JP6668219B2 - Vortex water flow generator, water plasma generator, decomposition processing apparatus, vehicle equipped with decomposition processing apparatus, and decomposition processing method - Google Patents

Vortex water flow generator, water plasma generator, decomposition processing apparatus, vehicle equipped with decomposition processing apparatus, and decomposition processing method Download PDF

Info

Publication number
JP6668219B2
JP6668219B2 JP2016212679A JP2016212679A JP6668219B2 JP 6668219 B2 JP6668219 B2 JP 6668219B2 JP 2016212679 A JP2016212679 A JP 2016212679A JP 2016212679 A JP2016212679 A JP 2016212679A JP 6668219 B2 JP6668219 B2 JP 6668219B2
Authority
JP
Japan
Prior art keywords
water
water flow
plasma
vortex
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016212679A
Other languages
Japanese (ja)
Other versions
JP2017123323A5 (en
JP2017123323A (en
Inventor
博文 矢口
博文 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HELIX CO., LTD.
Original Assignee
HELIX CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HELIX CO., LTD. filed Critical HELIX CO., LTD.
Priority to JP2016212679A priority Critical patent/JP6668219B2/en
Publication of JP2017123323A publication Critical patent/JP2017123323A/en
Publication of JP2017123323A5 publication Critical patent/JP2017123323A5/en
Application granted granted Critical
Publication of JP6668219B2 publication Critical patent/JP6668219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)

Description

本発明は、陰極と陽極との間で発生するアーク放電により水プラズマを噴射するために用いられる渦水流発生器、水プラズマ発生装置、分解処理装置、分解処理装置搭載車両及び分解処理方法に関する。 The present invention relates to a vortex water flow generator, a water plasma generator, a decomposition processing apparatus, a vehicle equipped with a decomposition processing apparatus, and a decomposition processing method used for injecting water plasma by arc discharge generated between a cathode and an anode.

水プラズマを利用して廃棄物を処理する装置として、特許文献1に記載された装置が知られている。特許文献1の装置では、プラズマ安定化媒体として水を用い、アーク放電により発生される水プラズマジェット気流に焼却灰を供給して当該焼却灰を溶解している。水プラズマジェット気流は水プラズマバーナより噴射され、この水プラズマバーナは、アーク放電を発生させるための陰極及び陽極と、陰極の端部側に配置されて渦水流を形成するチャンバとを備えている。   As an apparatus for treating waste using water plasma, an apparatus described in Patent Literature 1 is known. In the apparatus of Patent Document 1, water is used as a plasma stabilizing medium, and incineration ash is supplied to a water plasma jet stream generated by arc discharge to dissolve the incineration ash. The water plasma jet stream is jetted from a water plasma burner, and the water plasma burner includes a cathode and an anode for generating an arc discharge, and a chamber arranged at an end of the cathode to form a vortex water flow. .

水プラズマバーナのチャンバは、円筒状をなして高圧水が導入される筒状部と、筒状部の両端部及び内周にそれぞれ形成される仕切部とを備え、導入された高圧水の流れを筒状部の内周面に沿わせることで渦水流を形成する。各仕切部には、筒状部の中心軸線位置に開口部が形成され、渦水流となった高圧水は、一部が水プラズマとなり、それ以外は各開口部を通じて筒状部の外部に排出される。   The chamber of the water plasma burner has a cylindrical portion into which high-pressure water is introduced in a cylindrical shape, and partition portions formed at both ends and an inner periphery of the cylindrical portion, respectively. Is formed along the inner peripheral surface of the cylindrical portion to form a vortex water flow. In each partition, an opening is formed at the center axis of the cylindrical part, and high-pressure water that has become a vortex flows partially into water plasma, and the rest is discharged to the outside of the cylindrical part through each opening. Is done.

特許第3408779号公報Japanese Patent No. 3408779

前記水プラズマバーナでは、渦水流の中心の空洞を通じてアーク放電が行われることで水プラズマが噴射される。従って、チャンバに高圧水を導入しても空洞が形成されないと、アーク放電が発生しなくなり、ひいては水プラズマを噴射できなくなる。この点において、本発明者は、試行錯誤を繰り返しながら鋭意研究を積み重ね、渦水流の空洞を安定して形成させるには、各仕切部における開口部の形状の重要性が高いことを知見した。つまり、特許文献1のように各開口部が同一形状に形成されるよりも、水プラズマを安定して噴射できる開口部を見出した。   In the water plasma burner, water plasma is ejected by performing arc discharge through the center cavity of the vortex water flow. Therefore, if a cavity is not formed even if high-pressure water is introduced into the chamber, arc discharge does not occur, and water plasma cannot be jetted. In this regard, the inventor of the present invention has conducted intensive studies while repeating trial and error, and has found that in order to stably form the vortex water flow cavity, the shape of the opening in each partition is important. That is, the present inventors have found an opening capable of stably ejecting water plasma rather than forming each opening in the same shape as in Patent Document 1.

本発明はかかる点に鑑みてなされたものであり、水プラズマの噴射の安定化を図ることができる渦水流発生器、水プラズマ発生装置、分解処理装置、分解処理装置搭載車両及び分解処理方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a vortex water flow generator, a water plasma generator, a decomposition processing apparatus, a vehicle equipped with a decomposition processing apparatus, and a decomposition processing method capable of stabilizing water plasma injection. The purpose is to provide.

本発明の渦水流発生器は、水プラズマを噴射する水プラズマ発生装置の陰極と陽極との間に配置され、それらの間で発生するアーク放電が通過するための渦水流を形成する渦水流発生器であって、前記渦水流を内周に沿って形成させる筒状部と、前記筒状部の内周から突出する複数の中間仕切部とを備え、前記各仕切部は、前記筒状部の中心軸線を含む位置に開口部をそれぞれ備え、前記陽極側の前記中間仕切部の方が前記陰極側の前記中間仕切部より前記開口部の開口形状が大きく形成されていることを特徴とする。この構成において、前記筒状部の一端側に形成されて前記陰極に対向する一端側仕切部と、前記筒状部の他端側に形成される他端側仕切部とを備え、前記一端側仕切部及び前記他端側仕切部は、前記筒状部の中心軸線を含む位置に開口部をそれぞれ備え、前記各仕切部の開口部の開口形状は異なる大きさに形成されている構成としてもよい。 The vortex water flow generator of the present invention is arranged between a cathode and an anode of a water plasma generator for injecting water plasma, and forms a vortex water flow for forming an eddy water flow for passing an arc discharge generated therebetween. a vessel, comprising a tubular portion which is formed along the inner circumference of the vortex water flow, and a plurality of intermediate partition portion protruding from the inner periphery of the cylindrical portion, wherein each of the partition portion, said cylindrical portion Openings are provided at positions including the central axis of the anode , and the opening shape of the opening is larger in the intermediate partition on the anode side than in the intermediate partition on the cathode side. . In this configuration, the one end side is formed on one end side of the tubular portion and faces the cathode, and the other end side partition portion is formed on the other end side of the tubular portion. The partition part and the other end side partition part may each be provided with an opening at a position including the central axis of the cylindrical part, and the opening shape of the opening of each partition part may be formed to have a different size. Good.

この構成によれば、筒状部の中心軸線を含む位置に並んで形成される複数の開口部の開口形状が異なる大きさに形成されるので、仕切部を跨って流れる水の量について調整の自由度を高めることができる。これにより、渦水流に空洞が良好に形成されるように種々のバリエーションの開口形状を採用することができ、水プラズマを安定して噴射することができる。また、筒状部内を複数の空間に仕切って渦水流を形成することができる。 According to this configuration, since the opening shapes of the plurality of openings formed side by side at the position including the center axis of the cylindrical portion are formed to have different sizes, the amount of water flowing across the partition portion is adjusted. The degree of freedom can be increased. Thereby, various variations of the opening shape can be adopted so that the cavity can be favorably formed in the vortex water flow, and the water plasma can be stably jetted. In addition, the inside of the cylindrical portion can be partitioned into a plurality of spaces to form a vortex water flow.

前記渦水流発生器において、前記中間仕切部及び前記他端側仕切部の開口部は、前記陰極から離れる並び順に応じて次第に大きくなる開口形状に形成されているとよい。この構成では、水プラズマの噴射側に近付くに従って開口部の開口形状が次第に大きくなって筒状部内に錘状となる空間が形成される。これにより、渦水流の空洞を安定して形成することができ、その理由は水プラズマの噴射側に向かって水が流れ易くなったからであると推測される。 In the vortex water flow generator, it is preferable that the openings of the intermediate partition and the other end are formed in an opening shape that gradually becomes larger in accordance with an arrangement order away from the cathode. In this configuration, the opening shape of the opening gradually increases as approaching the water plasma injection side, and a space in the shape of a cone is formed in the cylindrical portion. Thereby, the cavity of the vortex water flow can be formed stably, which is presumed to be because the water easily flows toward the jet side of the water plasma.

前記渦水流発生器において、前記中間仕切部及び前記他端側仕切部の前記陰極側の面は、前記中心軸線に近付くに従って前記陰極から離れるテーパ面によって形成され、このテーパ面は椀状面に沿って凹むように湾曲しているとよい。   In the vortex water flow generator, the surface on the cathode side of the intermediate partition and the other end side partition is formed by a tapered surface that is separated from the cathode as approaching the central axis, and the tapered surface is formed into a bowl-shaped surface. It is good to curve so that it may be depressed along.

前記渦水流発生器において、前記テーパ面と前記開口部の内周面との間には円弧状の面取り部が形成されているとよい。このようにテーパ面を湾曲したり円弧状の面取り部を形成したりすることで、渦水流の流れに対する抵抗を抑制して渦水流の空洞をより良く形成することができる。   In the vortex water flow generator, an arc-shaped chamfer may be formed between the tapered surface and an inner peripheral surface of the opening. By thus curving the tapered surface or forming the arc-shaped chamfer, the resistance to the flow of the vortex water flow can be suppressed, and the vortex water flow cavity can be formed better.

前記渦水流発生器において、前記筒状部には、その外部から内部に水が通過する通路が形成され、前記通路及び筒状部は円筒内周面をそれぞれ備え、前記筒状部の接線位置に前記通路の内周面が線状に重なっているとよい。この構成では、通路から流れ込む水を筒状部の円筒内周面に滑らかに沿わせて渦水流の安定形成に寄与することができる。   In the vortex water flow generator, a passage through which water passes from the outside to the inside is formed in the tubular portion, and the passage and the tubular portion each have a cylindrical inner peripheral surface, and a tangential position of the tubular portion. Preferably, the inner peripheral surface of the passage overlaps linearly. With this configuration, the water flowing from the passage can smoothly follow the inner peripheral surface of the cylindrical portion of the cylindrical portion, thereby contributing to the stable formation of the vortex water flow.

前記渦水流発生器において、前記通路は、隣り合う前記仕切部の間に形成されているとよい。この構成では、仕切部で挟まれた狭い空間で水流を旋回させることができる。   In the vortex water flow generator, the passage may be formed between the adjacent partitions. With this configuration, the water flow can be swirled in a narrow space sandwiched by the partitions.

前記渦水流発生器において、前記通路は、前記中心軸線の延出方向同一位置にて前記筒状部の周方向に複数形成されているとよい。この構成では、通路が形成された位置において筒状部の周方向複数箇所から水を流し込んで渦水流を安定して形成することができる。   In the vortex water flow generator, a plurality of the passages may be formed in the circumferential direction of the cylindrical portion at the same position in the extending direction of the central axis. With this configuration, it is possible to stably form the vortex water flow by pouring water from a plurality of locations in the circumferential direction of the tubular portion at the position where the passage is formed.

前記渦水流発生器において、前記各仕切部は、前記筒状部に対して着脱可能に設けられているとよい。この構成では、仕切部を容易に交換することができ、メンテナンスや調整作業等を行い易くすることができる。   In the vortex water flow generator, each of the partition portions may be provided so as to be detachable from the tubular portion. With this configuration, the partition can be easily replaced, and maintenance, adjustment work, and the like can be easily performed.

本発明の水プラズマ発生装置は、前記渦水流発生器と、当該渦水流発生器を収容するチャンバと、アーク放電を発生させる陽極及び陰極とを備え、前記渦水流発生器は、前記陰極と陽極との間に配置され、それらの間で発生するアーク放電が通過する渦水流を形成することを特徴とする。   The water plasma generator of the present invention includes the vortex water flow generator, a chamber accommodating the vortex water flow generator, an anode and a cathode for generating arc discharge, and the vortex water flow generator includes the cathode and the anode. And an arc discharge generated therebetween forms a vortex water flow.

本発明の分解処理装置は、前記水プラズマ発生装置と、当該水プラズマ発生装置が噴射した水プラズマに分解対象物を供給する供給装置とを備えていることを特徴とする。   The decomposition processing apparatus of the present invention is characterized by comprising the water plasma generator and a supply device for supplying a decomposition target to the water plasma ejected by the water plasma generator.

本発明の分解処理装置搭載車両は、前記分解処理装置をトラックの荷台に搭載して構成されることを特徴とする。   A vehicle equipped with a decomposition processing apparatus according to the present invention is characterized in that the decomposition processing apparatus is mounted on a truck bed.

本発明の分解処理方法は、前記水プラズマ発生装置が噴射した水プラズマに分解対象物を供給して当該分解対象物を分解処理することを特徴とする。   The decomposition treatment method of the present invention is characterized in that the decomposition target is supplied by supplying the decomposition target to the water plasma injected by the water plasma generator.

本発明によれば、複数の開口部の開口形状が異なる大きさに形成されるので、渦水流の空洞を安定して形成することができ、水プラズマの噴射の安定化を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, since the opening shape of a several opening part is formed in a different magnitude | size, the cavity of a vortex water flow can be formed stably and the injection of water plasma can be stabilized.

実施の形態に係る分解処理装置搭載車両の側面図である。1 is a side view of a vehicle equipped with a decomposition processing apparatus according to an embodiment. 荷台の内部を透視した車両の平面図である。It is the top view of the vehicle which saw through the inside of the carrier. 荷台の内部を左右方向中央位置で透視した車両の左側面図である。FIG. 5 is a left side view of the vehicle as seen through the inside of the bed at a center position in the left-right direction. 荷台の内部を左寄りの位置で透視した車両の左側面図である。FIG. 5 is a left side view of the vehicle, as seen through the inside of the carrier at a position closer to the left. 処理室の内部を上下方向中央位置で透視した車両の平面図である。It is the top view of the vehicle which looked through the inside of the processing chamber at the center position in the up-down direction. 本実施の形態の分解処理装置を一部側断面した説明図である。FIG. 3 is an explanatory view showing a partial side cross section of the decomposition processing apparatus of the present embodiment. 収容体の側断面図である。It is a sectional side view of a container. 図8Aは、収容体を後方から見た図であり、図8Bは、収容体を前方から見た図である。FIG. 8A is a diagram of the container viewed from the rear, and FIG. 8B is a diagram of the container viewed from the front. 第1及び第2ノズルの先端位置の説明図である。FIG. 3 is an explanatory diagram of the tip positions of first and second nozzles. 第1及び第2ノズルの内部構造を示す断面図である。FIG. 3 is a cross-sectional view illustrating an internal structure of first and second nozzles. チャンバの側断面図である。It is a sectional side view of a chamber. チャンバの平面断面図である。It is a plane sectional view of a chamber. チャンバの縦断面図である。It is a longitudinal section of a chamber. チャンバの一部と渦水流発生器の分解縦断面図である。FIG. 2 is an exploded vertical sectional view of a part of a chamber and a vortex water flow generator. 渦水流発生器の分解縦断面図である。It is a disassembled longitudinal sectional view of a vortex water flow generator. 渦水流発生器の一部の分解斜視図である。It is an exploded perspective view of a part of vortex water flow generator. 図11を一部拡大した渦水流を説明するための図である。FIG. 12 is a diagram illustrating a vortex water flow in which FIG. 11 is partially enlarged. アーク放電及び水プラズマの発生状態の説明図である。It is explanatory drawing of the generation state of arc discharge and water plasma.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。なお、実施の形態に係る各構成は、以下に示す構成に限定されず、適宜変更が可能である。また、以下の図においては、説明の便宜上、一部の構成を省略することがある。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that each configuration according to the embodiment is not limited to the configuration described below, and can be appropriately changed. In the following drawings, some components may be omitted for convenience of description.

図1は、実施の形態に係る分解処理装置搭載車両の側面図である。なお、以下の説明において、特に明示しない限り、「左」、「右」、「前」、「後」は、車体に対する向きであり、各図において矢印で示した方向を基準として用いる。但し、以下の実施の形態での各構成の向きは、一例にすぎず、任意の向きに変更することができる。   FIG. 1 is a side view of a vehicle equipped with a decomposition processing apparatus according to the embodiment. In the following description, “left”, “right”, “front”, and “rear” are directions with respect to the vehicle body unless otherwise specified, and the directions indicated by arrows in each drawing are used as a reference. However, the orientation of each configuration in the following embodiments is merely an example, and can be changed to any orientation.

図1に示すように、分解処理装置搭載車両(以下、「車両」と称する)10はトラックを基本構造としており、車両前方にキャビン11が設けられ、キャビン11の後方に前後方向に延在する荷台12が設けられている。キャビン11の下部には前輪14及び後輪15を駆動するためのエンジン13が設置されている。荷台12には、前後方向に3つの区画が形成され、前方から後方に向かって順に、発電エリア12Aと、プラズマ処理エリア12Bと、作業エリア12Cとを備えている。   As shown in FIG. 1, a vehicle (hereinafter, referred to as a “vehicle”) 10 having a disassembly processing device has a basic structure of a truck. A cabin 11 is provided in front of the vehicle, and extends in the front-rear direction behind the cabin 11. A carrier 12 is provided. An engine 13 for driving a front wheel 14 and a rear wheel 15 is provided below the cabin 11. The cargo bed 12 is formed with three sections in the front-rear direction, and includes a power generation area 12A, a plasma processing area 12B, and a work area 12C in order from the front to the rear.

続いて、発電エリア12Aの各構成について説明する。図2は、荷台の内部を透視した車両の平面図である。図2に示すように、車両10は、発電エリア12Aにおいて、左右に並んで配置された直流発電機17及び交流発電機18を備えている。発電エリア12Aでは、直流発電機17及び交流発電機18の前後及び左右方向が周壁20によって囲われている。また、発電エリア12Aでは、直流発電機17及び交流発電機18の上方に、後述する排気部21(図3参照)が設けられ、車両走行時等において排気部21と周壁20とによって発電エリア12Aを閉塞した空間を形成する。左右両側の周壁20は、ウィングボディとして開閉され、発電エリア12A内を外部に開放し、各発電機17、18を外部に露出可能となっている。交流発電機18は、図1に示すエンジン13とは別のエンジンを搭載し、このエンジンの出力を利用して交流電力を発電するものである。   Subsequently, each configuration of the power generation area 12A will be described. FIG. 2 is a plan view of the vehicle as seen through the inside of the carrier. As shown in FIG. 2, the vehicle 10 includes a DC generator 17 and an AC generator 18 arranged side by side in the power generation area 12A. In the power generation area 12A, the front, rear, left and right directions of the DC generator 17 and the AC generator 18 are surrounded by the peripheral wall 20. In the power generation area 12A, an exhaust portion 21 (see FIG. 3) described later is provided above the DC generator 17 and the AC generator 18, and the power generation area 12A is formed by the exhaust portion 21 and the peripheral wall 20 when the vehicle is running. To form a closed space. The left and right peripheral walls 20 are opened and closed as wing bodies, open the power generation area 12A to the outside, and expose the generators 17 and 18 to the outside. The AC generator 18 is equipped with an engine different from the engine 13 shown in FIG. 1 and generates AC power using the output of the engine.

図3は、荷台の内部を左右方向中央位置で透視した車両の左側面図である。直流発電機17は、エンジン13の出力を利用して発電するものである。具体的には、図3に示すように、エンジン13の駆動によってプロペラシャフト22が回転され、この回転がギヤボックス23を介して直流発電機17の入力軸を回転させて直流電力が発電される。このように、交流及び直流電力を発電可能とすることで、電源設備のない保管場所においても、後述する水プラズマ発生装置等の各機器を作動させることができる。   FIG. 3 is a left side view of the vehicle in which the inside of the cargo bed is seen through at the center position in the left-right direction. The DC generator 17 uses the output of the engine 13 to generate power. Specifically, as shown in FIG. 3, the propeller shaft 22 is rotated by the driving of the engine 13, and this rotation rotates the input shaft of the DC generator 17 via the gear box 23 to generate DC power. . As described above, by making it possible to generate AC and DC power, it is possible to operate each device such as a water plasma generator described below even in a storage place without power supply equipment.

次いで、プラズマ処理エリア12Bの各構成について説明する。図4は、荷台の内部を左寄りの位置で透視した車両の左側面図である。図2及び図4に示すように、車両10は、プラズマ処理エリア12Bにおいて、閉塞した空間となる処理室25を備えている。また、車両10は、処理室25内に、前後に並んで配置された水プラズマ発生装置27及び排気処理装置28を更に備えている。水プラズマ発生装置27は、直流発電機17(図4では不図示)から直流電力が供給されて直流アークを発生(アーク放電)させる。この直流アークの発生によって、水プラズマ発生装置27内に供給された水が解離、電離されて高エネルギーとなる水プラズマのジェット気流が噴射される。水プラズマ発生装置27の詳細な構成は後述する。   Next, each configuration of the plasma processing area 12B will be described. FIG. 4 is a left side view of the vehicle in which the inside of the cargo bed is seen through at a leftward position. As shown in FIGS. 2 and 4, the vehicle 10 includes a processing chamber 25 that is a closed space in the plasma processing area 12B. In addition, the vehicle 10 further includes a water plasma generator 27 and an exhaust gas treatment device 28 arranged in front and rear in the treatment room 25. The water plasma generator 27 is supplied with DC power from the DC generator 17 (not shown in FIG. 4) to generate a DC arc (arc discharge). Due to the generation of the DC arc, water supplied into the water plasma generator 27 is dissociated and ionized, and a jet stream of water plasma which becomes high energy is jetted. The detailed configuration of the water plasma generator 27 will be described later.

水プラズマ発生装置27から噴射される水プラズマのジェット気流には、後述する供給装置を介して有害廃棄物(分解対象物)が投入される。水プラズマのジェット気流は、極めて高温で超高速な流体となり、この流体内に投入された有害廃棄物の有害物質は、瞬時に分解されてプラズマ化してからガスになる。   Hazardous waste (decomposition target) is injected into a jet stream of water plasma jetted from the water plasma generator 27 via a supply device described later. The jet stream of water plasma becomes an extremely high temperature and ultra-high-speed fluid, and the harmful substances of the toxic waste introduced into the fluid are instantaneously decomposed and turned into plasma, and then turned into gas.

排気処理装置28は、水プラズマ発生装置27の水プラズマ噴射下流側、すなわち、水プラズマ発生装置27の前方に設けられる。排気処理装置28は、水プラズマによってガス化した分子を処理するものであり、酸性となったガスは強アルカリ性水を介して中和され、無害となったガスは上方の排気部21(図2では不図示)に排出される。排気部21は、複数のファンを備えて発電エリア12Aの上部を排気用の通路とし、発電エリア12Aの前方からガスを排出する。排気処理装置28の詳細な構成は後述する。   The exhaust gas treatment device 28 is provided on the downstream side of the water plasma generation device 27 with respect to the water plasma injection, that is, in front of the water plasma generation device 27. The exhaust treatment device 28 treats molecules gasified by water plasma. The acidified gas is neutralized through strong alkaline water, and the harmless gas is removed from the upper exhaust unit 21 (FIG. 2). (Not shown). The exhaust unit 21 includes a plurality of fans and uses the upper part of the power generation area 12A as an exhaust passage, and discharges gas from the front of the power generation area 12A. The detailed configuration of the exhaust treatment device 28 will be described later.

図5は、処理室の内部を上下方向中央位置で透視した車両の平面図である。図2、図3及び図5に示すように、処理室25内の前方寄りの位置には、供給ポンプ31(図5では不図示)と真空ポンプ32(図2では不図示)とが上下に並設されている。上段の供給ポンプ31は、水プラズマ発生装置27に冷却水及びプラズマ用水を供給するものであり、プラズマ用水は、更に高圧ポンプ33(図5では不図示)によって高圧水として圧送される。真空ポンプ32は、水プラズマ発生装置27から冷却水及びプラズマ用水を排出するために吸引する。真空ポンプ32では水と空気とが混合された状態で吸引するため、混合された水と空気とが気液分離器35に送出されて分離される。各ポンプ31〜33及び気液分離器35は、交流発電機18から供給された交流電力によって駆動する。   FIG. 5 is a plan view of the vehicle in which the inside of the processing chamber is seen through at the center in the vertical direction. As shown in FIG. 2, FIG. 3, and FIG. 5, a supply pump 31 (not shown in FIG. 5) and a vacuum pump 32 (not shown in FIG. It is juxtaposed. The upper supply pump 31 supplies cooling water and plasma water to the water plasma generator 27, and the plasma water is further pumped as high-pressure water by a high-pressure pump 33 (not shown in FIG. 5). The vacuum pump 32 suctions the cooling water and the plasma water from the water plasma generator 27 in order to discharge them. Since the vacuum pump 32 sucks in a state where water and air are mixed, the mixed water and air are sent to the gas-liquid separator 35 and separated. Each of the pumps 31 to 33 and the gas-liquid separator 35 is driven by AC power supplied from the AC generator 18.

各ポンプ31〜33と水プラズマ発生装置27とを接続する配管(不図示)の経路においては、図2及び図4に示すように、サージタンク37が設けられている。かかるサージタンク37を介して各ポンプ31〜33による水圧の変化(脈動)が抑制され、安定した水圧によって水プラズマ発生装置27への冷却水及びプラズマ用水の供給及び排出が行えるようになる。   As shown in FIGS. 2 and 4, a surge tank 37 is provided in a pipe (not shown) connecting each of the pumps 31 to 33 and the water plasma generator 27. A change (pulsation) in the water pressure by each of the pumps 31 to 33 is suppressed via the surge tank 37, and the supply and discharge of the cooling water and the plasma water to the water plasma generator 27 can be performed by the stable water pressure.

水プラズマ発生装置27の冷却水及びプラズマ用水は、図3及び図5に示す水槽40に貯留され、各ポンプ31〜33によって循環されて利用される。なお、冷却水及びプラズマ用水は、水プラズマ発生装置27に供給する際の水圧が異なるだけで同じ水が利用される。真空ポンプ32で吸引し気液分離器35によって分離された水(冷却水及びプラズマ用水)は水槽40内に流れ込む。水槽40は、処理室25の後半部領域における床部分を二重床構造とし、かかる二重床によって形成される空間内に設置される。水槽40は、前後に2列、左右に4列の合計8体設けられ、図5の矢印で示すように、各水槽40によって蛇行して水が流れる。それぞれの水槽40がパイプ等で接続される。そして、全ての水槽40を流れた水は、荷台12の下方であって後輪15の前方に配置されたラジエータ41を介してタンク42内に流れ込む。かかる水の流れにおいて、水プラズマ発生装置27で加熱された水が冷却され、供給ポンプ31を介して再度水プラズマ発生装置27に供給される。   The cooling water and the water for plasma of the water plasma generator 27 are stored in the water tank 40 shown in FIGS. 3 and 5, and are circulated and used by the pumps 31 to 33. Note that the same water is used as the cooling water and the plasma water except for the water pressure when the water is supplied to the water plasma generator 27. Water (cooling water and water for plasma) sucked by the vacuum pump 32 and separated by the gas-liquid separator 35 flows into the water tank 40. The water tank 40 has a double-floor structure in a floor portion in a rear half region of the processing chamber 25, and is installed in a space formed by the double floor. A total of eight water tanks 40 are provided, two in the front and the rear, and four in the left and right, and the water flows in a meandering manner in each of the water tanks 40 as shown by arrows in FIG. Each water tank 40 is connected by a pipe or the like. Then, the water flowing through all the water tanks 40 flows into the tank 42 via a radiator 41 disposed below the loading platform 12 and in front of the rear wheel 15. In the flow of the water, the water heated by the water plasma generator 27 is cooled and supplied to the water plasma generator 27 again via the supply pump 31.

なお、水プラズマ発生装置27は、図4に示すように、水槽40の上方に設置されているので、水プラズマ発生装置27から発せられる音が水槽40内の水によって減衰するよう防音効果が得られる。   Since the water plasma generator 27 is installed above the water tank 40 as shown in FIG. 4, a soundproof effect is obtained so that the sound emitted from the water plasma generator 27 is attenuated by the water in the water tank 40. Can be

図2に示すように、処理室25を形成する後方の壁体には左右にそれぞれ出入口47が設けられ、これら出入口47を開閉するドア48が設けられている。従って、出入口47を通じて作業者が、処理室25内と処理室25の後方における荷台12上のスペースとで出入り可能となっている。   As shown in FIG. 2, doors 47 are provided on the left and right sides of the rear wall forming the processing chamber 25, and doors 48 for opening and closing these doors 47 are provided. Therefore, an operator can enter and exit the processing chamber 25 and the space on the bed 12 behind the processing chamber 25 through the entrance 47.

次いで、作業エリア12Cの各構成について説明する。図2及び図4に示すように、車両10は、開放した空間となる作業エリア12Cにおいて、荷台12上に設置された供給装置50を更に備えている。供給装置50は、コンプレッサ51と、コンプレッサ51による圧縮エアーを貯留するエアータンク52と、エアータンク52内の圧縮エアーによって粉状の有害廃棄物を搬送する粉体搬送装置53と、エアータンク52内の圧縮エアーによって液状の有害廃棄物を搬送する液体搬送装置54とを備えている。供給装置50は、処理室25内に後述するノズル110、111(図7参照)を更に備え、ノズル110、111は、不図示の配管を介して粉体搬送装置53及び液体搬送装置54から送出される有害廃棄物を水プラズマ発生装置27から噴射される水プラズマに投入する。   Next, each configuration of the work area 12C will be described. As shown in FIGS. 2 and 4, the vehicle 10 further includes a supply device 50 installed on the bed 12 in a work area 12C that is an open space. The supply device 50 includes a compressor 51, an air tank 52 that stores compressed air from the compressor 51, a powder transport device 53 that transports powdery hazardous waste by the compressed air in the air tank 52, and an air tank 52. And a liquid transport device 54 for transporting liquid hazardous waste by compressed air. The supply device 50 further includes nozzles 110 and 111 (see FIG. 7) to be described later in the processing chamber 25. The nozzles 110 and 111 send out from the powder transfer device 53 and the liquid transfer device 54 via piping (not shown). The harmful waste is injected into the water plasma injected from the water plasma generator 27.

作業エリア12Cにおいて、荷台12の左右両側には側あおり板56がそれぞれ設けられる。側あおり板56は、下端部において荷台12にヒンジ連結され、起立位置と水平位置との間で回転可能となっている。水平位置とした側あおり板56は、荷台12と同一面上に位置するようになり、作業エリア12Cにおいて荷台12と共に床面として作業スペースを形成する。起立位置とした各側あおり板56の内面には、はしご部57(図4では不図示)がそれぞれ設けられ、各はしご部57の前端部は、側あおり板56の前端部に回転可能に連結されている。従って、側あおり板56を水平位置としてから、はしご部57の後端が前方に位置するよう回転して接地させることで、作業者がはしご部57を介して荷台12と地面との間を容易に昇降できるようになる。   In the work area 12C, side tilt plates 56 are provided on both left and right sides of the loading platform 12, respectively. The side tilt plate 56 is hinged at the lower end to the carrier 12 and is rotatable between a standing position and a horizontal position. The horizontal tilt plate 56 in the horizontal position is located on the same plane as the loading platform 12, and forms a working space as a floor surface together with the loading platform 12 in the work area 12C. Ladder portions 57 (not shown in FIG. 4) are respectively provided on the inner surfaces of the side tilt plates 56 at the upright position, and the front end of each ladder portion 57 is rotatably connected to the front end of the side tilt plate 56. Have been. Therefore, by turning the side tilt plate 56 to the horizontal position and rotating and touching the rear end of the ladder portion 57 so that the rear end thereof is located forward, the worker can easily move between the loading platform 12 and the ground via the ladder portion 57. You will be able to go up and down.

ここで、図6に示すように、上述した水プラズマ発生装置27、排気処理装置28及び供給装置50を含んで有害廃棄物を分解処理することができる分解処理装置60が構成される。以下、本実施の形態の分解処理装置60の各構成について説明する。図6は、本実施の形態の分解処理装置を一部側断面した説明図である。   Here, as shown in FIG. 6, a decomposition treatment device 60 capable of decomposing harmful waste is configured including the water plasma generator 27, the exhaust treatment device 28, and the supply device 50 described above. Hereinafter, each configuration of the decomposition processing apparatus 60 of the present embodiment will be described. FIG. 6 is an explanatory view showing a partial cross section of the decomposition processing apparatus according to the present embodiment.

水プラズマ発生装置27は、スタンド70を介して所定の高さ位置に支持されている。水プラズマ発生装置27は、前後に延びる陰極71と、陰極71の前端側が挿入されるチャンバ72と、チャンバ72の斜め下前方に設けられる鉄製円板状の陽極73と、陽極73を支持する陽極支持部75とを備えて構成されている。   The water plasma generator 27 is supported at a predetermined height position via a stand 70. The water plasma generator 27 includes a cathode 71 extending forward and backward, a chamber 72 into which the front end side of the cathode 71 is inserted, an iron disk-shaped anode 73 provided diagonally below and forward of the chamber 72, and an anode supporting the anode 73. The support section 75 is provided.

陰極71は、炭素からなる丸棒によって形成され、送りねじ軸機構76を介して前後方向に変位してチャンバ72への挿入量を調整可能となっている。チャンバ72は、陽極支持部75の上方に支持板78を介して支持されている。陽極支持部75の後端には、前後に延びる延長筒体79が連結され、延長筒体79の後端にはモータ80が設けられている。モータ80の駆動力は、延長筒体79及び陽極支持部75を通じて陽極73に伝達され、陽極73が回転可能に設けられている。   The cathode 71 is formed of a round bar made of carbon, and is displaced in the front-rear direction via a feed screw shaft mechanism 76 so that the amount of insertion into the chamber 72 can be adjusted. The chamber 72 is supported above the anode support 75 via a support plate 78. An extension cylinder 79 extending forward and backward is connected to the rear end of the anode support 75, and a motor 80 is provided at the rear end of the extension cylinder 79. The driving force of the motor 80 is transmitted to the anode 73 through the extension cylinder 79 and the anode support 75, and the anode 73 is provided rotatably.

チャンバ72には、供給ポンプ31を介して冷却水が供給され、また、高圧ポンプ33を介してプラズマ用水が供給される。プラズマ用水の一部は、チャンバ72の前端側から水プラズマとして噴射される。チャンバ72に供給された冷却水と、噴射されなかったプラズマ用水とは、真空ポンプ32を介して吸引される。陽極支持部75においても、陽極73の内部を流す冷却水が供給ポンプ31を介して供給され、陽極73にて吸熱を行った冷却水が真空ポンプ32を介して吸引される。   Cooling water is supplied to the chamber 72 via the supply pump 31, and plasma water is supplied via the high-pressure pump 33. Part of the plasma water is jetted from the front end side of the chamber 72 as water plasma. The cooling water supplied to the chamber 72 and the plasma water not jetted are sucked through the vacuum pump 32. Also in the anode support part 75, cooling water flowing inside the anode 73 is supplied via the supply pump 31, and cooling water having absorbed heat at the anode 73 is sucked via the vacuum pump 32.

排気処理装置28は、箱状の筐体83と、筐体83の下部に設けられるとともに上部を開放して高アルカリ性水を貯留する水槽84を荷台12上に備えている。排気処理装置28は、筐体83内であって水槽84の上方にガス化した廃棄物を処理する処理空間85を形成している。また、排気処理装置28は、処理空間85内に設けられるシャワー装置87及びパネル体88を更に備えている。   The exhaust treatment device 28 includes a box-shaped housing 83 and a water tank 84 provided at a lower portion of the housing 83 and opening an upper portion to store highly alkaline water on the loading platform 12. The exhaust treatment device 28 forms a treatment space 85 for treating gasified waste in a housing 83 and above a water tank 84. Further, the exhaust processing device 28 further includes a shower device 87 and a panel body 88 provided in the processing space 85.

水槽84の内部には、吸水口90が設けられ、吸水口90から図示しないポンプ91(図2参照)の作動によって水槽84内の高アルカリ性水がシャワー装置87に供給される。シャワー装置87は、供給された高アルカリ性水を処理空間85内で噴射し、ガス化した酸性ガスを中和させる。中和された分子は、排気部21によって外部に排出される。また、水槽84内の高アルカリ性水は、吸水口90からパネル体88上部の供給口92にも汲み上げられ、汲み上げられた高アルカリ性水はパネル体88の後面全体を伝って水槽84に流れ落ちる。この高アルカリ性水の流れによって、上述と同様に酸性ガスとの中和が行われ、また、水プラズマによって発生した熱が吸収されて排気処理装置28全体の冷却作用が得られる。   A water inlet 90 is provided in the water tank 84, and highly alkaline water in the water tank 84 is supplied to the shower device 87 from the water inlet 90 by the operation of a pump 91 (not shown) (see FIG. 2). The shower device 87 injects the supplied highly alkaline water in the processing space 85 to neutralize the gasified acid gas. The neutralized molecules are discharged to the outside by the exhaust unit 21. The highly alkaline water in the water tank 84 is also pumped from the water inlet 90 to the supply port 92 above the panel body 88, and the pumped high alkaline water flows down the entire rear surface of the panel body 88 to the water tank 84. By the flow of the highly alkaline water, neutralization with the acidic gas is carried out in the same manner as described above, and the heat generated by the water plasma is absorbed, so that the entire exhaust treatment device 28 is cooled.

排気処理装置28と水プラズマ発生装置27とは、壁体93を隔てて配置されている。壁体93は、排気処理装置28の処理空間85を後方から閉塞し、処理空間85の内部と、外部の水プラズマ発生装置27が設置される空間とを仕切ってそれらの間での気密性が維持される。   The exhaust treatment device 28 and the water plasma generator 27 are arranged with a wall 93 therebetween. The wall 93 closes the processing space 85 of the exhaust processing device 28 from the rear, and separates the inside of the processing space 85 from the space in which the external water plasma generator 27 is installed, so that the airtightness between them is improved. Will be maintained.

ここで、壁体93には、筒状の収容体95が貫通して設けられ、収容体95はチャンバ72の後述する噴射口側となる前端側と陽極73とを収容している。これにより、収容体に95によって水プラズマ発生装置27から噴射される水プラズマのジェット気流がカバーされる。壁体93における収容体95の貫通部分は全溶接され、壁体93によって収容体95が保持されるとともに、それらの間での気密性が保たれる。収容体95は、円筒状に形成される筒本体部96と、筒本体部96の一端側(水プラズマ発生装置27側)に形成される後方開口形成部97と、筒本体部96の他端側(排気処理装置28側)に形成される前方開口形成部98とを備えている。筒本体部96の軸線方向は、水プラズマ発生装置27側より排気処理装置28側の方が低くなるように傾斜している。   Here, a cylindrical housing 95 is provided to penetrate the wall body 93, and the housing 95 houses a front end side of the chamber 72, which will be an injection port side described later, and an anode 73. Thereby, the jet stream of the water plasma jetted from the water plasma generator 27 by the 95 by the container is covered. The penetrating portion of the container 95 in the wall 93 is entirely welded, and the container 95 is held by the wall 93 and the airtightness between them is maintained. The container 95 includes a cylindrical main body 96 formed in a cylindrical shape, a rear opening forming portion 97 formed on one end side (the water plasma generator 27 side) of the cylindrical main body 96, and the other end of the cylindrical main body 96. And a front opening forming portion 98 formed on the side (the exhaust processing device 28 side). The axial direction of the cylinder main body 96 is inclined so that the exhaust processing device 28 side is lower than the water plasma generator 27 side.

図7は、収容体の側断面図である。図7に示すように、収容体95を構成する筒本体部96、後方開口形成部97及び前方開口形成部98は、二重構造となっており、その厚み内に冷却水が流れる単一の空間100を形成している。この空間100には、冷却水用の供給路102と排出路103とが連通している。供給路102は、筒本体部96の前方下端側に設けられ、排出路103は、後方開口形成部97の上端側に形成されている。収容体95では、図示しないポンプを介して供給路102から冷却水が供給され、空間100内に導入される。そして、空間100において供給路102から排出路103に流れる冷却水によって、水プラズマによって発生した熱が吸収され、収容体95の冷却作用が得られる。   FIG. 7 is a side sectional view of the container. As shown in FIG. 7, the cylindrical main body 96, the rear opening forming portion 97, and the front opening forming portion 98 constituting the container 95 have a double structure, and a single structure through which cooling water flows within a thickness thereof. A space 100 is formed. A supply path 102 and a discharge path 103 for cooling water communicate with the space 100. The supply path 102 is provided at the lower front side of the cylinder main body 96, and the discharge path 103 is formed at the upper end side of the rear opening forming section 97. In the container 95, cooling water is supplied from a supply path 102 via a pump (not shown), and is introduced into the space 100. Then, the heat generated by the water plasma is absorbed by the cooling water flowing from the supply path 102 to the discharge path 103 in the space 100, and the cooling effect of the container 95 is obtained.

図8Aは、収容体を後方から見た図であり、図8Bは、収容体を前方から見た図である。図8Aに示すように、後方開口形成部97に形成される開口97aは、陽極73とチャンバ72の前端側とを収容し得るよう、それらに対応した開口形状に形成されている。図8Bに示すように、前方開口形成部98に形成される開口98aは、前方開口形成部98の上半部領域に形成されて下端部が水平方向に沿って延在している。従って、図6に示すように、収容体95内における前方開口形成部98と筒本体部96との下側コーナー部に貯留空間105が形成される。この貯留空間105には、水プラズマによって分解処理されなかった有害廃棄物が貯留され、前方開口形成部98の下部を貫通する通路106を介して排出される。   FIG. 8A is a diagram of the container viewed from the rear, and FIG. 8B is a diagram of the container viewed from the front. As shown in FIG. 8A, the opening 97a formed in the rear opening forming portion 97 is formed in an opening shape corresponding to the anode 73 and the front end side of the chamber 72 so as to be able to accommodate the anode 73 and the front end side of the chamber 72. As shown in FIG. 8B, the opening 98a formed in the front opening forming portion 98 is formed in the upper half region of the front opening forming portion 98, and has a lower end extending in the horizontal direction. Therefore, as shown in FIG. 6, the storage space 105 is formed in the lower corner portion of the front opening forming portion 98 and the cylinder main body 96 in the housing 95. The storage space 105 stores hazardous waste that has not been decomposed by water plasma, and is discharged through a passage 106 that passes through a lower portion of the front opening forming portion 98.

図7に戻り、収容体95には、供給装置50(図4参照)を構成する第1ノズル110が貫通して支持されている。本実施の形態では、第1ノズル110は収容体95の上部に装着され、先端が下向きとなって配置されている。第1ノズル110は、液体搬送装置54に接続されており、液状の有害廃棄物が液体搬送装置54から不図示の配管等を介して第1ノズル110に搬送され、第1ノズル110の先端から有害廃棄物を投入可能となっている。   Returning to FIG. 7, the first nozzle 110 constituting the supply device 50 (see FIG. 4) is supported by penetrating the container 95. In the present embodiment, the first nozzle 110 is mounted on the upper part of the container 95 and is disposed with the tip facing downward. The first nozzle 110 is connected to the liquid transfer device 54, and liquid hazardous waste is transferred from the liquid transfer device 54 to the first nozzle 110 via a pipe or the like (not shown). Hazardous waste can be input.

ここで、収容体95は、第2ノズル111を貫通して支持することができる。つまり、供給装置50は、第1ノズル110に加えて第2ノズル111を更に備え、第1及び第2ノズル110、111を選択的に利用することができる。本実施の形態では、第2ノズル111は収容体95の下部に装着され、先端が上向きとなって配置されている。第2ノズル111は、粉体搬送装置53に接続されており、粉状の有害廃棄物が粉体搬送装置53から不図示の配管等を介して第2ノズル111に搬送され、第2ノズル111の先端から有害廃棄物を投入可能となっている。なお、第1及び第2ノズル110、111には、不図示の循環手段を介して通路106から排出された有害廃棄物も再度投入される。   Here, the container 95 can penetrate and support the second nozzle 111. That is, the supply device 50 further includes the second nozzle 111 in addition to the first nozzle 110, and can selectively use the first and second nozzles 110, 111. In the present embodiment, the second nozzle 111 is attached to the lower part of the container 95, and is disposed with its tip facing upward. The second nozzle 111 is connected to the powder conveying device 53, and powdery hazardous waste is conveyed from the powder conveying device 53 to the second nozzle 111 via a pipe or the like (not shown). Hazardous waste can be put in from the front end. In addition, the hazardous waste discharged from the passage 106 via the circulation means (not shown) is again supplied to the first and second nozzles 110 and 111.

収容体95における各ノズル110、111の貫通部分には、雌ねじ部112が設けられる一方、各ノズル110、111の外周には雌ねじ部112にねじ込み可能な雄ねじ部113が設けられている。従って、雌ねじ部112に雄ねじ部113をねじ込むことで、各ノズル110、111が収容体95に保持され、また、ねじ込み量を変化させることで各ノズル110、111の延出方向の位置調整を行えるようになる。   A female screw portion 112 is provided in a portion of the container 95 that penetrates the nozzles 110 and 111, and a male screw portion 113 that can be screwed into the female screw portion 112 is provided on the outer periphery of each of the nozzles 110 and 111. Therefore, by screwing the male screw portion 113 into the female screw portion 112, the respective nozzles 110, 111 are held in the container 95, and the position of each nozzle 110, 111 in the extending direction can be adjusted by changing the screwing amount. Become like

図8Aに示すように、第1ノズル110は、収容体95上部の左右二箇所位置に設けてもよく、第2ノズル111は、収容体95下部の左右二箇所位置に設けてもよい。この場合、収容体95の上下の二箇所位置に雌ねじ部112を設け、雌ねじ部112に雄ねじ部113をねじ込むときに、左右の各ノズル110、111の先端位置が揃うように配置調整する。   As shown in FIG. 8A, the first nozzle 110 may be provided at two positions on the left and right above the container 95, and the second nozzle 111 may be provided at two positions on the left and right below the container 95. In this case, the female screw portion 112 is provided at two upper and lower positions of the container 95, and when the male screw portion 113 is screwed into the female screw portion 112, the arrangement is adjusted so that the tip positions of the left and right nozzles 110 and 111 are aligned.

次いで、第1及び第2ノズル110、111の先端の位置について、図9を参照して以下に説明する。図9は、第1及び第2ノズルの先端位置の説明図である。ここで、図9に示すように、水プラズマ発生装置27においては、後述するように円筒内周面となる噴射口145から水プラズマのジェット気流Jが噴射される。この水プラズマのジェット気流Jは、本実施の形態では、噴射口145から前方に向かうに従って錘状に広がるように噴射され、その中心軸線位置C1は、噴射口145の中心軸線位置C1と同一となって前後方向に延出する。   Next, the positions of the tips of the first and second nozzles 110 and 111 will be described below with reference to FIG. FIG. 9 is an explanatory diagram of the tip positions of the first and second nozzles. Here, as shown in FIG. 9, in the water plasma generator 27, a jet stream J of water plasma is injected from an injection port 145 which is an inner peripheral surface of the cylinder as described later. In the present embodiment, the jet stream J of the water plasma is jetted so as to spread out in a cone shape from the injection port 145 toward the front, and the central axis position C1 is the same as the central axis position C1 of the injection port 145. And extend in the front-back direction.

有害廃棄物の投入時において、各ノズル110、111の先端は、水プラズマのジェット気流Jの内部に配置される。ここで、水プラズマのジェット気流Jは噴射によって発光する領域となる。好ましくは、噴射口145の開口を中心軸線位置C1に沿って延出した空間A1内に各ノズル110、111の先端が位置するように配置される。図9では、各ノズル110、111の先端が中心軸線位置C1から離れているが、当該中心軸線位置C1に一致又は重なるように配置されるようにしてもよい。また、陰極71を中心軸線位置C1に沿って延出した空間A2内に各ノズル110、111の先端が配置されるようにしてもよい。このようにノズル110、111の先端位置を設定することで、水プラズマのジェット気流Jのより高温となる部分に有害廃棄物を投入することができる。これにより、投入した有害廃棄物をガス化した廃棄物に効率良く分解し、収容体51を通じて排気処理装置28の処理空間85(図6参照)に排出することができる。   When the hazardous waste is charged, the tips of the nozzles 110 and 111 are arranged inside the jet stream J of the water plasma. Here, the jet stream J of the water plasma is an area that emits light by the injection. Preferably, the nozzles 110 and 111 are arranged such that the tips of the nozzles 110 and 111 are located in a space A1 extending the opening of the injection port 145 along the central axis position C1. In FIG. 9, the tips of the nozzles 110 and 111 are separated from the center axis position C1, but may be arranged so as to coincide with or overlap the center axis position C1. Further, the tips of the nozzles 110 and 111 may be arranged in a space A2 in which the cathode 71 extends along the central axis position C1. By setting the tip positions of the nozzles 110 and 111 in this way, harmful waste can be injected into the hotter part of the jet stream J of the water plasma. As a result, the input hazardous waste can be efficiently decomposed into gasified waste and discharged to the processing space 85 (see FIG. 6) of the exhaust processing device 28 through the container 51.

続いて、第1及び第2ノズル110、111の内部構造について図10を参照して説明する。図10は、第1及び第2ノズルの内部構造を示す断面図である。図10に示すように、第1ノズル110は、三重管構造となる冷却構造120を備えており、内側から外側に向かって順に第1通路121、第2通路122及び第3通路123を形成している。第1ノズル110の基端部(図9中上端)は接続部110aとされ、液体搬送装置54(図6参照)に連通する配管(不図示)に接続される。接続部110aは第1通路121に連通している。従って、第1通路121は、液体搬送装置54から搬送される有害廃棄物が通過されて第1ノズル110の先端から有害廃棄物を投入可能となる。   Next, the internal structure of the first and second nozzles 110 and 111 will be described with reference to FIG. FIG. 10 is a sectional view showing the internal structure of the first and second nozzles. As shown in FIG. 10, the first nozzle 110 includes a cooling structure 120 having a triple pipe structure, and forms a first passage 121, a second passage 122, and a third passage 123 in order from the inside to the outside. ing. The base end (the upper end in FIG. 9) of the first nozzle 110 is a connection portion 110a, and is connected to a pipe (not shown) communicating with the liquid transfer device 54 (see FIG. 6). The connection portion 110a communicates with the first passage 121. Accordingly, the first passage 121 allows the hazardous waste transported from the liquid transport device 54 to pass through and allows the hazardous waste to be injected from the tip of the first nozzle 110.

第2通路122及び第3通路123は、第1ノズル110の先端側で相互に連通して冷却水が流れる単一の空間となり、この空間には冷却水用の供給路125と排出路126とが連通している。第1ノズル110の基端側において、供給路125は第2通路122に連通し、排出路126は第3通路123に連通している。具体的には、第1ノズル110では、図示しないポンプを介して供給路125から冷却水が供給され、第2通路122内に導入される。そして、第2通路122内で冷却水が第1ノズル110の基端側から先端側に向かって通過してから、当該先端で折り返されるように流れて第3通路123内に導入される。第3通路123では冷却水が第1ノズル110の先端側から基端側に向かって通過して排出路126より排出される。このような冷却水の流れによって、水プラズマによって発生した熱が吸収され、第1ノズル110の長さ方向全体に亘って冷却作用が得られる。   The second passage 122 and the third passage 123 communicate with each other on the distal end side of the first nozzle 110 to form a single space through which the cooling water flows. In this space, a supply passage 125 and a discharge passage 126 for the cooling water are formed. Are in communication. On the base end side of the first nozzle 110, the supply passage 125 communicates with the second passage 122, and the discharge passage 126 communicates with the third passage 123. Specifically, in the first nozzle 110, cooling water is supplied from a supply path 125 via a pump (not shown), and is introduced into the second path 122. Then, after the cooling water passes from the base end side of the first nozzle 110 toward the front end side in the second passage 122, it flows so as to be folded at the front end and is introduced into the third passage 123. In the third passage 123, the cooling water passes from the distal end to the proximal end of the first nozzle 110 and is discharged from the discharge passage 126. By the flow of the cooling water, heat generated by the water plasma is absorbed, and a cooling effect is obtained over the entire length of the first nozzle 110 in the length direction.

なお、第1及び第2ノズル110、111は、上下の向きが略反対となるものの同一の構造となっており、接続先が液体搬送装置54と粉体搬送装置53とで異なっているだけなので、第2ノズル111の構造についての説明は省略する。   Note that the first and second nozzles 110 and 111 have the same structure although their up-and-down directions are substantially opposite, and their connection destinations are different only between the liquid transfer device 54 and the powder transfer device 53. The description of the structure of the second nozzle 111 is omitted.

次いで、チャンバ72の内部構造について図11ないし図13を参照して説明する。図11は、チャンバの側断面図、図12は、チャンバの平面断面図、図13は、チャンバの縦断面図である。   Next, the internal structure of the chamber 72 will be described with reference to FIGS. 11 is a side sectional view of the chamber, FIG. 12 is a plan sectional view of the chamber, and FIG. 13 is a longitudinal sectional view of the chamber.

図11及び図12に示すように、水プラズマ発生装置27を構成するチャンバ72は、前後方向に延びる円筒内周面を形成するチャンバ本体140と、チャンバ本体140の前方には装着された前壁部141とを備え、それらの内側に水プラズマを発生させるための内部空間142を形成している。前壁部141には内部空間142に連通する開口が形成され、この開口を前方から塞ぐように噴射口形成板144が取り付けられている。噴射口形成板144には水プラズマを噴射する噴射口145が形成されている。   As shown in FIGS. 11 and 12, a chamber 72 constituting the water plasma generator 27 includes a chamber body 140 forming a cylindrical inner peripheral surface extending in the front-rear direction, and a front wall mounted in front of the chamber body 140. And an inner space 142 for generating a water plasma inside thereof. An opening communicating with the internal space 142 is formed in the front wall portion 141, and an injection port forming plate 144 is attached so as to close this opening from the front. The ejection port forming plate 144 has an ejection port 145 for ejecting water plasma.

チャンバ本体140の内部には、前方寄りの位置に周方向に延びるリブ140aが形成され、このリブ140aより前側にプラズマ用水供給路147が形成されている。また、前壁部141には、その開口内に流れ込むプラズマ用水を排出するプラズマ用水排出路148が形成されている。プラズマ用水供給路147には、高圧ポンプ33から高圧なプラズマ用水が供給され、プラズマ用水排出路148からは真空ポンプ32の負圧によってプラズマ用水が吸引される。   A rib 140a extending in the circumferential direction is formed at a position closer to the front inside the chamber main body 140, and a plasma water supply passage 147 is formed in front of the rib 140a. Further, the front wall portion 141 is formed with a plasma water discharge passage 148 for discharging the plasma water flowing into the opening. High-pressure plasma water is supplied from the high-pressure pump 33 to the plasma water supply path 147, and plasma water is sucked from the plasma water discharge path 148 by the negative pressure of the vacuum pump 32.

チャンバ本体140のリブ140aより後側には冷却水供給路150及び冷却水排出路151(図12では不図示)が形成されている。冷却水供給路150には、供給ポンプ31から冷却水が供給され、冷却水排出路151からは真空ポンプ32の負圧によって冷却水が吸引される。プラズマ用水供給路147、冷却水供給路150及び冷却水排出路151は、円筒内周面となる丸穴状に形成されている。   A cooling water supply passage 150 and a cooling water discharge passage 151 (not shown in FIG. 12) are formed behind the rib 140a of the chamber body 140. Cooling water is supplied from the supply pump 31 to the cooling water supply path 150, and cooling water is sucked from the cooling water discharge path 151 by the negative pressure of the vacuum pump 32. The plasma water supply path 147, the cooling water supply path 150, and the cooling water discharge path 151 are formed in a circular hole shape that becomes an inner peripheral surface of the cylinder.

図13に示すように、プラズマ用水供給路147は、縦断面視で円形となる内部空間142の下部で連通して左右方向に延出している。具体的には、内部空間142の下部接線方向にプラズマ用水供給路147が延在し、より具体的には、プラズマ用水供給路147の下端が内部空間142の下端から延びる接線上に位置している。これにより、プラズマ用水供給路147から流れ込むプラズマ用水が内部空間142の周方向に沿って滑らかに流れる。   As shown in FIG. 13, the plasma water supply passage 147 extends in the left-right direction while communicating with a lower portion of the internal space 142 which is circular in a longitudinal sectional view. Specifically, the plasma water supply path 147 extends in a tangential direction below the internal space 142, and more specifically, the lower end of the plasma water supply path 147 is located on a tangent extending from the lower end of the internal space 142. I have. Thereby, the plasma water flowing from the plasma water supply passage 147 flows smoothly along the circumferential direction of the internal space 142.

なお、プラズマ用水供給路147の内径d1は、内部空間142を形成するチャンバ本体140の内周面と後述する筒状部162との間の幅h1と同一又は概略同一に設定されている。冷却水供給路150を縦断面視した形状は、プラズマ用水供給路147と同じとなり、プラズマ用水と同様に冷却水も内部空間142に流れ込ませることができる。また、冷却水排出路151は、縦断面視で内部空間142の上部に連通して左右方向に延出している。   The inner diameter d1 of the plasma water supply passage 147 is set to be the same or substantially the same as the width h1 between the inner peripheral surface of the chamber main body 140 forming the internal space 142 and a cylindrical portion 162 described later. The cooling water supply passage 150 has the same shape as the plasma water supply passage 147 when viewed in a longitudinal section, and the cooling water can flow into the internal space 142 in the same manner as the plasma water. Further, the cooling water discharge passage 151 communicates with an upper portion of the internal space 142 in a longitudinal sectional view and extends in the left-right direction.

水プラズマ発生装置27は、チャンバ72内に収容される概略筒状の渦水流発生器160を備えている。渦水流発生器160は、内部空間142と中心軸線位置C1が一致するように配置されている。なお、この中心軸線位置C1は、上述した噴射口145の中心軸線位置C1(図9参照)と一致する。従って、縦断面視で内部空間142は、その内周面と渦水流発生器160の外周面との間で円状の空間を形成し、上述のように内部空間142に流れ込んだプラズマ用水は、円状の空間を旋回するように流れる。   The water plasma generator 27 includes a substantially cylindrical vortex water flow generator 160 housed in the chamber 72. The vortex water flow generator 160 is arranged such that the internal space 142 and the center axis position C1 coincide. The center axis position C1 matches the center axis position C1 (see FIG. 9) of the injection port 145 described above. Therefore, the internal space 142 forms a circular space between the inner peripheral surface thereof and the outer peripheral surface of the vortex water flow generator 160 in a longitudinal sectional view, and the plasma water flowing into the internal space 142 as described above is It flows so as to swirl in a circular space.

図14は、チャンバの一部と渦水流発生器の分解縦断面図である。図14に示すように、渦水流発生器160は、円筒状をなす筒状部162と、筒状部162の内周から突出するように形成された第1中間仕切部163及び第2中間仕切部164と、筒状部162の一端側(後端側)に形成される後側仕切部(一端側仕切部)165と、筒状部162の他端側(前端側)に形成される前側仕切部(他端側仕切部)166とを備えた形状に形成されている。第1中間仕切部163は第2中間仕切部164より後方に配置されている。後側仕切部165は、後方の陰極71(図11参照)に対向して配置される。渦水流発生器160の前端部は、前壁部141の開口に嵌め込まれる。   FIG. 14 is an exploded longitudinal sectional view of a part of the chamber and the vortex water flow generator. As shown in FIG. 14, the vortex water flow generator 160 includes a cylindrical portion 162 having a cylindrical shape, a first intermediate partition portion 163 formed to protrude from the inner periphery of the cylindrical portion 162, and a second intermediate partition. Part 164, a rear partition part (one end part) 165 formed on one end side (rear end side) of the cylindrical part 162, and a front part formed on the other end side (front end side) of the cylindrical part 162. A partition portion (the other end-side partition portion) 166 is formed. The first intermediate partition 163 is disposed behind the second intermediate partition 164. The rear partition 165 is disposed to face the rear cathode 71 (see FIG. 11). The front end of the vortex water flow generator 160 is fitted into the opening of the front wall 141.

図15は、渦水流発生器の分解縦断面図である。図15に示すように、筒状部162は、軸方向(前後方向)に複数に分割可能な構造となっており、噴射口145側(前側)に位置する前端部170と、前端部170と反対側(後側)に位置する後端部171と、それらの間に位置する第1中間部173、第2中間部174、3体の水流形成リング176及び6体のスペーサリング177とによって形成される。3体の水流形成リング176の前後両側にスペーサリング177がそれぞれ設けられ、スペーサリング177の内周が前方又は後方に突出して水流形成リング176の内周に嵌り込む。第1中間部173及び第2中間部174は、スペーサリング177を介在させた状態で前後両側から水流形成リング176によって挟まれるように配置される。そして、前後に3体並ぶ水流形成リング176のうち、最前の水流形成リング176の前方にスペーサリング177を介在させて前端部170が設けられ、最後の水流形成リング176の後方にスペーサリング177を介在させて後端部171が設けられている。   FIG. 15 is an exploded vertical sectional view of the vortex water flow generator. As shown in FIG. 15, the cylindrical portion 162 has a structure that can be divided into a plurality of parts in the axial direction (front-back direction), and includes a front end portion 170 located on the side of the injection port 145 (front side), and a front end portion 170. Formed by a rear end portion 171 located on the opposite side (rear side), a first intermediate portion 173, a second intermediate portion 174, three water flow forming rings 176, and six spacer rings 177 located therebetween. Is done. Spacer rings 177 are provided on the front and rear sides of the three water flow forming rings 176, respectively, and the inner circumference of the spacer ring 177 projects forward or backward and fits into the inner circumference of the water flow forming ring 176. The first intermediate portion 173 and the second intermediate portion 174 are arranged so as to be sandwiched by the water flow forming rings 176 from both front and rear sides with the spacer ring 177 interposed therebetween. A front end 170 is provided in front of the foremost water flow forming ring 176 with a spacer ring 177 interposed therebetween, and the spacer ring 177 is provided behind the last water flow forming ring 176 among the three water flow forming rings 176 arranged front and rear. A rear end 171 is provided interposed therebetween.

図16は、渦水流発生器の一部の分解斜視図である。図15及び図16に示すように、前端部170は、前側仕切部166の外周にフランジ状に連なって形成され、後端部171は、後側仕切部165の外周にフランジ状に連なって形成されている。従って、前端部170と前側仕切部166とによって一部品となるヘッド部160Aが形成され、後端部171と後側仕切部165とによって一部品となるエンド部160Bが形成される。また、第1中間部173は、第1中間仕切部163の外側にフランジ状に連なって形成され、第2中間部174は、第2中間仕切部164の外側にフランジ状に連なって形成される。従って、第1中間部173と第1中間仕切部163とによって一部品となる穴有り円板部160Cが形成され、第2中間部174と第2中間仕切部164とによって一部品となる穴有り円板部160Dが形成される。   FIG. 16 is an exploded perspective view of a part of the vortex water flow generator. As shown in FIGS. 15 and 16, the front end 170 is formed in a flange shape on the outer periphery of the front partition 166, and the rear end 171 is formed in a flange shape on the outer periphery of the rear partition 165. Have been. Therefore, the front end 170 and the front partition 166 form a head part 160A that is a component, and the rear end 171 and the rear partition 165 form an end part 160B that is a component. In addition, the first intermediate portion 173 is formed continuously in a flange shape outside the first intermediate partition portion 163, and the second intermediate portion 174 is formed continuously in a flange shape outside the second intermediate partition portion 164. . Accordingly, the first intermediate portion 173 and the first intermediate partition portion 163 form a holed disk portion 160C that is a component, and the second intermediate portion 174 and the second intermediate partition portion 164 have a hole that is a component. A disk part 160D is formed.

各仕切部163〜166は、筒状部162の中心軸線位置C1を含むように円形の開口部163a〜166aを備えている。本実施の形態では、開口部163a〜166aの中心位置は、中心軸線位置C1に一致している。各開口部163a〜166aの開口形状は、異なる大きさに形成されている。具体的には、後側仕切部165の開口部165aの開口径D1が最も大きく、第1中間仕切部163の開口部163aの開口径D2が最も小さく形成されている。また、第2中間仕切部164の開口部164aの開口径D3、前側仕切部166の開口部166aの開口径D4とすると、D4>D3>D2となる大小関係となっている。これにより、第1中間仕切部163の開口部163aから前方に向かう(陰極71(図11参照)から離れる)に従って開口径(開口形状)が大きくなり、錘状となる空間が形成される。   Each of the partition portions 163 to 166 has circular openings 163a to 166a so as to include the center axis position C1 of the cylindrical portion 162. In the present embodiment, the center positions of the openings 163a to 166a coincide with the center axis position C1. The opening shapes of the openings 163a to 166a are formed in different sizes. Specifically, the opening diameter D1 of the opening 165a of the rear partition 165 is the largest, and the opening diameter D2 of the opening 163a of the first intermediate partition 163 is the smallest. Further, assuming that the opening diameter D3 of the opening 164a of the second intermediate partition 164 and the opening diameter D4 of the opening 166a of the front partition 166 are D4> D3> D2. As a result, the opening diameter (opening shape) increases from the opening 163a of the first intermediate partition 163 toward the front (away from the cathode 71 (see FIG. 11)), and a space in the shape of a cone is formed.

各仕切部163〜166の後面は、各開口部163a〜166aの中心位置に近付くに従って前方に向かう(陰極71(図11参照)から離れる)テーパ面163b〜166bによって形成されている。第1中間仕切部163、第2中間仕切部164、前側仕切部166のテーパ面163b、164b、166bは、椀状面に沿って凹むように湾曲している。具体的には、テーパ面163b、164b、166bの断面視で、開口部163a、164a、166aの近傍領域が中心軸線位置C1に直交する面上に位置し、かかる領域から外側に行くほど傾斜が急になる湾曲面となっている。各仕切部163〜166の前面は、中心軸線位置C1に直交する面上に位置するように形成される。   The rear surfaces of the partition portions 163 to 166 are formed by tapered surfaces 163b to 166b that move forward (away from the cathode 71 (see FIG. 11)) as they approach the center positions of the openings 163a to 166a. The tapered surfaces 163b, 164b, and 166b of the first intermediate partition 163, the second intermediate partition 164, and the front partition 166 are curved so as to be concave along the bowl-shaped surface. Specifically, in the cross-sectional view of the tapered surfaces 163b, 164b, and 166b, the area near the openings 163a, 164a, and 166a is located on a plane orthogonal to the center axis position C1, and the inclination becomes more outward from the area. It has a curved surface that becomes steep. The front surface of each of the partitions 163 to 166 is formed so as to be located on a plane orthogonal to the center axis position C1.

第1中間仕切部163、第2中間仕切部164、前側仕切部166では、開口部163a、164a、166aとテーパ面163b、164b、166bとの間に円弧状の面取り部163c、164c、166cが形成されている。面取り部163c、164c、166cの曲率は、テーパ面163b、164b、166bの曲率より大きく設定されている。   In the first intermediate partition 163, the second intermediate partition 164, and the front partition 166, arc-shaped chamfers 163c, 164c, 166c are provided between the openings 163a, 164a, 166a and the tapered surfaces 163b, 164b, 166b. Is formed. The curvatures of the chamfers 163c, 164c, 166c are set to be larger than the curvatures of the tapered surfaces 163b, 164b, 166b.

ここで、図13及び図15に示すように、3体の水流形成リング176それぞれには、複数の通路180が形成されている。本実施の形態では、1体の水流形成リング176に3つの通路180が形成され、図13では、2つの通路180が不図示となっている。このように通路180が形成されることで、中心軸線位置C1の延出方向では、水流形成リング176が配置される3箇所位置で通路180が3つずつ形成され、当該3つの通路180の前後方向での位置が同じとなる。また、通路180は、前後に隣り合う仕切部163〜166の間それぞれに、3つずつ形成されることとなる。各通路180は、円筒内周面となる丸穴状に形成されている。   Here, as shown in FIGS. 13 and 15, a plurality of passages 180 are formed in each of the three water flow forming rings 176. In the present embodiment, three passages 180 are formed in one water flow forming ring 176, and two passages 180 are not shown in FIG. By forming the passages 180 in this manner, in the extension direction of the center axis position C1, three passages 180 are formed at three positions where the water flow forming rings 176 are arranged, and three passages 180 are formed before and after the three passages 180. The position in the direction is the same. Further, three passages 180 are formed between the partition portions 163 to 166 adjacent to each other in the front and rear. Each passage 180 is formed in the shape of a round hole that becomes the inner peripheral surface of the cylinder.

図13に示すように、通路180は、水流形成リング176の周方向に等角度毎(本実施の形態では120°毎)に形成されている。各通路180は、水流形成リング176の内外で連通するように貫通しており、厚さ方向に対して傾斜する方向に延出している。具体的には、各通路180は、連通位置における水流形成リング176の内周接線方向に延在し、より具体的には、水流形成リング176の内周接線位置に通路180の内周面が線状に重なるように形成されている。従って、通路180の最も内側の端縁と水流形成リング176の内周との間で隆起した部分がないように形成される。また、通路180の外部から内部にプラズマ用水が流れる方向と、水流形成リング176の外部でプラズマ用水が旋回して流れる方向とでなす角度θは鋭角となっている。   As shown in FIG. 13, the passages 180 are formed at equal angles (every 120 ° in the present embodiment) in the circumferential direction of the water flow forming ring 176. Each passage 180 penetrates so as to communicate inside and outside the water flow forming ring 176 and extends in a direction inclined with respect to the thickness direction. Specifically, each passage 180 extends in the tangential direction of the inner circumference of the water flow forming ring 176 at the communication position, and more specifically, the inner peripheral surface of the passage 180 is located at the tangential position of the inner circumference of the water flow forming ring 176. It is formed so as to overlap linearly. Therefore, there is no raised portion between the innermost edge of the passage 180 and the inner periphery of the water flow forming ring 176. The angle θ between the direction in which the plasma water flows from the outside of the passage 180 to the inside and the direction in which the plasma water turns and flows outside the water flow forming ring 176 is an acute angle.

上記のように通路180を形成したので、筒状部162の外部でチャンバ本体140の内周面に沿って流れるプラズマ用水は、通路180を通過して筒状部162の内部に流れ込む。そして、プラズマ用水が筒状部162の内周面に沿って滑らかに流れるようになり、縦断面視で中心軸線位置C1に空洞を形成するように円状に旋回する渦水流が形成される。   Since the passage 180 is formed as described above, the plasma water flowing along the inner peripheral surface of the chamber body 140 outside the cylindrical portion 162 flows through the passage 180 into the cylindrical portion 162. Then, the water for plasma flows smoothly along the inner peripheral surface of the cylindrical portion 162, and a vortex water flow that swirls in a circular shape so as to form a cavity at the center axis position C1 in a longitudinal sectional view is formed.

水プラズマ発生装置27は、チャンバ72内において、渦水流発生器160の後方に更に種々の構成を備えている。以下、かかる構成について、前方の構成から後方に向かって順に説明する。   The water plasma generator 27 further includes various components in the chamber 72 behind the vortex water flow generator 160. Hereinafter, such a configuration will be described in order from the front configuration to the rear.

図11に示すように、チャンバ本体140のリブ140a後面には、円筒状のストッパ201が接触して設けられている。ストッパ201の開口部には、渦水流発生器160における後側仕切部165及び後端部171が嵌り込み、渦水流発生器160が後方に移動しないように位置決めしている。   As shown in FIG. 11, a cylindrical stopper 201 is provided in contact with the rear surface of the rib 140a of the chamber main body 140. The rear partition 165 and the rear end 171 of the vortex water flow generator 160 fit into the opening of the stopper 201, and are positioned so that the vortex water flow generator 160 does not move backward.

ストッパ201の後面には、段付き円筒状のケース202が接触して設けられ、このケース202の後面には、円筒状の水流形成筒体203が嵌め込まれて設けられている。図12にも示すように、水流形成筒体203は、上述した通路180と同様の形状をなす複数の通路203aが形成されている。これら通路203aによって冷却水供給路150から内部空間142に供給される冷却水が水流形成筒体203内に流れ込み、陰極71と接触して冷却する。冷却を行った冷却水は冷却水排出路151(図12では不図示)から排出される。   A stepped cylindrical case 202 is provided in contact with the rear surface of the stopper 201, and a cylindrical water flow forming cylinder 203 is fitted and provided on the rear surface of the case 202. As shown in FIG. 12, a plurality of passages 203a having the same shape as the passage 180 described above are formed in the water flow forming cylinder 203. The cooling water supplied from the cooling water supply path 150 to the internal space 142 by these passages 203 a flows into the water flow forming cylinder 203, contacts the cathode 71, and cools. The cooled cooling water is discharged from a cooling water discharge passage 151 (not shown in FIG. 12).

なお、冷却水供給路150から供給される冷却水は、ストッパ201等を通じて前方の渦水流発生器160に流れ込み、プラズマ用水としても利用される。また、プラズマ用水がストッパ201等を通じて陰極71を冷却することを妨げるものでない。要するに、プラズマ用水及び冷却水は、供給位置及び供給圧力の違いによって主として利用される用途を意味するものであり、それぞれ互いの用途を兼ね備えて利用される。   The cooling water supplied from the cooling water supply channel 150 flows into the vortex water flow generator 160 in the front through the stopper 201 and the like, and is also used as plasma water. Also, this does not prevent the plasma water from cooling the cathode 71 through the stopper 201 and the like. In short, the water for plasma and the cooling water mean a use mainly used depending on a difference in a supply position and a supply pressure, and are used in combination with each other.

水流形成筒体203の左側にはセンサ用穴203bが形成され、このセンサ用穴203bに対向する位置にはセンサ204(図11では不図示)が設けられている。センサ204は、チャンバ本体140に形成されたセンサ取付孔140b(図11では不図示)内に装着されている。センサ204は、センサ用穴203bを通じて当該センサ用穴203bの前後位置での陰極71の有無を検出する。センサ204によって陰極71がないことを検出すると、その検出データが制御手段(不図示)に出力されて送りねじ軸機構76(図6参照)を駆動し、陰極71を所定量前進させる。これにより、陰極71の前端位置をセンサ用穴203bから前方への所定範囲内に維持することができる。   A sensor hole 203b is formed on the left side of the water flow forming cylinder 203, and a sensor 204 (not shown in FIG. 11) is provided at a position facing the sensor hole 203b. The sensor 204 is mounted in a sensor mounting hole 140b (not shown in FIG. 11) formed in the chamber main body 140. The sensor 204 detects the presence or absence of the cathode 71 at a position before and after the sensor hole 203b through the sensor hole 203b. When the sensor 204 detects that the cathode 71 is not present, the detection data is output to the control means (not shown) to drive the feed screw shaft mechanism 76 (see FIG. 6) to advance the cathode 71 by a predetermined amount. Thereby, the front end position of the cathode 71 can be maintained within a predetermined range forward from the sensor hole 203b.

水流形成筒体203の後方には、内部に段差が形成された段付き円筒状のケース206が設けられている。ケース206の前端部は、水流形成筒体203の後端側に嵌め込まれている。ケース206の内部には、陰極71に接触して保持する接触体207が設けられている。接触体207は、図示省略したが周方向所定角度毎に分割して形成され、その内径寸法が可変となっている。また、接触体207の外周にはリング状の弾性体208が設けられ、この弾性体208の弾性力によって接触体207を介して陰極71を締め付けて陰極71と接触体207との接触状態が保たれる。   Behind the water flow forming cylinder 203, a stepped cylindrical case 206 having a step formed therein is provided. The front end of the case 206 is fitted to the rear end of the water flow forming cylinder 203. Inside the case 206, a contact body 207 that is in contact with and holds the cathode 71 is provided. Although not shown, the contact body 207 is formed by being divided at every predetermined angle in the circumferential direction, and its inner diameter is variable. A ring-shaped elastic body 208 is provided on the outer circumference of the contact body 207, and the elastic force of the elastic body 208 tightens the cathode 71 via the contact body 207 to maintain the contact state between the cathode 71 and the contact body 207. Dripping.

接触体207の後端面には、リング状のシール保持体209が接触しており、シール保持体209の内部にはシール210が設けられている。シール210は、陰極71との間での液密性を維持し、冷却水がシール210より後方に漏出することが規制される。   A ring-shaped seal holder 209 is in contact with the rear end face of the contact body 207, and a seal 210 is provided inside the seal holder 209. The seal 210 maintains liquid tightness with the cathode 71, and the leakage of the cooling water from the rear of the seal 210 is restricted.

シール保持体209の後端面には、リング状のコネクタ211が接触しており、コネクタ211には、アダプタ等(不図示)を介して配線213が接続されている。配線213には、配電盤等を介して直流発電機17(図2参照)からの直流電力が供給される。コネクタ211、シール保持体209及び接触体207は導電体によって構成され、これらを通じて陰極71と配線213との電気的な導通が行われる。これにより、陰極71にアーク放電を発生させるための直流電力が供給される。   A ring-shaped connector 211 is in contact with the rear end face of the seal holder 209, and a wiring 213 is connected to the connector 211 via an adapter or the like (not shown). The DC power from the DC generator 17 (see FIG. 2) is supplied to the wiring 213 via a switchboard or the like. The connector 211, the seal holder 209, and the contact body 207 are made of a conductor, and electric conduction between the cathode 71 and the wiring 213 is performed through these. Thereby, DC power for generating arc discharge is supplied to cathode 71.

コネクタ211の後端面には、リング状のスペーサ214が接触しており、スペーサ214の後端面には、陰極71が貫通される止めねじ215が接触している。チャンバ本体140の後方における内周面には、止めねじ215にねじ結合可能な雌ねじ(不図示)が形成され、止めねじ215をねじ込んで前進させることで、上述した渦水流発生器160後方の各構成における前後方向の位置決めが行われる。   A ring-shaped spacer 214 is in contact with the rear end surface of the connector 211, and a set screw 215 through which the cathode 71 passes is in contact with the rear end surface of the spacer 214. On the inner peripheral surface behind the chamber main body 140, a female screw (not shown) that can be screw-coupled to the set screw 215 is formed. Positioning in the front-back direction in the configuration is performed.

なお、チャンバ72内において、符号221〜225を付した構成は、Oリング等からなるシール部材であり、それらの接触面での液密性を維持するものである。   In the chamber 72, the components denoted by reference numerals 221 to 225 are seal members made of O-rings and the like, and maintain liquid tightness at their contact surfaces.

次に、渦水流発生器160における渦水流について説明する。図13に示すように、プラズマ用水供給路147から高圧となるプラズマ用水を供給すると、内部空間142を形成するチャンバ本体140の内周面と渦水流発生器160の外周面との間で筒状に形成される空間で旋回するようにプラズマ用水が流れる。この旋回するプラズマ用水の流れによって、プラズマ用水が通路180を通過して筒状部162の内部に流れ込む。このとき、通路180の内周面が水流形成リング176の内周接線位置に線状に重なるので、プラズマ用水が筒状部162の内周面に沿って滑らかに流れるようになる。   Next, the vortex water flow in the vortex water flow generator 160 will be described. As shown in FIG. 13, when the high-pressure plasma water is supplied from the plasma water supply passage 147, a cylindrical shape is formed between the inner peripheral surface of the chamber body 140 forming the internal space 142 and the outer peripheral surface of the vortex water flow generator 160. The water for plasma flows so as to swirl in the space formed in. Due to the swirling flow of the plasma water, the plasma water passes through the passage 180 and flows into the cylindrical portion 162. At this time, since the inner peripheral surface of the passage 180 linearly overlaps with the inner peripheral tangent position of the water flow forming ring 176, the plasma water flows smoothly along the inner peripheral surface of the cylindrical portion 162.

図17は、図11を一部拡大した渦水流を説明するための図である。図17に示すように、通路180から筒状部162の内側に流れ込んだプラズマ用水は、前後方向で隣り合う仕切部163〜165の間で旋回するように流れる。ここで、旋回して流れるプラズマ用水は、前壁部141に形成されたプラズマ用水排出路148から吸引される。このため、プラズマ用水は、開口部163a、164a、166aを通じて前方に流れ、前側仕切部166の前端と噴射口形成板144との間の隙間を通過してプラズマ用水排出路148から排出される。このとき、中心軸線位置C1に空洞Hを形成するように旋回する渦水流Wが形成される。ここで、渦水流Wに空洞Hが形成されないと、陽極73と陰極71との間でアーク放電AR(図18参照)が発生しないため、空洞Hを安定して生じるよう渦水流Wを形成されることが重要となる。   FIG. 17 is a diagram illustrating a vortex water flow in which FIG. 11 is partially enlarged. As shown in FIG. 17, the plasma water flowing from the passage 180 into the inside of the cylindrical portion 162 flows so as to swirl between the partition portions 163 to 165 adjacent in the front-rear direction. Here, the plasma water swirling and flowing is sucked from a plasma water discharge passage 148 formed in the front wall portion 141. Therefore, the plasma water flows forward through the openings 163a, 164a, and 166a, passes through a gap between the front end of the front partition 166, and the injection port forming plate 144, and is discharged from the plasma water discharge passage 148. At this time, a vortex water flow W that swirls to form a cavity H at the center axis position C1 is formed. Here, if the cavity H is not formed in the vortex water flow W, the arc discharge AR (see FIG. 18) does not occur between the anode 73 and the cathode 71, so that the vortex water flow W is formed so as to stably generate the cavity H. Is important.

そこで、本発明者は、様々な条件下で多数の実験を行い、図14及び図16に示すように、開口部163a、164a、166aの開口径D2〜D4がD4>D3>D2となる大小関係となるときに、最も安定して渦水流Wの空洞Hが形成されることを知見した。これは、前方に向かうに従って開口径D2〜D4が大きくなる錘状となる空間が形成されるため、下流側(前寄り)となる程、プラズマ用水が後ろから前へ流れ易くなることに起因すると推測される。なお、上記以外の大小関係であっても、開口径D1〜D4が異なる大きさに形成されることによっても、空洞Hが安定して形成されるようになる。このとき、開口部163a〜166aのうち、少なくとも1つが他と比べて異なる大きさであればよい。このように異なる大きさに形成することで、各開口部163a、164a、166aを通過して流れるプラズマ水の量について調整の自由度を高めることができる。これにより、渦水流Wに空洞Hが良好に形成されるよう、種々の開口径を採用することができ、水プラズマを安定して噴射することができる。   The present inventor has performed a number of experiments under various conditions, and as shown in FIGS. 14 and 16, the opening diameters D2 to D4 of the openings 163a, 164a, and 166a are large and small such that D4> D3> D2. When the relationship is established, it has been found that the cavity H of the vortex water flow W is most stably formed. This is because a space in the shape of a cone, in which the opening diameters D2 to D4 increase toward the front, is formed, so that the plasma water is more likely to flow from the rear to the front as it goes downstream (toward the front). Guessed. In addition, even if the magnitude relation is other than the above, the cavity H can be stably formed even if the opening diameters D1 to D4 are formed to have different sizes. At this time, at least one of the openings 163a to 166a may be different in size from the others. With such different sizes, the degree of freedom in adjusting the amount of plasma water flowing through each of the openings 163a, 164a, 166a can be increased. Thereby, various opening diameters can be adopted so that the cavity H is formed favorably in the vortex water flow W, and the water plasma can be stably jetted.

また、テーパ面163b、164b、166bが椀状面に沿って凹むように湾曲したり、円弧状の面取り部163c、164c、166cを形成したりしたので、渦水流Wの形成を阻害するような乱流が発生し難くなって空洞Hの安定形成に寄与することができる。
なお、プラズマ用水は、旋回する流れによって渦水流発生器160やチャンバ本体140を冷却する効果も奏する。
Further, the tapered surfaces 163b, 164b, and 166b are curved so as to be concave along the bowl-shaped surface, and the arc-shaped chamfers 163c, 164c, and 166c are formed. Turbulence is unlikely to occur, which can contribute to the stable formation of the cavity H.
The plasma water also has an effect of cooling the vortex water flow generator 160 and the chamber body 140 by the swirling flow.

空洞Hを備えた渦水流Wが形成された状態で、図18に示すように、陽極73及び陰極71に直流電力が供給されると、それらの間にアーク放電ARが発生される。このとき、渦水流Wの空洞Hを通過するようにアーク放電ARが発生される。このアーク放電ARの発生によって、渦水流Wを形成するプラズマ用水が解離、電離されて高エネルギーとなる水プラズマのジェット気流Jが噴射口145から噴射される。   When DC power is supplied to the anode 73 and the cathode 71 in a state in which the vortex water flow W having the cavity H is formed as shown in FIG. 18, an arc discharge AR is generated between them. At this time, an arc discharge AR is generated so as to pass through the cavity H of the vortex water flow W. Due to the occurrence of the arc discharge AR, the jet water J of the water plasma, which is dissociated and ionized to form the high-energy water plasma for forming the vortex water flow W, is jetted from the jet port 145.

水プラズマのジェット気流Jは極めて高温で超高速な流体となり、図9に示すように、各ノズル110、111の先端から投入された有害廃棄物は分解される。本実施の形態では、図9を用いて上述した位置に各ノズル110、111の先端を配置したので、水プラズマのジェット気流Jのより高温となる部分で分解を好条件にて行うことができ、投入した有害廃棄物をガス化した廃棄物に効率良く分解することができる。ここで、有害廃棄物としては、PCB、硫酸ピッチ、アスベスト、フロン、ハロン、タイヤ、各種ゴミ等を例示することができ、図7に示すように、液状のものは液体搬送装置54、粒状や粉状のものは粉体搬送装置53を介してノズル110、111から投入される。このような有害廃棄物を投入しても、無害化した廃棄物に分解することができる。   The jet stream J of the water plasma becomes an extremely high-temperature and ultra-high-speed fluid, and as shown in FIG. 9, the hazardous waste introduced from the tips of the nozzles 110 and 111 is decomposed. In the present embodiment, since the tips of the nozzles 110 and 111 are arranged at the positions described above with reference to FIG. 9, decomposition can be performed under favorable conditions in the higher temperature portion of the jet stream J of the water plasma. In addition, the input hazardous waste can be efficiently decomposed into gasified waste. Here, as the hazardous waste, PCB, sulfuric acid pitch, asbestos, chlorofluorocarbon, halon, tires, various kinds of garbage and the like can be exemplified. As shown in FIG. The powdery material is fed from the nozzles 110 and 111 via the powder transfer device 53. Even if such hazardous waste is introduced, it can be decomposed into detoxified waste.

有害廃棄物の分解処理中において、収容体95を加熱することとなるが、その厚み内に冷却水を通過させることで冷却して利用することができる。また、各ノズル110、111にあっても、特に先端は水プラズマのジェット気流J中に位置するために多大なエネルギーを受けて加熱されるが、図10を用いて上述した冷却構造120によって加熱による損傷を抑制することができる。   During the decomposition treatment of the hazardous waste, the container 95 is heated, but it can be cooled and used by passing cooling water through its thickness. Further, even in each of the nozzles 110 and 111, the tip is located in the jet stream J of the water plasma and is heated by receiving a large amount of energy, but the heating is performed by the cooling structure 120 described above with reference to FIG. Can be suppressed.

水プラズマのジェット気流Jによってガス化した酸性ガスは、図6を用いて上述した排気処理装置28によって中和せしめ、水プラズマにより処理した後のガスをより安全な排気ガスに変えることができる。そして、無害となったガスは上方の排気部21から排出することができる。   The acid gas gasified by the jet stream J of the water plasma is neutralized by the exhaust treatment device 28 described above with reference to FIG. 6, and the gas after the treatment with the water plasma can be changed to a safer exhaust gas. Then, the harmless gas can be discharged from the upper exhaust part 21.

上記実施の形態によれば、上述した有害廃棄物の処理を車両10において行うことができるので、水プラズマ発生装置27を運搬及び作動可能となり、移動が困難な有害排気物をその保管場所で処理することができる。これにより、有害廃棄物の処理移動コストを削減できる上、大量の処理が可能となり処理費用の削減を図ることができる。   According to the above embodiment, the above-mentioned treatment of harmful waste can be performed in the vehicle 10, so that the water plasma generator 27 can be transported and operated, and harmful exhaust that is difficult to move is treated in the storage place. can do. As a result, it is possible to reduce the cost of transporting and processing hazardous wastes, and it is also possible to perform a large amount of processing, thereby reducing the processing costs.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状、方向などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   The present invention is not limited to the above embodiment, and can be implemented with various modifications. In the above-described embodiment, the size, shape, direction, and the like illustrated in the accompanying drawings are not limited thereto, and can be appropriately changed without departing from the effects of the present invention. In addition, the present invention can be appropriately modified and implemented without departing from the scope of the object of the present invention.

例えば、上記実施の形態では、中間仕切部を第1中間仕切部163及び第2中間仕切部164の2体としたが、上記のように渦水流Wを形成できる限りにおいて、中間仕切部を3体以上としたり、1体としたりしてもよい。   For example, in the above-described embodiment, the two intermediate partitions are the first intermediate partition 163 and the second intermediate partition 164. However, as long as the vortex water flow W can be formed as described above, the number of intermediate partitions is three. It may be more than one body or one body.

また、図15に示すように、渦水流発生器160を複数の部材によって分割可能な構造としたが、これに限られるものでなく、前後に隣接する部材を一体化して形成してもよい。例えば、ヘッド部160Aについて、その後方のスペーサリング177及び水流形成リング176を一体に備えた形状に変更する等、成形し得る限りにおいて様々な構造を採用することができる。   Further, as shown in FIG. 15, the vortex water flow generator 160 has a structure that can be divided by a plurality of members. However, the structure is not limited to this, and members adjacent to the front and rear may be integrally formed. For example, the head portion 160A may employ various structures as long as it can be formed, such as changing the shape of the head portion 160A to a structure integrally including the rear spacer ring 177 and the water flow forming ring 176.

また、開口部163a〜166aの開口形状は円形に限られず、上記のように渦水流Wを形成できる限りにおいて、楕円形や多角形形状等に変更してもよい。   Further, the opening shape of the openings 163a to 166a is not limited to a circle, and may be changed to an elliptical shape or a polygonal shape as long as the vortex water flow W can be formed as described above.

また、水流形成リング176の周方向における通路180の位置は、特に限定されるものでない。図15では、全ての水流形成リング176において、通路180の位置が揃っているが、水流形成リング176毎に通路180の位置を変更してもよい。   Further, the position of the passage 180 in the circumferential direction of the water flow forming ring 176 is not particularly limited. In FIG. 15, the positions of the passages 180 are aligned in all the water flow forming rings 176, but the positions of the passages 180 may be changed for each of the water flow forming rings 176.

また、各ノズル110、111の位置や向きは、上記実施の形態と同様の先端位置とする限りにおいて変更してもよい。   Further, the positions and orientations of the nozzles 110 and 111 may be changed as long as the positions are the same as those in the above embodiment.

また、水プラズマ発生装置27によって分解処理する対象物は、上記した有害廃棄物に限られるものでなく、特に有害でないものを分解処理の対象物としてもよい。更に、水プラズマ発生装置27は、廃棄物処理に利用することに限定されるものでなく、溶射等の水プラズマを利用した任意の処理に利用することができる。   The object to be decomposed by the water plasma generator 27 is not limited to the harmful waste described above, and a non-hazardous object may be used as the object of the decomposition process. Furthermore, the water plasma generator 27 is not limited to use in waste treatment, but can be used in any treatment using water plasma such as thermal spraying.

本発明は、水プラズマ発生装置から水プラズマのジェット気流を安定して噴射させることができる、という効果を得る。   ADVANTAGE OF THE INVENTION This invention acquires the effect that the jet stream of water plasma can be jetted stably from a water plasma generator.

10 車両(分解処理装置搭載車両)
12 荷台
27 水プラズマ発生装置
28 排気処理装置
50 供給装置
60 分解処理装置
71 陰極
72 チャンバ
73 陽極
85 処理空間
93 壁体
95 収容体
100 空間
110 第1ノズル(ノズル)
111 第2ノズル(ノズル)
121 第1通路
122 第2通路
123 第3通路
145 噴射口
160 渦水流発生器
162 筒状部
163 第1中間仕切部(中間仕切部)
163a 開口部
163b テーパ面
163c 面取り部
164 第2中間仕切部(中間仕切部)
164a 開口部
164b テーパ面
164c 面取り部
165 後側仕切部(一端側仕切部)
165a 開口部
165b テーパ面
166 前側仕切部(他端側仕切部)
166a 開口部
166b テーパ面
166c 面取り部
180 通路
AR アーク放電
C1 中心軸線位置
W 渦水流
10 vehicles (vehicles with disassembly processing device)
Reference Signs List 12 loading platform 27 water plasma generator 28 exhaust treatment device 50 supply device 60 decomposition treatment device 71 cathode 72 chamber 73 anode 85 processing space 93 wall body 95 container 100 space 110 first nozzle (nozzle)
111 2nd nozzle (nozzle)
121 first passage 122 second passage 123 third passage 145 injection port 160 vortex water flow generator 162 cylindrical portion 163 first intermediate partition (intermediate partition)
163a Opening 163b Tapered surface 163c Chamfer 164 Second intermediate partition (intermediate partition)
164a Opening 164b Tapered surface 164c Chamfered part 165 Rear partition (one end partition)
165a Opening 165b Tapered surface 166 Front partition (other end partition)
166a Opening 166b Tapered surface 166c Chamfered portion 180 Passage AR Arc discharge C1 Center axis position W Whirlpool water flow

Claims (7)

水プラズマを噴射する水プラズマ発生装置の陰極と陽極との間に配置され、それらの間で発生するアーク放電が通過するための渦水流を形成する渦水流発生器であって、
前記渦水流を内周に沿って形成させる筒状部と、
前記筒状部の内周から突出する複数の中間仕切部とを備え、
前記中間仕切部は、前記筒状部の中心軸線を含む位置に開口部をそれぞれ備え、前記陽極側の前記中間仕切部の方が前記陰極側の前記中間仕切部より前記開口部の開口形状が大きく形成されていることを特徴とする渦水流発生器。
A vortex water flow generator that is disposed between a cathode and an anode of a water plasma generator that injects water plasma and forms a vortex water flow for passing arc discharge generated therebetween,
A cylindrical portion for forming the vortex water flow along the inner circumference;
Comprising a plurality of intermediate partition portions protruding from the inner periphery of the cylindrical portion,
The intermediate partition has an opening at a position including the central axis of the cylindrical portion, and the opening shape of the opening of the intermediate partition on the anode side is greater than that of the intermediate partition on the cathode side. A vortex water flow generator characterized by being formed large.
前記筒状部の一端側に形成されて前記陰極に対向する一端側仕切部と、前記筒状部の他端側に形成される他端側仕切部とを備え、前記一端側仕切部及び前記他端側仕切部は、前記筒状部の中心軸線を含む位置に開口部をそれぞれ備え、前記各仕切部の開口部の開口形状は異なる大きさに形成されていることを特徴とする請求項1に記載の渦水流発生器。   One end side partition portion formed on one end side of the tubular portion and facing the cathode, and another end side partition portion formed on the other end side of the tubular portion, the one end side partition portion and the The other end-side partition portion is provided with an opening at a position including the central axis of the cylindrical portion, and the opening shape of the opening of each partition portion is formed in a different size. 2. The vortex water flow generator according to 1. 前記中間仕切部及び前記他端側仕切部の開口部は、前記陰極から離れる並び順に応じて次第に大きくなる開口形状に形成されていることを特徴とする請求項2に記載の渦水流発生器。 Opening in said partition part and the other end side partition part, the vortex water flow generated according to Motomeko 2 characterized in that it is formed gradually larger opening shape in accordance with the sorted away from the cathode vessel. 前記請求項1ないし請求項3の何れかに記載の渦水流発生器と、当該渦水流発生器を収容するチャンバと、アーク放電を発生させる陽極及び陰極とを備え、
前記渦水流発生器は、前記陰極と陽極との間に配置され、それらの間で発生するアーク放電が通過する渦水流を形成することを特徴とする水プラズマ発生装置。
The vortex water flow generator according to any one of claims 1 to 3, a chamber accommodating the vortex water flow generator, an anode and a cathode for generating arc discharge,
The water plasma generator according to claim 1, wherein the vortex water flow generator is disposed between the cathode and the anode, and forms a vortex water flow through which arc discharge generated therebetween passes.
前記請求項4に記載の水プラズマ発生装置と、当該水プラズマ発生装置が噴射した水プラズマに分解対象物を供給する供給装置とを備えていることを特徴とする分解処理装置。   A decomposition apparatus comprising: the water plasma generator according to claim 4; and a supply device that supplies an object to be decomposed to the water plasma ejected by the water plasma generator. 前記請求項5に記載の分解処理装置をトラックの荷台に搭載して構成されることを特徴とする分解処理装置搭載車両。   A vehicle equipped with the decomposition processing apparatus, wherein the decomposition processing apparatus according to claim 5 is mounted on a bed of a truck. 前記請求項4に記載の水プラズマ発生装置が噴射した水プラズマに分解対象物を供給して当該分解対象物を分解処理することを特徴とする分解処理方法。   A decomposition treatment method, comprising supplying a decomposition target to the water plasma jetted by the water plasma generator according to claim 4 and decomposing the decomposition target.
JP2016212679A 2016-10-31 2016-10-31 Vortex water flow generator, water plasma generator, decomposition processing apparatus, vehicle equipped with decomposition processing apparatus, and decomposition processing method Active JP6668219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016212679A JP6668219B2 (en) 2016-10-31 2016-10-31 Vortex water flow generator, water plasma generator, decomposition processing apparatus, vehicle equipped with decomposition processing apparatus, and decomposition processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212679A JP6668219B2 (en) 2016-10-31 2016-10-31 Vortex water flow generator, water plasma generator, decomposition processing apparatus, vehicle equipped with decomposition processing apparatus, and decomposition processing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016000519A Division JP6035438B1 (en) 2016-01-05 2016-01-05 Eddy water flow generator, water plasma generator, decomposition treatment apparatus, vehicle equipped with the decomposition treatment apparatus, and decomposition treatment method

Publications (3)

Publication Number Publication Date
JP2017123323A JP2017123323A (en) 2017-07-13
JP2017123323A5 JP2017123323A5 (en) 2019-03-07
JP6668219B2 true JP6668219B2 (en) 2020-03-18

Family

ID=59305917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212679A Active JP6668219B2 (en) 2016-10-31 2016-10-31 Vortex water flow generator, water plasma generator, decomposition processing apparatus, vehicle equipped with decomposition processing apparatus, and decomposition processing method

Country Status (1)

Country Link
JP (1) JP6668219B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56152198A (en) * 1980-04-21 1981-11-25 Vysoka Skola Chem Tech Method and device for radially stabilizing and equalizing plasma stream
CS232677B1 (en) * 1982-02-15 1985-02-14 Karel Zverina Method of production of low temperature plasma
JPH0763033B2 (en) * 1984-06-27 1995-07-05 吉明 荒田 High power plasma jet generator
JP4432086B2 (en) * 2006-11-28 2010-03-17 勇吉 矢口 In-vehicle water plasma hazardous waste treatment system
WO2012031338A1 (en) * 2010-09-08 2012-03-15 Ecoplasma B.V.B.A. Method and apparatus for generating a fuel
US9150949B2 (en) * 2012-03-08 2015-10-06 Vladmir E. BELASHCHENKO Plasma systems and methods including high enthalpy and high stability plasmas

Also Published As

Publication number Publication date
JP2017123323A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6035438B1 (en) Eddy water flow generator, water plasma generator, decomposition treatment apparatus, vehicle equipped with the decomposition treatment apparatus, and decomposition treatment method
US12011630B2 (en) Vortex water flow generator, water plasma generator, decomposition processor, decomposition processor mounted vehicle, and decomposition method
JP6629705B2 (en) Decomposition processing apparatus, vehicle equipped with decomposition processing apparatus, and decomposition processing method
JP4432086B2 (en) In-vehicle water plasma hazardous waste treatment system
JP7420197B2 (en) Decomposition processing equipment
KR20040087973A (en) Apparatus for cooling hot exhaust gases
JPH0546051B2 (en)
JP6668219B2 (en) Vortex water flow generator, water plasma generator, decomposition processing apparatus, vehicle equipped with decomposition processing apparatus, and decomposition processing method
JP6820598B2 (en) Vehicle with thermal spraying device
JP7502766B2 (en) Decomposition treatment device and cooling device used therein
KR101955158B1 (en) apparatus for removing malodor with eco bubble generator by cavitation
JP7557903B2 (en) Water plasma generating device, current-carrying member used therein, and water plasma generating method
JP2023181940A (en) Waste treatment apparatus
JP4260619B2 (en) Instant steam production equipment
JP2021157931A (en) Water plasma generation device and negative electrode holding unit used therefor
WO2009048200A1 (en) Combustion system for mixed fuel and water
KR101648315B1 (en) Apparatus for removing acid gas using rapid sprial flow atomization type
JP2010139126A (en) High-temperature steam producing device
KR20150093133A (en) Waste injecting apparatus
JP2021118113A (en) Jig for water plasma generation device and positioning method used for the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200226

R150 Certificate of patent or registration of utility model

Ref document number: 6668219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250