values in Examples (metallic material: 590 MPa class steel plate). 実施例において、応力−ひずみ関係の推定結果を示すグラフである(金属材料:590MPa級鋼板)。4 is a graph showing an estimation result of a stress-strain relationship in Examples (metallic material: 590 MPa class steel plate). 実施例において、引張試験片を用いて取得した引張荷重とその推算値の結果を示すグラフである(金属材料:1180MPa級鋼板)。4 is a graph showing the results of tensile loads obtained using tensile test pieces and their estimated values in Examples (metallic material: 1180 MPa grade steel plate). 実施例において、応力−ひずみ関係の推定結果を示すグラフである(金属材料:1180MPa級鋼板)。4 is a graph showing an estimation result of a stress-strain relationship in Examples (metallic material: 1180 MPa grade steel plate). 通常の引張試験に用いられる引張試験片の形状の一例を示す図である。It is a figure which shows an example of the shape of the tensile test piece used for a normal tensile test. 通常の引張試験により取得される応力−ひずみ関係の一例を示す図である。It is a figure which shows an example of the stress-strain relationship acquired by a normal tensile test.

本発明の実施の形態に係る応力−ひずみ関係推定方法は、金属材料の応力とひずみの関係を推定するものであって、図1に示すように、引張荷重−ひずみ分布取得ステップS1と、応力−ひずみ関係取得ステップS3と、材料定数同定ステップS5と、引張荷重推算ステップS7と、重み係数決定ステップS9と、を備えたものである。以下、上記各ステップについて説明する。   The method for estimating a stress-strain relationship according to the embodiment of the present invention estimates a relationship between stress and strain of a metal material. As shown in FIG. -Strain relation acquisition step S3, material constant identification step S5, tensile load estimation step S7, and weight coefficient determination step S9. Hereinafter, each of the above steps will be described.

<引張荷重−ひずみ分布取得ステップ>
引張荷重−ひずみ分布取得ステップS1は、図9に示すような引張方向に平行な平行部3を有する短冊状の引張試験片1に引張荷重を作用させて、該引張荷重の作用開始から均一伸びを超えたひずみ域までの引張荷重と引張試験片1のひずみ分布とを取得するステップである。
<Tension load-strain distribution acquisition step>
The tensile load-strain distribution obtaining step S1 is to apply a tensile load to the strip-shaped tensile test piece 1 having the parallel portion 3 parallel to the tensile direction as shown in FIG. This is a step of acquiring a tensile load up to a strain region exceeding the range and a strain distribution of the tensile test piece 1.

本実施の形態において、引張試験片1の均一伸びは、引張試験片1に作用させた引張荷重が最大値となる時点、あるいは、引張試験片1において引張直角方向の端部にくびれが発生した時点とすることができる。そして、引張試験片1の均一伸びを超えて破断が生じるまでのひずみ域において引張荷重とひずみ分布を取得することが好ましい。   In the present embodiment, the uniform elongation of the tensile test piece 1 is such that when the tensile load applied to the tensile test piece 1 reaches a maximum value, or at the end of the tensile test piece 1 in the direction perpendicular to the tensile direction. Can be time. Then, it is preferable to acquire the tensile load and the strain distribution in a strain region beyond the uniform elongation of the tensile test piece 1 until a break occurs.

引張試験片1に作用させる引張荷重とひずみの分布は引張変形中において時々刻々と変化するため、引張荷重−ひずみ分布取得ステップS1は、引張荷重の作用開始から均一伸びを超えて破断に至るまで、引張変形中の所定の時間ステップにおいて、引張荷重とひずみ分布を取得する。   Since the distribution of the tensile load and strain applied to the tensile test piece 1 changes every moment during the tensile deformation, the tensile load-strain distribution acquisition step S1 is performed from the start of the tensile load to beyond the uniform elongation to breakage. In a predetermined time step during tensile deformation, a tensile load and a strain distribution are acquired.

引張荷重−ひずみ分布取得ステップS1で取得するひずみ分布は、引張方向及び引張直角方向のひずみの引張試験片1の表面における分布であり、DIC(デジタル画像相関法)を用いて測定するとよい。DICによるひずみ分布の測定においては、引張変形中における引張試験片1の表面を所定の時間間隔で撮像し、該撮像した画像から、引張方向及び引張直角方向のひずみの分布を求めることができる。   The strain distribution obtained in the tensile load-strain distribution obtaining step S1 is the distribution of strain in the tensile direction and the direction perpendicular to the tensile direction on the surface of the tensile test piece 1, and may be measured using DIC (digital image correlation method). In the measurement of the strain distribution by the DIC, the surface of the tensile test piece 1 during tensile deformation is imaged at predetermined time intervals, and the strain distribution in the tensile direction and the direction perpendicular to the tensile direction can be obtained from the captured image.

なお、平行部3を有する引張試験片1としては、例えば、JIS5号などの規格化された試験片を使用することができる。   As the tensile test piece 1 having the parallel portion 3, for example, a standardized test piece such as JIS5 can be used.

<応力−ひずみ関係取得ステップ>
応力−ひずみ関係取得ステップS3は、引張荷重−ひずみ分布取得ステップS1において測定した引張荷重−ひずみ分布に基づいて、均一伸びまでの引張試験片1の応力−ひずみ関係を取得するステップである。
<Step of acquiring stress-strain relationship>
The stress-strain relationship obtaining step S3 is a step of obtaining the stress-strain relationship of the tensile test specimen 1 up to uniform elongation based on the tensile load-strain distribution measured in the tensile load-strain distribution obtaining step S1.

<材料定数同定ステップ>
材料定数同定ステップS5は、応力とひずみの関係を与える2種類の硬化則を選択し、該2種類の硬化則それぞれの材料定数を、応力−ひずみ関係取得ステップS3で取得した均一伸びまでの応力−ひずみ関係に基づいて同定するステップである。
<Material constant identification step>
In the material constant identification step S5, two kinds of hardening rules that give a relationship between stress and strain are selected, and the material constant of each of the two hardening rules is determined by the stress up to the uniform elongation obtained in the stress-strain relationship obtaining step S3. The step of identifying based on the strain relationship.

硬化則としては、以下に示す線形硬化則(式(1))、n乗硬化則(式(2))、Ludwik則(式(3))、Swift則(式(4))及びVoce則(式(5))等が知られており、これらのいずれか2種類の硬化則を選択すればよい。   As the hardening rule, the following linear hardening rule (Equation (1)), n-th power hardening rule (Equation (2)), Ludwik rule (Equation (3)), Swift rule (Equation (4)), and Voce rule ( Equation (5)) is known, and any two of these curing rules may be selected.

硬化則の選択においては、以下の点を考慮する。
まず、2種類の硬化則を、次式(6)に示すように、重み係数αを用いて足し合わせた混合則を考える。
In selecting a hardening rule, the following points are considered.
First, a mixing rule in which two types of hardening rules are added using a weight coefficient α as shown in the following equation (6) is considered.

式(6)において、σeq,HRは混合則により与えられる相当応力、σeq,A及びσeq,Bは、2種類の硬化則それぞれにより表される相当応力である。また、重み係数αは任意の定数であり、αが1のときσeq,HR=σeq,Aとなり、αが0のときσeq,HR=σeq,Bとなる。 In equation (6), σ eq, HR is the equivalent stress given by the mixing rule, and σ eq, A and σ eq, B are the equivalent stresses represented by the two types of hardening rules, respectively. The weighting coefficient α is an arbitrary constant. When α is 1, σ eq, HR = σ eq, A , and when α is 0, σ eq, HR = σ eq, B.

材料定数同定ステップS5において選択する2種類の硬化則は、重み係数αの値によって相当応力σeq,HRの値が大きく変わることが望ましい。そのためには、ひずみに対する応力の挙動が大きく異なる2種類の硬化則を選択するとよく、例えば、Swift則(式(4))及びVoce則(式(5))を選択することが好ましい。そして、Swift則及びVoce則を選択した場合には、上記の式(4)中の材料定数C、ε0、及びnと、式(5)中のY、Q及びbを、材料定数同定ステップS5においてそれぞれ同定する。 In the two types of hardening rules selected in the material constant identification step S5, it is desirable that the value of the equivalent stress σ eq, HR greatly changes depending on the value of the weight coefficient α. For this purpose, it is preferable to select two types of hardening rules having greatly different stress behaviors with respect to strain. For example, it is preferable to select the Swift rule (Equation (4)) and the Voce rule (Equation (5)). When the Swift's rule and the Voce's rule are selected, the material constants C, ε 0 , and n in the above equation (4) and Y, Q, and b in the equation (5) are converted into a material constant identification step. Each is identified in S5.

<引張荷重推算ステップ>
引張荷重推算ステップS7は、引張荷重−ひずみ分布取得ステップS1において取得した均一伸びを超えたひずみ域におけるひずみ分布と、材料定数同定ステップS5で選択した2種類の硬化則を足し合わせた混合則に仮の重み係数の値を与えて算出した相当応力とを用いて、均一伸びを超えたひずみ域において引張試験片1に作用する引張荷重を推算するステップである。
<Tension load estimation step>
The tensile load estimating step S7 is based on a mixing rule obtained by adding the strain distribution in the strain region exceeding the uniform elongation obtained in the tensile load-strain distribution obtaining step S1 and the two types of hardening rules selected in the material constant identification step S5. This is a step of estimating the tensile load acting on the tensile test specimen 1 in the strain region exceeding the uniform elongation, using the equivalent stress calculated by giving the value of the temporary weight coefficient.

引張試験片1に単軸引張荷重を作用させると、最大荷重点である均一伸びを超えたひずみ域(図10中の点B〜点Cの領域)において、引張試験片1は引張直角方向の端部にくびれが発生し、引張方向及び引張直角方向に不均一な変形となる。図2に、引張試験片1に発生したくびれ発生部5の引張方向中央における引張方向のひずみεxの引張直角方向の分布の一例を示す。引張方向のひずみεxは、引張直角方向の中心(図2のグラフ中のy=0)で最も大きくなり、引張試験片1におけるくびれ発生部の幅Wの端部(y=−W/2、W/2)で最も小さくなるような分布を示す。 When a uniaxial tensile load is applied to the tensile test piece 1, the tensile test piece 1 in the strain region exceeding the uniform elongation which is the maximum load point (the region of points B to C in FIG. 10) is perpendicular to the tensile direction. Constriction occurs at the end, resulting in uneven deformation in the tensile direction and the direction perpendicular to the tensile direction. FIG. 2 shows an example of the distribution of strain ε x in the tensile direction at the center in the tensile direction of the constriction generating portion 5 generated in the tensile test piece 1 in the direction perpendicular to the tensile direction. The strain ε x in the tensile direction becomes the largest at the center in the direction perpendicular to the tensile direction (y = 0 in the graph of FIG. 2), and the end (y = −W / 2) of the width W of the constriction generating portion in the tensile test piece 1. , W / 2).

そこで、引張荷重推算ステップS7では、くびれ発生部5における引張直角方向のひずみの分布を考慮して、引張試験片1に作用する引張荷重を推算する。図3に引張荷重を推算する具体的な手順の流れ(S11〜S25)を示す。   Therefore, in the tensile load estimation step S7, the tensile load acting on the tensile test piece 1 is estimated in consideration of the strain distribution in the direction perpendicular to the tensile direction in the constriction generating portion 5. FIG. 3 shows a flow of a specific procedure for estimating the tensile load (S11 to S25).

なお、本実施の形態では、くびれ発生部5の最もくびれた位置における引張直角方向の直線に対してくびれ発生部5が線対象な形状の引張試験片1のひずみと応力を評価する例について説明する。そして、くびれ発生部5の断面が受けるひずみ及び応力は引張方向(x方向)と引張直角方向(y方向)を求め、板厚方向(z方向)のひずみは体積一定条件から求める。なお、引張荷重の推算においては、せん断成分(xy成分)は考慮しないものとする。   Note that, in the present embodiment, an example will be described in which the constriction generating unit 5 evaluates the strain and stress of the tensile test piece 1 having a line-symmetric shape with respect to a straight line in the direction perpendicular to the tension at the most constricted position of the constriction generating unit 5. I do. The strain and stress applied to the cross section of the necking portion 5 are determined in the tensile direction (x direction) and the direction perpendicular to the tensile direction (y direction), and the strain in the thickness direction (z direction) is determined from the constant volume condition. In the estimation of the tensile load, the shear component (xy component) is not considered.

≪微小領域の分割≫
まず、図4に示すように、引張試験片1の引張直角方向の端部においてくびれが発生したくびれ発生部5を特定し、くびれ発生部5の最もくびれた位置における引張直角方向に沿って、引張試験片1を複数の微小領域11に分割する(S11)。
≫Division of minute area≫
First, as shown in FIG. 4, the constriction generating part 5 in which constriction has occurred at the end of the tensile test piece 1 in the direction perpendicular to the tension is specified, and along the direction perpendicular to the tension at the most restrictive position of the constriction generating part 5 The tensile test piece 1 is divided into a plurality of minute regions 11 (S11).

微小領域11の分割数は、引張荷重−ひずみ分布取得ステップS1におけるひずみ分布の測定分解能に依存するが、微小領域11の分割幅dy(図4(b)参照)を小さく設定することが望ましい。
なお、引張試験片1を引張直角方向に微小領域11に分割する位置は、くびれ発生部5において最もくびれた位置に限るものではなく、くびれ発生部5であれば引張方向の所定の位置でもよい。
Although the number of divisions of the minute region 11 depends on the measurement resolution of the strain distribution in the tensile load-strain distribution acquisition step S1, it is desirable to set the division width dy of the minute region 11 (see FIG. 4B) small.
Note that the position at which the tensile test piece 1 is divided into the minute regions 11 in the direction perpendicular to the tension is not limited to the most constricted position in the constriction generating part 5, and may be a predetermined position in the tensile direction if the constriction generating part 5. .

≪各微小領域のひずみの設定≫
次に、引張荷重−ひずみ分布取得ステップS1において取得した所定の時間ステップにおけるひずみ分布に基づいて、各微小領域11に引張方向のひずみεx及び引張直角方向のひずみεyを設定する(S13)。
微小領域11に設定するひずみεx及びεyは全ひずみ(対数ひずみ)とし、次式(7)に示すように、弾性ひずみεi eと塑性ひずみεi pの和とする。
ひ ず み Setting of strain for each minute area≫
Next, based on the strain distribution at the predetermined time step acquired in the tensile load-strain distribution acquiring step S1, a strain ε x in the tensile direction and a strain ε y in the perpendicular direction to the tensile direction are set in each of the micro regions 11 (S13). .
Strain epsilon x and epsilon y is set to the minute region 11 and total strain (logarithmic strain), as shown in the following equation (7), the sum of the elastic strain epsilon i e and plastic strain epsilon i p.

≪ひずみ増分の比の算出≫
続いて、各微小領域11に設定した引張方向のひずみεxと引張直角方向のひずみεyから、引張方向及び引張直角方向それぞれのひずみ増分の比と、引張直角方向及び板厚方向それぞれのひずみ増分の比を算出する(S15)。
引張方向及び引張直角方向それぞれのひずみ増分の比については、まずは次式(8)に示すように、引張荷重を推算する時間ステップの前後の時間ステップにおけるひずみからひずみ増分dεi(i=x、y)を求める。
≫Calculation of strain increment ratio≫
Subsequently, based on the strain ε x in the tensile direction and the strain ε y in the perpendicular direction to the tension set in each of the micro regions 11, the ratio of the increment in the strain in the tensile direction and the strain in the perpendicular direction to the strain and the strain in the perpendicular direction and the thickness direction respectively The ratio of the increment is calculated (S15).
Regarding the ratio of the strain increment in the tensile direction and the strain perpendicular direction, first, as shown in the following equation (8), the strain increment dε i (i = x, Find y).

式(8)において、nは引張荷重を推算する時間ステップ、n+c及びn−cは前後の時間ステップ、cはひずみ増分を求める時間ステップの間隔を設定するパラメータ(1以上の整数)である。   In the equation (8), n is a time step for estimating a tensile load, n + c and n−c are time steps before and after, and c is a parameter (an integer of 1 or more) for setting an interval between time steps for obtaining a strain increment.

そして、引張方向及び引張直角方向それぞれのひずみ増分の比をaとすると、次式(9)のように表せる。   When the ratio of the strain increment in the tensile direction and the strain increment in the perpendicular direction to the tensile direction is a, it can be expressed as the following equation (9).

式(9)におけるdεi(i=x、y)は全ひずみ増分であるが、大変形している場合は弾性ひずみの成分が相対的に微小となり無視できるため、εi≒εi pとなり、次式(10)のように近似できる。 Dε i (i = x, y ) in equation (9) is the total incremental strain, because if you are large deformation negligible component of elastic strain becomes relatively small, ε i ≒ ε i p becomes , Can be approximated as in the following equation (10).

ここで、式(10)において近似された塑性ひずみ増分dεx p及びdεy pについて、関連流動則(参考文献:吉田総仁、弾塑性変形の基礎、pp.164−165、共立出版、1997)を仮定する。
関連流動則とは、塑性ひずみ増分と応力状態との関係を表した関係式であり、弾塑性有限要素解析等では、この仮定に従って応力−ひずみ計算を行っている。
関連流動則を仮定した場合、引張方向(x方向)と引張直角方向(y方向)それぞれの塑性ひずみ増分dεx p及びdεy pは、次のように表せる。
Here, regarding the plastic strain increments dε x p and dε y p approximated in the equation (10), the relevant flow law (Reference: Sojin Yoshida, Basics of Elasto-Plastic Deformation, pp. 164-165, Kyoritsu Shuppan, 1997 ).
The related flow law is a relational expression expressing the relationship between the plastic strain increment and the stress state. In the elasto-plastic finite element analysis or the like, the stress-strain calculation is performed according to this assumption.
Related If flow law assuming a tensile direction (x direction) and the tensile direction perpendicular (y direction) of the respective plastic strain increment d? X p and d? Y p can be expressed as follows.

ここで、fは異方性降伏関数であり、x方向及びy方向の応力σx及びσyと異方性パラメータを含む関数である。また、dλは相当塑性ひずみ増分である。 Here, f is an anisotropic yield function, which is a function including stresses σ x and σ y in the x and y directions and an anisotropic parameter. Dλ is an equivalent plastic strain increment.

本実施の形態では、引張変形中の引張試験片1の断面変化、とりわけ板幅と板厚の変化を推測するため、異方性パラメータの決定にはr値(板厚方向ひずみ増分と板幅方向ひずみ増分の比)を考慮する。そのため、異方性降伏関数fに含まれる異方性パラメータは、引張方向のr値を用いて同定されることが望ましい。   In the present embodiment, in order to estimate the cross-sectional change of the tensile test piece 1 during the tensile deformation, in particular, the change in the sheet width and the sheet thickness, the anisotropy parameter is determined by the r value (the increase in the sheet thickness direction strain and the sheet width). Directional strain increment). Therefore, it is desirable that the anisotropy parameter included in the anisotropic yield function f be identified using the r value in the tensile direction.

引張方向のr値は、次式(13)に示すように、引張直角方向(y方向)及び板厚方向(z方向)それぞれのひずみ増分の比として表され、引張方向のひずみ増分dεxと引張直角方向のひずみ増分dεyを用いて求めることができる。 R value of the tensile direction, as shown in the following equation (13), expressed as the ratio of the tensile direction perpendicular (y-direction) and thickness direction (z-direction) each strain increment, the pulling direction of the strain increment d? X It can be determined using the strain increment dε y in the direction perpendicular to the tensile direction.

r値は引張変形中にその値が変化するため、本実施の形態における異方性パラメータの同定には、均一伸びに達するまでは各時間ステップで取得したひずみ分布から計算されるr値を、均一伸びを超えたひずみ域においては、均一伸びでのひずみ分布から計算されるr値を用いるものとする。   Since the r value changes during tensile deformation, the identification of the anisotropic parameter in the present embodiment uses the r value calculated from the strain distribution obtained at each time step until uniform elongation is reached. In the strain range exceeding the uniform elongation, the r value calculated from the strain distribution at the uniform elongation shall be used.

また、異方性降伏関数fには、Hill’48の異方性降伏関数を用いることができる。
Hill’48の異方性降伏関数fは、引張方向のr値を用いて次式(14)のように与えられる。
As the anisotropic yield function f, Hill'48 anisotropic yield function can be used.
Hill'48's anisotropic yield function f is given by the following equation (14) using the r value in the tensile direction.

なお、σeqは式(1)から式(5)に例を示す硬化則から求まる相当応力である。
これより、引張方向(x方向)及び引張直角方向(y方向)のひずみ増分はそれぞれ、以下の式(15)及び式(16)で表せる。
Here, σ eq is an equivalent stress obtained from the hardening rule shown in the equations (1) to (5).
Accordingly, the strain increments in the tensile direction (x direction) and the direction perpendicular to the tensile direction (y direction) can be expressed by the following equations (15) and (16), respectively.

よって、引張方向及び引張直角方向それぞれのひずみ増分の比aは、次式(17)で表される。   Therefore, the ratio a of the strain increment in the tensile direction and the strain perpendicular direction is expressed by the following equation (17).

上記の説明は、異方性降伏関数としてHill’48の異方性降伏関数を用いた場合のものであったが、他に、Yld2000−2d降伏関数、Yoshida降伏関数等の異方性降伏関数があり、本発明は、r値を考慮する異方性降伏関数であればいずれのものであってもよい。   Although the above description is based on the use of the Hill'48 anisotropic yield function as the anisotropic yield function, other anisotropic yield functions such as Yld2000-2d yield function and Yoshida yield function In the present invention, any anisotropic yield function considering the r value may be used.

≪応力比の算出≫
算出したひずみ増分の比aから、各微小領域11における引張方向の応力σxと引張直角方向の応力σyの応力比を算出する(S17)。具体的には、以下のように算出する。
まず、応力比bは、次式(18)で表される。
≫Calculation of stress ratio≫
The stress ratio between the stress σ x in the tensile direction and the stress σ y in the direction perpendicular to the tensile direction in each minute region 11 is calculated from the calculated ratio a of the increment of strain (S17). Specifically, it is calculated as follows.
First, the stress ratio b is expressed by the following equation (18).

異方性降伏関数fとしてHill’48の降伏関数を用いた場合、式(17)及び式(18)から次式(19)が得られる。   When the Hill'48 yield function is used as the anisotropic yield function f, the following equation (19) is obtained from the equations (17) and (18).

よって、応力比bは、次式(20)となる。   Therefore, the stress ratio b is given by the following equation (20).

そして、ひずみの測定値から、引張方向及び引張直角方向それぞれのひずみ増分の比aと、引張直角方向及び板厚方向それぞれのひずみ増分の比であるr値とを算出し、これらを式(20)に代入することで、応力比bを算出する。   Then, from the measured values of the strains, the ratio a of the strain increment in each of the tensile direction and the tensile perpendicular direction and the r value which is the ratio of the strain increment in each of the tensile perpendicular direction and the plate thickness direction are calculated. ) To calculate the stress ratio b.

≪引張方向応力の算出≫
続いて、各微小領域11について算出した応力比bと、混合則により求められる相当応力σeq,HRとに基づいて、各微小領域11における引張方向の応力σxを算出する(S19)。
≫Calculation of tensile stress≪
Subsequently, a stress σ x in the tensile direction in each of the micro regions 11 is calculated based on the stress ratio b calculated for each of the micro regions 11 and the equivalent stress σ eq, HR determined by the mixing rule (S19).

前述のとおり、各微小領域11の応力比bの算出においては、各微小領域11に設定した引張方向及び引張直角方向のひずみεx及びεyを用いている。そのため、本実施の形態では、各微小領域11に設定した引張方向及び引張直角方向のひずみと混合則により求められる相当応力σeq,HRとを用いて、各微小領域11の引張方向の応力σxを算出するわけである。 As described above, in the calculation of the stress ratio b of each minute region 11, the strains ε x and ε y in the tensile direction and the direction perpendicular to the tension set in each minute region 11 are used. Therefore, in the present embodiment, the stress σ eq, HR in the tensile direction and the direction perpendicular to the tension set in each micro region 11 and the equivalent stress σ eq, HR determined by the mixing rule are used to determine the stress σ in the tensile direction of each micro region 11. x is calculated.

混合則により算出される相当応力σeq,HRは、前述の式(6)に示すように、材料定数同定ステップS5で材料定数を同定した2種類の硬化則それぞれにより与えられる相当応力σeq,A及びσeq,Bを重み係数αを用いて足し合わせたものとする。 The equivalent stress σ eq, HR calculated by the mixing rule is, as shown in the above equation (6), the equivalent stress σ eq, given by each of the two types of hardening rules whose material constants were identified in the material constant identification step S5 . It is assumed that A and σ eq, B are added using the weight coefficient α.

式(6)中の2種類の硬化則により与えられる相当応力σeq,A及びσeq,Bは、いずれも相当塑性ひずみεeqの関数である。そして、相当塑性ひずみεeqは、引張方向(x方向)及び引張直角方向(y方向)の塑性ひずみεx p及びεy pを用いて、次式(21)で表せる。 The equivalent stresses σ eq, A and σ eq, B given by the two types of hardening rules in equation (6) are all functions of the equivalent plastic strain ε eq . Then, the equivalent plastic strain epsilon eq is tensile with plastic strain epsilon x p and epsilon y p direction (x direction) and the tensile direction perpendicular (y-direction), expressed by the following equation (21).

式(21)より求められる相当ひずみεeqを各硬化則に代入することで相当応力σeq,A及びσeq,Bが求められる。そして、重み係数αの値を与えることで、式(6)により混合則の相当応力σeq,HRが求まる。 The equivalent stresses σ eq, A and σ eq, B are obtained by substituting the equivalent strain ε eq obtained from equation (21) into each hardening rule. Then, by giving the value of the weighting coefficient α, the equivalent stress σ eq, HR of the mixing rule is obtained by the equation (6).

一方、降伏関数を用いても相当応力σeqを求めることができる(例えば、式(14))。ここで、降伏関数から求められる相当応力をσeq,YFとする。そして、降伏関数を与える式に、σy=bσxの関係(式(18)参照)を代入すれば、σeq,YFは、引張方向の応力σxと相当応力σeq,YFの関数になる。そして、混合則から求めた相当応力σeq,HRと降伏関数から求めた相当応力σeq,YFは等しいため、σeq,HR=σeq,YFとなるように引張方向の応力σxを算出する。 On the other hand, the equivalent stress σ eq can be obtained by using the yield function (for example, equation (14)). Here, the equivalent stress obtained from the yield function is σ eq, YF . Then, by substituting the relationship of σ y = bσ x (see equation (18)) into the equation that gives the yield function, σ eq, YF becomes the function of the stress σ x in the tensile direction and the equivalent stress σ eq, YF Become. Since the equivalent stress σ eq, HR determined from the mixing rule and the equivalent stress σ eq, YF determined from the yield function are equal, the stress σ x in the tensile direction is calculated so that σ eq, HR = σ eq, YF I do.

≪板厚の算出≫
前述の図2に示したとおり、引張試験片1は、均一伸びを超えたひずみ域においては引張直角方向に変形量が異なるため、各微小領域11の板厚tを考慮する必要がある。そして、板厚tは、初期板厚t0と板厚方向ひずみεzより求まり、板厚方向ひずみεzは体積一定条件より面内の2方向(引張方向及び引張直角方向)のひずみεx及びεyより計算できる。そこで、次式(22)に示すように、各微小領域11に設定した引張方向及び引張直角方向のひずみに基づいて、各微小領域11の板厚tを算出する(S21)。
≫Calculation of plate thickness≫
As shown in FIG. 2 described above, the tensile test piece 1 differs in the amount of deformation in the direction perpendicular to the tensile direction in the strain region exceeding the uniform elongation, so it is necessary to consider the plate thickness t of each minute region 11. The thickness t is obtained from the initial thickness t 0 and the strain ε z in the thickness direction. The strain ε z in the thickness direction is a strain ε x in two directions (tensile direction and perpendicular direction to the tensile direction) in a plane under a constant volume condition. and it can be calculated from ε y. Therefore, as shown in the following equation (22), the plate thickness t of each minute area 11 is calculated based on the strain set in each minute area 11 in the tensile direction and the direction perpendicular to the tensile direction (S21).

≪微小領域引張荷重の算出≫
各微小領域11について算出した引張方向の応力σxと板厚tを用いて、次式(23)に示すように、各微小領域11に作用する引張荷重を求める(S23)。
≫Calculation of micro area tensile load 領域
Using the stress σ x in the tensile direction and the plate thickness t calculated for each minute region 11, a tensile load acting on each minute region 11 is obtained as shown in the following equation (23) (S 23).

式(23)において、ΔTは微小領域引張荷重、dyは微小領域の分割幅である(図4(b)参照)。   In Expression (23), ΔT is a minute region tensile load, and dy is a division width of the minute region (see FIG. 4B).

≪引張荷重の推算≫
次式(24)に示すように、各微小領域11について求めた微小領域引張荷重ΔTを足し合わせて、引張試験片1の引張直角方向の断面全体に作用する引張荷重Tを求める(S25)。
≪Estimation of tensile load≫
As shown in the following equation (24), the tensile load T acting on the entire cross section of the tensile test piece 1 in the direction perpendicular to the tensile direction is calculated by adding the microscopic area tensile loads ΔT obtained for the respective microscopic areas 11 (S25).

このように、引張荷重推算ステップS7においては、S11〜S25の手順により引張荷重Tを推算することができる。   Thus, in the tensile load estimating step S7, the tensile load T can be estimated by the procedures of S11 to S25.

<重み係数決定ステップ>
重み係数決定ステップS9は、引張荷重推算ステップS7において推算した引張荷重と引張荷重−ひずみ分布取得ステップS1において取得した引張荷重とが一致するように、前記混合則の重み係数αの値を決定するステップである。
<Weight coefficient determination step>
The weight coefficient determining step S9 determines the value of the weight coefficient α of the mixing rule so that the tensile load estimated in the tensile load estimating step S7 and the tensile load obtained in the tensile load-strain distribution obtaining step S1 match. Step.

重み係数αの値を決定する具体的な手順として、引張荷重推算ステップS7において、仮の重み係数αを与えて引張荷重を推算し、該推算した引張荷重に基づいて重み係数αの値を変更し、引張荷重推算ステップS7において推算した引張荷重が引張荷重−ひずみ分布取得ステップS1において取得した引張荷重と一致するまで、図3に示すS19〜S25を繰り返し実行する。これにより、式(6)に示す混合則の重み係数αの値を決定する。   As a specific procedure for determining the value of the weight coefficient α, in a tensile load estimation step S7, a temporary weight coefficient α is given to estimate the tensile load, and the value of the weight coefficient α is changed based on the estimated tensile load. Then, S19 to S25 shown in FIG. 3 are repeatedly executed until the tensile load estimated in the tensile load estimation step S7 matches the tensile load obtained in the tensile load-strain distribution obtaining step S1. Thereby, the value of the weighting coefficient α of the mixing rule shown in Expression (6) is determined.

以上、本発明の実施の形態に係る応力−ひずみ関係推定方法によれば、従来の引張試験では得られない均一伸びを超えた高ひずみ域における応力とひずみの関係を精度良く推定することができる。さらに、本発明に係る応力−ひずみ関係推定方法を金属薄板のプレス成形解析に適用することで、プレス成形で生じる割れやしわ、あるいはスプリングバックといった成形不良を高精度に予測することができる。そして、プレス成形解析の予測結果に基づいた金型設計や部品設計により、高品質なプレス成形品を製造することが可能となる。   As described above, according to the stress-strain relationship estimation method according to the embodiment of the present invention, it is possible to accurately estimate the relationship between stress and strain in a high strain region exceeding uniform elongation that cannot be obtained by a conventional tensile test. . Furthermore, by applying the stress-strain relationship estimation method according to the present invention to the press forming analysis of a thin metal plate, it is possible to accurately predict a forming defect such as a crack, a wrinkle, or a springback caused by the press forming. Then, high-quality press-formed products can be manufactured by die design and component design based on the prediction results of the press-forming analysis.

また、本発明によれば、特殊な試験機を用いることなく、一般的な単軸引張試験機で実現できるため、汎用性という面で実用性に優れている。   Further, according to the present invention, since it can be realized with a general uniaxial tensile tester without using a special tester, it is excellent in practicality in terms of versatility.

なお、上記の説明において、引張荷重推算ステップS7における異方性降伏関数f及び応力比bは、引張荷重−ひずみ分布取得ステップS1で取得したひずみ分布の値を用いて算出したr値(式(13))を用いるものであったが、本発明は、これに限るものではない。例えば、引張荷重−ひずみ分布取得ステップS1とは別に行った引張試験で得られたr値を用いてもよい。   In the above description, the anisotropic yield function f and the stress ratio b in the tensile load estimating step S7 are calculated using the value of the strain distribution obtained in the tensile load-strain distribution obtaining step S1 (expression (formula ( Although 13)) was used, the present invention is not limited to this. For example, an r value obtained in a tensile test performed separately from the tensile load-strain distribution obtaining step S1 may be used.

本発明に係る応力−ひずみ関係推定方法の作用効果について確認するための検証を行ったので、以下、これについて説明する。   Verification for confirming the operation and effect of the stress-strain relationship estimation method according to the present invention has been performed, and will be described below.

実施例1では、まず、金属材料として板厚1.2mmの590MPa級鋼板の応力−ひずみ関係の推定を行った。   In Example 1, first, a stress-strain relationship of a 590 MPa class steel sheet having a thickness of 1.2 mm as a metal material was estimated.

まず、図9に示す形状の引張試験片1(JIS5号)を用いて単軸引張試験を行い、引張荷重の作用開始から均一伸びを超えて引張試験片1に破断が生じるまでの所定の時間ステップにおいて、引張荷重と引張試験片1の表面におけるひずみ分布を取得した。ここで、引張荷重は、ロードセルによる測定値を取得し、ひずみ分布は、DIC(画像相関法)により得られた引張方向及び引張直角方向のひずみを取得した。   First, a uniaxial tensile test was performed using a tensile test piece 1 (JIS No. 5) having the shape shown in FIG. 9, and a predetermined time from the start of the application of a tensile load to the time when the tensile test piece 1 broke beyond uniform elongation. In the step, the tensile load and the strain distribution on the surface of the tensile test piece 1 were obtained. Here, for the tensile load, a value measured by a load cell was obtained, and for the strain distribution, the strain in the tensile direction and the direction perpendicular to the tensile direction obtained by DIC (image correlation method) was obtained.

次いで、取得した引張荷重とひずみ分布から、均一伸びまでの応力−ひずみ関係を取得した。そして、2種類の硬化則としてSwift則及びVoce則を選択し、均一伸びまでの応力−ひずみ関係に基づいて、Swift則及びVoce則それぞれの材料定数(式(4)及び式(5)参照)を同定した。表1に、同定した材料定数を示す。   Next, a stress-strain relationship up to uniform elongation was obtained from the obtained tensile load and strain distribution. Then, the Swift rule and the Voce rule are selected as two types of hardening rules, and based on the stress-strain relationship up to uniform elongation, the material constants of the Swift rule and the Voce rule (see equations (4) and (5)) Was identified. Table 1 shows the identified material constants.

均一伸びを超えたひずみ域における相当応力σeqは、次式(25)に示すように、Swift則の相当応力σeq,SwiftとVoce則の相当応力σeq,Voceの混合則で表す。 The equivalent stress σ eq in the strain region exceeding the uniform elongation is represented by a mixed law of the equivalent stress σ eq, Swift of the Swift rule and the equivalent stress σ eq, Voce of the Voce rule, as shown in the following equation (25).

本実施例1では、引張荷重の作用開始からくびれ発生部5の最もくびれが生じた位置における引張直角方向の中央部の最大ひずみが0.53に至るまでの過程において11点の時間ステップを設け、図3に示す手順S11〜S25により、各時間ステップにおいて引張試験片1に作用する引張荷重を推算した。   In the first embodiment, 11 time steps are provided in the process from the start of the application of the tensile load to the maximum strain in the central portion in the direction perpendicular to the tensile direction at the position where the most constriction of the constriction generating portion 5 occurs reaches 0.53. According to procedures S11 to S25 shown in FIG. 3, the tensile load acting on the tensile test piece 1 at each time step was estimated.

図5に、単軸引張試験により取得した引張荷重と、当該単軸引張試験で取得したひずみ分布を用いて推算した引張荷重の例を示す。
横軸は、引張直角方向の中央部における最大ひずみとして、縦軸は各最大ひずみにおける引張荷重の値であり、実線は、単軸引張試験で取得した引張荷重(測定値)、プロットは、Swift則、Voce則、及び混合則(式(25))の重み係数の値をα=0.85として推算した引張荷重である。
FIG. 5 shows an example of the tensile load obtained by the uniaxial tensile test and the tensile load estimated by using the strain distribution obtained by the uniaxial tensile test.
The horizontal axis is the maximum strain at the central portion in the direction perpendicular to the tensile direction, the vertical axis is the value of the tensile load at each maximum strain, the solid line is the tensile load (measured value) obtained in the uniaxial tensile test, and the plot is Swift This is a tensile load calculated by assuming that the value of the weight coefficient of the rule, the Voce rule, and the mixing rule (Equation (25)) is α = 0.85.

Swift則、すなわち、混合則において重み係数α=1として推算した引張荷重は、引張荷重の測定値より大きくなり、Voce則、すなわち、混合則において重み係数α=0として推算した引張荷重は、測定値よりも小さくなった。   The tensile load estimated with the weighting factor α = 1 in the Swift rule, that is, the mixing rule, is larger than the measured value of the tensile load, and the Voce rule, that is, the tensile load estimated with the weighting factor α = 0 in the mixing rule, is measured. It became smaller than the value.

これに対し、重み係数α=0.85を与えた混合則により推算した引張荷重は、ひずみの値によらず引張荷重の測定値と一致する結果となった。   On the other hand, the tensile load estimated by the mixing rule giving the weighting coefficient α = 0.85 resulted in a result that coincided with the measured value of the tensile load regardless of the strain value.

この結果から、混合則の重み係数がα=0.85と決定され、図6に示すように、混合則により均一伸びを超えたひずみ域における応力−ひずみ関係を精度良く推定できることが示された。   From this result, the weighting factor of the mixing rule was determined to be α = 0.85, and as shown in FIG. 6, it was shown that the stress-strain relationship in a strain region exceeding the uniform elongation could be accurately estimated by the mixing rule.

続いて、金属材料として板厚1.2mmの1180MPa級鋼板についても、上記と同様に応力−ひずみ関係の推定を行った。   Subsequently, a stress-strain relationship was also estimated for a 1180 MPa class steel sheet having a thickness of 1.2 mm as a metal material in the same manner as described above.

まず、図7に示す形状のJIS5号の引張試験片1を用いて単軸引張試験を行い、引張荷重の作用開始から均一伸びを超えて引張試験片1に破断が生じるまでの所定の時間ステップにおいて、引張荷重と引張試験片1の表面におけるひずみ分布を取得した。引張荷重とひずみ分布の取得は、前述の590MPa級鋼板の場合と同様とした。   First, a uniaxial tensile test was performed using the tensile test piece 1 of JIS No. 5 having the shape shown in FIG. 7, and a predetermined time step from the start of the application of the tensile load to the breakage of the tensile test piece 1 beyond the uniform elongation. In, the tensile load and strain distribution on the surface of the tensile test piece 1 were obtained. The acquisition of the tensile load and the strain distribution was performed in the same manner as in the case of the above-mentioned 590 MPa class steel sheet.

そして、取得し引張荷重とひずみ分布から、均一伸びまでの応力−ひずみ関係を取得し、該応力−ひずみ関係に基づいて、Swift則(式(4))及びVoce則(式(5))それぞれの材料定数を同定した。同定した材料定数の値を表2に示す。   Then, a stress-strain relationship up to uniform elongation is obtained from the obtained tensile load and strain distribution, and based on the stress-strain relationship, each of the Swift law (Equation (4)) and the Voce law (Equation (5)) The material constant of was identified. Table 2 shows the values of the identified material constants.

均一伸びを超えたひずみ域の相当応力σeqは、前述の式(25)に示すように、Swift則の相当応力σeq,SwiftとVoce則の相当応力σeq,Voceの混合則で表す。 The equivalent stress σ eq in the strain region exceeding the uniform elongation is represented by a mixed rule of the equivalent stress σ eq, Swift of the Swift rule and the equivalent stress σ eq, Voce of the Voce rule, as shown in the above equation (25).

続いて、本実施例2では、引張荷重の作用開始からくびれ発生部5の最もくびれが生じた位置における引張直角方向の中央部の最大ひずみが0.25に至るまでの過程において6点の時間ステップを設け、図3に示す手順S11〜S25により、各時間ステップにおいて引張試験片1に作用する引張荷重を推算した。   Subsequently, in the second embodiment, six time steps are performed in the process from the start of the application of the tensile load to the maximum strain in the central portion in the direction perpendicular to the tension at the position where the most constriction of the constriction generating portion 5 occurs reaches 0.25. The tensile load acting on the tensile test piece 1 at each time step was estimated according to the steps S11 to S25 shown in FIG.

図7に、引張試験により取得した引張荷重と、当該引張試験で取得したひずみ分布の値を用いて推算した引張荷重の例を示す。
横軸は、引張直角方向の中央部の最大ひずみとして、縦軸は各最大ひずみにおける引張荷重であり、実線は、引張試験で取得した引張荷重(測定値)、プロットは、Swift則、Voce則、及び混合則(式(6))の重み係数の値をα=0.8として推算した引張荷重である。
FIG. 7 shows an example of the tensile load obtained by the tensile test and the tensile load estimated using the value of the strain distribution obtained by the tensile test.
The horizontal axis is the maximum strain at the central part in the direction perpendicular to the tensile direction, the vertical axis is the tensile load at each maximum strain, the solid line is the tensile load (measured value) obtained in the tensile test, and the plots are Swift's law, Voce's law , And the tensile load estimated by setting the value of the weighting coefficient of the mixing rule (Equation (6)) to α = 0.8.

Swift則、すなわち、混合則において重み係数α=1として推算した引張荷重は、引張荷重の測定値より大きくなり、Voce則、すなわち、混合則において重み係数α=0として推算した引張荷重は、引張荷重の測定値よりも小さくなった。   The tensile load estimated by the Swift rule, that is, the weighting factor α = 1 in the mixing rule, becomes larger than the measured value of the tensile load, and the Voce rule, that is, the tensile load estimated by the weighting factor α = 0 in the mixing rule, is a tensile load. It became smaller than the measured value of the load.

これに対し、重み係数α=0.8を与えた混合則により推算した引張荷重は、ひずみによらず引張荷重の測定値と一致する結果となった。   On the other hand, the tensile load estimated by the mixing rule giving the weight coefficient α = 0.8 resulted in a result that was consistent with the measured value of the tensile load regardless of the strain.

この結果から、混合則の重み係数がα=0.8と決定され、図8に示すように、混合則により均一伸びを超えたひずみ域における応力−ひずみ関係を推定できることが示された。   From this result, the weighting factor of the mixing rule was determined to be α = 0.8, and as shown in FIG. 8, it was shown that the stress-strain relationship in the strain region beyond the uniform elongation could be estimated by the mixing rule.

1 引張試験片
3 平行部
5 くびれ発生部
11 微小領域
DESCRIPTION OF SYMBOLS 1 Tensile test piece 3 Parallel part 5 Constriction generation part 11 Micro area

Claims (2)

金属材料の応力とひずみの関係を推定する応力−ひずみ関係推定方法であって、
平行部を有する引張試験片に引張荷重を作用させて、該引張荷重の作用開始から均一伸びを超えたひずみ域までの引張荷重と前記引張試験片におけるひずみ分布を取得する引張荷重−ひずみ分布取得ステップと、
該取得した引張荷重とひずみ分布とに基づいて、前記引張試験片の均一伸びまでの応力とひずみの関係を取得する応力−ひずみ関係取得ステップと、
応力とひずみの関係を与える2種類の硬化則を選択し、該2種類の硬化則それぞれの材料定数を、前記応力−ひずみ関係取得ステップで取得した応力とひずみの関係に基づいて同定する材料定数同定ステップと、
前記引張荷重−ひずみ分布取得ステップで取得した均一伸びを超えたひずみ域におけるひずみ分布と、前記2種類の硬化則を仮の重み係数を用いて足し合わせた混合則により求められる相当応力とを用いて、前記引張試験片に作用する引張荷重を推算する引張荷重推算ステップと、
該引張荷重推算ステップにおいて推算した引張荷重と前記引張荷重−ひずみ分布取得ステップにおいて取得した引張荷重とが一致するように、前記混合則の重み係数の値を決定する重み係数決定ステップと、を備え、
前記引張荷重推算ステップは、
前記引張試験片の引張直角方向の端部においてくびれが発生したくびれ発生部を特定し、
該くびれ発生部の所定位置における引張直角方向に沿って前記引張試験片を複数の微小領域に分割し、
前記取得した均一伸びを超えたひずみ域におけるひずみ分布に基づいて、各前記微小領域に引張方向及び引張直角方向のひずみを設定し、
各前記微小領域に設定した前記引張方向及び前記引張直角方向のひずみと前記混合則により求められる相当応力とを用いて各微小領域の引張方向の応力を算出し、
各前記微小領域に設定した前記引張方向及び前記引張直角方向のひずみに基づいて、各前記微小領域の板厚を算出し、
各前記微小領域について算出した前記引張方向の応力と前記板厚とから各前記微小領域に作用する引張荷重を算出し、
該算出した各前記微小領域に作用する引張荷重を足し合わせて、均一伸びを超えたひずみ域において前記引張試験片に作用する引張荷重を推算する、ことを特徴とする応力−ひずみ関係推定方法。
A stress-strain relationship estimation method for estimating the relationship between stress and strain of a metal material,
A tensile load is applied to a tensile test piece having a parallel portion to obtain a tensile load from the start of the application of the tensile load to a strain region beyond uniform elongation and a strain distribution in the tensile test piece. Steps and
Based on the obtained tensile load and strain distribution, a stress-strain relationship obtaining step of obtaining a relationship between stress and strain up to uniform elongation of the tensile test piece,
A material constant for selecting two types of hardening rules giving a relationship between stress and strain, and identifying a material constant of each of the two types of hardening rules based on the relationship between stress and strain obtained in the stress-strain relationship obtaining step. An identification step;
Using the tensile load-strain distribution in the strain region exceeding the uniform elongation obtained in the strain distribution obtaining step and the equivalent stress determined by a mixing rule obtained by adding the two types of hardening rules using a temporary weighting coefficient. A tensile load estimating step of estimating a tensile load acting on the tensile test piece,
A weighting factor determining step of determining a value of the weighting factor of the mixing rule so that the tensile load estimated in the tensile load estimating step matches the tensile load obtained in the tensile load-strain distribution obtaining step. ,
The tensile load estimating step,
Identify the constriction occurrence part where constriction has occurred at the end in the direction perpendicular to the tensile direction of the tensile test piece,
The tensile test piece is divided into a plurality of minute regions along a direction perpendicular to the tension at a predetermined position of the constriction generating portion,
Based on the strain distribution in the strain region beyond the obtained uniform elongation, set the strain in the tensile direction and the tensile perpendicular direction to each of the micro regions,
Calculate the stress in the tensile direction of each micro-region using the strain in the tensile direction and the direction perpendicular to the tension set in each of the micro-regions and the equivalent stress determined by the mixing rule,
Based on the strain in the tensile direction and the direction perpendicular to the tension set in each of the micro regions, calculate the thickness of each of the micro regions,
Calculate the tensile load acting on each of the minute regions from the stress in the tensile direction and the plate thickness calculated for each of the minute regions,
A method for estimating a stress-strain relationship, comprising: estimating a tensile load acting on the tensile test piece in a strain region exceeding uniform elongation by adding the calculated tensile loads acting on each of the micro regions.
前記引張荷重推算ステップにおける各前記微小領域の前記引張方向の応力は、以下の手順(a)〜(c)に従って算出することを特徴とする請求項1記載の応力−ひずみ関係推定方法。
(a)各前記微小領域に設定した引張方向及び引張直角方向のひずみから、引張方向及び引張直角方向それぞれのひずみ増分の比と、引張直角方向及び板厚方向それぞれのひずみ増分の比を算出する。
(b)該算出した2つのひずみ増分の比から各前記微小領域における引張方向及び引張直角方向の応力比を算出する。
(c)該算出した応力比と、各前記微小領域に設定したひずみから算出される相当ひずみと、前記混合則により求められる相当応力とに基づいて、各前記微小領域の引張方向の応力を算出する。
The stress-strain relationship estimating method according to claim 1, wherein the stress in the tensile direction of each of the micro regions in the tensile load estimating step is calculated according to the following procedures (a) to (c).
(A) Calculating the ratio of the strain increment in the tensile direction and the strain perpendicular direction and the ratio of the strain increment in the tensile perpendicular direction and the strain thickness direction, respectively, from the strains in the tensile direction and the tensile perpendicular direction set in each of the micro regions. .
(B) Calculating the stress ratio in the tensile direction and the tensile perpendicular direction in each of the micro regions from the ratio of the calculated two strain increments.
(C) calculating the stress in the tensile direction of each of the minute regions based on the calculated stress ratio, the equivalent strain calculated from the strain set in each of the minute regions, and the equivalent stress determined by the mixing rule. I do.
JP2019029114A 2019-02-21 2019-02-21 Stress-strain relationship estimation method Active JP6669290B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019029114A JP6669290B1 (en) 2019-02-21 2019-02-21 Stress-strain relationship estimation method
PCT/JP2019/040069 WO2020170496A1 (en) 2019-02-21 2019-10-10 Method for estimating stress-strain relationship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019029114A JP6669290B1 (en) 2019-02-21 2019-02-21 Stress-strain relationship estimation method

Publications (2)

Publication Number Publication Date
JP6669290B1 true JP6669290B1 (en) 2020-03-18
JP2020134348A JP2020134348A (en) 2020-08-31

Family

ID=70000690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019029114A Active JP6669290B1 (en) 2019-02-21 2019-02-21 Stress-strain relationship estimation method

Country Status (2)

Country Link
JP (1) JP6669290B1 (en)
WO (1) WO2020170496A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112380756A (en) * 2020-12-11 2021-02-19 福耀玻璃工业集团股份有限公司 Method and system for detecting wrinkles of dimming film of dimming glass
CN112800642A (en) * 2020-12-29 2021-05-14 中国人民解放军国防科技大学 Film fold strength evaluation method and system based on nonlinear finite element
CN112927185A (en) * 2021-01-19 2021-06-08 中国石油天然气集团有限公司 True stress-true strain curve test calculation method based on digital image correlation method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7542491B2 (en) 2021-06-28 2024-08-30 株式会社神戸製鋼所 Method for determining the yield stress of each constituent phase of a dual-phase steel and method for identifying the stress-strain curve of each constituent phase
JP7156467B1 (en) 2021-07-30 2022-10-19 Jfeスチール株式会社 Press-molded product wrinkle generation determination index acquisition method and press-molded product wrinkle generation determination method
KR102551356B1 (en) * 2021-10-15 2023-07-04 한국원자력연구원 Tensile testing system
KR102568661B1 (en) * 2021-11-30 2023-08-18 주식회사 포스코 Apparatus and Method for obtaining plastic strain ratio in the perpendicular direction to loading in the sheet tensile testing accompanied by the digital image correlation technique

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5475400B2 (en) * 2009-06-18 2014-04-16 ポリプラスチックス株式会社 Method for measuring local stress, method for deriving stress-strain curve of resin material, and method for predicting life of resin molded product
JP2012104042A (en) * 2010-11-12 2012-05-31 Kobe Steel Ltd Prediction method of uniform extension and prediction program for uniform extension

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112380756A (en) * 2020-12-11 2021-02-19 福耀玻璃工业集团股份有限公司 Method and system for detecting wrinkles of dimming film of dimming glass
CN112380756B (en) * 2020-12-11 2022-05-03 福耀玻璃工业集团股份有限公司 Method and system for detecting wrinkles of dimming film of dimming glass
CN112800642A (en) * 2020-12-29 2021-05-14 中国人民解放军国防科技大学 Film fold strength evaluation method and system based on nonlinear finite element
CN112800642B (en) * 2020-12-29 2022-07-19 中国人民解放军国防科技大学 Film wrinkle strength evaluation method and system based on nonlinear finite element
CN112927185A (en) * 2021-01-19 2021-06-08 中国石油天然气集团有限公司 True stress-true strain curve test calculation method based on digital image correlation method

Also Published As

Publication number Publication date
JP2020134348A (en) 2020-08-31
WO2020170496A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
JP6669290B1 (en) Stress-strain relationship estimation method
JP6958521B2 (en) Stress-strain relationship estimation method
Chongthairungruang et al. Experimental and numerical investigation of springback effect for advanced high strength dual phase steel
Livatyali et al. Prediction and elimination of springback in straight flanging using computer aided design methods: Part 1. Experimental investigations
KR102345288B1 (en) Methods for evaluating deformation limits, predicting cracks and designing press molds
KR101809398B1 (en) Plastic material evaluation method and method for evaluating plastic working of plastic material
JP4621216B2 (en) Fracture limit acquisition method and apparatus, program, and recording medium
KR101539559B1 (en) Press-forming mold designing method and press-forming mold
CN110740821B (en) Method for evaluating deformation limit of metal plate on sheared surface, method for predicting crack, and method for designing press die
KR102526833B1 (en) Elongation flange crack evaluation method, metal plate selection method, press mold design method, part shape design method, and press part manufacturing method
Tisza et al. Springback analysis of high strength dual-phase steels
JP7327313B2 (en) Method for evaluating delayed fracture characteristics of metal plate, and method for manufacturing pressed parts
Kong et al. Deep drawing and bulging forming limit of dual-phase steel under different mechanical properties
Iizuka et al. Effects of anisotropic yield functions on the accuracy of forming simulations of hole expansion
WO2023229004A1 (en) Method for assessing delayed fracture characteristics of sheared end surfaces, program, and method for producing automotive components
Ahn et al. Modeling of anisotropic plastic behavior of ferritic stainless steel sheet
Mulidrán et al. RESEARCH PAPER THE EFFECT OF MATERIAL MODELS IN THE FEM SIMULATION ON THE SPRINGBACK PREDICTION OF THE TRIP STEEL
JP6773255B1 (en) Bending crack evaluation method, bending crack evaluation system, and manufacturing method of press-formed parts
JP7563657B1 (en) Method for evaluating delayed fracture characteristics of metal plate for press forming, method for manufacturing press-formed product, and program
Fu et al. Research on parameters of MMC fracture criterion for advanced high strength dual-phase steel sheets
Iwata et al. Numerical prediction of the spring-back behavior of stamped metal sheets
WO2023229005A1 (en) Method for evaluating delayed fracture characteristics of molded component, and method for manufacturing molded component
Yoshida et al. Material Modeling for Accuracy Improvement of the Springback Prediction of High Strength Steel Sheets
JP7464176B1 (en) Method, device and program for determining press-molded cracks, and method for manufacturing press-molded products
Stanton et al. Modelling and validation of springback in aluminium U-Profiles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200117

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R150 Certificate of patent or registration of utility model

Ref document number: 6669290

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250