JP6668091B2 - UV absorber and resin member using the same - Google Patents

UV absorber and resin member using the same Download PDF

Info

Publication number
JP6668091B2
JP6668091B2 JP2016016041A JP2016016041A JP6668091B2 JP 6668091 B2 JP6668091 B2 JP 6668091B2 JP 2016016041 A JP2016016041 A JP 2016016041A JP 2016016041 A JP2016016041 A JP 2016016041A JP 6668091 B2 JP6668091 B2 JP 6668091B2
Authority
JP
Japan
Prior art keywords
group
resin
ultraviolet
monovalent
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016016041A
Other languages
Japanese (ja)
Other versions
JP2017132948A (en
Inventor
河合 功治
功治 河合
恒太郎 金子
恒太郎 金子
信裕 金子
信裕 金子
亜紀良 矢下
亜紀良 矢下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyoshi Oil and Fat Co Ltd
Original Assignee
Miyoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyoshi Oil and Fat Co Ltd filed Critical Miyoshi Oil and Fat Co Ltd
Priority to JP2016016041A priority Critical patent/JP6668091B2/en
Publication of JP2017132948A publication Critical patent/JP2017132948A/en
Application granted granted Critical
Publication of JP6668091B2 publication Critical patent/JP6668091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、樹脂等のマトリックスに添加される紫外線吸収剤とそれを用いた樹脂部材に関する。   The present invention relates to an ultraviolet absorber added to a matrix such as a resin and a resin member using the same.

従来より、樹脂や人体に対する紫外線の有害性が知られている。   Conventionally, the harmfulness of ultraviolet rays to resins and human bodies has been known.

樹脂部材は紫外線の作用により劣化し、変色や機械的強度の低下等の品質劣化を引き起こして長期の使用を阻害する。このような品質劣化を防止したり、あるいは透過光の波長を制御したりするために、樹脂部材に無機系又は有機系の紫外線吸収剤を配合することが一般に行われている。   The resin member is deteriorated by the action of ultraviolet rays, causing quality deterioration such as discoloration and reduction in mechanical strength, and hindering long-term use. In order to prevent such quality deterioration or to control the wavelength of transmitted light, it is common practice to mix an inorganic or organic ultraviolet absorber in the resin member.

また、紫外線は皮膚に作用し、シミ、そばかす、しわの形成、皮膚がんの原因になるものである。このような皮膚への影響を防止するために、化粧料や日焼け止め等に無機系又は有機系の紫外線吸収剤を配合することが一般に行われている。   Ultraviolet rays also act on the skin, causing spots, freckles, wrinkles, and skin cancer. In order to prevent such effects on the skin, it is common practice to add an inorganic or organic ultraviolet absorber to cosmetics and sunscreens.

無機系の紫外線吸収剤は、耐候性や耐熱性等の耐久性に優れている反面、吸収波長が化合物のバンドギャップによって決定されるため選択の自由度が少なく、近紫外線の中でも400nm付近の長波紫外線(UV−A、315〜400nm)領域まで吸収できるものは少なく、長波紫外線を吸収するものは400〜500nm(可視域)までの波長光を多く吸収するため着色を伴ってしまう。   Inorganic UV absorbers have excellent durability, such as weather resistance and heat resistance, but have a low degree of freedom in selection because the absorption wavelength is determined by the band gap of the compound. Few can absorb light in the ultraviolet (UV-A, 315 to 400 nm) region, and those that absorb long-wave ultraviolet light absorb a large amount of light having a wavelength in the range of 400 to 500 nm (visible region), and thus are accompanied by coloring.

これに対して有機系の紫外線吸収剤は、吸収剤の構造設計の自由度が高いために、吸収剤の構造を工夫することによって様々な吸収波長のものを得ることができる。従来、有機系の紫外線吸収剤としては、トリアジン系、ベンゾトリアゾール系、ベンゾフェノン系、シアノアクリレート系、サリシレート系等の紫外線吸収剤が知られている(例えば特許文献1〜4)。   On the other hand, organic UV absorbers have a high degree of freedom in the structural design of the absorber, so that various types of absorption wavelengths can be obtained by devising the structure of the absorber. Conventionally, as an organic ultraviolet absorber, a triazine-based, benzotriazole-based, benzophenone-based, cyanoacrylate-based, salicylate-based ultraviolet absorber, and the like have been known (for example, Patent Documents 1 to 4).

特開2013−67811号公報JP 2013-67811 A 特開2012−184168号公報JP 2012-184168 A 特表2005−504047号公報JP-T-2005-504047 特表平6−505744号公報Japanese Patent Publication No. 6-505744 PCT/JP2015/72284PCT / JP2015 / 72284

しかしながら、光学フィルム、光学成形品等の光学材料、各種コーティング剤においては、UV−A領域まで遮蔽効果を示すことに加えて、その透明な外観を得る点等から、紫外線吸収剤の可視光吸収に起因する黄変着色を抑制することが望まれていた。   However, in the case of optical materials such as optical films and optical molded products, and various coating agents, in addition to exhibiting a shielding effect up to the UV-A region, the visible light absorption of the ultraviolet absorber is considered from the viewpoint of obtaining a transparent appearance. It has been desired to suppress yellowing coloring caused by the above.

光学材料、コーティング剤をはじめとする透明樹脂部材は、用途上、成形後又は経時で透明であることが望まれ、紫外線劣化による不透明化や変色が起こす光学特性の劣化を防止する面から、また、皮膚等へのヘルスケアを観点におく用途においても、UV−Aでも長波長の360〜400nmの波長光を効率良く吸収する薬剤が必要とされている。しかしながら、360〜400nmのUV−A領域の波長光を十分吸収させようとすると、従来の紫外線吸収剤では、その波長領域の吸収効率が低く、多くの添加量が必要となり、同時に、その光学的特性より、400nm付近より長波長の可視光領域の光も多く吸収するため、例えば、樹脂部剤に使用した際に黄色化する問題があった。一方で、400nmまでのUV−A領域を十分吸収する紫外線吸収剤であっても、やはり、400nm付近より長波長の可視光領域の光も同時に多く吸収し、樹脂部材が黄色化する問題があった。   Optical materials, transparent resin members such as coating agents are desired to be transparent after molding or over time in use, and from the viewpoint of preventing opacity and deterioration of optical characteristics caused by discoloration due to ultraviolet deterioration, and Also, in the application from the viewpoint of health care for skin and the like, there is a need for a drug that efficiently absorbs light having a long wavelength of 360 to 400 nm even in UV-A. However, in order to sufficiently absorb light having a wavelength in the UV-A region of 360 to 400 nm, a conventional ultraviolet absorber has a low absorption efficiency in the wavelength region and requires a large amount of addition. Due to its characteristics, it also absorbs a large amount of light in the visible light region having a wavelength longer than about 400 nm. For example, there is a problem that the resin turns yellow when used in a resin component. On the other hand, even with an ultraviolet absorbent that sufficiently absorbs the UV-A region up to 400 nm, there is also a problem that the resin member also absorbs a large amount of light in the visible light region having a longer wavelength than around 400 nm, and the resin member turns yellow. Was.

また、紫外線吸収剤の添加量が多くなると、コストの問題、またはマトリックスの樹脂との相溶性に制約が生じ、高濃度での均一な溶解が困難になったり、白濁を生じてしまい透明性を損なってしまったりする場合がある。そのため、高い透明性が要求される用途、過酷な条件下での使用が想定される用途では、少量添加でも必要とする紫外線吸収性能を十分発現することが望まれていた。   In addition, when the amount of the ultraviolet absorber added is large, the problem of cost or the compatibility with the matrix resin is restricted, and it becomes difficult to uniformly dissolve at a high concentration, or white turbidity is caused to increase the transparency. It may be damaged. Therefore, in applications where high transparency is required or applications where use under severe conditions is anticipated, it has been desired to sufficiently exhibit the required ultraviolet absorption performance even with a small amount of addition.

従来の有機系の紫外線吸収剤の多くは、上記したような、長波長領域の紫外線の吸収、黄変抑制、少量添加での使用が可能な高モル吸光係数の3つをバランスよく持ち合わせていない。   Many conventional organic UV absorbers do not have a well-balanced three of the above-mentioned three factors: absorption of ultraviolet rays in the long wavelength region, suppression of yellowing, and high molar extinction coefficient that can be used with a small amount of addition. .

一方、有機系の紫外線吸収剤は、紫外線吸収剤を含む樹脂組成物を加熱して成形、加工する際に紫外線吸収剤が熱分解し、樹脂部材の紫外線吸収能の低下、そして、透明樹脂部材の場合、その透明性を損ない、さらには、成形、加工装置内を汚染させる可能性があり、より耐熱性に優れた有機系の紫外線吸収剤が求められている。   On the other hand, when an organic ultraviolet absorber is used to heat and mold and process a resin composition containing the ultraviolet absorber, the ultraviolet absorber thermally decomposes, lowering the ultraviolet absorbing ability of the resin member, and In the case of (1), there is a possibility of impairing the transparency and further contaminating the inside of a molding and processing apparatus, and an organic ultraviolet absorber having more excellent heat resistance is required.

本発明者らは、トリアジン系の紫外線吸収骨格に、硫黄含有基を導入した紫外線吸収剤を開発した(特許文献5)。しかし、実施例ではトリアジン骨格に結合する3つのベンゼン環への硫黄含有基の導入位置について、少量の添加量でも長波長領域の紫外線を吸収し、かつ黄変着色を抑制する観点から特に優れたものに着目した検討はされていない。   The present inventors have developed an ultraviolet absorber in which a sulfur-containing group is introduced into a triazine-based ultraviolet absorption skeleton (Patent Document 5). However, in the examples, the introduction position of the sulfur-containing group to the three benzene rings bonded to the triazine skeleton was particularly excellent from the viewpoint of absorbing ultraviolet light in a long wavelength region and suppressing yellowing even with a small amount of addition. No consideration was given to things.

本発明は、以上の通りの事情に鑑みてなされたものであり、少量の添加量でも360〜400nmの長波長領域の紫外線を効率よく吸収し、かつ黄変着色が抑制された樹脂部材を得ることができ、耐熱性にも優れた紫外線吸収剤とそれを用いた樹脂部材を提供することを課題としている。   The present invention has been made in view of the circumstances as described above, and efficiently absorbs ultraviolet light in a long wavelength region of 360 to 400 nm even with a small amount of addition, and obtains a resin member in which yellowing and coloring are suppressed. It is an object of the present invention to provide an ultraviolet absorber excellent in heat resistance and a resin member using the same.

上記の課題を解決するために、本発明の紫外線吸収剤は、下記式(I):   In order to solve the above problems, the ultraviolet absorber of the present invention has the following formula (I):

Figure 0006668091
(式中、R〜R15はそれぞれ独立に、下記式(i):
Figure 0006668091
(Wherein, R 1 to R 15 are each independently the following formula (i):

Figure 0006668091
(式(i)中、R16は芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価もしくは2価の基で、水素原子が置換されるか、両端の少なくともいずれかが中断されるか、又は炭素−炭素結合が中断されていてもよい炭素数1〜20の2価の炭化水素基を示し、R17はyが2以上の場合はそれぞれ独立に芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価もしくは2価の基で、水素原子が置換されるか、両端の少なくともいずれかが中断されるか、又は炭素−炭素結合が中断されていてもよい炭素数1〜20の2価の炭化水素基を示し、R18は芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価のもしくは2価の基で、水素原子が置換されるか、基端が中断されるか、又は炭素−炭素結合が中断されていてもよい炭素数1〜20の1価の炭化水素基、または水素原子を示す。R16とy個のR17とR18の総炭素数は60以下である。xは0又は1の整数を示し、yは0〜3の整数を示す。)で表わされる1価の硫黄含有基、水素原子、炭素数1〜10の炭化水素基、芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価の基を示す。R〜R、R〜R10、及びR11〜R15の3つの群から選ばれるいずれか2つの群のうちの1群当たり1〜4個の基が、式(i)で表わされる1価の硫黄含有基である。)で表わされることを特徴としている。
Figure 0006668091
(In the formula (i), R 16 is a monovalent or divalent group selected from an aromatic group, an unsaturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, an alicyclic group, and a halogen atom; A hydrogen atom, a divalent hydrocarbon group having 1 to 20 carbon atoms which may have at least one of both ends interrupted, or an interrupted carbon-carbon bond, and R 17 is y Is 2 or more, each independently represents a monovalent or divalent group selected from an aromatic group, an unsaturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, an alicyclic group, and a halogen atom; A divalent hydrocarbon group having 1 to 20 carbon atoms in which an atom is substituted, at least one of both ends is interrupted, or a carbon-carbon bond may be interrupted, and R 18 is aromatic Groups, unsaturated groups, sulfur-containing groups, oxygen-containing groups, phosphorus-containing groups, alicyclic groups, and A monovalent or divalent group selected from the group consisting of a hydrogen atom, a hydrogen atom being substituted, a base end being interrupted, or a carbon atom having 1 to 20 carbon atoms which may have an interrupted carbon-carbon bond. A total of carbon atoms of R 16 and y R 17 and R 18 is 60 or less, x is an integer of 0 or 1, and y is an integer of 0 to 3 A) a monovalent sulfur-containing group, a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an aromatic group, an unsaturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, or an alicyclic group. And a monovalent group selected from a group and a halogen atom. R 1 to R 5 , R 6 to R 10 , and R 11 to R 15 each have 1 to 4 groups per group out of any two groups selected from the three groups represented by formula (i). Is a monovalent sulfur-containing group. ).

本発明の樹脂部材は、前記の紫外線吸収剤をマトリックスの樹脂中に含有する。   The resin member of the present invention contains the above-mentioned ultraviolet absorber in the resin of the matrix.

本発明の紫外線吸収剤によれば、吸収ピークの特徴により、360〜400nmの長波長領域の紫外線を吸収し、かつ黄変着色が抑制された樹脂部材を得ることができる。また、モル吸光係数が高く、長波長領域の紫外線吸収の効率が良いことから、樹脂等のマトリックスに対して添加量の低減化を図ることができる。さらに、耐熱性に優れており、高い樹脂の成形加工温度にも適用することができる。   According to the ultraviolet absorbent of the present invention, it is possible to obtain a resin member that absorbs ultraviolet light in a long wavelength region of 360 to 400 nm and suppresses yellowing and coloring due to the characteristics of the absorption peak. Further, since the molar extinction coefficient is high and the efficiency of ultraviolet absorption in a long wavelength region is high, the amount of addition to a matrix such as a resin can be reduced. Furthermore, it is excellent in heat resistance and can be applied to a high resin processing temperature.

本発明の樹脂部材によれば、長波長領域の紫外線吸収性能に優れ、かつ紫外線吸収剤に起因する黄変着色が少ない。また、透明樹脂部材は、それらに加えて高い透明性を有する。   ADVANTAGE OF THE INVENTION According to the resin member of this invention, it is excellent in the ultraviolet absorption performance of a long wavelength region, and there is little yellowing coloring caused by an ultraviolet absorber. In addition, the transparent resin member has high transparency in addition to them.

実施例1〜5の紫外−可視吸収スペクトル(UVチャート)である。It is an ultraviolet-visible absorption spectrum (UV chart) of Examples 1-5. 比較例1〜5の紫外−可視吸収スペクトル(UVチャート)である。9 is an ultraviolet-visible absorption spectrum (UV chart) of Comparative Examples 1 to 5.

以下に、本発明を詳細に説明する。
前記の式(I)で表わされる紫外線吸収剤は、トリアジン系の紫外線吸収骨格に、式(i)で表わされる1価の硫黄含有基を導入するとともに、トリアジン骨格に結合する3つのベンゼン環への硫黄含有基の導入位置を、R〜R、R〜R10、及びR11〜R15の3つの群から選ばれるいずれか2つの群としたことを特徴としている。この特定の位置での硫黄含有基の導入によって、モル吸光係数が高く、少量の添加量でも長波長領域の紫外線を吸収し、かつ黄変着色が抑制された樹脂部材を得ることができ、耐熱性にも優れたものとすることができる。
Hereinafter, the present invention will be described in detail.
The ultraviolet absorbent represented by the above formula (I) introduces a monovalent sulfur-containing group represented by the formula (i) into a triazine-based ultraviolet absorbing skeleton, and converts the tribenzene skeleton into three benzene rings bonded to the triazine skeleton. Are introduced into any two groups selected from three groups of R 1 to R 5 , R 6 to R 10 , and R 11 to R 15 . By introducing the sulfur-containing group at this specific position, it is possible to obtain a resin member having a high molar absorption coefficient, absorbing ultraviolet rays in a long wavelength region even with a small amount of addition, and suppressing yellowing and coloring. It can also be excellent in properties.

[置換基等]
本発明において、「芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価もしくは2価の基」には、高屈折率を付与できる基、耐熱性、樹脂に対する相溶性を調整できる基、樹脂及び/又は樹脂のモノマーと反応する基等が含まれ、例えば、次のものが含まれる。
(芳香族基)
芳香族基は、ベンゼン環、ナフタレン環、アントラセン環等の芳香環を含み、炭素数が好ましくは6〜18、より好ましくは6〜14である。1価もしくは2価の芳香族基としては、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2,4−ジメチルフェニル基、2,5−ジメチルフェニル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,4,5−トリメチルフェニル基、2,4,6−トリメチルフェニル基、4−ビフェニル基、1−ナフチル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、2−エトキシフェニル基、3−エトキシフェニル基、4−エトキシフェニル基、2−クロロフェニル基、2−フルオロフェニル基、4−フルオロフェニル基、2−トリフルオロメチルフェニル基、4−トリフルオロメチルフェニル基、1−ナフチル基、2−ナフチル基等が挙げられる。
(不飽和基)
不飽和基は、炭素−炭素二重結合、炭素−炭素三重結合、炭素−酸素二重結合(カルボニル基、アルデヒド基、カルボキシル基等)、炭素−窒素二重結合(イソシアネート基等)、炭素−窒素三重結合(シアノ基、シアナト基等)等の炭素−炭素又は炭素−ヘテロ原子の不飽和結合を含み、炭素数が好ましくは1〜10、より好ましくは1〜8である。1価もしくは2価の不飽和基としては、アクリロイル基、メタクロイル基、マレイン酸モノエステル基、スチリル基、アリル基、ビニル基、アミド基、カルバモイル基、シアノ基、イソシアネート基等が挙げられる。
(硫黄含有基)
硫黄含有基は、チオール基、スルフィド基、ジスルフィド基、スルホニル基、スルホ基、チオカルボニル基、チオカルバモイル基、又はチオ尿素基を含み、炭素数が好ましくは0〜10である。1価もしくは2価の硫黄含有基としては、チオメトキシ基、チオエトキシ基、チオ−n−プロポキシ基、チオイソプロポキシ基、チオ−n−ブトキシ基、チオ−t−ブトキシ基、チオフェノキシ基、p−メチルチオフェノキシ基、p−メトキシチオフェノキシ基、チオフェン基、チアゾール基、チオール基、スルホ基、スルフィド基、ジスルフィド基、スルホニル基、チオカルボニル基、チオ尿素基等が挙げられる。
(酸素含有基)
酸素含有基は、芳香環基又は脂環式基を含む場合には炭素数が好ましくは6〜12、芳香環基又は脂環式基を含まない場合には炭素数が好ましくは0〜6である。1価もしくは2価の酸素含有基としては、ヒドロキシ基、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、ナフトキシ基、フェニルメトキシ基、フェニルエトキシ基、アセトキシ基、アセチル基、アルデヒド基、カルボキシル基、カルバモイル基、尿素基、エーテル基、カルボニル基、エステル基、オキサゾール基、モルホリン基等が挙げられる。
(リン含有基)
リン含有基は、ホスフィン基、ホスファイト基、ホスホン酸基、ホスフィン酸基、リン酸基、又はリン酸エステル基を含み、芳香環基又は脂環式基を含む場合には炭素数が好ましくは6〜22、芳香環基又は脂環式基を含まない場合には炭素数が好ましくは0〜6である。1価もしくは2価のリン含有基としては、トリメチルホスフィン基、トリブチルホスフィン基、トリシクロヘキシルホスフィン基、トリフェニルホスフィン基、トリトリルホスフィン基、メチルホスファイト基、エチルホスファイト基、フェニルホスファイト基、ホスホン酸基、ホスフィン酸基、リン酸基、リン酸エステル基等が挙げられる。
(脂環式基)
脂環式基は、炭素数が好ましくは3〜10、より好ましくは3〜8である。1価もしくは2価の脂環式基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等が挙げられる。
(ハロゲン原子)
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
1.式(I)で表わされる紫外線吸収剤
前記の式(I)で表わされる紫外線吸収剤は、トリアジン系の骨格に前記の式(i)で表わされる1価の硫黄含有基を含む。
[Substituents, etc.]
In the present invention, “a monovalent or divalent group selected from an aromatic group, an unsaturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, an alicyclic group, and a halogen atom” includes a high refractive index. , A group capable of adjusting the heat resistance and compatibility with the resin, a group reacting with the resin and / or a monomer of the resin, and the like. Examples thereof include the following.
(Aromatic group)
The aromatic group contains an aromatic ring such as a benzene ring, a naphthalene ring, and an anthracene ring, and preferably has 6 to 18, and more preferably 6 to 14 carbon atoms. Examples of the monovalent or divalent aromatic group include phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, and 2,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,4,5-trimethylphenyl group, 2,4,6-trimethylphenyl group, 4-biphenyl group, 1-naphthyl group, 2-methoxyphenyl group , 3-methoxyphenyl, 4-methoxyphenyl, 2-ethoxyphenyl, 3-ethoxyphenyl, 4-ethoxyphenyl, 2-chlorophenyl, 2-fluorophenyl, 4-fluorophenyl, 2- Examples include a trifluoromethylphenyl group, a 4-trifluoromethylphenyl group, a 1-naphthyl group, and a 2-naphthyl group.
(Unsaturated group)
The unsaturated group includes a carbon-carbon double bond, a carbon-carbon triple bond, a carbon-oxygen double bond (a carbonyl group, an aldehyde group, a carboxyl group, etc.), a carbon-nitrogen double bond (an isocyanate group, etc.), It contains a carbon-carbon or carbon-heteroatom unsaturated bond such as a nitrogen triple bond (such as a cyano group or a cyanato group), and preferably has 1 to 10, and more preferably 1 to 8 carbon atoms. Examples of the monovalent or divalent unsaturated group include an acryloyl group, a methacryloyl group, a maleic acid monoester group, a styryl group, an allyl group, a vinyl group, an amide group, a carbamoyl group, a cyano group, an isocyanate group, and the like.
(Sulfur-containing group)
The sulfur-containing group includes a thiol group, a sulfide group, a disulfide group, a sulfonyl group, a sulfo group, a thiocarbonyl group, a thiocarbamoyl group, or a thiourea group, and preferably has 0 to 10 carbon atoms. Examples of the monovalent or divalent sulfur-containing group include thiomethoxy, thioethoxy, thio-n-propoxy, thioisopropoxy, thio-n-butoxy, thio-t-butoxy, thiophenoxy, p- Examples include a methylthiophenoxy group, a p-methoxythiophenoxy group, a thiophene group, a thiazole group, a thiol group, a sulfo group, a sulfide group, a disulfide group, a sulfonyl group, a thiocarbonyl group, and a thiourea group.
(Oxygen-containing group)
The oxygen-containing group preferably has 6 to 12 carbon atoms when it contains an aromatic or alicyclic group, and preferably has 0 to 6 carbon atoms when it contains no aromatic or alicyclic group. is there. Examples of the monovalent or divalent oxygen-containing group include hydroxy, methoxy, ethoxy, propoxy, butoxy, phenoxy, methylphenoxy, dimethylphenoxy, naphthoxy, phenylmethoxy, phenylethoxy, and acetoxy. Groups, acetyl group, aldehyde group, carboxyl group, carbamoyl group, urea group, ether group, carbonyl group, ester group, oxazole group, morpholine group and the like.
(Phosphorus-containing group)
The phosphorus-containing group includes a phosphine group, a phosphite group, a phosphonic acid group, a phosphinic acid group, a phosphoric acid group, or a phosphoric acid ester group. 6 to 22, when it does not contain an aromatic ring group or an alicyclic group, it preferably has 0 to 6 carbon atoms. Examples of the monovalent or divalent phosphorus-containing group include a trimethylphosphine group, a tributylphosphine group, a tricyclohexylphosphine group, a triphenylphosphine group, a tolylphosphine group, a methylphosphite group, an ethylphosphite group, and a phenylphosphite group. Examples include a phosphonic acid group, a phosphinic acid group, a phosphoric acid group, and a phosphoric ester group.
(Alicyclic group)
The alicyclic group preferably has 3 to 10 carbon atoms, more preferably 3 to 8 carbon atoms. Examples of the monovalent or divalent alicyclic group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, and the like.
(Halogen atom)
Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
1. Ultraviolet absorber represented by formula (I) The ultraviolet absorber represented by formula (I) contains a trivalent skeleton containing a monovalent sulfur-containing group represented by formula (i).

式(i)において、R16は芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価もしくは2価の基で、水素原子が置換されるか、両端の少なくともいずれかが中断されるか、又は炭素−炭素結合が中断されていてもよい炭素数1〜20の2価の炭化水素基を示す。 In the formula (i), R 16 is a monovalent or divalent group selected from an aromatic group, an unsaturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, an alicyclic group, and a halogen atom. A divalent hydrocarbon group having 1 to 20 carbon atoms, in which an atom is substituted, at least one of both ends is interrupted, or a carbon-carbon bond may be interrupted.

16の2価の炭化水素基としては、直鎖又は分岐のアルキレン基、直鎖又は分岐のアルケニレン基、直鎖又は分岐のアルキニレン基等が挙げられる。具体的には、例えば、メチレン基、エタン−1,2−ジイル基、プロパン−1,3−ジイル基、1−メチルエタン−1,2−ジイル基、ブタン−1,4−ジイル基、ブタン−1,3−ジイル基、2−メチルプロパン−1,3−ジイル基、ペンタン−1,5−ジイル基、ペンタン−1,4−ジイル基、ヘキサン−1,6−ジイル基、ヘプタン−1,7−ジイル基、オクタン−1,8−ジイル基、ノナン−1,9−ジイル基、デカン−1,10−ジイル基、ウンデカン−1,11−ジイル基、ドデカン−1,12−ジイル基、トリデカン−1,13−イル基、テトラデカン−1,14−イル基、ペンタデカン−1,15−イル基、ヘキサデカン−1,16−イル基、ヘプタデカン−1,17−イル基、オクタデカン−1,18−イル基、ノナデカン−1,19−イル基、エイコサン−1,20−イル基等が挙げられる。これらの中でも、アルキレン基が好ましく、直鎖のアルキレン基がより好ましい。 Examples of the divalent hydrocarbon group for R 16 include a linear or branched alkylene group, a linear or branched alkenylene group, and a linear or branched alkynylene group. Specifically, for example, methylene group, ethane-1,2-diyl group, propane-1,3-diyl group, 1-methylethane-1,2-diyl group, butane-1,4-diyl group, butane- 1,3-diyl group, 2-methylpropane-1,3-diyl group, pentane-1,5-diyl group, pentane-1,4-diyl group, hexane-1,6-diyl group, heptane-1, 7-diyl group, octane-1,8-diyl group, nonane-1,9-diyl group, decane-1,10-diyl group, undecane-1,11-diyl group, dodecane-1,12-diyl group, Tridecane-1,13-yl group, tetradecane-1,14-yl group, pentadecane-1,15-yl group, hexadecane-1,16-yl group, heptadecane-1,17-yl group, octadecane-1,18 -Yl group, nonadeca -1,19- yl group, eicosane -1,20- yl group. Among these, an alkylene group is preferable, and a linear alkylene group is more preferable.

16の2価の炭化水素基が、前記1価もしくは2価の基で、水素原子が置換されるか、基端が中断されるか、又は炭素−炭素結合が中断される場合、前記1価もしくは2価の基の数は2個以下が好ましく、1個以下がより好ましく、0個が特に好ましい。 When the divalent hydrocarbon group for R 16 is the monovalent or divalent group, the hydrogen atom is substituted, the base is interrupted, or the carbon-carbon bond is interrupted. The number of divalent or divalent groups is preferably 2 or less, more preferably 1 or less, and particularly preferably 0.

前記1価もしくは2価の基の芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、ハロゲン原子の具体例としては、前記[置換基等]の欄に例示したものが挙げられる。   Specific examples of the monovalent or divalent aromatic group, unsaturated group, sulfur-containing group, oxygen-containing group, phosphorus-containing group, alicyclic group, and halogen atom include the above-mentioned [Substituents and the like]. The following are examples.

式(i)において、R17はyが2以上の場合はそれぞれ独立に芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価もしくは2価の基で、水素原子が置換されるか、両端の少なくともいずれかが中断されるか、又は炭素−炭素結合が中断されていてもよい炭素数1〜20の2価の炭化水素基を示す。 In the formula (i), when y is 2 or more, R 17 is independently selected from an aromatic group, an unsaturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, an alicyclic group, and a halogen atom. A monovalent or divalent group is substituted with a hydrogen atom, at least one of both ends is interrupted, or a divalent carbon atom having 1 to 20 carbon atoms which may have an interrupted carbon-carbon bond. Shows a hydrogen group.

17の2価の炭化水素基としては、R16の2価の炭化水素基で前記に例示したものが挙げられる。これらの中でも、アルキレン基が好ましく、直鎖のアルキレン基がより好ましい。 As the divalent hydrocarbon group for R 17 , those exemplified above for the divalent hydrocarbon group for R 16 can be mentioned. Among these, an alkylene group is preferable, and a linear alkylene group is more preferable.

17の2価の炭化水素基が、前記1価もしくは2価の基で、水素原子が置換されるか、基端が中断されるか、又は炭素−炭素結合が中断される場合、前記1価もしくは2価の基の数は2個以下が好ましく、1個以下がより好ましく、0個が特に好ましい。 When the divalent hydrocarbon group represented by R 17 is the monovalent or divalent group, the hydrogen atom is substituted, the base is interrupted, or the carbon-carbon bond is interrupted. The number of divalent or divalent groups is preferably 2 or less, more preferably 1 or less, and particularly preferably 0.

前記1価もしくは2価の基の芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、ハロゲン原子の具体例としては、前記[置換基等]の欄に例示したものが挙げられる。   Specific examples of the monovalent or divalent aromatic group, unsaturated group, sulfur-containing group, oxygen-containing group, phosphorus-containing group, alicyclic group, and halogen atom include the above-mentioned [Substituents and the like]. The following are examples.

式(i)において、R18は芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価もしくは2価の基で、水素原子が置換されるか、基端が中断されるか、又は炭素−炭素結合が中断されていてもよい炭素数1〜20の1価の炭化水素基、または水素原子を示す。 In the formula (i), R 18 is a monovalent or divalent group selected from an aromatic group, an unsaturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, an alicyclic group, and a halogen atom. A monovalent hydrocarbon group having 1 to 20 carbon atoms, in which an atom may be substituted, a base end is interrupted, or a carbon-carbon bond is interrupted, or a hydrogen atom.

18の1価の炭化水素基としては、直鎖又は分岐のアルキル基、直鎖又は分岐のアルケニル基、直鎖又は分岐のアルキニル基等が挙げられる。具体的には、例えば、メチル基、エタン−1−イル基、プロパン−1−イル基、1−メチルエタン−1−イル基、ブタン−1−イル基、ブタン−2−イル基、2−メチルプロパン−1−イル基、2−メチルプロパン−2−イル基、ペンタン−1−イル基、ペンタン−2−イル基、ヘキサン−1−イル基、ヘプタン−1−イル基、オクタン−1−イル基、ノナン−1−イル基、デカン−1−イル基、ウンデカン−1−イル基、ドデカン−1−イル基、トリデカン−1−イル基、テトラデカン−1−イル基、ペンタデカン−1−イル基、ヘキサデカン−1−イル基、ヘプタデカン−1−イル基、オクタデカン−1−イル基、ノナン−1−イル基、エイコサン−1−イル基等が挙げられる。これらの中でも、アルキル基が好ましく、直鎖のアルキル基がより好ましい。 Examples of the monovalent hydrocarbon group represented by R 18 include a linear or branched alkyl group, a linear or branched alkenyl group, and a linear or branched alkynyl group. Specifically, for example, methyl group, ethane-1-yl group, propan-1-yl group, 1-methylethane-1-yl group, butan-1-yl group, butan-2-yl group, 2-methyl Propan-1-yl group, 2-methylpropan-2-yl group, pentan-1-yl group, pentan-2-yl group, hexane-1-yl group, heptane-1-yl group, octane-1-yl Group, nonan-1-yl group, decane-1-yl group, undecane-1-yl group, dodecane-1-yl group, tridecane-1-yl group, tetradecane-1-yl group, pentadecane-1-yl group Hexadecan-1-yl group, heptadecane-1-yl group, octadecane-1-yl group, nonan-1-yl group, eicosan-1-yl group and the like. Among these, an alkyl group is preferable, and a linear alkyl group is more preferable.

18の1価の炭化水素基が、前記1価もしくは2価の基で、水素原子が置換されるか、基端が中断されるか、又は炭素−炭素結合が中断される場合、置換基の数は2個以下が好ましく、1個以下がより好ましく、0個が特に好ましい。 When the monovalent hydrocarbon group for R 18 is the above monovalent or divalent group, the hydrogen atom is substituted, the base is interrupted, or the carbon-carbon bond is interrupted, Is preferably 2 or less, more preferably 1 or less, and particularly preferably 0.

前記1価もしくは2価の基の芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、ハロゲン原子の具体例としては、前記[置換基等]の欄に例示したものが挙げられる。   Specific examples of the monovalent or divalent aromatic group, unsaturated group, sulfur-containing group, oxygen-containing group, phosphorus-containing group, alicyclic group, and halogen atom include the above-mentioned [Substituents and the like]. The following are examples.

式(i)において、xは0又は1の整数を示し、yは0〜3、好ましくは0又は1の整数を示す。 式(i)において、R16とy個のR17とR18の総炭素数は60以下であり、36以下が好ましく、24以下がより好ましく、16以下が特に好ましい。これらの中でも、少量の添加量でも長波長領域の紫外線を吸収し、かつ黄変着色が抑制された樹脂部材を得ることができ、耐熱性にも優れたものとすることができる点等を考慮すると、式(i)で表わされる1価の硫黄含有基は、R16とy個のR17とが、それぞれ炭素数18以下のアルキレン基を含み、R18が炭素数18以下のアルキル基を含むことが好ましい。さらに、R16とy個のR17とR18がいずれも直鎖で、かつR16、R17、R18のそれぞれの炭素数が1〜18であることが好ましい(ここではx=0の場合、及びy=0の場合をも包含する。)。これらの中でも、x=0、かつy=0である態様は、好ましい態様の一つである。 In the formula (i), x represents an integer of 0 or 1, and y represents an integer of 0 to 3, preferably 0 or 1. In the formula (i), the total carbon number of R 16 and y R 17 and R 18 is 60 or less, preferably 36 or less, more preferably 24 or less, and particularly preferably 16 or less. Among these, it is possible to obtain a resin member that absorbs ultraviolet rays in a long wavelength region and suppresses yellowing coloring even with a small amount of addition, and can be excellent in heat resistance. Then, in the monovalent sulfur-containing group represented by the formula (i), R 16 and y R 17 each include an alkylene group having 18 or less carbon atoms, and R 18 is an alkyl group having 18 or less carbon atoms. It is preferred to include. Further, it is preferable that R 16 and y R 17 and R 18 are all linear, and each of R 16 , R 17 and R 18 has 1 to 18 carbon atoms (here, x = 0 And y = 0.) Among these, an embodiment in which x = 0 and y = 0 is one of preferred embodiments.

式(I)において、R〜R15が式(i)で表わされる1価の硫黄含有基以外の基である場合、水素原子、炭素数1〜10の炭化水素基、芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価の基を示す。 In the formula (I), when R 1 to R 15 are groups other than the monovalent sulfur-containing group represented by the formula (i), a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an aromatic group, It represents a monovalent group selected from a saturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, an alicyclic group, and a halogen atom.

〜R15が1価の炭化水素基である場合、この1価の炭化水素基としては、直鎖又は分岐のアルキル基、直鎖又は分岐のアルケニル基、直鎖又は分岐のアルキニル基等が挙げられる。具体的には、例えば、メチル基、エタン−1−イル基、プロパン−1−イル基、1−メチルエタン−1−イル基、ブタン−1−イル基、ブタン−2−イル基、2−メチルプロパン−1−イル基、2−メチルプロパン−2−イル基、ペンタン−1−イル基、ペンタン−2−イル基、ヘキサン−1−イル基、ヘプタン−1−イル基、オクタン−1−イル基、ノナン−1−イル基、デカン−1−イル基等が挙げられる。これらの中でも、炭素数1〜8の直鎖又は分岐のアルキル基が好ましい。 When R 1 to R 15 are a monovalent hydrocarbon group, examples of the monovalent hydrocarbon group include a linear or branched alkyl group, a linear or branched alkenyl group, and a linear or branched alkynyl group. Is mentioned. Specifically, for example, methyl group, ethane-1-yl group, propan-1-yl group, 1-methylethane-1-yl group, butan-1-yl group, butan-2-yl group, 2-methyl Propan-1-yl group, 2-methylpropan-2-yl group, pentan-1-yl group, pentan-2-yl group, hexane-1-yl group, heptane-1-yl group, octane-1-yl Group, nonan-1-yl group, decane-1-yl group and the like. Among these, a linear or branched alkyl group having 1 to 8 carbon atoms is preferable.

〜R15が芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価の基である場合、その具体例としては、前記[置換基等]の欄に例示したものが挙げられる。 When R 1 to R 15 are a monovalent group selected from an aromatic group, an unsaturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, an alicyclic group, and a halogen atom, specific examples thereof include And the above-mentioned [substituents and the like].

これらの中でも、R〜R15のうち式(i)で表わされる1価の硫黄含有基以外の置換基が、炭素数1〜4のアルキル基、ヒドロキシ基、及びハロゲン原子から選ばれる少なくとも1種である態様は、好ましい態様の一つである。 Among these, at least one of R 1 to R 15 other than the monovalent sulfur-containing group represented by the formula (i) is selected from an alkyl group having 1 to 4 carbon atoms, a hydroxy group, and a halogen atom. The species embodiment is one of the preferred embodiments.

式(I)において、R〜R、R〜R10、及びR11〜R15の3つの群から選ばれるいずれか2つの群のうちの1群当たり1〜4個の基が、式(i)で表わされる1価の硫黄含有基である。2つの群の各々における1〜4個の基は、数が同一であっても互いに異なっていてもよい。 In the formula (I), 1 to 4 groups per group of any two groups selected from three groups of R 1 to R 5 , R 6 to R 10 , and R 11 to R 15 are represented by the following formula: It is a monovalent sulfur-containing group represented by the formula (i). The 1-4 groups in each of the two groups may be the same or different.

式(I)における式(i)で表わされる1価の硫黄含有基の位置は、特に限定されるものではないが、R、R、R13等が挙げられる。 The position of the monovalent sulfur-containing group represented by the formula (i) in the formula (I) is not particularly limited, and examples thereof include R 3 , R 8 , and R 13 .

式(I)の紫外線吸収剤は、樹脂モノマーに対する溶解度も高く、樹脂部材に加工しても表面に析出せず、透明性が高く、また、その光学的特性から、250〜400nmまでの波長領域の光を十分吸収することができる。しかも、紫外線吸収効果(モル吸光係数)が高く、少量の添加で、その波長光を十分吸収でき、クロロホルム溶液中で360〜400nmの吸収ピークの傾きが従来の紫外線吸収剤よりも大きいことから、樹脂部材の黄色化を抑制することができる。   The ultraviolet absorber of the formula (I) has a high solubility in a resin monomer, does not precipitate on the surface even when processed into a resin member, has high transparency, and has a wavelength region from 250 to 400 nm from its optical characteristics. Light can be sufficiently absorbed. In addition, the ultraviolet absorption effect (molar extinction coefficient) is high, and the addition of a small amount can sufficiently absorb the wavelength light, and the slope of the absorption peak at 360 to 400 nm in a chloroform solution is larger than that of a conventional ultraviolet absorber. Yellowing of the resin member can be suppressed.

UV−A領域の特に長波長領域の360nmから400nm付近の波長光を効率良く吸収し、黄色化を抑え外観に優れた樹脂部材を得るためには、長波長領域(360〜400nm)吸収効果、黄色抑制効果、紫外線吸収効果を勘案する必要がある。   In order to efficiently absorb light having a wavelength in the range of 360 nm to 400 nm in the UV-A region, particularly in the long wavelength region, and to suppress yellowing and obtain a resin member having excellent appearance, a long wavelength region (360 to 400 nm) absorption effect is required. It is necessary to consider the yellow suppression effect and ultraviolet absorption effect.

UV−A領域でもより長波長領域の360〜400nmの波長光を効率良く吸収するためには、最大吸収波長の吸収ピークはより長波長領域に存在し、360〜400nmのピーク面積は大きい方が良い。そのため、5μMクロロホルム溶液における315〜400nm領域の光の吸収ピークが最大吸収波長(λmax)で370〜400nmにあることが好ましい。また、長波長領域の360〜400nmのピーク面積は、7以上が好ましい。 また、樹脂部材に添加した場合に、より可視域の吸収を抑え、黄色化を抑制するためには、315〜400nm領域にある吸収ピークは400nmに近接しすぎても好ましくない。従って、5μMクロロホルム溶液における315〜400nm領域にある吸収スペクトルは390nm以下が好ましく、そのピークはシャープな方が(傾きの絶対値が大きい方が)良く、吸収ピークの長波長側の傾き(吸収ピークと長波長側の吸収スペクトルのピークエンドを結んだ直線の傾きの絶対値:図1、後述の実施例欄を参照)は0.003以上が好ましい。そして、そのような光学的特性から可視域の400〜450nmのピーク面積は1以下が好ましい。 In order to efficiently absorb light having a longer wavelength of 360 to 400 nm even in the UV-A region, the absorption peak of the maximum absorption wavelength exists in the longer wavelength region, and the larger the peak area of 360 to 400 nm is, the better. good. Therefore, it is preferable that the absorption peak of light in the 315 to 400 nm region of the 5 μM chloroform solution is at a maximum absorption wavelength (λ max ) of 370 to 400 nm. The peak area at 360 to 400 nm in the long wavelength region is preferably 7 or more. In addition, when added to a resin member, in order to further suppress absorption in the visible region and suppress yellowing, it is not preferable that the absorption peak in the 315 to 400 nm region is too close to 400 nm. Therefore, the absorption spectrum of the 5 μM chloroform solution in the 315 to 400 nm region is preferably 390 nm or less, and the peak is better when the peak is sharp (the absolute value of the slope is larger), and the slope of the absorption peak on the longer wavelength side (absorption peak) (The absolute value of the slope of the straight line connecting the peak end of the absorption spectrum on the long wavelength side to the peak end: see FIG. 1, Example section described later) is preferably 0.003 or more. From such optical characteristics, the peak area in the visible region of 400 to 450 nm is preferably 1 or less.

また、少量で効率よく吸収するためには、上記の315〜400nmの吸収ピークのモル吸光係数(最大モル吸光係数:ελmax)は、40000L/(mol・cm)以上が好ましい。 Further, in order to efficiently absorb a small amount, the molar absorption coefficient of the absorption peak of above 315 to 400 nm (maximum molar extinction coefficient: epsilon .lambda.max) is, 40000L / (mol · cm) or more.

つまり、長波長領域の360〜400nmの波長光を効率良く吸収し、樹脂部材に添加した際、黄色化を抑制するためには、5μMクロロホルム溶液における315〜400nm領域の光の吸収ピークが最大吸収波長(λmax)で370〜390nmにあり、上記の傾きが0.003以上、モル吸光係数が40000以上で、360〜400nmのピーク面積が7以上、400〜450nmのピーク面積が1以下であることが好ましい。 That is, in order to efficiently absorb light having a wavelength of 360 to 400 nm in a long wavelength region and to suppress yellowing when added to a resin member, the absorption peak of light in a region of 315 to 400 nm in a 5 μM chloroform solution has a maximum absorption. The wavelength (λ max ) is between 370 and 390 nm, the slope is 0.003 or more, the molar extinction coefficient is 40000 or more, the peak area at 360 to 400 nm is 7 or more, and the peak area at 400 to 450 nm is 1 or less. Is preferred.

また、R〜R15の位置に電子吸引基、例えばハロゲン原子を結合させた化合物は、黄色抑制効果の点から315〜400nmの最大吸収ピークが390nm以下の範囲で、より長波長にシフトさせ、長波長領域(360〜400nm)のピーク面積およびモル吸光係数をより大きくし、長波長領域(360〜400nm)の吸収効率をより高くすることを可能とする。また、R〜R15の位置に式(i)で表わされる1価の硫黄含有基または水素原子を結合させた化合物は、400〜450nmのピーク面積をより小さくし、より黄色化を抑制することを可能とする。 Further, a compound in which an electron-withdrawing group, for example, a halogen atom is bonded to the positions of R 1 to R 15 , shifts to a longer wavelength within a range where the maximum absorption peak at 315 to 400 nm is 390 nm or less from the viewpoint of yellow suppression effect. In addition, it is possible to further increase the peak area and the molar extinction coefficient in the long wavelength region (360 to 400 nm), and to increase the absorption efficiency in the long wavelength region (360 to 400 nm). Further, a compound in which a monovalent sulfur-containing group or a hydrogen atom represented by the formula (i) is bonded to the positions of R 1 to R 15 has a smaller peak area at 400 to 450 nm, and further suppresses yellowing. To make things possible.

本発明の紫外線吸収剤は、トリアジン系の紫外線吸収骨格によって、紫外線吸収能を発揮し、250〜400nm付近に紫外線吸収帯があり、紫外線領域の波長をカットし、可視光領域の波長は透過する。あらゆる有機物質の光劣化に影響のあるUV−A領域(315〜400nm)まで吸収できる紫外線吸収剤が求められているが、本発明の紫外線吸収剤はUV−A領域の紫外線吸収能に優れ、400nm付近の領域までの紫外線を効率的にカットすることも可能である。トリアジン系化合物にチオエーテル基(i)を導入した本発明の紫外線吸収剤は、400〜450nm(可視域)の波長光の吸収を抑制し、大きく長波長にシフトし、UV−A領域でも、より長波長の360〜400nm付近の紫外線を効率よくカットすることが可能である。   The ultraviolet absorber of the present invention exhibits an ultraviolet absorbing ability by a triazine-based ultraviolet absorbing skeleton, has an ultraviolet absorption band around 250 to 400 nm, cuts a wavelength in an ultraviolet region, and transmits a wavelength in a visible light region. . There is a need for an ultraviolet absorber capable of absorbing up to the UV-A region (315 to 400 nm), which has an effect on the photodegradation of any organic substance, but the ultraviolet absorber of the present invention has excellent UV-absorbing ability in the UV-A region, It is also possible to efficiently cut ultraviolet rays up to a region near 400 nm. The ultraviolet absorber of the present invention in which a thioether group (i) is introduced into a triazine-based compound suppresses absorption of light having a wavelength of 400 to 450 nm (visible region), shifts significantly to longer wavelengths, and is more effective in the UV-A region. It is possible to efficiently cut off ultraviolet rays having a long wavelength near 360 to 400 nm.

本発明の紫外線吸収剤は、樹脂に添加した際、樹脂の透明性を維持することができ、また、本発明の紫外線吸収剤は耐熱性に優れることから、これを含む樹脂部材を加熱成形・加工する過程で熱分解されにくいため、外観が損なわず、樹脂部材の紫外線吸収能、高屈折率性を低下しない樹脂部材が、さらに、透明樹脂部材では、透明性が高い部材が得られる。   The ultraviolet absorber of the present invention can maintain the transparency of the resin when added to the resin, and since the ultraviolet absorber of the present invention has excellent heat resistance, the resin member containing the same can be subjected to heat molding. Since it is difficult to be thermally decomposed in the process of processing, a resin member which does not impair the appearance and does not reduce the ultraviolet absorbing ability and high refractive index of the resin member, and a transparent resin member which has high transparency can be obtained.

一方で、R〜R15、式(i)のチオエーテル基に炭素−炭素二重結合、ビニル基、ビニロキシ基、アリル基、(メタ)アクリロイル基、マレオイル基、スチリル基、シンナモイル基等の重合性官能基及び架橋性官能基も含む水酸基、チオール基、カルボキシル基、アミノ基、シリル基等の反応性官能基を持つ式(I)で表わされる本発明の紫外線吸収剤は、それらの官能基と反応する官能基(例えば、イソシアネート基、エポキシ基、カルボキシ酸基、カルボニル基、ヒドロキシ基、アルケニル基、アルキニル基、エーテル基、チオイソシアネート基、チオエポキシ基、チオカルボキシ酸基、チオカルボニル基、チオール基等)を含有するフィルム及び樹脂部材の原料モノマー、樹脂を用いて反応、共重合、成形加工して樹脂部材を得る場合、上記の紫外線吸収剤が、それらのモノマーと共重合または樹脂の官能基と反応し、マトリックスに固定化され、ブリードアウトすることなく、透明性を保持して、それぞれの紫外線吸収能、高屈折率化の機能を長期間保持することができる。 On the other hand, R 1 to R 15 , polymerization of carbon-carbon double bond, vinyl group, vinyloxy group, allyl group, (meth) acryloyl group, maleoyl group, styryl group, cinnamoyl group and the like to the thioether group of formula (i) The ultraviolet absorber of the present invention represented by the formula (I) having a reactive functional group such as a hydroxyl group, a thiol group, a carboxyl group, an amino group and a silyl group, which also contains a reactive functional group and a crosslinkable functional group, (E.g., isocyanate group, epoxy group, carboxylic acid group, carbonyl group, hydroxy group, alkenyl group, alkynyl group, ether group, thioisocyanate group, thioepoxy group, thiocarboxylate group, thiocarbonyl group, thiol group) Group)), a reaction, copolymerization and molding process using a raw monomer and resin for the film and resin member containing In this case, the above-mentioned ultraviolet absorber reacts with those monomers and copolymerizes or reacts with the functional group of the resin, and is immobilized on the matrix. The function of increasing the refractive index can be maintained for a long time.

式(I)で表わされる紫外線吸収剤を製造する際には、後述の実施例の開示と公知の技術が参照される。   In producing the ultraviolet absorbent represented by the formula (I), reference is made to the disclosure of Examples described later and known techniques.

2.本発明の紫外線吸収剤を用いた樹脂部材
本発明の樹脂部材は、以上に説明した本発明の紫外線吸収剤を含有する。
2. Resin member using the ultraviolet absorbent of the present invention The resin member of the present invention contains the above-described ultraviolet absorbent of the present invention.

本発明の樹脂部材の形状は、特に限定されず任意の形状であってよいが、透明性を維持しながら高い紫外線吸収能及び/又は高屈折率を付与することができる点から、積層された複層構造は簡略化され、製造工程及びコスト削減が可能となる。中でも、複層構造を有する部材のうちの1つの層や、柔軟性又は可撓性を持つフィルムやシート、あるいは剛性を持つ板状のプレート状部材が好ましく、その他、光学成形品等の光学樹脂、光学レンズが好ましい。   The shape of the resin member of the present invention is not particularly limited, and may be any shape. However, since the resin member can be provided with a high ultraviolet absorbing ability and / or a high refractive index while maintaining transparency, the resin member is laminated. The multilayer structure is simplified, and the manufacturing process and cost can be reduced. Among them, one layer of members having a multilayer structure, a film or sheet having flexibility or flexibility, or a plate-like member having rigidity is preferable, and other optical resins such as optical molded products. Preferably, an optical lens is used.

本発明の紫外線吸収剤を含む樹脂部材は、樹脂の透明性を維持することができ、また、本発明の紫外線吸収剤は耐熱性に優れることから、これを含む樹脂部材を加熱成形・加工する過程で熱分解されにくいため、外観が損なわれず、樹脂部材の紫外線吸収能、高屈折率性を低下しない樹脂部材が、さらに、透明部材では、透明性が高い部材が得られる。   The resin member containing the ultraviolet absorbent of the present invention can maintain the transparency of the resin, and since the ultraviolet absorbent of the present invention has excellent heat resistance, heat molding and processing the resin member containing the same. Since it is difficult to be thermally decomposed in the process, it is possible to obtain a resin member which does not lose its appearance and does not decrease the ultraviolet absorbing ability and high refractive index of the resin member, and a transparent member which has high transparency.

また、式(I)で表わされる本発明の紫外線吸収剤含有する透明樹脂部材は、紫外線吸収のピークの特性から、黄色化を抑制しながら長波長領域の波長の吸収を可能とする。また、R〜R15、式(i)のチオエーテル基にチオール基、ビニル基、ヒドロキシ基等の反応性官能基を持つ本発明の紫外線吸収剤を含む樹脂部材は、それら紫外線吸収剤に含有されるチオール基、ビニル基、ヒドロキシ基等の反応性官能基と反応する官能基(例えば、イソシアネート基、エポキシ基、カルボキシ酸基、カルボニル基、ヒドロキシ基、アルケニル基、アルキニル基、エーテル基、チオイソシアネート基、チオエポキシ基、チオカルボキシ酸基、チオカルボニル基、チオール基等)を含有するフィルム及び樹脂部材の原料モノマー、樹脂を用いて反応、成形加工する場合、得られる樹脂は、上記の紫外線吸収剤が、それらのモノマー、樹脂の官能基と反応し、マトリックスに固定化され、ブリードアウトすることなく、それぞれの紫外線吸収能、高屈折率化の機能を長期間保持することができる。 Further, the transparent resin member containing the ultraviolet absorbent of the present invention represented by the formula (I) allows absorption of a wavelength in a long wavelength region while suppressing yellowing from the characteristic of the peak of the ultraviolet absorption. Further, R 1 to R 15 , the resin member containing the ultraviolet absorbent of the present invention having a reactive functional group such as a thiol group, a vinyl group, or a hydroxy group in the thioether group of the formula (i) are contained in the ultraviolet absorbent. Functional groups (e.g., isocyanate group, epoxy group, carboxylic acid group, carbonyl group, hydroxy group, alkenyl group, alkynyl group, ether group, thiol group, vinyl group, hydroxy group) When reacting and molding using a raw material monomer and a resin for a film and a resin member containing an isocyanate group, a thioepoxy group, a thiocarboxylate group, a thiocarbonyl group, a thiol group, etc., the obtained resin has the above-mentioned ultraviolet absorption. The agent reacts with those monomers, functional groups of the resin, is immobilized on the matrix, without bleeding out, Ultraviolet absorption capacity of respectively, can be maintained for a long time the function of increasing index of refraction.

本発明の紫外線吸収剤を含む透明樹脂部材は、透明性を維持し、さらに紫外線吸収剤の紫外線吸収能の特性から400〜500nm(可視域)の吸収を抑制し、UV−A領域でも、より長波長の360〜400nm付近の紫外線をシャープにカットすることが可能である。このため、樹脂部材は、黄色着色が抑制された、外観に優れるものが得られる。   The transparent resin member containing the ultraviolet absorbent of the present invention maintains transparency, and further suppresses absorption of 400 to 500 nm (visible region) from the characteristic of the ultraviolet absorbing ability of the ultraviolet absorbent. It is possible to sharply cut ultraviolet light having a long wavelength of about 360 to 400 nm. For this reason, a resin member having excellent appearance in which yellowing is suppressed is obtained.

本発明の樹脂部材は、特に限定されないが、例えば、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、(メタ)アクリル酸メチル−(メタ)アクリル酸ブチル共重合体等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィン系高分子等のポリオレフィン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂、ポリウレタン、ポリチオウレタン、ポリスチレン、ポリアミド、ポリイミド、アクリロニトリル−スチレン共重合体、ポリエーテルスルフォン、ポリスルフォン、トリアセチルセルロース等のセルロース系樹脂、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリビニルピロリドン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエーテルエーテルケトン、ポリアセタール、ナイロンなどの熱可塑性樹脂、ウレタン、チオウレタン、尿素、メラミン、アクリルメラミン、エピスルフィド、エポキシ、アリル、シリコーン、フェノール、ユリア、不飽和ポリエステルなどの熱硬化性樹脂、アクリル、例えば多価アルコールのアクリル酸やメタクリル酸2−ヒドロキシエチル又はメタクリル酸エステルのような単官能又は多官能の(メタ)アクリレート化合物、ジイソシアネートと多価アルコール及びアクリル酸又はメタクリル酸のヒドロキシエステル等から合成されるような多官能のウレタン(メタ)アクリレート化合物、アクリレート系の官能基を有するポリエーテル、ポリエステル、エポキシ、アルキッド、スピロアセタール、ポリブタジエン、ポリチオールポリエンなどの紫外線硬化樹脂が挙げられる。   Although the resin member of the present invention is not particularly limited, for example, acrylic resin such as poly (methyl) acrylate, poly (ethyl) acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, etc. , Polyethylene, polypropylene, polymethylpentene, polyolefin resins such as cyclic olefin polymers, polycarbonate resins, thermoplastic polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polyurethane, polythiourethane, polystyrene, polyamide, polyimide, acrylonitrile- Cellulose resins such as styrene copolymer, polyether sulfone, polysulfone, and triacetyl cellulose, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl pyrrolidone, polyvinyl chloride, and polysalt Thermoplastic resins such as vinylidene, polyetheretherketone, polyacetal, nylon, thermosetting resins such as urethane, thiourethane, urea, melamine, acrylic melamine, episulfide, epoxy, allyl, silicone, phenol, urea, and unsaturated polyester; Acrylics, for example, monofunctional or polyfunctional (meth) acrylate compounds such as acrylic acid or 2-hydroxyethyl methacrylate or methacrylate of polyhydric alcohol, diisocyanate and polyhydric alcohol and hydroxy ester of acrylic acid or methacrylic acid, etc. Polyfunctional urethane (meth) acrylate compounds synthesized from acrylate-based polyethers, polyesters, epoxies, alkyds, spiroacetals, polybutadienes, polyethers They include ultraviolet curable resins, such as thiol polyene.

本発明の樹脂部材は、特に限定されないが、例えば、次の(1)〜(4)の方法で製造することができる。
(1) 本発明の紫外線吸収剤と樹脂又は、原料モノマーを含有するコーティング液を基材に塗布し、加熱、紫外線照射や乾燥で成膜する方法
(2) 本発明の紫外線吸収剤を樹脂又は、原料モノマーに混練して練り込み、押出機等を用いて成形・フィルム化する方法
(3) 本発明の紫外線吸収剤を樹脂接着剤に含有させ、その樹脂接着剤をフィルムに塗布する方法
(4) 本発明の紫外線吸収剤を原料モノマーに溶解し、金型やガラス型に注型し加熱、紫外線照射や乾燥で硬化させ成型する方法
Although the resin member of the present invention is not particularly limited, for example, it can be manufactured by the following methods (1) to (4).
(1) A method of applying a coating solution containing the ultraviolet absorbent and a resin or a raw material monomer of the present invention to a substrate, heating, irradiating with ultraviolet light or drying to form a film.
(2) A method of kneading and kneading the ultraviolet absorbent of the present invention with a resin or a raw material monomer, and forming and forming a film using an extruder or the like.
(3) A method of incorporating the ultraviolet absorbent of the present invention into a resin adhesive and applying the resin adhesive to a film
(4) A method of dissolving the ultraviolet absorbent of the present invention in a raw material monomer, casting the mixture in a mold or glass mold, heating, curing by ultraviolet irradiation or drying, and molding.

これらの方法のうち、(1)の本発明の紫外線吸収剤と樹脂又は原料モノマー材料を含有するコーティング液を塗布し成膜する方法は、透明な複層構造、フィルム、又はシートを得る点から本発明において好適である。   Among these methods, the method of applying (1) the coating solution containing the ultraviolet absorbent of the present invention and a resin or a raw material monomer to form a film is from the viewpoint of obtaining a transparent multilayer structure, film, or sheet. It is suitable in the present invention.

この方法では、本発明の紫外線吸収剤と樹脂又は原料モノマーを、有機溶媒又は水系溶媒に希釈して、あるいは希釈しないでコーティング液を調製し、基材に塗布し成膜する。必要に応じて、乾燥、冷却、加熱、紫外線照射を行い、膜強度を向上させる。   In this method, a coating solution is prepared by diluting the ultraviolet absorbent of the present invention and a resin or a raw material monomer with or without dilution in an organic solvent or an aqueous solvent, and is applied to a substrate to form a film. If necessary, drying, cooling, heating and UV irradiation are performed to improve the film strength.

樹脂としては、特に限定されるものではなく、例えば機能性の光学層を有するフィルムや部材であれば、基材との密着性や硬度等の必要な物性を考慮して適宜に選択することができる。具体的には、紫外線硬化型の樹脂、電子線硬化型の樹脂、熱硬化性樹脂、熱可塑性樹脂等が挙げられる。より具体的には、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、チオウレタン樹脂、ポリエチレンテレフタレート樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、尿素樹脂、メラミン樹脂、アクリルメラミン樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリオレフィン樹脂、ポリビニル樹脂、ポリビニルアルコール樹脂、ポリビニル系変性樹脂(PVB、EV等)、シリコーン樹脂、ポリアミド樹脂、ポリエーテル樹脂、エピスルフィド樹脂、ナイロン樹脂又はそれらの共重合樹脂等が挙げられる。   The resin is not particularly limited and, for example, a film or a member having a functional optical layer may be appropriately selected in consideration of necessary physical properties such as adhesion to a substrate and hardness. it can. Specifically, an ultraviolet curable resin, an electron beam curable resin, a thermosetting resin, a thermoplastic resin, and the like can be given. More specifically, polyester resin, acrylic resin, urethane resin, thiourethane resin, polyethylene terephthalate resin, polystyrene resin, polycarbonate resin, urea resin, melamine resin, acrylic melamine resin, epoxy resin, alkyd resin, spiro acetal resin, polybutadiene Resins, polyolefin resins, polyvinyl resins, polyvinyl alcohol resins, modified polyvinyl resins (PVB, EV, etc.), silicone resins, polyamide resins, polyether resins, episulfide resins, nylon resins, and copolymer resins thereof.

機能性の光学層を有するフィルムや部材においては、紫外線硬化型の樹脂や電子線硬化型の樹脂、熱硬化性樹脂、熱可塑性樹脂等を用いることができる。これらの樹脂を含むコーティング液を透明な基材に塗布して塗膜を形成し、この塗膜に対し、必要に応じて乾燥処理を施す。その後、紫外線や電子線を塗膜に照射または加熱して硬化反応を行うことにより、透明な光学層を形成することができる。   For a film or a member having a functional optical layer, an ultraviolet curable resin, an electron beam curable resin, a thermosetting resin, a thermoplastic resin, or the like can be used. A coating solution containing these resins is applied to a transparent substrate to form a coating film, and the coating film is subjected to a drying treatment as necessary. Then, a transparent optical layer can be formed by irradiating or heating an ultraviolet-ray or an electron beam to a coating film, and performing a hardening reaction.

紫外線硬化型の樹脂としては、アクリル系材料を用いることができる。アクリル系材料としては、例えば、アクリル酸又はメタクリル酸エステルのような単官能又は多官能の(メタ)アクリレート化合物、ジイソシアネートと多価アルコール及びアクリル酸又はメタクリル酸のヒドロキシエステル等から合成されるような多官能のウレタン(メタ)アクリレート化合物を使用することができる。また、これらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も用いることができる。   An acrylic material can be used as the ultraviolet-curable resin. As the acrylic material, for example, a monofunctional or polyfunctional (meth) acrylate compound such as acrylic acid or methacrylic acid ester, a diisocyanate and a polyhydric alcohol, and a hydroxyester of acrylic acid or methacrylic acid can be used. Polyfunctional urethane (meth) acrylate compounds can be used. In addition, other than these, a polyether resin having an acrylate-based functional group, a polyester resin, an epoxy resin, an alkyd resin, a spiroacetal resin, a polybutadiene resin, a polythiolpolyene resin, and the like can also be used.

紫外線硬化型の樹脂を用いる場合には、コーティング液には光重合開始剤を添加する。光重合開始剤としては、紫外線が照射された際にラジカルを発生するものであればよい。例えば、アセトフェノン類、ベンゾイン類、ベンゾフェノン類、ホスフィンオキシド類、ケタール類、アントラキノン類、チオキサントン類等を用いることができる。   When using an ultraviolet curable resin, a photopolymerization initiator is added to the coating liquid. Any photopolymerization initiator may be used as long as it generates radicals when irradiated with ultraviolet rays. For example, acetophenones, benzoins, benzophenones, phosphine oxides, ketals, anthraquinones, thioxanthones, and the like can be used.

熱硬化性樹脂としては、例えば、ウレタン樹脂、チオウレタン樹脂、メラミン樹脂、アクリルメラミン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、エピスルフィド樹脂等を用いることができる。   As the thermosetting resin, for example, urethane resin, thiourethane resin, melamine resin, acrylic melamine resin, urea resin, phenol resin, epoxy resin, episulfide resin and the like can be used.

熱可塑性樹脂としては、ウレタン樹脂、チオウレタン樹脂、ポリエチレンテレフタレート樹脂、ポリスチレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、ナイロン樹脂等を用いることができる。   As the thermoplastic resin, urethane resin, thiourethane resin, polyethylene terephthalate resin, polystyrene resin, polycarbonate resin, polyester resin, polyethylene resin, polypropylene resin, acrylic resin, nylon resin and the like can be used.

コーティング液には、必要に応じて、希釈のための溶媒を加えてもよい。溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、シクロヘキシルベンゼン等の芳香族炭化水素類;n−ヘキサン等の炭化水素類、ジブチルエーテル、ジメトキシメタン、ジメトキシエタン、ジエトキシエタン、プロピレンオキシド、ジオキサン、ジオキソラン、トリオキサン、テトラヒドロフラン、アニソール、フェネトール等のエーテル類;メチルイソブチルケトン、メチルブチルケトン、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノン、メチルシクロヘキサノン等のケトン類;、蟻酸エチル、蟻酸プロピル、蟻酸n−ペンチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酢酸n−ペンチル、γ−プチロラクトン等のエステル類;メチルセロソルブ、セロソルブ、ブチルセロソルブ、セロソルブアセテート等のセロソルブ類;メタノール、エタノール、イソプロピルアルコール等のアルコール類;水等が挙げられる。   If necessary, a solvent for dilution may be added to the coating liquid. Examples of the solvent include aromatic hydrocarbons such as toluene, xylene, cyclohexane and cyclohexylbenzene; hydrocarbons such as n-hexane; dibutyl ether, dimethoxymethane, dimethoxyethane, diethoxyethane, propylene oxide, dioxane, and dioxolane. , Trioxane, tetrahydrofuran, anisole, phenetole, and other ethers; methyl isobutyl ketone, methyl butyl ketone, acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, diisobutyl ketone, cyclopentanone, cyclohexanone, methyl cyclohexanone, and other ketones; Ethyl, propyl formate, n-pentyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, n-pentyl acetate, γ-butyrolact Esters and the like; methyl cellosolve, cellosolve, butyl cellosolve, cellosolve such as cellosolve acetate; alcohols such as methanol, ethanol, and isopropyl alcohol; water and the like.

コーティング液には、必要に応じて、消泡剤、レベリング剤、酸化防止剤、光安定剤、重合禁止剤、触媒、染料、顔料等の紫外線吸収剤を配合してもよい。   If necessary, an ultraviolet absorber such as an antifoaming agent, a leveling agent, an antioxidant, a light stabilizer, a polymerization inhibitor, a catalyst, a dye, and a pigment may be added to the coating liquid.

本発明の紫外線吸収剤の使用量は、目的に応じて、紫外線吸収能、高屈折率化、透明性等を考慮して、特に限定されるものではないが、溶媒等の揮発性成分を除くコーティング液の全量に対して0.01wt%、0.1wt%以上、10wt%以上、30wt%以上、又は50wt%以上添加することができる。   The amount of the ultraviolet absorbent used in the present invention is not particularly limited in consideration of the ultraviolet absorbing ability, high refractive index, transparency, etc., depending on the purpose, but excludes volatile components such as solvents. 0.01 wt%, 0.1 wt% or more, 10 wt% or more, 30 wt% or more, or 50 wt% or more can be added to the total amount of the coating liquid.

作製したコーティング液は、バーコーター、グラビアコーター、コンマコーター、リップコーター、カーテンコーター、ロールコーター、ブレードコーター、スピンコーター、リバースコーター、ダイコーター、スプレー、ディッピング等の適宜の方法によって基材に塗布することができる。   The prepared coating liquid is applied to the substrate by an appropriate method such as a bar coater, a gravure coater, a comma coater, a lip coater, a curtain coater, a roll coater, a blade coater, a spin coater, a reverse coater, a die coater, a spray, and dipping. be able to.

コーティング用の基材としては、特に限定されるものではないが、例えば、樹脂板、樹脂フィルム、樹脂シート、ガラス、建材等が挙げられる。   The substrate for coating is not particularly limited, and examples thereof include a resin plate, a resin film, a resin sheet, glass, and a building material.

本発明の樹脂部材を反射防止フィルム等の機能性の光学層を有するフィルムや部材の一部として使用する場合には、コーティング用の基材として、透明性や光の屈折率等の光学特性、さらには耐衝撃性、耐熱性、耐久性等の諸物性を考慮して材料を選択することができる。このような材料としては、特に限定されるものではないが、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、(メタ)アクリル酸メチル−(メタ)アクリル酸ブチル共重合体等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィン系高分子等のポリオレフィン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂、ポリアミド、ポリイミド、ポリスチレン、アクリロニトリル−スチレン共重合体、ポリエーテルスルフォン、ポリスルフォン、トリアセチルセルロース等のセルロース系樹脂、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエーテルエーテルケトン、ポリウレタン等の熱可塑性樹脂材料、あるいは、ソーダ硝子、カリ硝子、鉛硝子等のガラス(セラミックスを含む)、石英、蛍石、ダイヤモンド等の光透過性無機材料が挙げられる。   When the resin member of the present invention is used as a part of a film or a member having a functional optical layer such as an antireflection film, as a base material for coating, optical properties such as transparency and refractive index of light, Further, the material can be selected in consideration of various physical properties such as impact resistance, heat resistance, and durability. Examples of such a material include, but are not particularly limited to, poly (methyl) acrylate, poly (ethyl) acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, and the like. Acrylic resin, polyethylene, polypropylene, polymethylpentene, polyolefin resin such as cyclic olefin polymer, polycarbonate resin, thermoplastic polyester resin such as polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polystyrene, acrylonitrile-styrene copolymer , Polyethersulfone, polysulfone, cellulose resins such as triacetylcellulose, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, polyether ether ketone, polyurethane A thermoplastic resin material such as tan or soda glass, potash glass, (including ceramic) glasses such as lead glass, quartz, fluorite, and the light-transmissive inorganic material such as diamond.

これらの材料には、公知の紫外線吸収剤、例えば、紫外線吸収剤、赤外線吸収剤、高屈折率剤、可塑剤、滑剤、着色剤、酸化防止剤、難燃剤等を添加してもよい。   To these materials, known UV absorbers, for example, UV absorbers, infrared absorbers, high refractive index agents, plasticizers, lubricants, coloring agents, antioxidants, flame retardants and the like may be added.

なお、機能性の光学層を有するフィルムとして使用する場合の基材の厚みは、特に限定されるものではないが、例えば10nm〜200μmである。また、このような基材は、単層であっても複数層を積層したものであってもよい。   The thickness of the substrate when used as a film having a functional optical layer is not particularly limited, but is, for example, 10 nm to 200 μm. Such a base material may be a single layer or a laminate of a plurality of layers.

また、本発明の樹脂部材を製造する前記の方法のうち、(2)の本発明の紫外線吸収剤を樹脂に混練して練り込み、押出機等によって成形・フィルム化する方法では、本発明の紫外線吸収剤を、樹脂の粉体又はペレットに添加し、加熱、溶解させた後成形して製造することができる。   Further, among the above-mentioned methods for producing the resin member of the present invention, the method of (2) kneading and kneading the ultraviolet absorbent of the present invention into a resin, and forming and forming into a film by an extruder, etc. An ultraviolet absorber can be manufactured by adding to a resin powder or pellets, heating and dissolving, and then molding.

樹脂の粉体又はペレットは特に限定されないが、ポリ(メタ)アクリル酸メチル、ポリ(メタ)アクリル酸エチル、(メタ)アクリル酸メチル−(メタ)アクリル酸ブチル共重合体等のアクリル樹脂、ポリエチレン、ポリプロピレン、ポリメチルペンテン、環状オレフィン系高分子等のポリオレフィン系樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステル樹脂、ポリアミド、ポリイミド、ポリスチレン、アクリロニトリル−スチレン共重合体、ポリエーテルスルフォン、ポリスルフォン、トリアセチルセルロース等のセルロース系樹脂、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリビニルピロリドン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエーテルエーテルケトン、ポリアセタール、ナイロン、ポリウレタン等の熱可塑性樹脂材料、などが挙げられる。   The resin powder or pellets are not particularly limited, but include acrylic resins such as poly (methyl) acrylate, poly (ethyl) acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, and polyethylene. , Polypropylene, polymethylpentene, polyolefin resins such as cyclic olefin polymers, polycarbonate resins, thermoplastic polyester resins such as polyethylene terephthalate, polyethylene naphthalate, polyamide, polyimide, polystyrene, acrylonitrile-styrene copolymer, polyether sulfone , Polysulfone, cellulose resins such as triacetyl cellulose, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyvinylpyrrolidone, polyvinyl chloride, polyvinylidene chloride, polyether ether ketone Emissions, polyacetal, nylon, a thermoplastic resin material such as polyurethane, and the like.

樹脂部材の成形方法は、特に限定されないが、射出成形法、押出成形法、カレンダー成形法、ブロー成形法、圧縮成形法等を用いることができる。押出機を使用する場合は、押出機によりフィルム化するか、あるいは押出機により原反を作製し、その後、1軸又は2軸に延伸してフィルムにする方法で樹脂部材を製造することができる。   The method of molding the resin member is not particularly limited, but an injection molding method, an extrusion molding method, a calendar molding method, a blow molding method, a compression molding method, or the like can be used. When an extruder is used, a resin member can be manufactured by a method of forming a film with an extruder, or forming a raw material with an extruder, and then stretching the film uniaxially or biaxially to form a film. .

本発明の紫外線吸収剤は、チオエーテル基を導入することにより、耐熱性が向上する。本発明の紫外線吸収剤の5%重量減少温度は350℃以上であり、一般的な樹脂の軟化温度である100〜250℃(「よくわかるプラスチック」、監修:日本プラスチック工業連盟、出版:日本実業出版社)よりも高いため、成形加工温度100〜200℃の熱硬化性樹脂、熱可塑性樹脂をはじめ、200〜250℃より高い成形加工温度が求められる熱可塑性樹脂に対しても適用が可能となる。   The heat resistance of the ultraviolet absorbent of the present invention is improved by introducing a thioether group. The 5% weight loss temperature of the ultraviolet absorbent of the present invention is 350 ° C. or more, and the softening temperature of general resin is 100 to 250 ° C. (“Plastic well understood”, supervision: Japan Plastics Industry Federation, publishing: Nippon Jitsugyo) Publisher)), it can be applied to thermosetting resins and thermoplastic resins with a molding temperature of 100 to 200 ° C, as well as thermoplastic resins that require a molding temperature of 200 to 250 ° C or higher. Become.

なお、混練する際に、赤外線吸収剤、紫外線吸収剤、高屈折率剤、酸化防止剤、光安定剤、難燃剤、可塑剤等の通常の樹脂成形に用いる紫外線吸収剤を添加してもよい。   When kneading, an ultraviolet absorber used for ordinary resin molding such as an infrared absorber, an ultraviolet absorber, a high refractive index agent, an antioxidant, a light stabilizer, a flame retardant, and a plasticizer may be added. .

また、本発明の樹脂部材を製造する前記の方法のうち、(3)の本発明の紫外線吸収剤を樹脂接着剤に含有させ、その樹脂接着剤をフィルムに塗布する方法では、樹脂接着剤として、一般に使用されているシリコーン系、ウレタン系、アクリル系、ポリビニルブチラール接着剤(PVB)、エチレン−酢酸ビニル系、エポキシ系接着剤等の公知の透明接着剤を使用し、本発明の紫外線吸収剤を添加した樹脂接着剤を用いて樹脂フィルム同士を接着、硬化することで、本発明の樹脂部材を含む複合材を製造することができる。   Further, among the above methods for producing the resin member of the present invention, in the method of (3) containing the ultraviolet absorbent of the present invention in a resin adhesive and applying the resin adhesive to a film, the resin adhesive is used as a resin adhesive. UV absorbers of the present invention using known transparent adhesives such as generally used silicone-based, urethane-based, acrylic-based, polyvinylbutyral adhesive (PVB), ethylene-vinyl acetate-based, and epoxy-based adhesives By bonding and curing the resin films with each other by using a resin adhesive having added thereto, a composite material including the resin member of the present invention can be manufactured.

本発明の樹脂部材を機能性の光学層を有するフィルムや部材の一部として使用する場合の膜厚は、樹脂材料の種類、密着性、硬度等の要求される物性を満足することができる範囲内であれば特に限定されるものではないが、例えば10nm〜200μmの範囲内である。   When the resin member of the present invention is used as a part of a film or a member having a functional optical layer, the film thickness is within a range capable of satisfying required physical properties such as the type of resin material, adhesion, and hardness. Although it is not particularly limited as long as it is within the range, for example, it is within the range of 10 nm to 200 μm.

また、本発明の樹脂部材を製造する前記の方法のうち、(4)の本発明の紫外線吸収剤を原料モノマーに溶解し、金型やガラス型に注型し加熱、紫外線照射や乾燥で硬化させ成型する方法では、加熱による硬化の場合、熱硬化性樹脂用モノマーを使用でき、特に限定されないが、例えばウレタン、チオウレタン、エポキシ、チオエポキシ、メラミン、シリコーン、フェノール、ユリア、不飽和ポリエステル樹脂を生成できる樹脂原料モノマーを使用することができる。樹脂原料モノマーのうちの少なくとも1種類のモノマーに本発明の紫外線吸収剤を溶解させ、樹脂化に必要なその他の樹脂モノマーを混合後、金型やガラス型に注型、加熱することで本発明の紫外線吸収剤を含む樹脂部材を製造することができる。紫外線硬化型の樹脂としては、アクリル系材料を用いることができる。アクリル系材料としては、アクリル酸やメタクリル酸2-ヒドロキシエチル又はメタクリル酸エステルのような単官能又は多官能の(メタ)アクリレート化合物、ジイソシアネートと多価アルコール及びアクリル酸又はメタクリル酸のヒドロキシエステル等から合成されるような多官能のウレタン(メタ)アクリレート化合物を使用することができる。また、これらの他にも、アクリレート系の官能基を有するポリエーテル樹脂、ポリエステル樹脂、エポキシ樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も用いることができる。   Further, among the above methods for producing the resin member of the present invention, the ultraviolet absorbent of the present invention (4) is dissolved in a raw material monomer, cast into a mold or a glass mold, heated, cured by ultraviolet irradiation or drying. In the method of molding by molding, in the case of curing by heating, a monomer for a thermosetting resin can be used, and there is no particular limitation, for example, urethane, thiourethane, epoxy, thioepoxy, melamine, silicone, phenol, urea, unsaturated polyester resin Resin raw material monomers that can be produced can be used. After dissolving the ultraviolet absorbent of the present invention in at least one of the resin raw material monomers, mixing other resin monomers necessary for resinification, casting the mixture into a mold or a glass mold, and heating the mixture according to the present invention. The resin member containing the ultraviolet absorbent can be manufactured. An acrylic material can be used as the ultraviolet-curable resin. Examples of the acrylic material include monofunctional or polyfunctional (meth) acrylate compounds such as acrylic acid, 2-hydroxyethyl methacrylate or methacrylic acid ester, diisocyanates and polyhydric alcohols, and hydroxy esters of acrylic acid or methacrylic acid. A polyfunctional urethane (meth) acrylate compound as synthesized can be used. In addition, other than these, a polyether resin having an acrylate-based functional group, a polyester resin, an epoxy resin, an alkyd resin, a spiroacetal resin, a polybutadiene resin, a polythiolpolyene resin, and the like can also be used.

本発明の樹脂部材は、合成樹脂が使用される全ての用途に使用でき、特に限定されるものではないが、特に日光又は紫外線を含む光に晒される可能性のある用途に特に好適に使用できる。例えば、ガラス代替品、窓ガラス、採光ガラス及び光源保護ガラス等のガラス、金属類、樹脂等のコーティング剤や保護剤、蛍光灯、水銀灯等の紫外線を発する光源用部材、食品、薬品等の容器又は包装材、農工業用シート、印刷物、染色物、染顔料、表示板、表示灯、カード等の退色防止剤等を挙げることができる。   The resin member of the present invention can be used for all applications where a synthetic resin is used, and is not particularly limited, but can be particularly preferably used for applications that may be exposed to light including sunlight or ultraviolet rays. . For example, glass substitutes, glass such as window glass, daylighting glass and light source protective glass, coatings and protective agents such as metals and resins, members for light sources emitting ultraviolet rays such as fluorescent lamps and mercury lamps, and containers for foods and chemicals Alternatively, examples thereof include packaging materials, agricultural and industrial sheets, printed matter, dyed matter, dyes and pigments, display plates, indicator lights, fading inhibitors for cards, and the like.

中でも、本発明の樹脂部材は、マトリックスの透明性を維持しつつ、紫外線吸収能や、高屈折率の付与が可能である点から、特に光学材料、中でも機能性の光学層を有するフィルムや部材、光学成形品に好適である。   Among them, the resin member of the present invention, while maintaining the transparency of the matrix, ultraviolet absorbing ability, from the point that it is possible to impart a high refractive index, especially optical materials, especially films and members having a functional optical layer It is suitable for optical molded products.

機能性の光学層を有するフィルムや部材としては、単層フィルムや、基材フィルム又は基板に、各種用途に応じた1層又は複層の光学層が設けられた多層フィルムや光学層付き基板でもよく、複層の光学層が設けられる場合にはその少なくとも1層に本発明の樹脂部材が使用される。   As a film or member having a functional optical layer, a single-layer film, a substrate film or a substrate, a multilayer film or a substrate with an optical layer provided with one or more optical layers according to various applications. When a plurality of optical layers are provided, the resin member of the present invention is used for at least one of the optical layers.

機能性の光学層を有するフィルムや部材のうち、光学フィルムとしては、基材フィルムに各種用途に応じた機能層が設けられたものであってもよく、例えば、各種光ディスク基板保護フィルム、反射フィルム、反射防止フィルム、配向フィルム、偏光フィルム、偏光層保護フィルム、位相差フィルム、光拡散フィルム、視野角向上フィルム、電磁波シールドフィルム、防眩フィルム、遮光フィルム及び輝度向上フィルム等が挙げられる。   Among films and members having a functional optical layer, the optical film may be a substrate film provided with a functional layer according to various uses on a substrate film, for example, various optical disk substrate protective films, reflective films , An antireflection film, an orientation film, a polarizing film, a polarizing layer protective film, a retardation film, a light diffusion film, a viewing angle improving film, an electromagnetic wave shielding film, an antiglare film, a light shielding film, and a brightness improving film.

機能性の光学層を有する部材としては、パネル基板等の表面に、反射防止層、ハードコート層、帯電防止層、密着安定層、保護層、電磁波シールド層、赤外線カット層等の少なくともいずれかを、1層又は複層で積層した部材等が挙げられる。   As a member having a functional optical layer, at least one of an antireflection layer, a hard coat layer, an antistatic layer, an adhesion stabilizing layer, a protective layer, an electromagnetic wave shielding layer, an infrared cut layer, etc. And members laminated in one layer or multiple layers.

また本発明の樹脂部材は、太陽電池用表面保護フィルムに好適である。太陽電池素子は通常、一対の基板の間に、太陽電池として働く活性層が設けられた構成をしているが、フレキシブルな太陽電池は、その部材として用いられるガスバリアフィルム等のポリエステル材料や、有機太陽電池においては活性層そのものが、紫外線を吸収して劣化してしまうため、紫外線吸収性の保護フィルムを必要とする。また、太陽電池は、屋外で、永年に渡って設置されるため、このような保護フィルムには、高い耐候性が求められる。更に、太陽電池は、光エネルギーを吸収して電力に変換することから、このような保護フィルムには、高い透明性が求められる。すなわち、フレキシブルな太陽電池を保護するための保護フィルムは、高い透明性、高い紫外線吸収能、高い耐候性、及びフレキシブル性が求められるが、本発明の樹脂部材はこのような用途に適している。   Further, the resin member of the present invention is suitable for a surface protective film for a solar cell. A solar cell element usually has a configuration in which an active layer serving as a solar cell is provided between a pair of substrates, but a flexible solar cell is made of a polyester material such as a gas barrier film used as a member thereof, or an organic material. In a solar cell, the active layer itself absorbs ultraviolet rays and is deteriorated, so that an ultraviolet-absorbing protective film is required. In addition, since solar cells are installed outdoors and for many years, such protective films are required to have high weather resistance. Furthermore, since a solar cell absorbs light energy and converts it into electric power, such a protective film is required to have high transparency. That is, a protective film for protecting a flexible solar cell is required to have high transparency, high ultraviolet absorbing ability, high weather resistance, and flexibility, but the resin member of the present invention is suitable for such applications. .

また本発明の樹脂部材は、光ピックアップレンズ、カメラ用レンズ及びレンチキュラーレンズ等の光学レンズ、プリズム、フィルター、並びにタッチパネル用基板及び導光板等の光学基板、光ファイバー、情報記録基盤等の光学成形品に好適に用いることができる。光学レンズとしては、フレネルレンズフィルム、レンチキュラーレンズフィルム等のレンズフィルムのようなプラスチックレンズや、小型化した光学機能素子で集光性や光拡散性を高める目的や撮像素子の受光素子への集光等の目的で使用される、数μmサイズの微小径のマイクロレンズを使用したマイクロレンズアレイにも好適である。   Further, the resin member of the present invention can be used for optical pickup lenses, optical lenses such as camera lenses and lenticular lenses, prisms, filters, optical substrates such as touch panel substrates and light guide plates, optical fibers, and optical molded products such as information recording substrates. It can be suitably used. Optical lenses include plastic lenses, such as lens films such as Fresnel lens films and lenticular lens films, as well as miniaturized optical functional elements to improve light-condensing and light-diffusing properties, and to condense light to the light-receiving element of the image sensor. It is also suitable for a microlens array using a microlens of a small diameter of several μm used for such purposes.

また本発明の樹脂部材は、ディスプレイ用基板、例えば、液晶ディスプレイ、有機ELディスプレイ、プラズマディスプレイ、フィールドエミッションディスプレイ、電子ペーパー等のフラットパネルディスプレイ用基板又は液晶ディスプレイ、信号、ネオンサイン等のバックライト用基板等にも好適である。   Further, the resin member of the present invention is used for a display substrate, for example, a flat panel display substrate such as a liquid crystal display, an organic EL display, a plasma display, a field emission display, and electronic paper or a liquid crystal display, a signal, and a backlight for a neon sign. It is also suitable for substrates and the like.

フィルム等の樹脂部材で広領域の波長の紫外線を吸収する場合、複数の紫外線吸収剤を使用したり、紫外線吸収剤を高濃度で添加したり、膜又は樹脂を厚くしたりする必要があるが、このような場合、透明性や着色上の点で問題が生じやすくなる。しかし本発明の紫外線吸収剤に使用されるチオエーテル基を二つ導入したトリアジン系化合物は、長波長領域360〜400nmと短波長紫外線の領域250〜300nmに紫外線吸収帯があり、より広範囲の紫外線吸収を可能とし、一つの紫外線吸収剤で、低濃度で、広領域の波長の紫外線を吸収することができる。   When absorbing ultraviolet light of a wide range of wavelengths with a resin member such as a film, it is necessary to use a plurality of ultraviolet absorbers, add the ultraviolet absorber at a high concentration, or make the film or resin thicker. In such a case, problems tend to occur in terms of transparency and coloring. However, the triazine compound having two introduced thioether groups used in the ultraviolet absorber of the present invention has an ultraviolet absorption band in a long wavelength region of 360 to 400 nm and a short wavelength ultraviolet region of 250 to 300 nm, and has a wider range of ultraviolet absorption. And a single ultraviolet absorber can absorb ultraviolet light having a low concentration and a wide range of wavelengths.

例えば、遮光フィルムにおいては、360〜400nmまでの紫外線をカットすることが望ましいが、一般的な紫外線吸収剤は400〜500nm(可視域)の領域の波長光の多くをカットして、可視光が減退したり変色する問題があった。しかしながら、トリアジン系化合物にチオエーテル基(i)を導入した本発明の紫外線吸収剤は、400〜500nm(可視域)の波長光の吸収を抑制し、315〜400nm(UV−A領域)でも、より長波長の360〜400nmの紫外線をカットすることが可能となり、有用性が高い。   For example, in a light-shielding film, it is desirable to cut ultraviolet rays from 360 to 400 nm. However, a general ultraviolet absorber cuts most of the wavelength light in the range of 400 to 500 nm (visible region), so that visible light is reduced. There was a problem of fading or discoloration. However, the ultraviolet absorber of the present invention in which a thioether group (i) is introduced into a triazine-based compound suppresses absorption of light having a wavelength of 400 to 500 nm (visible region), and even at 315 to 400 nm (UV-A region). It is possible to cut out ultraviolet rays having a long wavelength of 360 to 400 nm, which is highly useful.

また、本発明の紫外線吸収剤は、フィルム、樹脂部材だけではなく、上記の機能を持ちながら、紫外線吸収剤によって安定化、機能化することが求められる、例えば、染料、顔料、色素、インク、塗料、医薬品、表面コーティング、化粧品、写真材料、織物等にも用いることができる。   Further, the ultraviolet absorber of the present invention is not only a film and a resin member, but also has the above-mentioned functions, and is required to be stabilized and functionalized by the ultraviolet absorber, for example, a dye, a pigment, a pigment, an ink, It can also be used for paints, pharmaceuticals, surface coatings, cosmetics, photographic materials, textiles, and the like.

以下に、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<実施例1>
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
<Example 1>

Figure 0006668091
シアヌル酸クロリド(5.00g, 27.1mmol)をテトラヒドロフラン50mLに混合し、氷冷後、フェニルマグネシウムブロミド(16%テトラヒドロフラン溶液)(30.75g, 27.1mmol)を30分かけて滴下した後、1時間室温で反応した。反応終了後、トルエンを加えて水洗を行い、溶媒を留去して得られた固体を洗浄することにより中間体1を固体で得た。
Figure 0006668091
Cyanuric chloride (5.00 g, 27.1 mmol) was mixed with 50 mL of tetrahydrofuran, cooled with ice, and phenylmagnesium bromide (16% solution in tetrahydrofuran) (30.75 g, 27.1 mmol) was added dropwise over 30 minutes. Reacted for 1 hour at room temperature. After the completion of the reaction, toluene was added and the mixture was washed with water, and the solvent was distilled off. The obtained solid was washed to obtain Intermediate 1 as a solid.

3−ヒドロキシベンゼンチオール(15.00g, 118.8mmol)、ブロモオクタン(21.79g, 112.8mmol)、炭酸カリウム(24.60g, 178.0mmol)をアセトニトリル150mL中で6時間加熱還流した。反応終了後、トルエンを加えて、水洗、溶媒留去、カラム精製を行うことにより、中間体2を液体で得た。
中間体1(5.00g, 22.1mmol)と塩化アルミニウム(9.73g, 73.0mmol)をO−キシレン100mL中で、25℃、30分反応させた後、中間体2(17.40g, 73.0mmol)を加え、80℃、8時間反応した。反応終了後、トルエンを加えて水洗、溶媒留去、カラム精製、再結晶を行うことにより、化合物1を得た。
3-Hydroxybenzenethiol (15.00 g, 118.8 mmol), bromooctane (21.79 g, 112.8 mmol), and potassium carbonate (24.60 g, 178.0 mmol) were heated and refluxed in 150 mL of acetonitrile for 6 hours. After completion of the reaction, toluene was added, and the mixture was washed with water, distilled off the solvent, and purified by column to obtain Intermediate 2 as a liquid.
Intermediate 1 (5.00 g, 22.1 mmol) was reacted with aluminum chloride (9.73 g, 73.0 mmol) in 100 mL of O-xylene at 25 ° C. for 30 minutes, and then Intermediate 2 (17.40 g, 73.0 mmol) and reacted at 80 ° C. for 8 hours. After the completion of the reaction, compound 1 was obtained by adding toluene, washing with water, distilling off the solvent, purifying with a column, and recrystallization.

FT−IR(KBr):3064cm−1:O−H伸縮振動 1568, 845cm−1:トリアジン環伸縮振動 602cm−1:C-S伸縮振動
1H−NMR (CDCl3 400MHz): δ 0.90 (t, 6H, CH 3(CH2)7S), 1.30 (m, 16H, CH3(CH 2)4(CH2)3S), 1.48 (m, 4H, CH3(CH2)4CH 2(CH2)2S), 1.76 (m, 4H, CH3(CH2)5CH 2CH2S), 3.02 (t, 4H, CH3(CH2)6CH 2S), 6.70 (d, 4H), 7.60 (t, 2H), 7.67 (d, 1H), 8.41 (d, 4H), (insg.13arom. CH), 13.27 (s, 2H, Ph-OH)
13C−NMR (CDCl3 400MHz): δ 14.1 (CH3(CH2)7S), 22.6 (CH3 CH2(CH2)6S), 29.0 (CH3CH2 CH2(CH2)5S), 29.1 (CH3(CH2)2(CH2)3(CH2)2S), 31.5 (CH3(CH2)5 CH2CH2S), 31.8 (CH3(CH2)6 CH2S), 114.3 ((HO-)Carom C aromC(-N)=N), 117.9, 128.8, 129.2, 129.8 (CHarom), 148.5 (C arom-S), 162.6 (C arom-OH), 178.5 (N-(Carom)-C=N)
FT-IR (KBr): 3064 cm -1 : O-H stretching vibration 1568, 845 cm -1 : Triazine ring stretching vibration 602 cm -1 : CS stretching vibration
1 H-NMR (CDCl 3 400MHz ): δ 0.90 (t, 6H, C H 3 (CH 2) 7 S), 1.30 (m, 16H, CH 3 (C H 2) 4 (CH 2) 3 S), 1.48 (m, 4H, CH 3 (CH 2 ) 4 C H 2 (CH 2 ) 2 S), 1.76 (m, 4H, CH 3 (CH 2 ) 5 C H 2 CH 2 S), 3.02 (t, 4H , CH 3 (CH 2 ) 6 C H 2 S), 6.70 (d, 4H), 7.60 (t, 2H), 7.67 (d, 1H), 8.41 (d, 4H), (insg.13arom. C H ) , 13.27 (s, 2H, Ph-O H )
13 C-NMR (CDCl 3 400MHz ): δ 14.1 (C H 3 (CH 2) 7 S), 22.6 (CH 3 C H 2 (CH 2) 6 S), 29.0 (CH 3 CH 2 C H 2 (CH 2) 5 S), 29.1 ( CH 3 (CH 2) 2 (C H 2) 3 (CH 2) 2 S), 31.5 (CH 3 (CH 2) 5 C H 2 CH 2 S), 31.8 (CH 3 (CH 2 ) 6 C H 2 S), 114.3 ((HO-) C arom C arom C (-N) = N), 117.9, 128.8, 129.2, 129.8 ( C H arom ), 148.5 ( C arom -S) , 162.6 ( C arom -OH), 178.5 (N- (C arom ) -C = N)

<実施例2> <Example 2>

Figure 0006668091
シアヌル酸クロリド(5.00g, 27.1mmol)をテトラヒドロフラン50mLに混合し、氷冷後、p−トリルマグネシウムブロミド(19%テトラヒドロフラン溶液)(27.87g, 27.1mmol)を30分かけて滴下した後、1時間室温で反応した。反応終了後、トルエンを加えて水洗を行い、溶媒を留去して得られた固体を洗浄することにより中間体3を固体で得た。
Figure 0006668091
Cyanuric chloride (5.00 g, 27.1 mmol) was mixed with 50 mL of tetrahydrofuran, and after cooling with ice, p-tolylmagnesium bromide (19% solution in tetrahydrofuran) (27.87 g, 27.1 mmol) was added dropwise over 30 minutes. Thereafter, the reaction was carried out at room temperature for 1 hour. After completion of the reaction, toluene was added thereto, and the mixture was washed with water. The solvent was distilled off, and the obtained solid was washed to obtain Intermediate 3 as a solid.

中間体3(5.00g, 20.8mmol)と塩化アルミニウム(9.15g, 68.6mmol)をO−キシレン100mL中で、25℃、30分反応させた後、中間体2(16.35g, 68.6mmol)を加え、80℃、8時間反応した。反応終了後、トルエンを加えて水洗、溶媒留去、カラム精製、再結晶を行うことにより、化合物2を得た。   Intermediate 3 (5.00 g, 20.8 mmol) was reacted with aluminum chloride (9.15 g, 68.6 mmol) in 100 mL of O-xylene at 25 ° C. for 30 minutes, and then Intermediate 2 (16.35 g, 68.6 mmol) and reacted at 80 ° C. for 8 hours. After the completion of the reaction, compound 2 was obtained by adding toluene, washing with water, distilling off the solvent, purifying the column, and recrystallization.

FT−IR(KBr):3065cm−1:O−H伸縮振動 1570, 845cm−1:トリアジン環伸縮振動 600cm−1:C-S伸縮振動
1H−NMR (CDCl3 400MHz): δ 0.90 (t, 6H, CH 3(CH2)7S), 1.32 (m, 16H, CH3(CH 2)4(CH2)3S), 1.48 (m, 4H, CH3(CH2)4CH 2(CH2)2S), 1.77 (m, 4H, CH3(CH2)5CH 2CH2S), 2.48 (s, 3H, CH 3), 3.03 (t, 4H, CH3(CH2)6CH 2S), 6.86 (d, 4H), 7.38 (t, 2H), 8.29 (d, 4H), (insg.13arom. CH), 13.33 (s, 2H, Ph-OH)
13C−NMR (CDCl3 400MHz): δ 14.1 (CH3(CH2)7S), 21.8 (CH3), 22.7 (CH3 CH2(CH2)6S), 28.7 (CH3CH2 CH2(CH2)5S), 29.2 (CH3(CH2)2(CH2)3(CH2)2S), 31.6 (CH3(CH2)5 CH2CH2S), 31.8 (CH3(CH2)6 CH2S), 114.2 ((HO-)Carom C aromC(-N)=N), 117.8, 128.8, 129.9, 148.3 (CHarom), 144.6 (C arom-S), 162.5 (C arom-OH), 178.5 (N-(Carom)-C=N)
FT-IR (KBr): 3065cm -1: O-H stretching vibration 1570, 845cm -1: triazine ring stretching vibration 600 cm -1: CS stretching vibration
1 H-NMR (CDCl 3 400MHz ): δ 0.90 (t, 6H, C H 3 (CH 2) 7 S), 1.32 (m, 16H, CH 3 (C H 2) 4 (CH 2) 3 S), 1.48 (m, 4H, CH 3 (CH 2) 4 C H 2 (CH 2) 2 S), 1.77 (m, 4H, CH 3 (CH 2) 5 C H 2 CH 2 S), 2.48 (s, 3H , C H 3 ), 3.03 (t, 4H, CH 3 (CH 2 ) 6 C H 2 S), 6.86 (d, 4H), 7.38 (t, 2H), 8.29 (d, 4H), (insg.13arom C H ), 13.33 (s, 2H, Ph-O H )
13 C-NMR (CDCl 3 400MHz ): δ 14.1 (C H 3 (CH 2) 7 S), 21.8 (C H 3), 22.7 (CH 3 C H 2 (CH 2) 6 S), 28.7 (CH 3 CH 2 C H 2 (CH 2 ) 5 S), 29.2 (CH 3 (CH 2) 2 (C H 2) 3 (CH 2) 2 S), 31.6 (CH 3 (CH 2) 5 C H 2 CH 2 S), 31.8 (CH 3 (CH 2 ) 6 C H 2 S), 114.2 ((HO-) C arom C arom C (-N) = N), 117.8, 128.8, 129.9, 148.3 ( C H arom ), 144.6 ( C arom -S), 162.5 ( C arom -OH), 178.5 (N- (C arom ) -C = N)

<実施例3> <Example 3>

Figure 0006668091
シアヌル酸クロリド(5.00g, 27.1mmol)をテトラヒドロフラン50mLに混合し、氷冷後、4−クロロマグネシウムブロミド(1.0Mジエチルエーテル溶液)(19.34g, 27.1mmol)を30分かけて滴下した後、1時間室温で反応した。反応終了後、トルエンを加えて水洗を行い、溶媒を留去して得られた固体を洗浄することにより中間体4を固体で得た。
Figure 0006668091
Cyanuric chloride (5.00 g, 27.1 mmol) was mixed with 50 mL of tetrahydrofuran, and after cooling with ice, 4-chloromagnesium bromide (1.0 M diethyl ether solution) (19.34 g, 27.1 mmol) was added over 30 minutes. After the addition, the reaction was carried out at room temperature for 1 hour. After the completion of the reaction, toluene was added and the mixture was washed with water, and the solvent was distilled off. The obtained solid was washed to obtain Intermediate 4 as a solid.

中間体4(5.00g, 19.2mmol)と塩化アルミニウム(8.45g, 63.4mmol)をO−キシレン100mL中で、25℃、30分反応させた後、中間体2(15.11g, 63.4mmol)を加え、80℃、8時間反応した。反応終了後、トルエンを加えて水洗、溶媒留去、カラム精製、再結晶を行うことにより、化合物3を得た。   Intermediate 4 (5.00 g, 19.2 mmol) was reacted with aluminum chloride (8.45 g, 63.4 mmol) in 100 mL of O-xylene at 25 ° C. for 30 minutes, and then Intermediate 2 (15.11 g, 63.4 mmol) and reacted at 80 ° C. for 8 hours. After the completion of the reaction, compound 3 was obtained by adding toluene, washing with water, distilling off the solvent, purifying the column, and recrystallization.

FT−IR(KBr):3060cm−1:O−H伸縮振動 1560, 840cm−1:トリアジン環伸縮振動 600cm−1:C-S伸縮振動
1H−NMR (CDCl3 400MHz): δ 0.90 (t, 6H, CH 3(CH2)7S), 1.32 (m, 16H, CH3(CH 2)4(CH2)3S), 1.48 (m, 4H, CH3(CH2)4CH 2(CH2)2S), 1.75 (m, 4H, CH3(CH2)5CH 2CH2S), 3.03 (t, 4H, CH3(CH2)6CH 2S), 6.85 (d, 4H), 7.56 (t, 2H), 8.33 (d, 4H), (insg.13arom. CH), 13.12 (s, 2H, Ph-OH)
13C−NMR (CDCl3 400MHz): δ 14.1 (CH3(CH2)7S), 22.6 (CH3 CH2(CH2)6S), 29.0 (CH3CH2 CH2(CH2)5S), 29.1 (CH3(CH2)2(CH2)3(CH2)2S), 31.6 (CH3(CH2)5 CH2CH2S), 31.8 (CH3(CH2)6 CH2S), 114.4 ((HO-)Carom C aromC(-N)=N), 118.1, 128.8, 129.2, 129.8 (CHarom), 149.1 (C arom-S), 162.5 (C arom-OH), 179.4 (N-(Carom)-C=N)
FT-IR (KBr): 3060cm -1: O-H stretching vibration 1560, 840 cm -1: triazine ring stretching vibration 600 cm -1: CS stretching vibration
1 H-NMR (CDCl 3 400MHz ): δ 0.90 (t, 6H, C H 3 (CH 2) 7 S), 1.32 (m, 16H, CH 3 (C H 2) 4 (CH 2) 3 S), 1.48 (m, 4H, CH 3 (CH 2 ) 4 C H 2 (CH 2 ) 2 S), 1.75 (m, 4H, CH 3 (CH 2 ) 5 C H 2 CH 2 S), 3.03 (t, 4H , CH 3 (CH 2) 6 C H 2 S), 6.85 (d, 4H), 7.56 (t, 2H), 8.33 (d, 4H), (insg.13arom. C H), 13.12 (s, 2H, Ph-O H )
13 C-NMR (CDCl 3 400MHz ): δ 14.1 (C H 3 (CH 2) 7 S), 22.6 (CH 3 C H 2 (CH 2) 6 S), 29.0 (CH 3 CH 2 C H 2 (CH 2) 5 S), 29.1 ( CH 3 (CH 2) 2 (C H 2) 3 (CH 2) 2 S), 31.6 (CH 3 (CH 2) 5 C H 2 CH 2 S), 31.8 (CH 3 (CH 2 ) 6 C H 2 S), 114.4 ((HO-) C arom C arom C (-N) = N), 118.1, 128.8, 129.2, 129.8 ( C H arom ), 149.1 ( C arom -S) , 162.5 ( C arom -OH), 179.4 (N- (C arom ) -C = N)

<実施例4> <Example 4>

Figure 0006668091
3−ヒドロキシベンゼンチオール(15.00g, 118.8mmol)、炭酸カリウム(24.60g, 178.0mmol)をアセトニトリル150mLに混合し、氷冷後、ヨウ化メチル(17.70g, 124.7mmol)を30分かけて滴下した後、1時間室温で反応した。反応終了後、トルエンを加えて、水洗、溶媒留去、カラム精製を行うことにより、中間体5を液体で得た。
Figure 0006668091
3-Hydroxybenzenethiol (15.00 g, 118.8 mmol) and potassium carbonate (24.60 g, 178.0 mmol) were mixed with 150 mL of acetonitrile, and after cooling with ice, methyl iodide (17.70 g, 124.7 mmol) was added. After dropping over 30 minutes, the reaction was carried out at room temperature for 1 hour. After completion of the reaction, toluene was added, and the mixture was washed with water, evaporated, and purified by column to obtain Intermediate 5 as a liquid.

中間体1(5.00g, 22.1mmol)と塩化アルミニウム(9.73g, 73.0mmol)をO−キシレン100mL中で、25℃、30分反応させた後、中間体5(10.24g, 73.0mmol)を加え、80℃、8時間反応した。反応終了後、トルエンを加えて水洗、溶媒留去、カラム精製、再結晶を行うことにより、化合物4を得た。   Intermediate 1 (5.00 g, 22.1 mmol) was reacted with aluminum chloride (9.73 g, 73.0 mmol) in 100 mL of O-xylene at 25 ° C. for 30 minutes, and then Intermediate 5 (10.24 g, 73.0 mmol) and reacted at 80 ° C. for 8 hours. After the completion of the reaction, compound 4 was obtained by adding toluene, washing with water, distilling off the solvent, purifying the column, and recrystallization.

FT−IR(KBr):3060cm−1:O−H伸縮振動 1565, 840cm−1:トリアジン環伸縮振動 600cm−1:C-S伸縮振動
1H−NMR (CDCl3 400MHz): δ 2.53 (s, 6H, CH 3), 6.83 (d, 4H), 7.56 (t, 2H), 7.64 (d, 1H), 8.38 (d, 4H), (insg.13arom. CH), 13.25 (s, 2H, Ph-OH)
13C−NMR (CDCl3 400MHz): δ 14.6 (CH3), 113.3 ((HO-)Carom C aromC(-N)=N), 117.1, 128.7, 129.2, 133.5 (CHarom), 149.2 (C arom-S), 162.6 (C arom-OH), 178.5 (N-(Carom)-C=N)
FT-IR (KBr): 3060cm -1: O-H stretching vibration 1565, 840 cm -1: triazine ring stretching vibration 600 cm -1: CS stretching vibration
1 H-NMR (CDCl 3 400 MHz): δ 2.53 (s, 6H, C H 3 ), 6.83 (d, 4H), 7.56 (t, 2H), 7.64 (d, 1H), 8.38 (d, 4H), (insg.13arom. C H ), 13.25 (s, 2H, Ph-O H )
13 C-NMR (CDCl 3 400 MHz): δ 14.6 ( C H 3 ), 113.3 ((HO-) C arom C arom C (-N) = N), 117.1, 128.7, 129.2, 133.5 ( C H arom ), 149.2 ( C arom -S), 162.6 ( C arom -OH), 178.5 (N- (C arom ) -C = N)

<実施例5> <Example 5>

Figure 0006668091
3−ヒドロキシベンゼンチオール(15.00g, 118.8mmol)、ブロモオクタデカン(37.61g, 112.8mmol)、炭酸カリウム(24.60g, 178.0mmol)をアセトニトリル150mL中で6時間加熱還流した。反応終了後、トルエンを加えて、水洗、溶媒留去、カラム精製を行うことにより、中間体6を液体で得た。
Figure 0006668091
3-Hydroxybenzenethiol (15.00 g, 118.8 mmol), bromooctadecane (37.61 g, 112.8 mmol), and potassium carbonate (24.60 g, 178.0 mmol) were heated to reflux in 150 mL of acetonitrile for 6 hours. After the completion of the reaction, toluene was added, and the mixture was washed with water, distilled off the solvent, and subjected to column purification to obtain Intermediate 6 as a liquid.

中間体1(5.00g, 22.1mmol)と塩化アルミニウム(9.73g, 73.0mmol)をO−キシレン100mL中で、25℃、30分反応させた後、中間体6(27.64g, 73.0mmol)を加え、80℃、8時間反応した。反応終了後、トルエンを加えて水洗、溶媒留去、カラム精製、再結晶を行うことにより、化合物5を得た。   Intermediate 1 (5.00 g, 22.1 mmol) and aluminum chloride (9.73 g, 73.0 mmol) were reacted in 100 mL of O-xylene at 25 ° C. for 30 minutes, and then Intermediate 6 (27.64 g, 73.0 mmol) and reacted at 80 ° C. for 8 hours. After the completion of the reaction, compound 5 was obtained by adding toluene, washing with water, distilling off the solvent, purifying the column, and recrystallization.

FT−IR(KBr):3055cm−1:O−H伸縮振動 1572, 850cm−1:トリアジン環伸縮振動 602cm−1:C-S伸縮振動
1H−NMR (CDCl3 400MHz): δ 0.88 (t, 6H, CH 3(CH2)17S), 1.25 (m, 28H, CH3(CH 2)14(CH2)3S), 1.48 (m, 4H, CH3(CH2)14CH 2(CH2)2S), 1.77 (m, 4H, CH3(CH2)15CH 2CH2S), 3.02 (t, 4H, CH3(CH2)16CH 2S), 6.90 (d, 4H), 7.57 (t, 2H), 7.65 (d, 1H), 8.43 (d, 4H), (insg.13arom. CH), 13.28 (s, 2H, Ph-OH)
13C−NMR (CDCl3 400MHz): δ 14.1 (CH3(CH2)17S), 22.7 (CH3 CH2(CH2)16S), 29.2 (CH3CH2 CH2(CH2)15S), 29.6 (CH3(CH2)2(CH2)13(CH2)2S), 31.5 (CH3(CH2)15 CH2CH2S), 31.9 (CH3(CH2)16 CH2S), 114.3 ((HO-)Carom C aromC(-N)=N), 117.9, 128.8, 129.2, 129.8 (CHarom), 148.5 (C arom-S), 162.6 (C arom-OH), 178.5 (N-(Carom)-C=N)
FT-IR (KBr): 3055 cm -1 : O-H stretching vibration 1572, 850 cm -1 : Triazine ring stretching vibration 602 cm -1 : CS stretching vibration
1 H-NMR (CDCl 3 400MHz ): δ 0.88 (t, 6H, C H 3 (CH 2) 17 S), 1.25 (m, 28H, CH 3 (C H 2) 14 (CH 2) 3 S), 1.48 (m, 4H, CH 3 (CH 2 ) 14 C H 2 (CH 2 ) 2 S), 1.77 (m, 4H, CH 3 (CH 2 ) 15 C H 2 CH 2 S), 3.02 (t, 4H , CH 3 (CH 2 ) 16 C H 2 S), 6.90 (d, 4H), 7.57 (t, 2H), 7.65 (d, 1H), 8.43 (d, 4H), (insg.13arom. C H ) , 13.28 (s, 2H, Ph-O H )
13 C-NMR (CDCl 3 400MHz ): δ 14.1 (C H 3 (CH 2) 17 S), 22.7 (CH 3 C H 2 (CH 2) 16 S), 29.2 (CH 3 CH 2 C H 2 (CH 2) 15 S), 29.6 ( CH 3 (CH 2) 2 (C H 2) 13 (CH 2) 2 S), 31.5 (CH 3 (CH 2) 15 C H 2 CH 2 S), 31.9 (CH 3 (CH 2 ) 16 C H 2 S), 114.3 ((HO-) C arom C arom C (-N) = N), 117.9, 128.8, 129.2, 129.8 ( C H arom ), 148.5 ( C arom -S) , 162.6 ( C arom -OH), 178.5 (N- (C arom ) -C = N)

<比較例1> <Comparative Example 1>

Figure 0006668091
ヒドロキシベンゼンチオール(15.0g, 118.8mmol)、ブロモヘキサン(18.63g, 112.8mmol)及び炭酸カリウム(24.6g, 178.2mmol)をアセトニトリル150mL中で6時間加熱還流した。反応終了後、トルエンを加えて、水洗、溶媒留去、カラム精製を行うことにより、中間体7を液体で得た。
Figure 0006668091
Hydroxybenzenethiol (15.0 g, 118.8 mmol), bromohexane (18.63 g, 112.8 mmol) and potassium carbonate (24.6 g, 178.2 mmol) were heated to reflux in 150 mL of acetonitrile for 6 hours. After completion of the reaction, toluene was added, and the mixture was washed with water, evaporated, and purified by column to obtain Intermediate 7 as a liquid.

2−クロロ−4,6−ジフェニル−1,3,5−トリアジン(1.92g, 7.14mmol)と塩化アルミニウム(2.37g, 17.85mmol)をO−キシレン50mL中で、25℃、30分反応させた後、中間体7(2.00g, 14.25mmol)を加え、80℃、8時間反応した。反応終了後、トルエンを加えて水洗、溶媒留去、カラム精製、再結晶を行うことにより、化合物6を得た。   2-chloro-4,6-diphenyl-1,3,5-triazine (1.92 g, 7.14 mmol) and aluminum chloride (2.37 g, 17.85 mmol) in 50 mL of O-xylene at 25 ° C. After reacting for 10 minutes, Intermediate 7 (2.00 g, 14.25 mmol) was added and reacted at 80 ° C. for 8 hours. After the completion of the reaction, compound 6 was obtained by adding toluene, washing with water, distilling off the solvent, purifying the column, and recrystallization.

FT−IR(KBr):3064cm−1:O−H伸縮振動 1568, 846cm−1:トリアジン環伸縮振動 602cm−1:C-S伸縮振動
1H−NMR (CDCl3 400MHz): δ 0.90 (t, 3H, CH 3(CH2)5-S), 1.34 (m, 2H, CH3(CH 2)2(CH2)3S), 1.47 (quin, 2H, CH3(CH2)2CH 2(CH2)2S), 1.75 (quin, 2H, CH3(CH2)3CH 2CH2S), 3.03 (t, 2H, CH3(CH2)3CH2CH 2S), 6.89 (d, 2H) , 7.62 (m, 6H), 8.58 (d, 1H) , 8.63 (m, 4H) (insg.13arom. CH), 13.43 (s, 1H, Ph-OH)
13C−NMR (CDCl3 400MHz): δ 14.0 (CH3(CH2)5S), 22.5(CH3 CH2(CH2)4S), 28.7 (CH3CH2 CH2 (CH2)3S), 28.8 (CH3(CH2)2 CH2(CH2)2S), 31.4 (CH3(CH2)3 CH2CH2S), 31.8(CH3(CH2)4 CH2S), 114.3 ((HO-)CC aromC(-N)=N),117.9, 129.0, 129.9, 133.0 (CHarom), 135.3 (C arom-C=N), 147.4 (C arom-S), 162.3 (C arom-OH), 171.4 (Carom-C=N)
FT-IR (KBr): 3064 cm -1 : O-H stretching vibration 1568, 846 cm -1 : Triazine ring stretching vibration 602 cm -1 : CS stretching vibration
1 H-NMR (CDCl 3 400MHz ): δ 0.90 (t, 3H, C H 3 (CH 2) 5 -S), 1.34 (m, 2H, CH 3 (C H 2) 2 (CH 2) 3 S) , 1.47 (quin, 2H, CH 3 (CH 2 ) 2 C H 2 (CH 2 ) 2 S), 1.75 (quin, 2H, CH 3 (CH 2 ) 3 C H 2 CH 2 S), 3.03 (t, 2H, CH 3 (CH 2 ) 3 CH 2 C H 2 S), 6.89 (d, 2H), 7.62 (m, 6H), 8.58 (d, 1H), 8.63 (m, 4H) (insg.13arom.C H ), 13.43 (s, 1H, Ph-O H )
13 C-NMR (CDCl 3 400MHz ): δ 14.0 (C H 3 (CH 2) 5 S), 22.5 (CH 3 C H 2 (CH 2) 4 S), 28.7 (CH 3 CH 2 C H 2 (CH 2) 3 S), 28.8 ( CH 3 (CH 2) 2 C H 2 (CH 2) 2 S), 31.4 (CH 3 (CH 2) 3 C H 2 CH 2 S), 31.8 (CH 3 (CH 2 ) 4 C H 2 S), 114.3 ((HO-) C C arom C (-N) = N), 117.9, 129.0, 129.9, 133.0 ( C H arom ), 135.3 ( C arom -C = N), 147.4 ( C arom -S), 162.3 ( C arom -OH), 171.4 (C arom - C = N)

<比較例2> <Comparative Example 2>

Figure 0006668091
シアヌル酸クロリド(1.92g, 7.14mmol)と中間体2(7.66g, 32.13mmol)を1,2−ジクロロエタン50mL中で、加熱溶解させた後氷冷し、塩化アルミニウム(0.95g,7.14mmol)を30分かけて加えた後、70℃、54時間反応した。反応終了後、トルエンを加えて水洗、溶媒留去、カラム精製、再結晶を行うことにより、化合物7を得た。
Figure 0006668091
Cyanuric chloride (1.92 g, 7.14 mmol) and Intermediate 2 (7.66 g, 32.13 mmol) were dissolved in 50 mL of 1,2-dichloroethane by heating, then ice-cooled, and aluminum chloride (0.95 g). , 7.14 mmol) over 30 minutes and then reacted at 70 ° C. for 54 hours. After the completion of the reaction, compound 7 was obtained by adding toluene, washing with water, distilling off the solvent, purifying the column, and recrystallization.

FT−IR(KBr):2951cm−1:O−H伸縮振動 1570, 843cm−1:トリアジン環伸縮振動 606cm−1:C-S伸縮振動
1H−NMR (CDCl3 400MHz): δ 0.90 (t, 3H, CH 3(CH2)7S), 1.32 (m, 8H, CH3(CH 2)4(CH2)3S), 1.47 (quin, 2H, CH3(CH2)4CH 2(CH2)2S), 1.72 (quin, 2H, CH3(CH2)5CH 2CH2S), 2.92 (t, 2H, CH3(CH2)6CH 2S), 6.70 (d, 2H) , 7.72 (d, 1H), (insg.13arom. CH), 12.99 (s, 1H, Ph-OH)
13C−NMR (CDCl3 400MHz): δ 14.1 (CH3(CH2)7S), 22.7 (CH3 CH2(CH2)6S), 28.6 (CH3CH2 CH2(CH2)5S), 29.2 (CH3(CH2)2(CH2)3(CH2)2S), 31.5 (CH3(CH2)5 CH2CH2S), 31.9 (CH3(CH2)6 CH2S), 111.8 (C aromC=N), 113.9, 117.7, 128.4 (CHarom), 149.6 (C arom-S), 162.7 (C arom-OH), 168.2 (Carom-C=N)
FT-IR (KBr): 2951cm -1: O-H stretching vibration 1570, 843cm -1: triazine ring stretching vibration 606 cm -1: CS stretching vibration
1 H-NMR (CDCl 3 400MHz ): δ 0.90 (t, 3H, C H 3 (CH 2) 7 S), 1.32 (m, 8H, CH 3 (C H 2) 4 (CH 2) 3 S), 1.47 (quin, 2H, CH 3 (CH 2) 4 C H 2 (CH 2) 2 S), 1.72 (quin, 2H, CH 3 (CH 2) 5 C H 2 CH 2 S), 2.92 (t, 2H , CH 3 (CH 2 ) 6 C H 2 S), 6.70 (d, 2H), 7.72 (d, 1H), (insg.13arom.C H ), 12.99 (s, 1H, Ph-O H )
13 C-NMR (CDCl 3 400MHz ): δ 14.1 (C H 3 (CH 2) 7 S), 22.7 (CH 3 C H 2 (CH 2) 6 S), 28.6 (CH 3 CH 2 C H 2 (CH 2) 5 S), 29.2 ( CH 3 (CH 2) 2 (C H 2) 3 (CH 2) 2 S), 31.5 (CH 3 (CH 2) 5 C H 2 CH 2 S), 31.9 (CH 3 (CH 2 ) 6 C H 2 S), 111.8 ( C arom C = N), 113.9, 117.7, 128.4 ( C H arom ), 149.6 ( C arom -S), 162.7 ( C arom -OH), 168.2 (C arom - C = N)

<比較例3> <Comparative Example 3>

Figure 0006668091
Figure 0006668091

<比較例4> <Comparative Example 4>

Figure 0006668091
2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール(5.00g, 15.8mmol)、オクタンチオール(7.63g, 52.1mmol)、炭酸カリウム(7.20g, 52.1mmol)及びヨウ化カリウム(0.18g, 1.1mmol)を、DMF50mL中で、150℃、20時間反応した。反応終了後、トルエンを加えて、水洗、溶媒留去、カラム精製を行うことにより、化合物9を得た。
Figure 0006668091
2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5-chlorobenzotriazole (5.00 g, 15.8 mmol), octanethiol (7.63 g, 52.1 mmol), potassium carbonate (7 .20 g, 52.1 mmol) and potassium iodide (0.18 g, 1.1 mmol) were reacted in 50 mL of DMF at 150 ° C. for 20 hours. After completion of the reaction, compound 9 was obtained by adding toluene, washing with water, distilling off the solvent, and performing column purification.

FT−IR(KBr):3125cm−1:O−H伸縮振動 1438, 1391cm−1:トリアゾール環伸縮振動 661cm−1:C-S伸縮振動
1H−NMR (CDCl3 400MHz): δ 0.88 (t, 3H, CH 3(CH2)7S) , 1.27 (m, 8H, CH3(CH 2)4(CH2)3S), 1.49 (m, 11H, -Ph-OH-CH3-C(CH 3)3, CH3(CH2)4CH 2(CH2)2S), 1.75 (quin, 2H, CH3(CH2)5 CH 2CH2S), 2.38 (s, 3H, -Ph-OH-CH 3-C(CH3)3) , 3.03 (t, 2H, CH3(CH2)5CH2CH 2S), 7.16 (s, 1H), 7.37 (d, 1H), 7.70 (s, 1H), 7.81 (d, 1H), 8.05 (s, 1H), (insg.5arom. CH), 11.61 (s, 1H, -Ph-OH-CH3-C(CH3)3)
13C−NMR (CDCl3 400MHz): δ 14.0 (CH3(CH2)7S), 20.0 (-Ph-OH-CH3-C(CH3)3), 22.6 (-Ph-OH-CH3-C(CH3)3), 28.7 (CH3(CH2)5CH2CH2S), 31.9 (-Ph-OH-CH3-C(CH3)3) , 33.2 (CH3(CH2)5 CH2CH2S), 35.4 (CH3(CH2)5CH2 CH2S), 113.6, 117.5, 119.3, 128.7, 129.3 (CHarom), 141.2, 143.4 (C arom), 125.4(C arom-N), 128.3 (Carom-CH3), 138.0(C arom-S), 139.1(C arom-C(CH3)3), 146.7(C arom-OH)
FT-IR (KBr): 3125 cm -1 : O-H stretching vibration 1438, 1391 cm -1 : Triazole ring stretching vibration 661 cm -1 : CS stretching vibration
1 H-NMR (CDCl 3 400MHz ): δ 0.88 (t, 3H, C H 3 (CH 2) 7 S), 1.27 (m, 8H, CH 3 (C H 2) 4 (CH 2) 3 S), 1.49 (m, 11H, -Ph- OH-CH 3 -C (C H 3) 3, CH 3 (CH 2) 4 C H 2 (CH 2) 2 S), 1.75 (quin, 2H, CH 3 (CH 2) 5 C H 2 CH 2 S), 2.38 (s, 3H, -Ph-OH-C H 3 -C (CH 3) 3), 3.03 (t, 2H, CH 3 (CH 2) 5 CH 2 C H 2 S), 7.16 (s, 1H), 7.37 (d, 1H), 7.70 (s, 1H), 7.81 (d, 1H), 8.05 (s, 1H), (insg.5arom. C H ), 11.61 (s, 1H, -Ph-O H -CH 3 -C (CH 3 ) 3 )
13 C-NMR (CDCl 3 400MHz ): δ 14.0 (C H 3 (CH 2) 7 S), 20.0 (-Ph-OH- C H 3 -C (CH 3) 3), 22.6 (-Ph-OH- CH 3 - C (CH 3) 3), 28.7 (CH 3 (C H 2) 5 CH 2 CH 2 S), 31.9 (-Ph-OH-CH 3 -C (C H 3) 3), 33.2 (CH 3 (CH 2 ) 5 C H 2 CH 2 S), 35.4 (CH 3 (CH 2 ) 5 CH 2 C H 2 S), 113.6, 117.5, 119.3, 128.7, 129.3 ( C H arom ), 141.2, 143.4 ( C arom ), 125.4 ( C arom -N), 128.3 (C arom -C H 3 ), 138.0 ( C arom -S), 139.1 ( C arom -C (CH 3 ) 3 ), 146.7 ( C arom -OH)

<比較例5> <Comparative Example 5>

Figure 0006668091
化合物10は、東京化成(株)製の試薬を用いた。
Figure 0006668091
As the compound 10, a reagent manufactured by Tokyo Chemical Industry Co., Ltd. was used.

紫外線吸収剤の長波長領域の吸収効果は、“315〜400nm領域の吸収ピークの波長(最大吸収波長:λmax)”及び“長波長領域(360〜400nm)のピーク面積”、樹脂部材への添加の際の黄色抑制効果は “315〜400nm領域の吸収ピークの波長(最大吸収波長:λmax)”、“315〜400nmの領域にある吸収ピークの長波長側の傾きの絶対値”及び“400-450nmのピーク面積”、紫外線吸収効率は“モル吸光係数”と相関がある。   The absorption effect of the ultraviolet absorber in the long wavelength region is “wavelength of the absorption peak in the 315 to 400 nm region (maximum absorption wavelength: λmax)” and “peak area of the long wavelength region (360 to 400 nm)”, and addition to the resin member The yellow suppression effect at this time is as follows: “wavelength of absorption peak in the region of 315 to 400 nm (maximum absorption wavelength: λmax)”, “absolute value of long wavelength side slope of absorption peak in the region of 315 to 400 nm”, and “400− The peak area at 450 nm "and the ultraviolet absorption efficiency are correlated with the" molar extinction coefficient ".

長波長領域の吸収効果
(1)315〜400nm領域の吸収ピークの波長(最大吸収波長:λmax)
実施例及び比較例の化合物をクロロホルム5μMで希釈して10mm石英セルに収容し、紫外可視分光光度計(日本分光社製 V−550)を用いて紫外可視吸収スペクトルを測定し(図1、2)、UV−A(315〜400nm)の領域の吸収ピークを読み取った(表1)。
Absorption effect in long wavelength region (1) Wavelength of absorption peak in 315 to 400 nm region (maximum absorption wavelength: λmax)
The compounds of Examples and Comparative Examples were diluted with chloroform at 5 μM, accommodated in a 10-mm quartz cell, and the ultraviolet-visible absorption spectrum was measured using an ultraviolet-visible spectrophotometer (V-550, manufactured by JASCO Corporation) (FIGS. 1 and 2). ) And the absorption peak in the region of UV-A (315-400 nm) were read (Table 1).

本発明の式(i)を導入した化合物1〜5(実施例1〜5)の吸収ピークは、化合物6,8,9,10(比較例1,3,4,5)の吸収ピークより長波長にシフトし、UV−A領域でも長波長領域370〜400nmにピークを持ち、良好に長波長の光を吸収することを確認した。   The absorption peaks of the compounds 1 to 5 (Examples 1 to 5) into which the formula (i) of the present invention is introduced are longer than the absorption peaks of the compounds 6, 8, 9, 10 (Comparative Examples 1, 3, 4, 5). The wavelength was shifted to a peak in the long wavelength region of 370 to 400 nm even in the UV-A region, and it was confirmed that light of a long wavelength was favorably absorbed.

(2)長波長領域(360〜400nm)のピーク面積
実施例及び比較例の化合物の吸収スペクトル(5μM)から、長波長領域(360〜400nm)の領域のピーク面積(例:図1実施例2)を、紫外可視分光光度計(日本分光社製 V−550)を用いて算出した(表1)。 化合物1〜5(実施例1〜5)の長波長領域(360〜400nm)のピーク面積は、式(i)を含有するフェニルを1つ導入したトリアジン系の化合物6(比較例1)、式(i)の置換基をもたないトリアジン系の化合物8(比較例3)及びベンゾトリアゾール系の化合物9,10(比較例4,5)の面積より大きい。
(2) Peak area in long wavelength region (360 to 400 nm) From the absorption spectra (5 μM) of the compounds of Examples and Comparative Examples, the peak area in the long wavelength region (360 to 400 nm) (Example: FIG. 1 Example 2) ) Was calculated using an ultraviolet-visible spectrophotometer (V-550, manufactured by JASCO Corporation) (Table 1). The peak area in the long wavelength region (360 to 400 nm) of Compounds 1 to 5 (Examples 1 to 5) is the same as that of triazine-based compound 6 (Comparative Example 1) into which one phenyl containing formula (i) is introduced. (I) The area is larger than that of the triazine-based compound 8 having no substituent (Comparative Example 3) and the benzotriazole-based compounds 9 and 10 (Comparative Examples 4 and 5).

つまり、上記(1)、(2)の結果より、式(i)を含有するフェニルを2つ導入したトリアジン系の化合物1〜5(実施例1〜5)は、UV−Aでも特に長波長の360〜400nm付近の紫外線吸収効果に優れることを確認した。   That is, from the results of the above (1) and (2), the triazine-based compounds 1 to 5 (Examples 1 to 5) into which two phenyls containing the formula (i) are introduced have a particularly long wavelength even in UV-A. Of about 360 to 400 nm.

黄色抑制効果
(3)315〜400nm領域の吸収ピークの波長(最大吸収波長:λmax)
上記(1)で測定した吸収ピークについては、紫外線吸収剤を添加した樹脂部材の黄色抑制の観点からは、315〜400nm領域の吸収ピークは400nmに近接しすぎると、可視域の波長をより多く吸収するため、その吸収ピークは390nm以下が好ましい。化合物7(比較例2)の吸収ピーク(392.5nm)は、391nm以上であり、樹脂部材を黄色化する傾向があるのに対して、化合物1〜5(実施例1〜5)は、360〜400nm付近の紫外線吸収効果に優れていると同時に、それらの最大吸収ピークは390nm以下にあり、可視域の波長の吸収を抑制し、添加した樹脂部材の黄色化を抑制する。
Yellow suppression effect (3) Wavelength of absorption peak in 315-400 nm region (maximum absorption wavelength: λmax)
Regarding the absorption peak measured in the above (1), from the viewpoint of suppressing yellowing of the resin member to which the ultraviolet absorbent is added, if the absorption peak in the 315 to 400 nm region is too close to 400 nm, the wavelength in the visible region is increased. For absorption, the absorption peak is preferably 390 nm or less. Compound 7 (Comparative Example 2) has an absorption peak (392.5 nm) of 391 nm or more, and tends to yellow the resin member, whereas Compounds 1 to 5 (Examples 1 to 5) have a peak of 360. At the same time as having an excellent ultraviolet absorption effect at around 400 nm, their maximum absorption peak is at 390 nm or less, which suppresses absorption of wavelengths in the visible region and suppresses yellowing of the added resin member.

(4)315〜400nmの領域にある吸収ピークの長波長側の傾きの絶対値
実施例及び比較例の化合物の吸収スペクトル(5μM)から、315〜400nmにある吸収ピークにおける長波長側の吸収スペクトルとベースライン(400〜500nmの吸収スペクトルの傾きが0のライン)との交点をピークエンドとして(例:図1実施例1)、下記式により、315〜400nmの波長領域にある吸収ピークの長波長側の傾きの絶対値を求めた(表1、3)。
|315〜400nmの波長領域にある吸収ピークの長波長側の傾き|=|(ピークエンドの吸光度−315〜400nmの波長領域にある吸収ピークの吸光度)/(ピークエンドの吸収波長−315〜400nmの波長領域にある吸収ピークの波長)|
(4) Absolute value of the slope of the absorption peak in the region of 315 to 400 nm on the long wavelength side From the absorption spectra (5 μM) of the compounds of Examples and Comparative Examples, the absorption spectrum on the long wavelength side of the absorption peak at 315 to 400 nm The point of intersection of the peak with the baseline (line where the slope of the absorption spectrum at 400 to 500 nm is 0) is taken as the peak end (Example: FIG. 1 Example 1), and the length of the absorption peak in the wavelength region of 315 to 400 nm is calculated by the following equation. The absolute value of the slope on the wavelength side was determined (Tables 1, 3).
| Long-wavelength slope of the absorption peak in the wavelength region of 315 to 400 nm | = | (absorbance at peak end-absorbance of absorption peak in wavelength region of 315 to 400 nm) / (absorption wavelength at peak end -315 to 400 nm Wavelength of the absorption peak in the wavelength region of

360〜400nmの領域の波長を吸収すると同時に、黄変色を抑制する場合、上記(3)に加えて、より大きな傾きの(シャープな)吸収ピークを持つ紫外線吸収剤は、可視域(400nm〜)の波長の吸収を抑制し、黄変色を抑えることを可能とする。化合物1〜5(実施例1〜5の)の315〜400nmにある吸収ピークの傾きは、式(i)を含有するフェニルを1つ導入したトリアジン系の化合物6(比較例1)、式(i)の置換基をもたないトリアジン系の化合物8(比較例3)及びベンゾトリアゾール系の化合物9,10(比較例4,5)の傾きより大きく(シャープである)、0.003以上であり、黄変色の抑制効果が高いことを確認した。   When suppressing the yellow discoloration at the same time as absorbing the wavelength in the range of 360 to 400 nm, in addition to the above (3), an ultraviolet absorber having a larger (sharper) absorption peak in the visible region (from 400 nm) At the wavelengths of the above, and yellow discoloration can be suppressed. The slopes of the absorption peaks at 315 to 400 nm of Compounds 1 to 5 (of Examples 1 to 5) are as follows: triazine-based compound 6 into which one phenyl containing formula (i) is introduced (Comparative Example 1); The slope of the triazine-based compound 8 (Comparative Example 3) and the benzotriazole-based compounds 9 and 10 (Comparative Examples 4 and 5) having no substituent is larger (sharp) than 0.003 and 0.003 or more. Yes, it was confirmed that the effect of suppressing yellow discoloration was high.

(5)400〜450nmのピーク面積
上記の(2)と同様に、実施例及び比較例の化合物の吸収スペクトル(5μM)から、可視光領域(400〜450nm)の領域のピーク面積を、紫外可視分光光度計(日本分光社製 V−550)を用いて算出した(表1)。
(5) Peak area at 400 to 450 nm Similarly to the above (2), from the absorption spectra (5 μM) of the compounds of the examples and comparative examples, the peak area of the visible light region (400 to 450 nm) was determined to be ultraviolet-visible. It was calculated using a spectrophotometer (V-550 manufactured by JASCO Corporation) (Table 1).

上記(3)、(4)の光学特性を合わせ持つ化合物1〜5(実施例1〜5)の400〜450nmのピーク面積は、式(i)を含有するフェニルを3つ導入したトリアジン系の化合物7(比較例2)と比べて、黄色の要因となる400〜450nmのピーク面積が小さく(可視光領域の波長の吸収が少なく)、樹脂部材に使用した際の黄色化を抑制することが示唆された。   The peak area of 400 to 450 nm of the compounds 1 to 5 (Examples 1 to 5) having the optical characteristics of the above (3) and (4) is based on the triazine-based compound having three phenyls containing the formula (i). Compared to Compound 7 (Comparative Example 2), the peak area of 400 to 450 nm, which is a factor of yellow, is small (the absorption of wavelength in the visible light region is small), and it is possible to suppress yellowing when used for a resin member. It was suggested.

(6)モル吸光係数
実施例及び比較例の化合物の吸収スペクトルから、315〜400nmの波長領域の最大吸収ピーク(最大吸収波長:λmx)の吸光度を読み取り、そのピークのモル吸光係数(最大モル吸光係数:εmx)を下記式によって求めた(表1、2)。
モル吸光係数:εmx(L/(mol・cm)=:吸光度/[c:モル濃度(mol/L)×l:セルの光路長(cm)]
(6) Molar extinction coefficient The absorbance of the maximum absorption peak (maximum absorption wavelength: λ mx ) in the wavelength region of 315 to 400 nm was read from the absorption spectra of the compounds of the examples and comparative examples, and the molar extinction coefficient (maximum mole) of the peak was read. The extinction coefficient: ε mx ) was determined by the following equation (Tables 1 and 2).
Molar extinction coefficient: ε mx (L / (mol · cm) =: absorbance / [c: molar concentration (mol / L) × l: cell optical path length (cm)]

化合物1〜5(実施例1〜5の)は、式(i)を含有するフェニルを1つ導入したトリアジン系の化合物6(比較例1)、式(i)の置換基をもたないトリアジン系の化合物8(比較例3)及びベンゾトリアゾール系の化合物9,10(比較例4,5)に比べてモル吸光係数が高く、少量の添加で効率よく紫外線を吸収することを確認した。   Compounds 1 to 5 (of Examples 1 to 5) are triazine-based compounds 6 (Comparative Example 1) into which one phenyl containing formula (i) is introduced, and a triazine having no substituent of formula (i) It was confirmed that the compounds had higher molar extinction coefficient than the compound 8 (Comparative Example 3) and the benzotriazole compounds 9 and 10 (Comparative Examples 4 and 5), and efficiently absorbed ultraviolet light by adding a small amount.

つまり、これらの紫外線吸収剤を部材に添加して360〜400nm領域の紫外線を同程度吸収する場合、化合物1〜5は、上記のモル吸光係数及び長波長領域(360〜400nm)のピーク面積が大きく、化合物6,8,9,10の添加量より少なくてもよい。また、その際、そのピークの波長(390nm以下)及び化合物1〜5の傾きは大きく、可視域400nm〜450nmのピーク面積をより少なくすること(可視光の吸収を抑制すること)が可能となり、樹脂部材の黄色化を抑制することができる。   That is, when these ultraviolet absorbers are added to the member to absorb ultraviolet rays in the range of 360 to 400 nm to the same extent, Compounds 1 to 5 have the above-mentioned molar extinction coefficient and peak area in the long wavelength region (360 to 400 nm). It may be large and may be less than the added amount of the compounds 6, 8, 9, and 10. Further, at that time, the peak wavelength (390 nm or less) and the inclination of Compounds 1 to 5 are large, and the peak area in the visible region of 400 nm to 450 nm can be further reduced (visible light absorption can be suppressed). Yellowing of the resin member can be suppressed.

また、R〜R15の位置にハロゲン原子を結合させた化合物3(実施例3)は、化合物1〜5の中でも315〜400nmの最大吸収ピークが390nm以下の範囲で、より長波長にシフトし、長波長領域(360〜400nm)のピーク面積(9.5以上)およびモル吸光係数(55000以上)が大きく長波長領域(360〜400nm)の吸収効率がより高いことを確認した。 Compound 3 in which a halogen atom is bonded at the positions of R 1 to R 15 (Example 3) shifts to longer wavelengths among compounds 1 to 5 when the maximum absorption peak at 315 to 400 nm is 390 nm or less. Then, it was confirmed that the peak area (9.5 or more) and the molar extinction coefficient (55000 or more) in the long wavelength region (360 to 400 nm) were large and the absorption efficiency in the long wavelength region (360 to 400 nm) was higher.

さらに、R〜R15の位置に式(i)または水素原子を結合した化合物1、4、5は、400〜450nmのピーク面積が0.5以下であり、化合物1〜5の中でも小さく、黄色抑制効果がより大きいことを確認した。 Further, Compounds 1, 4, and 5, in which the formula (i) or a hydrogen atom is bonded to the positions of R 1 to R 15 , have a peak area of 400 to 450 nm of 0.5 or less, which is smaller than compounds 1 to 5, It was confirmed that the yellow suppression effect was greater.

一方、式(i)を含有するフェニルを3つ導入したトリアジン系の化合物7(比較例2)は、化合物1〜5より、360〜400nmのピーク面積並びに上記の傾きが大きいが、370〜400nm領域のピークが、化合物1〜5より長波長の392.5nm(391nm以上)であるため、400nm〜450nmの光を多く吸収し(400〜450nmのピーク面積が大きく)、黄色抑制効果は低い。   On the other hand, the triazine-based compound 7 (Comparative Example 2) into which three phenyls containing the formula (i) are introduced has a peak area of 360 to 400 nm and a larger slope than that of compounds 1 to 5, but 370 to 400 nm. Since the peak of the region is 392.5 nm (391 nm or more) having a longer wavelength than compounds 1 to 5, it absorbs a large amount of light at 400 nm to 450 nm (the peak area at 400 to 450 nm is large), and the yellow suppression effect is low.

上記の測定結果を、以下の基準で評価し、表1にまとめた。
[1] 長波長領域の吸収効果
315〜400nm領域の吸収ピークの波長(最大吸収波長:λmax)
○:370〜400nm
△:365〜369nm
×:365nm未満
長波長領域(360〜400nm)のピーク面積
○:7以上
△:3以上
×:3未満
[2] 黄色抑制効果
315〜400nm領域の吸収ピークの波長(最大吸収波長:λmax)
○:390nm以下
×:391nm以上
315〜400nmの領域にある吸収ピークの長波長側の傾きの絶対値
○:0.003以上
△:0.002以上
×:0.002未満
400-450nmのピーク面積
○:1以下
△:3以下
×:4以上
[3] 紫外線吸収効率
モル吸光係数
○:40000以上
△:20000以上
×:20000未満
The above measurement results were evaluated based on the following criteria, and are summarized in Table 1.
[1] Long wavelength absorption effect
Wavelength of absorption peak in 315 to 400 nm region (maximum absorption wavelength: λmax)
:: 370 to 400 nm
Δ: 365 to 369 nm
×: less than 365 nm Peak area in long wavelength region (360 to 400 nm) ○: 7 or more △: 3 or more ×: less than 3
[2] Yellow suppression effect
Wavelength of absorption peak in 315 to 400 nm region (maximum absorption wavelength: λmax)
:: 390 nm or less ×: 391 nm or more
Absolute value of the slope on the long wavelength side of the absorption peak in the range of 315 to 400 nm ○: 0.003 or more △: 0.002 or more ×: less than 0.002
400-450 nm peak area ○: 1 or less △: 3 or less ×: 4 or more
[3] Ultraviolet absorption efficiency Molar extinction coefficient ○: 40000 or more △: 20,000 or more ×: less than 20,000

Figure 0006668091
Figure 0006668091

Figure 0006668091
Figure 0006668091

Figure 0006668091
表1から、化合物1〜5(実施例1〜5)及び化合物7(比較例2)は、類似する式(i)を含有するフェニルを導入したトリアジン系化合物の化合物6と比較して、UV−Aでも長波長の360〜400nmの長波長領域の吸収効果は高い。しかしながら、化合物7は黄色抑制効果が低く、化合物1〜5と比較して樹脂部材に添加した場合、黄色化すると示唆された。つまり、化合物1〜5は、樹脂部材に添加した場合、黄色化を抑制し、長波長領域の波長光を効率良くに吸収することができる。
Figure 0006668091
From Table 1, it can be seen that Compounds 1 to 5 (Examples 1 to 5) and Compound 7 (Comparative Example 2) were compared with Compound 6 of a phenyl-introduced triazine compound containing a similar formula (i) by UV. -A also has a high absorption effect in a long wavelength region of 360 to 400 nm, which is a long wavelength. However, Compound 7 has a low yellowing inhibitory effect, suggesting that when it is added to the resin member as compared with Compounds 1 to 5, it turns yellow. That is, when the compounds 1 to 5 are added to the resin member, yellowing can be suppressed, and light having a wavelength in a long wavelength region can be efficiently absorbed.

つまり、化合物1〜5(実施例1〜5)は、上記の全項目において良好であり、315〜400nm領域の光の吸収ピークが最大吸収波長(λmax)で370〜390nmにあり、上記の傾きが0.003以上、モル吸光係数が40000以上で、360〜400nmのピーク面積が7以上、400〜450nmのピーク面積が1以下であり、化合物6〜10(比較例1〜5)と比較して、少量の添加量で、360〜400nmの長波長の領域の波長光を効率良く吸収し、かつ黄変着色が抑制された樹脂部材を得ることができる。 That is, Compounds 1 to 5 (Examples 1 to 5) are good in all of the above items, and the absorption peak of light in the 315 to 400 nm region is 370 to 390 nm at the maximum absorption wavelength (λ max ). With a slope of 0.003 or more, a molar extinction coefficient of 40000 or more, a peak area of 360 to 400 nm of 7 or more, and a peak area of 400 to 450 nm of 1 or less, compared with compounds 6 to 10 (Comparative Examples 1 to 5). Then, with a small amount of addition, it is possible to obtain a resin member that efficiently absorbs light in the long wavelength region of 360 to 400 nm and suppresses yellowing and coloring.

5%重量減少温度
実施例及び比較例の化合物について、示差熱熱重量同時測定装置(SII社製、TG/T6200)を用いて、昇温温度:10℃/min、測定範囲:25〜550℃で測定を行い、重量変化(TG)が5重量%減少した温度を読み取った。
5% Weight Loss Temperature For the compounds of Examples and Comparative Examples, using a simultaneous thermogravimetric analyzer (TG / T6200, manufactured by SII), a temperature increase temperature: 10 ° C./min, a measurement range: 25 to 550 ° C. The temperature at which the change in weight (TG) was reduced by 5% by weight was read.

測定結果を表4に示す。

Figure 0006668091
実施例1〜5の化合物は、式(i)の置換基を2つ導入することにより、式(i)の置換基のない比較例3の化合物8、ベンゾトリアゾール骨格の比較例4、5の化合物9,10や、更には式(i)の置換基を1つ導入した比較例1の化合物6よりも5%重量減少温度が高く、耐熱性(紫外線吸収剤の熱分解による樹脂部材の紫外線吸収能、透明樹脂の透明性の低下を抑制)が向上し、200〜250℃より高い成形加工温度が求められる熱可塑性樹脂に対して適用性があることを確認した。 Table 4 shows the measurement results.
Figure 0006668091
The compounds of Examples 1 to 5 were prepared by introducing two substituents of the formula (i) to give the compound 8 of the comparative example 3 having no substituent of the formula (i) and the comparative examples 4 and 5 of the benzotriazole skeleton. It has a higher 5% weight loss temperature than Compounds 9 and 10 and Compound 6 of Comparative Example 1 in which one substituent of the formula (i) is introduced, and has high heat resistance (ultraviolet rays of a resin member due to thermal decomposition of an ultraviolet absorber). It has been confirmed that the resin has improved absorbability and suppresses the decrease in the transparency of the transparent resin, and is applicable to a thermoplastic resin requiring a molding temperature higher than 200 to 250 ° C.

フィルムの評価
本発明の化合物のフィルム、樹脂部材に対する相溶性(透明性)の効果を下記方法で確認した(表5)。
Evaluation of Film The effect of the compatibility (transparency) of the compound of the present invention on the film and the resin member was confirmed by the following method (Table 5).

実施例1〜5、比較例2の化合物0.1g、アクリル樹脂0.1g、クロロホルム4gを均一に混合した後、クロロホルムを2〜3g程度濃縮させ、これをスライドグラスに滴下し、その後45℃のオーブン中で2時間溶媒を除去することにより、膜厚10〜100μmのアクリルフィルムを作製した。また、添加物を添加せず、アクリル樹脂0.1g、クロロホルム4gを均一に混合し、上記同様な操作を行い、フィルムを作製した。   After uniformly mixing 0.1 g of the compounds of Examples 1 to 5 and Comparative Example 2, 0.1 g of an acrylic resin, and 4 g of chloroform, chloroform was concentrated to about 2 to 3 g, and this was dropped on a slide glass, and then cooled to 45 ° C. The solvent was removed in an oven for 2 hours to produce an acrylic film having a thickness of 10 to 100 μm. Further, without adding additives, 0.1 g of acrylic resin and 4 g of chloroform were uniformly mixed, and the same operation as described above was performed to produce a film.

(1)外観
フィルムの外観を目視で観察し、次の基準で評価した。
○:白濁なく透明
×:白濁が見られ透明性が悪い
(1) Appearance The appearance of the film was visually observed and evaluated according to the following criteria.
:: transparent without cloudiness ×: cloudiness was observed and transparency was poor

(2)膜厚
膜厚は、フィルムを切断した断面を、卓上顕微鏡((株)日立ハイテク製Miniscope TM3000)を用いて計測した。
(2) Film Thickness The film thickness was measured by using a table microscope (Miniscope TM3000 manufactured by Hitachi High-Tech Co., Ltd.) on a section obtained by cutting the film.

Figure 0006668091
本発明の式(i)を含有するフェニルを2つ導入した化合物1〜5(実施例1〜5)は、式(i)を含有するフェニルを3つ導入したトリアジン系の化合物7(比較例2)と比べて、樹脂との相溶性が良好となり、黄変色がない透明なアクリルフィルムを作製することが可能であった。

Figure 0006668091
Compounds 1 to 5 (Examples 1 to 5) of the present invention in which two phenyls containing formula (i) are introduced are triazine-based compounds 7 (Comparative Examples) in which three phenyls containing formula (i) are introduced. Compared with 2), the compatibility with the resin was improved, and it was possible to produce a transparent acrylic film without yellow discoloration.

Claims (7)

下記式(I):
Figure 0006668091
(式中、R1〜R15はそれぞれ独立に、下記式(i):
Figure 0006668091
(式(i)中、R17はyが2以上の場合はそれぞれ独立に芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価もしくは2価の基で、水素原子が置換されるか、両端の少なくともいずれかが中断されるか、又は炭素−炭素結合が中断されていてもよい炭素数1〜20の2価の炭化水素基を示し、R18は芳香族基、不飽和基、硫黄含有基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価のもしくは2価の基で、水素原子が置換されるか、基端が中断されるか、又は炭素−炭素結合が中断されていてもよい炭素数1〜20の1価の炭化水素基、または水素原子を示す。y個のR17とR18の総炭素数は60以下である。yは0〜3の整数を示す。)で表わされる1価の硫黄含有基、水素原子、炭素数1〜10の炭化水素基、芳香族基、不飽和基、ジスルフィド基、スルホニル基、スルホ基、チオカルボニル基、チオカルバモイル基、チオ尿素基、酸素含有基、リン含有基、脂環式基、及びハロゲン原子から選ばれる1価の基を示す。R1〜R5、R6〜R10、及びR11〜R15の3つの群から選ばれるいずれか2つの群のうちの1群当たり1〜4個の基が、式(i)で表わされる1価の硫黄含有基である。)で表わされる紫外線吸収剤。
The following formula (I):
Figure 0006668091
(Wherein, R 1 to R 15 are each independently the following formula (i):
Figure 0006668091
(In the formula (i), R 17 is independently selected from an aromatic group, an unsaturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, an alicyclic group, and a halogen atom when y is 2 or more. The hydrogen atom is substituted, at least one of both ends is interrupted, or the carbon-carbon bond may be interrupted by a divalent group having 1 to 20 carbon atoms. A hydrocarbon group; R 18 is a monovalent or divalent group selected from an aromatic group, an unsaturated group, a sulfur-containing group, an oxygen-containing group, a phosphorus-containing group, an alicyclic group, and a halogen atom; A monovalent hydrocarbon group having 1 to 20 carbon atoms or a hydrogen atom which may be substituted with a hydrogen atom, interrupted at a base end, or interrupted at a carbon-carbon bond. the total number of carbon atoms of R 17 and R 18 is 60 or less. y monovalent represented by the indicating.) an integer of 0 to 3 A sulfur-containing group, a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, an aromatic group, an unsaturated group, a disulfide group, a sulfonyl group, a sulfo group, a thiocarbonyl group, a thiocarbamoyl group, a thiourea group, an oxygen-containing group, It represents a monovalent group selected from a phosphorus-containing group, an alicyclic group, and a halogen atom. R 1 to R 5 , R 6 to R 10 , and R 11 to R 15 each represent a group represented by the formula (i) in which one to four groups per two groups out of any two groups are represented by the formula (i). Is a monovalent sulfur-containing group. UV absorber represented by).
前記式(i)で表わされる1価の硫黄含有基は、yが0である、請求項1に記載の紫外線吸収剤。   The ultraviolet absorbent according to claim 1, wherein y is 0 in the monovalent sulfur-containing group represented by the formula (i). 前記式(i)で表わされる1価の硫黄含有基は、y個のR17が炭素数18以下のアルキレン基を含み、R18が炭素数18以下のアルキル基を含む、請求項1又は2に記載の紫外線吸収剤。 The monovalent sulfur-containing group represented by the formula (i), wherein y R 17 include an alkylene group having 18 or less carbon atoms, and R 18 includes an alkyl group having 18 or less carbon atoms. 3. The ultraviolet absorbent according to 1. 1〜R15のうち式(i)で表わされる1価の硫黄含有基以外の置換基が、炭素数1〜4のアルキル基、ヒドロキシ基、及びハロゲン原子から選ばれる、請求項1から3のいずれか一項に記載の紫外線吸収剤。 The substituent other than the monovalent sulfur-containing group represented by the formula (i) among R 1 to R 15 is selected from an alkyl group having 1 to 4 carbon atoms, a hydroxy group, and a halogen atom. The ultraviolet absorber according to any one of the above. 請求項1から4のいずれか一項に記載の紫外線吸収剤をマトリックスの樹脂中に含有する樹脂部材。 A resin member containing the ultraviolet absorbent according to any one of claims 1 to 4 in a matrix resin. マトリックスが透明樹脂である請求項5に記載の樹脂部材。 The resin member according to claim 5 , wherein the matrix is a transparent resin. フィルム、シート、プレート状部材、又は光学樹脂である請求項5又は6に記載の樹脂部材。
The resin member according to claim 5, which is a film, a sheet, a plate-shaped member, or an optical resin.
JP2016016041A 2016-01-29 2016-01-29 UV absorber and resin member using the same Active JP6668091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016016041A JP6668091B2 (en) 2016-01-29 2016-01-29 UV absorber and resin member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016016041A JP6668091B2 (en) 2016-01-29 2016-01-29 UV absorber and resin member using the same

Publications (2)

Publication Number Publication Date
JP2017132948A JP2017132948A (en) 2017-08-03
JP6668091B2 true JP6668091B2 (en) 2020-03-18

Family

ID=59504625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016016041A Active JP6668091B2 (en) 2016-01-29 2016-01-29 UV absorber and resin member using the same

Country Status (1)

Country Link
JP (1) JP6668091B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022109941A (en) * 2014-08-05 2022-07-28 ミヨシ油脂株式会社 Additive for imparting ultraviolet absorptivity and/or high refractive index to matrix, and resin member using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178320A (en) * 2018-03-30 2019-10-17 大日本印刷株式会社 Adhesive sheet
TWI835843B (en) * 2018-10-03 2024-03-21 瑞士商亨斯邁紡織染化(瑞士)有限公司 New pyridine- and pyrimidine-substituted triazine uv absorbers
JP7236881B2 (en) * 2019-02-26 2023-03-10 帝人株式会社 Polycarbonate resin composition
JP7236882B2 (en) * 2019-02-26 2023-03-10 帝人株式会社 Polycarbonate resin composition
WO2020175487A1 (en) * 2019-02-26 2020-09-03 帝人株式会社 Polycarbonate resin composition
KR20210131994A (en) * 2019-02-26 2021-11-03 미요시 유시 가부시끼가이샤 Resin molding material, manufacturing method thereof, and manufacturing method of resin member, etc.
TWI754322B (en) * 2019-10-17 2022-02-01 大陸商常州強力昱鐳光電材料有限公司 Electronically active materials, exciplex, organic light-emitting element and use thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3912648A (en) * 1973-03-21 1975-10-14 American Cyanamid Co Ring halogen-free substituted triazine compounds as bleach activators
US3928330A (en) * 1973-12-19 1975-12-23 Ciba Geigy Corp Substituted piperazinedione carboxylic acids and metal salts thereof
US5354794A (en) * 1993-02-03 1994-10-11 Ciba-Geigy Corporation Electro coat/base coat/clear coat finishes stabilized with S-triazine UV absorbers
GB2279649B (en) * 1993-07-08 1997-07-16 Ciba Geigy Ag Phenolic s-triazines
JP5422269B2 (en) * 2009-06-23 2014-02-19 富士フイルム株式会社 Ultraviolet absorber composition and resin composition
JP2011148865A (en) * 2010-01-19 2011-08-04 Fujifilm Corp Ultraviolet absorber composition
FR2965808B1 (en) * 2010-08-04 2013-10-18 Michelin Soc Tech SULFURIC TRIAZINE MONOMER FOR USE IN THE SYNTHESIS OF A POLYMERIC MEMBRANE FOR A FUEL CELL

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022109941A (en) * 2014-08-05 2022-07-28 ミヨシ油脂株式会社 Additive for imparting ultraviolet absorptivity and/or high refractive index to matrix, and resin member using the same
JP7312416B2 (en) 2014-08-05 2023-07-21 ミヨシ油脂株式会社 Additive for imparting UV absorbability and/or high refractive index to matrix and resin member using the same

Also Published As

Publication number Publication date
JP2017132948A (en) 2017-08-03

Similar Documents

Publication Publication Date Title
JP7312416B2 (en) Additive for imparting UV absorbability and/or high refractive index to matrix and resin member using the same
JP6668091B2 (en) UV absorber and resin member using the same
JP7390890B2 (en) Benzotriazole compounds
TWI481654B (en) Resin formed article and polymer film
JPWO2020137819A1 (en) Light resistance, heat resistance and durability UV absorber
WO2019240015A1 (en) Display device and composition for display device
TWI822888B (en) Films for optical members, compositions for optical members, and optical members
KR20230021725A (en) Polymerizable compositions, polymers, UV shielding materials, laminates, compounds, UV absorbers and methods for producing compounds
JP7410319B2 (en) Ultraviolet absorbers, resin compositions, cured products, optical members, methods for producing ultraviolet absorbers, and compounds
US9268065B1 (en) Composition for polarizing film, polarizing film, and display device including the polarizing film
KR20190127058A (en) Pyrene-based compound, ultraviolet absorbent and oled display having member comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191115

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200226

R150 Certificate of patent or registration of utility model

Ref document number: 6668091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250