JP6668818B2 - Steel pipe torsion fatigue test method and specimen used for it - Google Patents

Steel pipe torsion fatigue test method and specimen used for it Download PDF

Info

Publication number
JP6668818B2
JP6668818B2 JP2016037059A JP2016037059A JP6668818B2 JP 6668818 B2 JP6668818 B2 JP 6668818B2 JP 2016037059 A JP2016037059 A JP 2016037059A JP 2016037059 A JP2016037059 A JP 2016037059A JP 6668818 B2 JP6668818 B2 JP 6668818B2
Authority
JP
Japan
Prior art keywords
outer diameter
steel pipe
test
torsion
fatigue test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016037059A
Other languages
Japanese (ja)
Other versions
JP2017156110A (en
Inventor
長谷川 昇
昇 長谷川
和田 学
学 和田
仁之 二階堂
仁之 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016037059A priority Critical patent/JP6668818B2/en
Publication of JP2017156110A publication Critical patent/JP2017156110A/en
Application granted granted Critical
Publication of JP6668818B2 publication Critical patent/JP6668818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電縫鋼管、シームレス鋼管などの焼き入れ鋼管母材のねじり疲労試験方法及びそれに用いる試験体に関するものである。   The present invention relates to a torsional fatigue test method for a hardened steel pipe base material such as an electric resistance welded steel pipe and a seamless steel pipe, and a test body used for the method.

鋼管を機械構造用に使用する場合、特に回転方向のトルクによって繰り返し荷重がかけられる部材に用いられることがあり、鋼管のねじり疲労特性を把握することは重要である。一般的にねじり疲労特性は、管端にフランジ部材を溶接し、フランジ部材を試験装置にボルト締結して管端を繰り返し強制的に回転方向の力を加える試験が行われる。このとき母材を適正に評価するためには、母材より強度の低い部位をなくさねばならない。これは負荷応力が低強度部に集中し、母材が破壊するより以前に低強度部が破壊するためである。   When a steel pipe is used for a mechanical structure, it may be used for a member to which a load is repeatedly applied by a torque in a rotating direction, and it is important to grasp the torsional fatigue characteristics of the steel pipe. In general, torsion fatigue characteristics are tested by welding a flange member to a pipe end, bolting the flange member to a test device, and repeatedly forcing the pipe end to apply a rotational force. At this time, in order to properly evaluate the base material, a portion having lower strength than the base material must be eliminated. This is because the applied stress concentrates on the low-strength portion, and the low-strength portion breaks before the base material breaks.

ねじり疲労試験時は、管端とフランジ治具は表面に凹凸がないように滑らかに接合する必要があるが、鋼管を溶接以外の方法で接合、例えばチャック締結であればチャック端に、ボルト締結であればボルト穴端に応力が集中し、そこから疲労破壊する。そのため、ねじり疲労試験では管端とフランジ治具とを溶接することが不可欠になるが、溶接には必ず熱影響(HAZ)による軟化を伴うため、母材より低強度部が発生する問題があった。この溶接過程は母材にとって焼鈍と等価な熱履歴となり、特に近年開発中の高強度焼入れ鋼管の場合は軟化部の強度が母材に比べて著しく低下することから、評価を実現する接合法がなかった。   During the torsional fatigue test, the pipe end and the flange jig must be smoothly joined so that there is no unevenness on the surface, but the steel pipe is joined by a method other than welding. In this case, stress concentrates at the end of the bolt hole, and fatigue fracture occurs from there. Therefore, in the torsional fatigue test, it is essential to weld the pipe end and the flange jig, but since welding always involves softening due to heat effect (HAZ), there is a problem that a lower strength part is generated than the base material. Was. This welding process results in a heat history equivalent to annealing for the base metal, and particularly in the case of a high-strength quenched steel pipe under development in recent years, the strength of the softened part is significantly lower than that of the base metal. Did not.

従来、特許文献1にあるように、捻り疲労試験時に鋼管を試験装置ブラケットへ接続する際、鋼管の外径より最大0.6mm小さい内径のブラケット孔へ挿入した後に溶接することで、外圧による圧縮残留応力を発生に伴う摩擦力を増加させ、ねじり疲労特性を評価する手法が提案されている。しかし、本手法でも溶接が不可欠であり、溶接によって著しく軟化した部位が発生する高強度焼き入れ鋼管では、溶接部がほぼ同径であり、軟化部から破壊するため、適用は困難であった。また、管端部を拡管してフランジと接合する方法も検討されているが、溶接による軟化部が生じても径の大きさでカバーできる可能性がある。しかし、高強度材を所定の径まで拡管することは技術的に容易ではなく、拡管時に座屈や割れが発生する懸念が大きいため、やはり適用が難しい。特に5mm以上の厚手材を均質に拡管することは困難であり、比較的薄手材に有効な方法であった。尚、ここで述べている従来の拡管とは、外径及び内径を素管より大きく広げる加工のことで、拡管に伴う薄肉化以外には肉厚を制御しない、即ち厚肉するための措置を行わない加工プロセスを意味する。   Conventionally, as described in Patent Document 1, when a steel pipe is connected to a test apparatus bracket during a torsional fatigue test, the steel pipe is inserted into a bracket hole having an inner diameter of at most 0.6 mm smaller than the outer diameter of the steel pipe and then welded, so that compression residual due to external pressure is reduced. There has been proposed a method for evaluating a torsional fatigue characteristic by increasing a frictional force accompanying a stress. However, even in this method, welding is indispensable, and in the case of a high-strength hardened steel pipe in which a portion significantly softened by welding is generated, the application is difficult because the welded portion has almost the same diameter and breaks from the softened portion. Although a method of expanding the pipe end and joining it to a flange is also being studied, there is a possibility that even if a softened portion due to welding occurs, it can be covered with a large diameter. However, it is not technically easy to expand a high-strength material to a predetermined diameter, and there is a great concern that buckling or cracking will occur at the time of expanding the tube. In particular, it was difficult to uniformly expand a thick material of 5 mm or more, which was an effective method for relatively thin materials. In addition, the conventional expansion described here is a process of expanding the outer diameter and the inner diameter larger than the raw pipe, and does not control the wall thickness except for the thinning accompanying the expansion, that is, measures to increase the wall thickness. Means a machining process that is not performed.

こうした問題から従来は、鋼管単体でのねじり疲労試験は実施できず、鋼管を機械構造に組み込んだ状態で試験するしかなかった。しかし、試験体の準備に時間やコストがかかり、様々な形状に依存する特殊な締結治具が必要になる問題がある上、鋼管自体の疲労特性が評価できないまま部品設計をするため、形状の検討が不十分となり易く、ねじり疲労試験後に設計への手戻りが生じるといった開発の遅延にも繋がっていた。こうした背景から、鋼管の母材自体のねじり疲労特性を評価する手法が強く望まれていた。   Conventionally, a torsional fatigue test cannot be performed on a single steel pipe due to such a problem, and the test has to be performed with the steel pipe incorporated in a mechanical structure. However, it takes time and cost to prepare test specimens, which requires special fastening jigs that depend on various shapes.In addition, since parts are designed without evaluating the fatigue characteristics of the steel pipe itself, Investigations tended to be insufficient, leading to delays in development, such as the need to return to design after the torsional fatigue test. From such a background, a method for evaluating the torsional fatigue characteristics of the base material of the steel pipe itself has been strongly desired.

特開平7−112273号公報JP-A-7-112273

以上の問題を踏まえた本発明の目的は、高強度な焼き入れ鋼管であってもフランジ部材と適正に接合し、鋼管母材自体のねじり評価試験方法とそれに用いる試験体を提供することである。   An object of the present invention based on the above-described problems is to provide a method for evaluating the torsion of a steel pipe base material itself and a test body used for the method, by appropriately joining even a high-strength hardened steel pipe to a flange member. .

上記の課題を解決するためになされた本発明のねじり疲労試験方法は、焼き入れ高強度鋼管からなるねじり試験体の両端部を、その鋼成分のA3点以上に加熱された金型を用いた据え込み加工により、評価する鋼管母材部より内径を拡管することなく外径を大きくした外径拡大部としたうえ急冷し、接合用フランジ部材と全周接合した後にフランジねじり疲労試験機に組み込んでねじり疲労試験を行うことを特徴とするものである。 The torsional fatigue test method of the present invention made in order to solve the above-mentioned problem uses a mold heated at both ends of a torsion test body made of a quenched high-strength steel pipe to a point A3 or more of the steel component. by upsetting the inner diameter than the steel base metal evaluating quenched after having the outer diameter larger then the outside diameter enlarged section without the tube expansion, integrated in the flange torsional fatigue testing machine after the entire circumference joined with joining flange member A torsional fatigue test is performed.

前記外径拡大部を、ねじり試験に処する範囲に対し、外形拡大率η≧5.5%、外径拡大部の長さLE≧15mmで作製とすることが好ましい。 It is preferable that the enlarged-diameter portion is manufactured so that the external-magnification ratio η ≧ 5.5% and the length L E ≧ 15 mm of the enlarged-diameter portion with respect to the range subjected to the torsion test.

上記の課題を解決するためになされた本発明のねじり試験体は、焼き入れ高強度鋼管からなるねじり試験体の両端部を、その鋼成分のA3点以上に加熱された金型を用いた据え込み加工により、評価する鋼管母材部より内径を拡管することなく外径を大きくした外径拡大部としたうえ急冷し、接合用フランジ部材と全周接合したことを特徴とするものである。 The torsion test body of the present invention made in order to solve the above-mentioned problem is a method in which both ends of a torsion test body made of a quenched high-strength steel pipe are installed by using a mold heated to A3 point or more of the steel component. In this method, the outer diameter is increased without increasing the inner diameter from the steel pipe base material to be evaluated, and then the outer diameter is increased, and then rapidly cooled, and the entire circumference is joined to the joining flange member .

前記外径拡大部は、ねじる試験に処する範囲に対し、外形拡大率η≧5.5%、端部の外径拡大部の長さLE≧15mmであることが好ましい。 It is preferable that the outer diameter enlarged portion has an outer diameter expansion ratio η ≧ 5.5% and a length L E ≧ 15 mm of the outer diameter enlarged portion at the end with respect to a range subjected to a torsion test.

本発明のねじり疲労試験方法及びそれに用いる試験体によれば、従来実現できなかった母材自体のねじり疲労試験を実施でき、部品の設計前に特性を把握できるため、大幅な開発リソースの削減が可能となる。   According to the torsional fatigue test method of the present invention and the test specimen used in the method, a torsional fatigue test of the base material itself, which could not be realized conventionally, can be performed, and the characteristics can be grasped before designing the parts, so that the development resources can be greatly reduced. It becomes possible.

試験体、接合用フランジ部材及び試験機の構造例を示す図である。It is a figure which shows the structural example of a test body, the flange member for joining, and a testing machine. 外径拡大率と管外表面に生じるミーゼス相当応力の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between an outer diameter expansion ratio and Mises equivalent stress which arises in a tube outer surface. 試験体を接合用フランジ部材と溶接した後の溶接部からの硬さ分布の一例を示すグラフである。It is a graph which shows an example of the hardness distribution from the welding part after welding a test body with the joining flange member. 据え込み加工の例を示す図である。It is a figure showing an example of upsetting.

以下に本発明の実施形態を説明する。
溶接部の特性は母材部の焼き入れ後強度に依存しており、高強度材では必然的に溶接部位の軟化を伴う。これに対し、ねじり剛性は素管径の4乗に比例することから、軟化が想定される母材両端部の一定長以上の外径及び肉厚を大きくした形状に加工し、接合用フランジ部材と接合する。これにより、実効的に軟化部の外径を拡大してねじり剛性を高め、疲労破壊を防止することで、母材部のねじり疲労評価を実現できる。
Hereinafter, embodiments of the present invention will be described.
The properties of the welded portion depend on the strength of the base material after quenching, and a high-strength material inevitably involves softening of the welded portion. On the other hand, since the torsional rigidity is proportional to the fourth power of the diameter of the base tube, it is processed into a shape in which the outer diameter and the wall thickness are larger than a certain length at both ends of the base material, which is assumed to be softened, and the joining flange member is formed. To join. Thus, the outer diameter of the softened portion is effectively increased to increase the torsional rigidity and prevent the fatigue fracture, whereby the torsional fatigue evaluation of the base metal portion can be realized.

図1にねじり疲労試験体の構造を示す。捩じり試験機10は、回動モータ11と、試験体1の端部に接合する接合用フランジ部材12、13とを備える。図1には、一方(左側)の接合用フランジ部材12に回動モータ11を連結させ、他方(右側)の接合用フランジ部材13を固定した状態で、接合用フランジ部材12に繰り返し負荷トルク(捩じりトルク)を付加する例を記載している。ここで、静止状態から一定角度に捩じり、元の静止状態に戻す場合を片振り試験といい、静止状態から一定角度に捩じり、静止状態を通過して反対方向へ同様な一定角度捩じって静止状態に戻す場合を両振り試験という。本発明はこれらのいずれにも適用可能である。また、加速試験等の目的で、両方の接合用フランジ部材12、13にそれぞれ回動モータを接続し、試験体1の両端部に互いに逆方向に負荷トルク(捩じりトルク)を付加する場合にも、本発明を適用することができる。尚、ねじり試験の対象部分の外径ODと、外径拡大部EDPの外径ODとを滑らかに結ぶべく、図1中のERのように曲率部を設け、外形が滑らかに変化するようにすることが好ましい。 FIG. 1 shows the structure of a torsional fatigue test specimen. The torsion tester 10 includes a rotating motor 11 and joining flange members 12 and 13 joined to an end of the test sample 1. FIG. 1 shows a state in which the rotating motor 11 is connected to one (left) joining flange member 12 and the other (right) joining flange member 13 is fixed. An example of adding a torsional torque) is described. Here, twisting from a stationary state to a fixed angle and returning to the original stationary state is called a pulsating test, twisting from a stationary state to a fixed angle, passing through the stationary state and a similar constant angle in the opposite direction. The case of returning to a stationary state by twisting is called a swing test. The present invention is applicable to any of these. In the case where a rotating motor is connected to each of the joining flange members 12 and 13 for the purpose of an acceleration test or the like, and a load torque (torsion torque) is applied to both ends of the test body 1 in opposite directions. The present invention can be applied to any of them. Incidentally, the outer diameter OD 1 of the target portion of the torsion test, to connect smoothly the outer diameter enlarged portion outer diameter OD 2 of the EDP, provided a curvature portion like ER in FIG. 1, the outer shape changes smoothly It is preferable to do so.

試験体1を試験すべく、疲労試験装置に組み込むための接合用フランジ部材12,13と試験体1を溶接などにより接合する際、前述の様に熱影響部で鋼管が軟化するが、このとき軟化部が全体の最弱部位にならないために(1)外径拡大率η及び、熱影響部以上の長さの(2)外径拡大部長さLEを設定することが好ましい。以下、150ksiクラス、φ31.8×t1.6の焼き入れ高強度鋼管の場合を例にして説明する。
(1)外径拡大率η
熱影響部の軟化した材料でも、上記負荷トルクでも塑性変形が生じないねじり剛性を確保できる管端外径であることが要求される。ねじり試験の対象部分の外径をOD、外径拡大部EDPの外径をODとした場合、外径拡大率ηを
η=(OD−OD)/OD
と定義する。ねじり疲労試験では管外表面の発生応力が最も高いことから、上記負荷トルクによって生じる管外表面のミーゼス相当応力σmを、例えば本例の場合、熱影響部の降伏強さ500MPa以下とするためには、素管径φ31.8mmに対して5.5%外径を拡大させることが好ましい(図2)。この場合、φ34.0mm以上の管端外径が適切である。尚、接合用フランジ部材の外径は外径拡大部EDPの外径OD以上であることが好ましく、同じであることがより好ましい。
(2)外径拡大部長さLE
接合用フランジ部材との接合時、例えば溶接などの場合、熱影響で軟化する部分が外径拡大部にカバーされることが求められる。本例では熱影響による軟化部の長さが約10mmであるが(図3)、自動車用構造部品に用いられる場合、10mmを超えることもあり得るため、外径拡大部長さをLE と定義し、LE ≧15mmとすることが好ましい。尚、熱影響による軟化部の長さを短くするため、接合用フランジ部材を評価鋼管と同じ材質とする或いは接合方式に摩擦圧接を用いることがさらに好ましい。
In order to test the specimen 1, when the joining flange members 12 and 13 to be incorporated into the fatigue test apparatus and the specimen 1 are joined by welding or the like, the steel pipe is softened in the heat-affected zone as described above. for softening unit is not a whole weak portion (1) outside diameter enlargement ratio η and, above HAZ length of (2) it is preferable to set the outer diameter enlarging director of L E. Hereinafter, a case of a hardened high-strength steel pipe of 150 ksi class, φ31.8 × t1.6 will be described as an example.
(1) Outer diameter expansion rate η
The material whose heat affected zone is softened is required to have a tube end outer diameter that can secure torsional rigidity that does not cause plastic deformation even under the above-mentioned load torque. When the outer diameter of the target portion of the torsion test is OD 1 and the outer diameter of the outer diameter enlarged portion EDP is OD 2 , the outer diameter expansion rate η is
η = (OD 2 −OD 1 ) / OD 1
Is defined. In the torsional fatigue test, since the generated stress on the outer surface of the tube is the highest, the Mises equivalent stress σm of the outer surface of the tube caused by the load torque is set to, for example, in this example, the yield strength of the heat-affected zone to 500 MPa or less. It is preferable to increase the outer diameter by 5.5% with respect to the base tube diameter of 31.8 mm (FIG. 2). In this case, a pipe end outer diameter of φ34.0 mm or more is appropriate. The outer diameter of the joining flange member is preferably an outer diameter enlarged portion is EDP outer diameter OD 2 or more, and more preferably the same.
(2) outside diameter-large director of L E
At the time of joining with the joining flange member, for example, in the case of welding or the like, it is required that a portion softened by the influence of heat be covered by the outer diameter enlarged portion. Although in this example is about 10mm length of the softened portion caused by thermal influence (Fig. 3), when used in automotive structural parts, and components may also be more than 10mm, defining an outer diameter enlarging director of the L E However, it is preferable that L E ≧ 15 mm. In addition, in order to shorten the length of the softened portion due to heat, it is more preferable that the joining flange member is made of the same material as the evaluation steel pipe or that the joining method employs friction welding.

これらの指標に基づき、η>0かつ表面のミーゼス相当応力が評価母材よりも大きくなる直径ODとすること及び、LE>接合による管端からの熱影響部の長さとなるように設計することで、好ましいねじり疲労試験が実現できる。 Based on these indicators, eta> 0 and and that the diameter OD 2 of Mises equivalent stress is greater than the evaluation matrix of the surface, L E> designed to be a length of the heat affected zone from the pipe end by bonding By doing so, a preferable torsional fatigue test can be realized.

このような試験体を製作するのに、管端部を据え込み加工する方法がある。これは試験体の外径や肉厚及び試験条件などを考慮し、試験体に求められるη及びLEを計算し、予め篏合する金型を製作しておく。試験体の両端部或いは片端ずつ加熱して金型に嵌め込み、金型に沿った形状に成形する。但し、試験体が焼き入れ型の高強度鋼管である場合、端部を試験体成分のA3点以上に加熱し、成形後に急冷することが望ましい。図4に据え込み加工の例を示す。 To manufacture such a test body, there is a method of upsetting a pipe end. This consideration of the outer diameter and wall thickness and test conditions of the test body, the η and L E required for specimen was calculated, previously manufactured mold in advance篏合. The test body is heated at both ends or one end at a time, fitted into a mold, and formed into a shape along the mold. However, when the specimen is a quenched type high-strength steel pipe, it is desirable to heat the end to a point A3 or more of the specimen component and to rapidly cool after forming. FIG. 4 shows an example of upsetting.

本発明においては、内径は拡大されないが、上記のような加工方法により多少は内径が拡大することも想定される。その場合、20%程度の内径拡大率({(加工後内径−加工後内径)/加工前内径}×100(%))程度は許容される。   In the present invention, the inner diameter is not enlarged, but it is assumed that the inner diameter is slightly increased by the above-described processing method. In this case, an inner diameter expansion rate of about 20% ({(inner diameter after processing−inner diameter after processing) / inner diameter before processing} × 100 (%)) is allowable.

このようにして製作した試験体をフランジ部材と接合し、フランジねじり疲労試験機に組み込む。接合方法には、例えば摩擦圧接、アーク溶接があるがこれに限定されない。摩擦圧接は固相拡散であるため、接合面の温度が鋼材の溶融温度いかになることから、熱影響部が短く、比較的小さいLEにすることができる上、肉厚に依らず接合できるという特徴がある。アーク溶接でも試験体とフランジ部材との接合は可能であるが、比較的LEを大きく取らねばならず、肉厚によっては均質な接合が難しくなる場合がある。またアーク溶接などの溶接の場合、全周を連続的に溶接することが好ましいが、断続的でも試験条件のトルクに耐え得る状態であれば構わず、例えば全周の50%以上が溶接されていれば好ましい。
以下に本発明の実施例を示す。
The test body manufactured in this manner is joined to a flange member and incorporated into a flange torsion fatigue tester. Examples of the joining method include, but are not limited to, friction welding and arc welding. Since the friction welding is a solid-phase diffusion, since the temperature of the joint surface is how the melting temperature of the steel material, the heat affected zone is short, on which can be a relatively small L E, that can be joined regardless of the thickness There are features. Although in arc welding is possible joining between the test body and the flange member, not must take large relatively L E, there are cases where a homogeneous junction is difficult by the thickness. In the case of welding such as arc welding, it is preferable to continuously weld the entire circumference. However, any state may be used as long as it can withstand the torque of the test condition even intermittently. For example, 50% or more of the entire circumference is welded. It is preferable if it is.
Hereinafter, examples of the present invention will be described.

本実施例では、試験体と接合用フランジ部材との接合に、溶接を用いた場合を例にして説明する。ここでは150ksiクラス、φ31.8×t1.6の焼き入れ高強度鋼管のねじり疲労試験を例に挙げる。本鋼管は焼き入れ部の降伏強さ1000MPa、引張強さ1200MPa、未焼き入れ部は降伏強さ500MPa、引張強さ650MPaで、熱影響部の軟化代が非常に大きい材料である。疲労試験条件は自動車用部材のねじり疲労試験を想定した負荷トルク:800N・mとする。   In the present embodiment, a case where welding is used as an example for joining the test piece and the joining flange member will be described. Here, a torsional fatigue test of a hardened high-strength steel pipe of 150 ksi class, φ31.8 × t1.6 is taken as an example. This steel pipe has a yield strength of 1000MPa and a tensile strength of 1200MPa in the quenched part, a yield strength of 500MPa and a tensile strength of 650MPa in the unquenched part. The fatigue test condition is a load torque of 800 N · m assuming a torsional fatigue test of a member for an automobile.

削り出しで試験体を作成する参考例として、ラボ溶解で製作したインゴットから外径φ3×t2.7×400mmL、φ34×t9.0×400mmLの2種類の単径、単一肉厚の鋼管を削り出しにて、評価母材部がそれぞれφ33.8×t2.7、φ33.8×t9.0に加工した。その後、接合用フランジ部材との溶接部を上記拡管率と外径拡大部長さの条件を満足するよう両管端15mmずつを残して外径φ31.8になるよう削り出し加工した。尚、ねじり試験の対象部分の外径ODと、外径拡大部EDPの外径ODとを滑らかに結ぶべく、2mmR程度の曲率を設け、外形が滑らかに変化するようにした。これは極端な形状変化に起因するねじり疲労試験時の応力集中を抑制するためである。 As a reference example of making a test specimen by shaving, two types of single-diameter, single-wall steel pipes with an outer diameter of φ3 × t2.7 × 400 mmL and φ34 × t9.0 × 400 mmL from an ingot manufactured by laboratory melting. By shaving, the evaluation base material portions were processed to φ33.8 × t2.7 and φ33.8 × t9.0, respectively. Thereafter, the welded portion with the joining flange member was machined so as to have an outer diameter of φ31.8 except for both pipe ends of 15 mm each so as to satisfy the above-described conditions of the pipe expansion ratio and the outer diameter enlarged portion length. In order to smoothly connect the outer diameter OD 1 of the portion to be subjected to the torsion test to the outer diameter OD 2 of the outer diameter enlarged portion EDP, a curvature of about 2 mmR was provided so that the outer shape changed smoothly. This is to suppress stress concentration at the time of a torsional fatigue test due to an extreme shape change.

据え込み加工の例として、電縫溶接にて作製した外径φ31.8×t1.6×420mmLと、φ31.8×t8.0×400mmLの2種類の単管を据え込み加工し、両端側15mmずつがそれぞれφ33.8×t2.7、φ33.8×t9.0に加工した。据え込み加工には金型が必要になるが、管端部より小径になる領域は竹割方式の金型をボルト或いは高荷重をかけて密着させる方式の金型とした。管端部を1000℃程度で予熱しておき、篏合する金型と密着させることで成形する。このとき、両端部を加熱して同時成形してもよいし、片端ずつ成形してもよい。本例では、焼き入れ型の高強度鋼管を対象としているため、成形直後に試験体を水中に投入して急冷した。これにより、据え込み加工における試験体強度はほぼ均一となった。   As an example of upsetting, two types of single pipes with outer diameters of φ31.8 × t1.6 × 420mmL and φ31.8 × t8.0 × 400mmL prepared by electric resistance welding are upset, and both ends are Each 15 mm was processed to φ33.8 × t2.7 and φ33.8 × t9.0. Although a mold is required for the upsetting process, a region having a smaller diameter than the end of the tube is a mold of a bamboo split type which is tightly adhered by applying a bolt or a high load. The tube end is preheated at about 1000 ° C, and molded by bringing it into close contact with the fitting die. At this time, both ends may be heated and molded simultaneously, or one end may be molded at a time. In the present example, a quenched high-strength steel pipe was targeted, so that the test specimen was put into water immediately after forming and rapidly cooled. As a result, the strength of the test specimen in the upsetting process became substantially uniform.

一方、接合用フランジ部材はSCM435の材料を用い、反対側の端部には試験装置とボルト12本で接続するための接合用フランジ部材が形成されている一体型の加工品とした。これら接合用フランジ部材を、摩擦圧接(余熱圧力:2kg/mm2、余熱時間:5秒、摩擦圧力:5.0kg/mm2、摩擦より代:3mm、アプセット圧力:10kg/mm2、アプセット時間:5秒、回転数:1000rpm及び、より代:5mm)するか、全周アーク溶接を施すか、して試験体と接合し、試験機に組み込んで試験体のねじり疲労試験を行った。 On the other hand, the joining flange member was made of a material of SCM435, and was formed as an integrated processed product having a joining flange member formed at the opposite end for connection with a test apparatus with 12 bolts. These joining flange members were subjected to friction welding (remaining heat pressure: 2 kg / mm 2 , remaining heat time: 5 seconds, friction pressure: 5.0 kg / mm 2 , frictional allowance: 3 mm, upset pressure: 10 kg / mm 2 , upset time) : 5 seconds, rotation speed: 1000 rpm, and twist: 5 mm), or by performing full-circle arc welding, and joining with a test piece, and incorporating the test piece into a torsional fatigue test of the test piece.

表1に示す比較試験では、φ31.8×t1.6の鋼管について拡管しないケース1、上記と同様の加工によって外径拡大率を計算上必要な5.5%以下である3%としたケース2及び3、外径拡大部長さを接合時の熱影響部を含む7.5mmとしたケース4及び5を実施した。その結果、拡管しないケース1はねじり疲労試験時に評価母材部が破損するより早期にフランジとの接合時に生じたHAZ軟化部で破損した。またケース2〜5は、HAZ軟化部の表面に微小割れの発生が認められたものの、試験自体は正常なねじり疲労試験ができた。一方、φ31.8×t1.6の鋼管については、所定の外径拡大率と外径拡大部長さを満足するケースでは、加工法、接合法によらず、評価母材部が先行して破損し、正常なねじり疲労試験ができた。   In the comparative test shown in Table 1, a case 1 in which the steel pipe of φ31.8 × t1.6 was not expanded, and a case where the outer diameter expansion ratio was set to 3% which is 5.5% or less which is necessary for calculation by the same processing as above. Cases 2 and 3 and cases 4 and 5 where the length of the outer diameter enlarged portion was 7.5 mm including the heat-affected zone at the time of joining were performed. As a result, the case 1 that was not expanded was damaged by the HAZ softened portion generated at the time of joining with the flange earlier than the evaluation base material was damaged during the torsional fatigue test. In cases 2 to 5, although the occurrence of microcracks was observed on the surface of the softened portion of the HAZ, the test itself was able to perform a normal torsional fatigue test. On the other hand, for a φ31.8 × t1.6 steel pipe, in the case of satisfying the specified outer diameter expansion ratio and the outer diameter expanded part length, the evaluation base material part was broken first regardless of the processing method and joining method. The normal torsional fatigue test was completed.

より厚肉のφ31.8×t8.0の鋼管については、比較例としてプラグを用いて外形φ31.8→φ33.8、内径φ19.8→φ21.0まで拡管を試みたが、加工途中に外面に微小割れが発生し、疲労試験の実施に至らなかった。これは外面割れの部位にねじり応力が集中して評価母材部より早期に破損したためである。これに対し、削り出し及び据え込み加工して作製したサンプルは加工上の問題もなく、正常にねじり疲労試験ができた。   For a thicker φ31.8 × t8.0 steel pipe, we attempted to expand the outer diameter φ31.8 → φ33.8 and inner diameter φ19.8 → φ21.0 using a plug as a comparative example. Small cracks occurred on the outer surface, and the fatigue test was not performed. This is because the torsional stress was concentrated at the site of the outer surface crack and was broken earlier than the evaluation base material. On the other hand, the sample prepared by cutting and upsetting did not have any processing problems, and the torsional fatigue test was normally performed.

表1に試験結果を示す。試験体のねじり疲労試験に処する領域以外で塑性変形や割れが発生するかどうかに基づいて、目視により結果の良否を判断している。   Table 1 shows the test results. Based on whether plastic deformation or cracking occurs in a region other than the region subjected to the torsional fatigue test of the test specimen, the quality of the result is visually judged.

1:試験体
10:試験機
11:回動モータ
12、13:接合用フランジ部材
ER:曲率部
EDP:外径拡大部
OD:ねじり試験の対象部分の外径
OD:EDPの外径
LE:外径拡大部の長さ
1: specimen 10: tester 11: rotating motor 12, 13: bonding flange member ER: curvature portion EDP: outer diameter enlarged section OD 1: outer diameter of the target portion of the torsion test OD 2: EDP outer diameter
L E : Length of enlarged outer diameter part

Claims (4)

焼き入れ高強度鋼管からなるねじり試験体の両端部を、その鋼成分のA3点以上に加熱された金型を用いた据え込み加工により、評価する鋼管母材部より内径を拡管することなく外径を大きくした外径拡大部としたうえ急冷し、接合用フランジ部材と全周接合した後にフランジねじり疲労試験機に組み込んでねじり疲労試験を行うことを特徴とする、鋼管のねじり疲労試験方法。 The both ends of the torsion specimen made of a quenched high-strength steel pipe are subjected to upsetting using a mold heated to the A3 point or more of the steel component without expanding the inner diameter from the steel pipe base material to be evaluated. A torsion fatigue test method for a steel pipe, characterized in that the outer diameter is increased, the diameter is increased, the pipe is quenched, and the entire circumference is joined to a joining flange member. 前記外径拡大部を、ねじり試験に処する範囲に対し、外形拡大率η≧5.5%、外径拡大部の長さLE≧15mmで作製することを特徴とする、請求項1に記載の鋼管のねじり疲労試験方法。 2. The steel pipe according to claim 1, wherein the outer diameter enlarged portion is manufactured with an outer diameter expansion ratio η ≧ 5.5% and a length L E ≧ 15 mm of an outer diameter enlarged portion with respect to a range to be subjected to a torsion test. 3. Torsional fatigue test method. 焼き入れ高強度鋼管からなるねじり試験体の両端部を、その鋼成分のA3点以上に加熱された金型を用いた据え込み加工により、評価する鋼管母材部より内径を拡管することなく外径を大きくした外径拡大部としたうえ急冷し、接合用フランジ部材と全周接合したことを特徴とする、鋼管のねじり疲労試験用の試験体。The both ends of the torsion specimen made of a quenched high-strength steel pipe are subjected to upsetting using a mold heated to the A3 point or more of the steel component without expanding the inner diameter from the steel pipe base material to be evaluated. A specimen for torsion fatigue test of a steel pipe, characterized in that the diameter is increased and an outer diameter is enlarged, which is quenched, and is joined to a joining flange member all around. 前記外径拡大部を、ねじり試験に処する範囲に対し、外形拡大率η≧5.5%、外径拡大部の長さLWith respect to the range where the outer diameter enlarged portion is subjected to the torsion test, the outer diameter expansion ratio η ≧ 5.5%, the length L of the outer diameter enlarged portion is EE ≧15mmで作製したことを特徴とする、請求項3に記載の鋼管のねじり疲労試験用の試験体。The test body for torsion fatigue test of a steel pipe according to claim 3, characterized in that the test body is manufactured at ≧ 15 mm.
JP2016037059A 2016-02-29 2016-02-29 Steel pipe torsion fatigue test method and specimen used for it Active JP6668818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016037059A JP6668818B2 (en) 2016-02-29 2016-02-29 Steel pipe torsion fatigue test method and specimen used for it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016037059A JP6668818B2 (en) 2016-02-29 2016-02-29 Steel pipe torsion fatigue test method and specimen used for it

Publications (2)

Publication Number Publication Date
JP2017156110A JP2017156110A (en) 2017-09-07
JP6668818B2 true JP6668818B2 (en) 2020-03-18

Family

ID=59808551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016037059A Active JP6668818B2 (en) 2016-02-29 2016-02-29 Steel pipe torsion fatigue test method and specimen used for it

Country Status (1)

Country Link
JP (1) JP6668818B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107764540B (en) * 2017-11-24 2024-01-23 航天科工哈尔滨风华有限公司 Torsion bar spring residual deformation angle testing device
CN109484672B (en) * 2018-11-30 2024-01-16 中国商用飞机有限责任公司北京民用飞机技术研究中心 Go up wall end and wallboard and connect whole angle box subassembly
CN111238969B (en) * 2020-02-04 2023-09-12 中国石油大学(华东) Fatigue test fixing device for composite material pipe
CN115406751B (en) * 2022-10-31 2023-02-03 核工业西南物理研究院 Welding type conduction experiment fixture for high-temperature superconducting cable and method thereof

Also Published As

Publication number Publication date
JP2017156110A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6668818B2 (en) Steel pipe torsion fatigue test method and specimen used for it
Groche et al. Joining by forming—a review on joint mechanisms, applications and future trends
Sønstabø et al. Macroscopic strength and failure properties of flow-drill screw connections
US7575149B2 (en) Method of connecting a metallic bolt to a plastic workpiece
Min et al. Friction stir blind riveting for joining dissimilar cast Mg AM60 and Al alloy sheets
Malafaia et al. Fatigue behavior of friction stir spot welding and riveted joints in an Al alloy
Lin et al. Failure modes and fatigue life estimations of spot friction welds in cross-tension specimens of aluminum 6061-T6 sheets
Zheng et al. A dynamic cold expansion method to improve fatigue performance of holed structures based on electromagnetic load
US9227267B1 (en) Warm bond method for butt joining metal parts
Lim et al. Ti-6Al-4V/SUS316L dissimilar joints with ultrahigh joint efficiency fabricated by a novel pressure-controlled joule heat forge welding method
Behrens et al. Characterisation of the joining zone of serially arranged hybrid semi-finished components
JP6642034B2 (en) Steel pipe torsion fatigue test method and specimen used for it
JP6551172B2 (en) Torsional test method of steel pipe
Handa et al. Influence of process parameters on torsional strength, impact toughness and hardness of dissimilar AISI 304 and AISI 1021 friction welded steels
Işık et al. Determination of the mechanical properties of friction welded tube yoke and tube joint
Shen et al. Prediction of failure mode in hole clinching of Al alloy and advanced high-strength steel
Divagar et al. Joining the different materials using friction welding—a review
Kolesar et al. Stress-strain state at force and temperature loading of assemblies from dissimilar steels with soft interlayer
Hong et al. Failure modes of friction stir spot welds in lap-shear specimens of dissimilar advanced high strength steels under quasi-static and cyclic loading conditions
JP6042074B2 (en) Ultrasonic shock treatment method
D’urso et al. Characterization of friction stir welded tubes by means of tube bulge test
Moumi et al. Wire joining by rotary swaging
Chung et al. Bending Formability of Ferritic Stainless Steels for Application to Tubular Exhaust Manifolds
Merklein et al. Tailored heat treated profiles-enhancement of the forming limit of aluminum profiles under bending load
JP7156541B2 (en) Bonded joint, automotive member, and method for manufacturing bonded joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R151 Written notification of patent or utility model registration

Ref document number: 6668818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151