JP6667568B2 - Method for producing oxidized fiber and oxidized fiber - Google Patents

Method for producing oxidized fiber and oxidized fiber Download PDF

Info

Publication number
JP6667568B2
JP6667568B2 JP2018072900A JP2018072900A JP6667568B2 JP 6667568 B2 JP6667568 B2 JP 6667568B2 JP 2018072900 A JP2018072900 A JP 2018072900A JP 2018072900 A JP2018072900 A JP 2018072900A JP 6667568 B2 JP6667568 B2 JP 6667568B2
Authority
JP
Japan
Prior art keywords
oxidized
fiber
fiber bundle
microwave
heating furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018072900A
Other languages
Japanese (ja)
Other versions
JP2019131940A (en
Inventor
王智永
Original Assignee
永虹先進材料股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永虹先進材料股▲ふん▼有限公司 filed Critical 永虹先進材料股▲ふん▼有限公司
Publication of JP2019131940A publication Critical patent/JP2019131940A/en
Application granted granted Critical
Publication of JP6667568B2 publication Critical patent/JP6667568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/003Treatment with radio-waves or microwaves
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F11/00Chemical after-treatment of artificial filaments or the like during manufacture
    • D01F11/10Chemical after-treatment of artificial filaments or the like during manufacture of carbon
    • D01F11/16Chemical after-treatment of artificial filaments or the like during manufacture of carbon by physicochemical methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/04Supporting filaments or the like during their treatment
    • D01D10/0436Supporting filaments or the like during their treatment while in continuous movement
    • D01D10/0454Supporting filaments or the like during their treatment while in continuous movement using reels
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/18Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from proteins, e.g. from wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • D01F9/225Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles from stabilised polyacrylonitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2211/00Protein-based fibres, e.g. animal fibres
    • D10B2211/01Natural animal fibres, e.g. keratin fibres
    • D10B2211/04Silk
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/10Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

本発明は、炭素繊維の予備酸化技術に関わり、主に炭素繊維の性能を向上する酸化繊維の製造方法、及びそれに関わる酸化繊維に関する。 The present invention relates to a technique for pre-oxidizing carbon fibers, and more particularly to a method for producing oxidized fibers that improves the performance of carbon fibers, and an oxidized fiber related thereto.

炭素繊維は、有機繊維に対する一連の熱処理を経て得られた炭素含有量90%以上の新しい炭素材料であり、高比強度、高弾性率、高導電性と高熱伝導性、低熱膨張係数、低密度、耐高温性、耐疲労性、耐クリープ性、自己潤滑性などに一連の優れた性能を有する、理想的な機能材料と構造材料であるため、航空宇宙、民間航空や運輸などの分野で広く応用され、応用範囲の広い將來性がある。 Carbon fiber is a new carbon material with a carbon content of 90% or more obtained through a series of heat treatments on organic fibers, and has a high specific strength, a high elastic modulus, a high electrical conductivity and a high thermal conductivity, a low thermal expansion coefficient, and a low density. With a series of excellent performances such as high temperature resistance, fatigue resistance, creep resistance, self-lubrication, etc., it is an ideal functional material and structural material, so it is widely used in fields such as aerospace, civil aviation and transportation It is applied and has a wide range of applications.

ポリアクリロニトリル (polyacrylonitrile, PAN)を原糸とした炭素繊維の製造は、重合、紡糸、予備酸化と炭化工程が含まれ、その中、予備酸化工程は、炭素繊維の製造工程における構造変化の重要な段階で、熱処理過程に最も時間が掛かる段階でもあり、ポリアクリロニトリルの線状高分子鎖を耐熱性酸化繊維に転換して、後続する炭化工程で不融化・不燃性繊維のままを維持することを目的とする工程である。 The production of carbon fiber using polyacrylonitrile (PAN) as a raw yarn includes polymerization, spinning, pre-oxidation and carbonization steps, in which the pre-oxidation step is important for structural changes in the carbon fiber production step. In this stage, the heat treatment process takes the longest time, and it is necessary to convert the linear polymer chains of polyacrylonitrile into heat-resistant oxidized fibers, and to maintain the infusible and non-combustible fibers in the subsequent carbonization step. This is the target process.

予備酸化工程では、原糸の構造変化において、炭素繊維の構造と性能が大きく左右され、工業化製造では大よそ、温度勾配法による予備酸化で行なわれ、該工程に適した温度勾配範囲が必要となり、開始温度が低すぎると、予備酸化工程によくならず、時間やコストが大きくかかること、開始温度が高過ぎると、激しい発熱反応が生じて、耐熱性のないPAN高分子鎖が溶斷してしまうこと、終了温度が高過ぎると、集中的発熱で、予備酸化された繊維構造を破壊し、過度に予備酸化され、高強度炭素繊維の製造に不利なこと、終了温度が低すぎると、予備酸化が不十分な恐れがあること。 In the pre-oxidation process, the structure and performance of the carbon fiber are greatly affected by the structural change of the raw yarn. In industrial production, the pre-oxidation is generally performed by pre-oxidation using the temperature gradient method, and a temperature gradient range suitable for the process is required. If the starting temperature is too low, the pre-oxidation process will not be improved, and it will take a long time and cost. If the starting temperature is too high, a severe exothermic reaction will occur, and the PAN polymer chains having no heat resistance will be cut off. If the end temperature is too high, intensive heat generation will destroy the pre-oxidized fiber structure, excessive pre-oxidation, disadvantageous to the production of high-strength carbon fiber, if the end temperature is too low, Pre-oxidation may be insufficient.

加熱による予備酸化反応は、予備酸化反応の進行に伴い、熱伝導が原糸の外層から内層まで行なわれるため、原糸の外層に精密なラダー構造の酸化層(皮膜)が形成され、それが、酸素が原糸内層にある芯部へ拡散することを阻害するが、図1に示すように、酸化繊維10の単繊維11における、酸化された酸化層111(皮膜)及び酸化されない芯部112には、顕著に異なるスキン・コア構造が生成され、該酸化層111と該芯部112の間にスキン・コア介面113があること、スキン・コア構造の測定は、走査型電子顕微鏡(SEM, Scanning Electron Microscope)で実体画像を撮り、該酸化繊維の断面を観察、該酸化層の断面積、該芯部の断面積及び該酸化繊維の断面積をそれぞれ計算して行なわれるが、該スキン・コア構造出來具合の観察による芯部比率(%)は、該芯部断面積を該酸化層断面積と該芯部断面積の和で割り、即ち、芯部比率(%)は、該芯部断面積を該酸化繊維断面積で割ったものとし、また、該酸化繊維10及び製造された炭素繊維の物理的性質、例えば、引張強度や引張弾性率はまた、該酸化繊維10または酸化層111の酸化程度や環化度により決められ、該酸化繊維10または酸化層111の酸化程度や環化度が高いほど、該酸化繊維10で製造された炭素繊維の引張強度や引張弾性率が高くなる。該酸化層111は酸化状態であるため、精密な構造かつ、製造された炭素繊維の高引張強度と高引張弾性率を有し、該芯部112は酸化不完全または酸化されない状態にあるため、ルーズな構造かつ製造された炭素繊維の低引張強度と低引張弾性率を有するものであることから、該酸化層111と該芯部112の酸化程度の不一致によって生じられた、このような該スキン・コア構造が、炭素繊維の引張強度を低下させてしまう要因の一つであり、それで、予備酸化反応過程にて、どうやって、予備酸化時間を短縮し、予備酸化程度の向上を行ない、更にスキン・コア構造を取り除くのが、炭素繊維の製造コスト低減及びその性能(引張強度と引張弾性率)向上に十分かつ重要な意義を有するのである。 In the pre-oxidation reaction by heating, heat conduction is performed from the outer layer to the inner layer of the yarn with the progress of the pre-oxidation reaction, so that an oxide layer (film) having a precise ladder structure is formed on the outer layer of the yarn, and this is formed. 1 prevents the oxygen from diffusing into the core in the inner layer of the yarn, but as shown in FIG. 1, the oxidized oxide layer 111 (coating) and the non-oxidized core 112 in the single fiber 11 of the oxidized fiber 10. Has a significantly different skin-core structure, a skin-core intervening surface 113 between the oxide layer 111 and the core 112, and the measurement of the skin-core structure is performed by a scanning electron microscope (SEM, A solid body image is taken with a scanning electron microscope, the cross section of the oxidized fiber is observed, and the cross sectional area of the oxidized layer, the cross sectional area of the core, and the cross sectional area of the oxidized fiber are calculated. However, the core ratio (%) obtained by observing the appearance of the skin / core structure is obtained by dividing the core cross-sectional area by the sum of the oxide layer cross-sectional area and the core cross-sectional area, that is, the core ratio (%). ) Is the core cross-sectional area divided by the oxidized fiber cross-sectional area, and the physical properties of the oxidized fiber 10 and the manufactured carbon fiber, such as tensile strength and tensile modulus, are It is determined by the degree of oxidation and the degree of cyclization of the fiber 10 or the oxide layer 111. The higher the degree of oxidation and the degree of cyclization of the oxide fiber 10 or the oxide layer 111, the higher the tensile strength and the strength of the carbon fiber produced by the oxide fiber 10. The tensile modulus increases. Since the oxidized layer 111 is in an oxidized state, it has a precise structure and a high tensile strength and a high tensile modulus of the manufactured carbon fiber, and the core 112 is in an incompletely oxidized state or is not oxidized. Such a skin, which has a loose structure and has low tensile strength and low tensile elasticity of the manufactured carbon fiber, is caused by inconsistency in the degree of oxidation of the oxide layer 111 and the core 112. -The core structure is one of the factors that reduce the tensile strength of carbon fiber, so in the pre-oxidation reaction process, how to shorten the pre-oxidation time, improve the pre-oxidation degree, and further improve the skin Eliminating the core structure has sufficient and important significance in reducing the production cost of carbon fiber and improving its performance (tensile strength and tensile modulus).

それに鑑みて、本発明は、酸化繊維の酸化時間を有効に短縮、酸化繊維のスキン・コア構造を有効に低減し、ないし酸化繊維に顕著なスキン・コア構造を持たせないようにする酸化繊維の製造方法、及びそれに関わる酸化繊維を提供することを目的とする。 In view of this, the present invention provides an oxidized fiber that effectively shortens the oxidation time of the oxidized fiber, effectively reduces the skin-core structure of the oxidized fiber, or prevents the oxidized fiber from having a remarkable skin-core structure. It is an object of the present invention to provide a method for producing the same and an oxidized fiber relating to the method.

本発明は、繊維束を酸化繊維束に予備酸化するのに適用し、単繊維または複数の該繊維を集め、束ねてなり、該酸化繊維束は、単一酸化繊維または複数の該酸化繊維を集め、束ねてなり、次のように、
糸供給手順:該繊維束を用意すること、
マイクロ波処理手順: 該繊維束をマイクロ波条件で暴露して、該酸化繊維束にするという手順が含まれていることを特徴とする酸化繊維の製造方法。
The present invention applies to pre-oxidizing a fiber bundle into an oxidized fiber bundle, collecting and bundling a single fiber or a plurality of the fibers, wherein the oxidized fiber bundle is formed by converting a single oxidized fiber or a plurality of the oxidized fibers. Collect and bundle, as follows:
Yarn supply procedure: preparing the fiber bundle;
Microwave treatment procedure: A method for producing an oxidized fiber, comprising a step of exposing the fiber bundle under microwave conditions to form the oxidized fiber bundle.

本発明はある実施形態で、該繊維束を該酸化繊維束に予備酸化するのに適用し、該繊維束は、単纖維または複数の該纖維を集め、束ねてなり、該酸化繊維束は、単一酸化繊維または複数の該酸化繊維を集め、束ねてなり、次のように、
a.伝送ユニットとマイクロ波処理ユニットの配置、
b.該繊維束の供給:該繊維束を該伝送ユニットにセッティングし、該伝送ユニットで、該繊維束を該マイクロ波処理ユニットに通過させるようにすること、
c.該マイクロ波処理ユニットの立ち上げ:該マイクロ波処理ユニットで、該マイクロ波条件を制御すること、
d.該伝送ユニットの立ち上げ:該伝送ユニットで、該繊維束をマイクロ波条件で、連続的時間に処理し、該繊維束を該酸化繊維束にすること、
という手順が含まれていることを特徴とする酸化繊維の製造方法。
The present invention, in one embodiment, is applied to pre-oxidize the fiber bundle to the oxidized fiber bundle, wherein the fiber bundle comprises a single fiber or a plurality of the fibers collected and bundled, the oxidized fiber bundle comprising: A single oxidized fiber or a plurality of such oxidized fibers are collected and bundled, as follows:
a. Arrangement of transmission unit and microwave processing unit,
b. Feeding the fiber bundle: setting the fiber bundle in the transmission unit, where the transmission unit passes the fiber bundle through the microwave processing unit;
c. Starting up the microwave processing unit: controlling the microwave conditions with the microwave processing unit;
d. Commissioning the transmission unit: treating the fiber bundle in the transmission unit under microwave conditions for a continuous time to turn the fiber bundle into the oxidized fiber bundle;
A method for producing an oxidized fiber, comprising the steps of:

該繊維束の該纖維は、該酸化繊維の製造方法で、該酸化繊維に予備酸化されるように設けられることを特徴とする該酸化繊維の製造方法。 The method for producing an oxidized fiber, wherein the fiber of the fiber bundle is provided so as to be pre-oxidized to the oxidized fiber in the method for producing an oxidized fiber.

該マイクロ波条件は、マイクロ波の周波数300〜300,000MHz、マイクロ波出力1〜1000kW/m、作業温度100〜600℃、及び酸素、空気、オゾンの何れか一つまたはそれらの混合である雰囲気ガスが含まれていることを特徴とする該酸化繊維の製造方法。 The microwave conditions are a microwave frequency of 300 to 300,000 MHz, a microwave output of 1 to 1000 kW / m 2 , a working temperature of 100 to 600 ° C., and any one of oxygen, air, and ozone or a mixture thereof. A method for producing the oxidized fiber, comprising an atmosphere gas.

該処理時間は1〜40分であることを特徴とする該酸化繊維の製造方法。 The method for producing the oxidized fiber, wherein the treatment time is 1 to 40 minutes.

該マイクロ波出力は10〜24kW/mであることを特徴とする該酸化繊維の製造方法。 The method for producing the oxidized fiber, wherein the microwave output is 10 to 24 kW / m 2 .

マイクロ波の周波数は2000〜3000 MHz、該作業温度は150〜350℃、該処理時間は5〜20分であることを特徴とする該酸化繊維の製造方法。 A method for producing the oxidized fiber, wherein the frequency of the microwave is 2000 to 3000 MHz, the working temperature is 150 to 350 ° C, and the processing time is 5 to 20 minutes.

該繊維束はポリアクリロニトリル(PAN)纖維、瀝青纖維またはその他の有機繊維の何れか一つであることを特徴とする該酸化繊維の製造方法。 The method for producing an oxidized fiber, wherein the fiber bundle is any one of polyacrylonitrile (PAN) fiber, bituminous fiber, and other organic fibers.

該伝送ユニットは、該繊維束を供給するための供給装置、該繊維束を引いて、加熱炉を通過させるよう連続送りするための巻取装置を備えてなり、該マイクロ波処理ユニットは、該加熱炉にマイクロ波の周波数と該マイクロ波出力を発生するためのマグネトロン、及び該加熱炉に該雰囲気ガスを供給するための送気装置を備えてなるものであることを特徴とする該酸化繊維の製造方法。 The transmission unit includes a supply device for supplying the fiber bundle, a winding device for pulling the fiber bundle, and continuously feeding the fiber bundle through a heating furnace, and the microwave processing unit includes: The oxidized fiber, comprising: a heating furnace provided with a magnetron for generating a microwave frequency and the microwave output; and an air supply device for supplying the atmosphere gas to the heating furnace. Manufacturing method.

該マグネトロンと該送気装置は、制御ユニットと電気的に接続していることを特徴とする該酸化繊維の製造方法。 The method for producing the oxidized fiber, wherein the magnetron and the air supply device are electrically connected to a control unit.

該加熱炉内部には、保温ユニットが設けられていることを特徴とする該酸化繊維の製造方法。 A method for producing the oxidized fiber, wherein a heat retaining unit is provided inside the heating furnace.

該保温ユニットは、金屬酸化物、炭化物、マイクロ波の高反応性材料の何れか一つ、またはその組み合わせでもよいことを特徴とする該酸化繊維の製造方法。 The method for producing an oxidized fiber, wherein the heat retaining unit may be any one of a metal oxide, a carbide, a microwave highly reactive material, or a combination thereof.

該繊維束は、該加熱炉内にて、重ね巻きで、該マイクロ波処理ユニットからの照射を連続的に受けるように設けられていることを特徴とする該酸化繊維の製造方法。 The method for producing the oxidized fiber, wherein the fiber bundle is provided so as to be continuously irradiated with the irradiation from the microwave processing unit in a lap winding in the heating furnace.

本発明は少なくとも、酸化層と芯部を備えてなることを特徴とする酸化繊維であり、該酸化層は該芯部の外側を被覆し、該酸化層の断面積が少なくとも、該酸化繊維の断面積の50%以上を占めるように設けられており、該酸化繊維は、該纖維を該マイクロ波条件で暴露、製造されるものであり、好適な該酸化繊維は、有機纖維を該マイクロ波条件で暴露、製造されるものであることを特徴とする。 The present invention is an oxidized fiber comprising at least an oxidized layer and a core, wherein the oxidized layer covers the outside of the core, and the cross-sectional area of the oxidized layer is at least that of the oxidized fiber. The oxidized fiber is formed by exposing the fiber under the microwave condition, and the oxidized fiber is formed by exposing the organic fiber to the microwave. It is characterized by being exposed and manufactured under conditions.

該酸化層の断面積は少なくとも、該酸化繊維の断面積の60%以上を占めるように設けられることを特徴とする。 The cross-sectional area of the oxide layer is provided so as to occupy at least 60% or more of the cross-sectional area of the oxidized fiber.

該酸化層の断面積は少なくとも、該酸化繊維の断面積の80%以上を占めるように設けられることを特徴とする。 The cross-sectional area of the oxide layer is provided so as to occupy at least 80% of the cross-sectional area of the oxidized fiber.

該酸化層の断面積は少なくとも、該酸化繊維の断面積の90%以上を占めるように設けられることを特徴とする。 The cross-sectional area of the oxide layer is provided so as to occupy at least 90% of the cross-sectional area of the oxidized fiber.

該酸化層の断面積は少なくとも、該酸化繊維の断面積の99%以上を占めるように設けられることを特徴とする。 The cross-sectional area of the oxide layer is provided so as to occupy at least 99% or more of the cross-sectional area of the oxidized fiber.

本発明に掲示された酸化繊維の製造方法は、マイクロ波処理ユニットの集束マイクロ波で、繊維束への超高速予備酸化処理を行い、繊維束を酸化繊維に加工して、酸化繊維の酸化時間を有効に短縮すると同時に、酸化繊維内の酸化層が少なくとも、該酸化繊維の断面積50%以上を占めるようにし、酸化繊維のスキン・コア構造を有効に低減するのが可能であること、酸化繊維内の酸化層が少なくとも該酸化繊維の断面積80%以上を占めたとき、ないし酸化繊維に顕著なスキン・コア構造を持たないようにすることが可能なため、本発明では比較的に、より積極的かつ信頼性のある手段として、炭素繊維の性能を向上することができるのである。 The manufacturing method of the oxidized fiber disclosed in the present invention is to perform ultra-high-speed pre-oxidation treatment on the fiber bundle with the focused microwave of the microwave processing unit, process the fiber bundle into the oxidized fiber, and oxidize the oxidized fiber. At the same time that the oxide layer in the oxidized fiber occupies at least 50% or more of the cross-sectional area of the oxidized fiber, thereby effectively reducing the skin core structure of the oxidized fiber. In the present invention, when the oxidized layer in the fiber occupies at least 80% or more of the cross-sectional area of the oxidized fiber or because the oxidized fiber does not have a remarkable skin-core structure, As a more aggressive and reliable means, the performance of carbon fibers can be improved.

従來の酸化繊維のスキン・コア構造イメージ。Image of conventional oxidized fiber skin / core structure. 本発明の酸化繊維の製造方法に関する基本フローチャート。1 is a basic flowchart relating to a method for producing an oxidized fiber of the present invention. 本発明の酸化繊維の製造方法における伝送ユニット及びマイクロ波処理ユニットの構造イメージ。5 is a structural image of a transmission unit and a microwave processing unit in the method for manufacturing an oxidized fiber of the present invention. 繊維束に対して、本発明の酸化繊維の製造方法によるそれぞれ12kW/m、16kW/m、20kW/m、24kW/mの集束マイクロ波処理及び従來の加熱方法による酸化繊維の酸化程度曲線図。The fiber bundle, the oxide fibers by each 12kW / m 2, 16kW / m 2, 20kW / m 2, 24kW / focusing m 2 microwaving and従來heating method by the manufacturing method of the oxide fibers of the present invention Oxidation degree curve diagram. 繊維束に対して、本発明の酸化繊維の製造方法による24kW/mの集束マイクロ波処理を2分、4分、5分、10分、15分施して得られた酸化繊維の環化度曲線図。The degree of cyclization of the oxidized fiber obtained by subjecting the fiber bundle to a focused microwave treatment of 24 kW / m 2 by the method for producing an oxidized fiber of the present invention for 2 minutes, 4 minutes, 5 minutes, 10 minutes, and 15 minutes Curve diagram. 繊維束に対して、本発明の酸化繊維の製造方法による24kW/mの集束マイクロ波処理を5分施して得られた酸化繊維内の酸化繊維断面の実体画像。The substantial image of the cross section of the oxidized fiber in the oxidized fiber obtained by subjecting the fiber bundle to the focused microwave treatment of 24 kW / m 2 by the method for producing the oxidized fiber of the present invention for 5 minutes. 繊維束に対して、本発明の酸化繊維の製造方法による24kW/mの集束マイクロ波処理を10分施して得られた酸化繊維内の酸化繊維断面の実体画像。The substantial image of the cross section of the oxidized fiber in the oxidized fiber obtained by subjecting the fiber bundle to the focused microwave treatment of 24 kW / m 2 by the method for producing the oxidized fiber of the present invention for 10 minutes. 繊維束に対して、本発明の酸化繊維の製造方法による24kW/mの集束マイクロ波処理を15分施して得られた酸化繊維内の酸化繊維断面の実体画像。The substantial image of the cross section of the oxidized fiber in the oxidized fiber obtained by subjecting the fiber bundle to the focused microwave treatment of 24 kW / m 2 by the method for producing the oxidized fiber of the present invention for 15 minutes. 本発明の酸化繊維の製造方法に関するもう一つのフローチャート。6 is another flowchart relating to the method for producing oxidized fiber of the present invention. 本発明の酸化繊維の製造方法による加熱炉の構造イメージ。The structural image of the heating furnace by the manufacturing method of the oxidation fiber of this invention. 本発明の酸化繊維の構造イメージ。2 is a structural image of the oxidized fiber of the present invention.

本発明は、酸化繊維の酸化時間を有効に短縮、酸化繊維のスキン・コア構造を有効に低減し、ないし酸化繊維に顕著なスキン・コア構造を持たせないようにすることを提供する酸化繊維の製造方法及びそれに関わる酸化繊維であり、本発明の酸化繊維の製造方法は図2と図3に示すように、次のような手順が含まれている。 The present invention provides an oxidized fiber that effectively shortens the oxidation time of the oxidized fiber, effectively reduces the skin-core structure of the oxidized fiber, or prevents the oxidized fiber from having a remarkable skin-core structure. The method for producing oxidized fiber according to the present invention includes the following procedure as shown in FIGS. 2 and 3.

a.伝送ユニット30とマイクロ波処理ユニット40の配置。実施の時、該伝送ユニット30は、繊維束20を供給するための供給装置31、該繊維束20を引いて、加熱炉33を通過させるよう連続送りするための巻取装置32を備えてなり、該繊維束20は、単纖維(未図示)または複数の該纖維を集め、束ねてなり、該マイクロ波処理ユニット40は、該加熱炉33に該マイクロ波を発生するために少なくともの一つのマグネトロン41、及び該加熱炉33に酸素含有エアを供給すための送気装置42が設けられており、該送気装置42は該加熱炉33の該送気口331に接続し、該酸素含有エアは、該送気口331から該加熱炉33へ送入され、該加熱炉33の該排気口332から排出されることになっており、該伝送ユニット30は更に、該加熱炉33内部に保温ユニット34が設けられ、好適な該マイクロ波処理ユニット40は該加熱炉33に、複数の該マグネトロン41が設けられ、複数の該マグネトロン41は、該加熱炉33の上下両側に対向配置または相対位置をずらして配置、または該加熱炉33の方側(上側または下側)に配置され、図3に示す複数の該マグネトロン41は、該加熱炉33の上下両側に上下対向配置され、図3に示すように、好適な複数の該マグネトロン41は上下対向対置されており、このように、該加熱炉33を通過する該繊維束20の上半部と下半部に対して、同時かつ均等的にマイクロ波照射処理を行い、該加熱炉33の長さが短縮可能なため、製造時間が減少され、製造速度も速まるのである。 a. Arrangement of the transmission unit 30 and the microwave processing unit 40. In operation, the transmission unit 30 includes a supply device 31 for supplying the fiber bundle 20, and a winding device 32 for pulling the fiber bundle 20 and continuously feeding the fiber bundle 20 through the heating furnace 33. The fiber bundle 20 is formed by collecting and bundling a single fiber (not shown) or a plurality of the fibers, and the microwave processing unit 40 includes at least one fiber for generating the microwave in the heating furnace 33. An air supply device 42 for supplying oxygen-containing air to the magnetron 41 and the heating furnace 33 is provided. The air supply device 42 is connected to the air supply port 331 of the heating furnace 33 and Air is to be sent into the heating furnace 33 from the air supply port 331 and discharged from the exhaust port 332 of the heating furnace 33, and the transmission unit 30 is further inserted into the heating furnace 33. A heat insulation unit 34 is provided, In the microwave processing unit 40, a plurality of the magnetrons 41 are provided in the heating furnace 33, and the plurality of the magnetrons 41 are disposed on the upper and lower sides of the heating furnace 33 so as to face each other or to be shifted in relative position, or The magnetrons 41 shown in FIG. 3 are arranged on the side (upper or lower side) of the heating furnace 33, and are vertically opposed to each other on the upper and lower sides of the heating furnace 33. As shown in FIG. The magnetrons 41 are vertically opposed to each other. Thus, the upper half and the lower half of the fiber bundle 20 passing through the heating furnace 33 are simultaneously and uniformly subjected to the microwave irradiation processing. Since the length of the heating furnace 33 can be shortened, the manufacturing time is reduced, and the manufacturing speed is increased.

b.該繊維束20の供給:該繊維束20を該伝送ユニット30にセッティングし、該伝送ユニット30で、該繊維束20を該マイクロ波処理ユニット40に通過させるようにすること、例えば、巻かれている該繊維束20を、該伝送ユニット30で、該マイクロ波処理ユニット40の作業エリアに連続通過させるように送るための該伝送ユニット30にセッティングし、実施例では、巻かれている該繊維束20を該供給装置31にセッティングし、該繊維束20の先端を、該加熱炉33を通過させるよう通し、該巻取装置32に固定するように設けられるが、該繊維束20は、ポリアクリロニトリル(PAN)、瀝青繊維またはその他の有機繊維の何れか一つでもよい。 b. Supply of the fiber bundle 20: setting the fiber bundle 20 in the transmission unit 30 and causing the fiber bundle 20 to pass through the microwave processing unit 40 at the transmission unit 30, for example, wound The fiber bundle 20 is set in the transmission unit 30 for sending the fiber bundle 20 continuously through the working area of the microwave processing unit 40 by the transmission unit 30, and in the embodiment, the fiber bundle being wound is set. 20 is set in the supply device 31, the tip of the fiber bundle 20 is passed through the heating furnace 33, and is fixed to the winding device 32. The fiber bundle 20 is made of polyacrylonitrile. (PAN), bituminous fiber or any one of other organic fibers.

c.該マイクロ波処理ユニット40の立ち上げ:該マイクロ波処理ユニット40で、マイクロ波条件を制御すること。 該マイクロ波条件は、マイクロ波の周波数300〜300,000MHz、マイクロ波出力1〜1000kW/m、作業温度100〜600℃、及び酸素、空気、オゾンの何れか一つまたはそれらの混合である雰囲気ガスが含まれ、該雰囲気ガスは前述した該酸素含有エアであり、本実施例では、それと同時に、該送気装置42から該酸素含有エアを該加熱炉33内に送入されること。 c. Start-up of the microwave processing unit 40: controlling microwave conditions in the microwave processing unit 40. The microwave conditions are a microwave frequency of 300 to 300,000 MHz, a microwave output of 1 to 1000 kW / m 2 , a working temperature of 100 to 600 ° C., and any one of oxygen, air, and ozone or a mixture thereof. Atmospheric gas is included, and the atmospheric gas is the oxygen-containing air described above. In this embodiment, the oxygen-containing air is simultaneously supplied from the air supply device 42 into the heating furnace 33.

d.該伝送ユニット30の立ち上げ:該伝送ユニット30で該繊維束20を送り、該マイクロ波条件により、連続的時間に処理し、該繊維束20を該酸化繊維束20Aにするように設けられるが、例えば、該伝送ユニット30で、該繊維束20を、該マイクロ波処理ユニット40の作業エリアを通過させ、集束マイクロ波処理を連続的に1〜40分間施して、酸化繊維束20Aにするように設けられ、該処理時間は1〜40分にするが、本実施例では、該伝送ユニット30で、該繊維束20を該加熱炉33を通過させ、該マイクロ波処理ユニット40による集束マイクロ波処理を連続的に1〜40分間施して、該酸化繊維束20Aにするように設けられるが、また、該繊維束20を重ね巻きで、該加熱炉33を通過させ、該加熱炉33内にて、該マイクロ波処理ユニット40による集束マイクロ波処理を連続的に1〜40分間施し、該酸化繊維束20Aにするように設けられるが、例えば、該繊維束20が加熱炉33の前部から入り、該加熱炉33内を経て、該加熱炉33の後部に送られ、更に、該加熱炉33の後部から該加熱炉33の前部へと送られ、また再度に、從該加熱炉33の前部から、該加熱炉33へと送られることになっており、そのような重ね巻きの繰り返しにより、要求を満たす該酸化繊維束20Aが該加熱炉33の後部から供給されるようになっており、該重ね巻き方法では、該加熱炉33の必要な長さを有効に短縮することができる。 d. Start-up of the transmission unit 30: the transmission unit 30 feeds the fiber bundle 20 and processes the fiber bundle 20 continuously according to the microwave conditions, so that the fiber bundle 20 is turned into the oxidized fiber bundle 20A. For example, in the transmission unit 30, the fiber bundle 20 is passed through the working area of the microwave processing unit 40, and the bundled microwave processing is continuously performed for 1 to 40 minutes to form the oxidized fiber bundle 20A. The processing time is set to 1 to 40 minutes. In the present embodiment, the fiber bundle 20 is passed through the heating furnace 33 by the transmission unit 30, and the focused microwave by the microwave processing unit 40 is used. The treatment is carried out continuously for 1 to 40 minutes to provide the oxidized fiber bundle 20A. In addition, the fiber bundle 20 is passed through the heating furnace 33 by lap winding, and And said The microwave processing unit 40 continuously performs the focusing microwave processing for 1 to 40 minutes to provide the oxidized fiber bundle 20A. For example, the fiber bundle 20 enters from the front of the heating furnace 33, and After passing through the inside of the heating furnace 33, it is sent to the rear part of the heating furnace 33, further from the rear part of the heating furnace 33 to the front part of the heating furnace 33, and again, the front part of the heating furnace 33. Is to be sent to the heating furnace 33, and the oxidized fiber bundle 20A satisfying the requirements is supplied from the rear part of the heating furnace 33 by repeating such overlapping winding. In the lap winding method, the required length of the heating furnace 33 can be effectively reduced.

本発明の酸化繊維の製造方法では、該伝送ユニット30の稼動により、該繊維束20をプリセットされた速度で、該マイクロ波処理ユニット40の作業エリアに通過させるように送り、該繊維束20が該マイクロ波処理ユニット40の作業エリアを通過しているとき、集束マイクロ波を利用して、該加熱炉33を連続的に通過する該繊維束20に対して、超高速予備酸化処理を施し、該繊維束20を該酸化繊維束20Aに加工するように設けられ、該繊維束20は、該繊維または複数の該繊維を集め、束ねてなり、該酸化繊維束20Aは、該酸化繊維21または複数の該酸化繊維21を集め、束ねてなり、該酸化繊維の製造方法により該繊維束20の該纖維を、該酸化繊維21に予備酸化するように設けられるのである In the manufacturing method of the oxidized fiber of the present invention, by operating the transmission unit 30, the fiber bundle 20 is sent at a preset speed so as to pass through the work area of the microwave processing unit 40, and the fiber bundle 20 is moved. When passing through the working area of the microwave processing unit 40, the fiber bundle 20 continuously passing through the heating furnace 33 is subjected to an ultra-high-speed pre-oxidation treatment by using a focused microwave, The fiber bundle 20 is provided to be processed into the oxidized fiber bundle 20A, and the fiber bundle 20 is formed by collecting and bundling the fiber or a plurality of the fibers, and the oxidized fiber bundle 20A is formed by the oxidized fiber 21 or A plurality of the oxidized fibers 21 are collected and bundled, and the fibers of the fiber bundle 20 are provided so as to be pre-oxidized to the oxidized fibers 21 by the method of manufacturing the oxidized fibers.

図4に示すように、本発明の酸化繊維の製造方法により、該繊維束20に対して、それぞれマイクロ波なし、マイクロ波出力12kW/m、マイクロ波出力16kW/m、マイクロ波出力20kW/m、マイクロ波出力24kW/mの集束マイクロ波処理を施されており、その中、該繊維束20に対してマイクロ波出力24kW/mの集束マイクロ波処理を10分間施すと、該酸化繊維束20Aの該酸化繊維21の酸化程度が100%に達すること、該酸化繊維束20Aは、単一該酸化繊維21または複数の該酸化繊維21を集め、束ねてなるものであり、該繊維束20に対して、マイクロ波出力20kW/mの集束マイクロ波処理を15分間施すと、該酸化繊維束20Aの該酸化繊維21の酸化程度が同じく100%に達し、該繊維束20に対して、マイクロ波出力16kW/mの集束マイクロ波処理を25分間施すと、該酸化繊維束20Aの該酸化繊維21の酸化程度が100%に達し、該繊維束20に対して、マイクロ波出力12kW/mだけの集束マイクロ波処理を40分間施して、該酸化繊維束20Aにおける該酸化繊維21の酸化程度が100%に達さないが、該酸化繊維21の酸化程度が89%に達することになり、従來のような加熱工程ではマイクロ波なしで、該繊維束20を270℃で加熱してから40分後、該酸化繊維21の酸化程度がせいぜい70%に達することから、本発明のようなマイクロ波による製造方法及び従來の加熱の製造工程を比べると、本発明では、該酸化繊維21の酸化程度を有効に高め、製造時間を有効に短縮することが可能、特に、該繊維束20に対して、マイクロ波出力24kW/mの集束マイクロ波処理を10分間施すと、該酸化繊維21が酸化程度100%に達するというのが、酸化段階における最適な製造条件である。 As shown in FIG. 4, the method for producing oxidation fiber of the present invention, with respect to the fiber bundle 20, without each microwave, microwave power 12 kW / m 2, microwave power 16 kW / m 2, microwave power 20kW / m 2, and subjected to focused microwave treatment microwave output 24 kW / m 2, therein, the applied microwave power 24 kW / m 2 of a focused microwave treatment for 10 minutes with respect to the fiber bundle 20, The oxidation degree of the oxidized fiber 21 of the oxidized fiber bundle 20A reaches 100%, and the oxidized fiber bundle 20A is obtained by collecting and bundling the single oxidized fiber 21 or a plurality of the oxidized fibers 21; relative to the fiber bundles 20, when applied microwave power 20 kW / m 2 of a focused microwave treatment for 15 minutes, the degree of oxidation of the oxidized fibers 21 of oxide fiber bundle 20A is also 100% And, with respect to the fiber bundle 20, when subjected to focused microwave treatment microwave output 16 kW / m 2 25 min, degree of oxidation of the oxidized fibers 21 of oxide fiber bundle 20A reaches 100%, the fiber bundle 20 is subjected to a focusing microwave treatment with a microwave output of 12 kW / m 2 for 40 minutes, and the degree of oxidation of the oxidized fiber 21 in the oxidized fiber bundle 20A does not reach 100%. The degree of oxidation of the oxidized fiber 21 reaches 89%. In a conventional heating step, the degree of oxidation of the oxidized fiber 21 is at most 40 minutes after heating the fiber bundle 20 at 270 ° C. without a microwave. Compared with the microwave manufacturing method of the present invention and the conventional heating manufacturing process, the present invention effectively increases the degree of oxidation of the oxidized fibers 21 and effectively reduces the manufacturing time. Shorten In particular, when the fiber bundle 20 is subjected to a focused microwave treatment with a microwave output of 24 kW / m 2 for 10 minutes, the oxidation fiber 21 reaches an oxidation degree of 100%. Under the optimum manufacturing conditions.

図5に示すように、該繊維束20に対して、それぞれマイクロ波出力24kW/mの集束マイクロ波処理を2分、4分、5分、10分と15分施して、測定された該酸化繊維21の環化度が見られるが、その中、該酸化繊維21の環化度が5分間で、100%に達することから、環化度100%に達する所要時間5分は、それが酸化程度の所要時間10分より少ない。図6〜8に示すように、該繊維束20に対して、それぞれ24kW/mの集束マイクロ波処理を5分、10分と15分施して、得られた該酸化繊維束20Aの該酸化繊維21の断面を走査型電子顕微鏡(SEM, Scanning Electron Microscope)で撮影した実体画像であり、そこで、該酸化層211が該酸化繊維21の99.0%以上、または該酸化層211の断面積が該酸化繊維21の断面積の99.0%以上を占め、それに、顕著なスキン・コア構造がないことが分かった。 As shown in FIG. 5, the fiber bundle 20 was subjected to focused microwave treatment with a microwave output of 24 kW / m 2 for 2 minutes, 4 minutes, 5 minutes, 10 minutes, and 15 minutes. The degree of cyclization of the oxidized fiber 21 can be seen. Among them, the degree of cyclization of the oxidized fiber 21 reaches 100% in 5 minutes. The time required for the degree of oxidation is less than 10 minutes. As shown in FIGS. 6 to 8, the bundle 20 is subjected to a focusing microwave treatment of 24 kW / m 2 for 5 minutes, 10 minutes, and 15 minutes, and the oxidized fiber bundle 20A obtained is oxidized. FIG. 4 is a substantial image of a cross section of the fiber 21 taken by a scanning electron microscope (SEM), in which the oxide layer 211 is 99.0% or more of the oxide fiber 21 or the cross-sectional area of the oxide layer 211. Occupies 99.0% or more of the cross-sectional area of the oxidized fiber 21, and it is found that there is no noticeable skin-core structure.

表1と表2に示すように、表1は従來の電熱管加熱による製造工程、及び本発明の酸化繊維の製造方法であるマイクロ波の製造工程で行なわれ、測定された該繊維束20、該酸化繊維束20A及び、それに続く炭素化して得られた炭素繊維束の引張強度比較表であり、表2は従來の電熱管加熱による製造工程、及び本発明の製造方法であるマイクロ波の製造工程で行なわれ、測定された該繊維束20、該酸化繊維束20A及びそれに続く炭素化して得られた炭素繊維束の引張弾性率比較表。前述した従來の電熱管加熱は製造条件として、加熱炉の温度270℃、処理時間40分で行なわれ、それによって得られた物理的性質は比較例1に示し、前述した本発明の酸化繊維の製造方法であるマイクロ波の製造工程は製造条件として、該加熱炉の温度220℃、マイクロ波の周波数2450MHz、マイクロ波出力24kW/m、処理時間10分で行われ、それによって得られた物理的性質は実施例1に示されており、比較例1と実施例1の該繊維束20は、ポリアクリロニトリルで製造されたものである。 As shown in Tables 1 and 2, Table 1 shows the fiber bundle 20 measured and measured in the conventional manufacturing process using an electric heating tube and the microwave manufacturing process which is the method for manufacturing the oxidized fiber of the present invention. Is a comparison table of the tensile strength of the oxidized fiber bundle 20A and the carbon fiber bundle obtained by subsequent carbonization, and Table 2 shows a conventional manufacturing process using an electric heating tube and a microwave according to the manufacturing method of the present invention. 7 is a comparison table of tensile modulus of the fiber bundle 20, the oxidized fiber bundle 20A, and the carbon fiber bundle obtained by subsequent carbonization, which were measured in the manufacturing process of FIG. The above-mentioned conventional heating of an electric heating tube is performed under the conditions of a heating furnace temperature of 270 ° C. and a processing time of 40 minutes. The physical properties thus obtained are shown in Comparative Example 1 and the oxidized fiber of the present invention described above. The microwave manufacturing process, which is a manufacturing method of the above, is performed under the following manufacturing conditions: a temperature of the heating furnace of 220 ° C., a microwave frequency of 2450 MHz, a microwave output of 24 kW / m 2 , and a processing time of 10 minutes. The physical properties are shown in Example 1, where the fiber bundles 20 of Comparative Example 1 and Example 1 were made of polyacrylonitrile.

Figure 0006667568
表1に示す実施例1における本発明の酸化繊維の製造方法であるマイクロ波の製造工程で行なわれ、得られた酸化繊維束、最後にそれを炭素化して得られた炭素繊維束の引張強度は、比較例1の1.3倍(3675を2824で割った結果により)、即ち引張強度が30%向上し、マイクロ波の製造工程では、PAN酸化を更に完全にすることができるから、マイクロ波の製造工程による該酸化繊維束の引張強度が従來の電熱管加熱の製造工程による該酸化繊維束の引張強度よりやや低く、これが、本発明のマイクロ波の製造工程で、該繊維束の酸化程度を更に向上するもう一つの証拠でもある。
Figure 0006667568
Tensile strength of the oxidized fiber bundle obtained in the microwave manufacturing process, which is the method for manufacturing the oxidized fiber of the present invention in Example 1 shown in Table 1, and finally the carbon fiber bundle obtained by carbonizing it Is 1.3 times that of Comparative Example 1 (based on the result of dividing 3675 by 2824), that is, the tensile strength is improved by 30%, and the PAN oxidation can be further completed in the microwave manufacturing process. The tensile strength of the oxidized fiber bundle in the wave manufacturing process is slightly lower than the tensile strength of the oxidized fiber bundle in the conventional heating tube heating manufacturing process, and this is the microwave manufacturing process of the present invention. It is another evidence that the degree of oxidation is further improved.

Figure 0006667568
表2に示す実施例1の本発明の酸化繊維の製造方法であるマイクロ波の製造工程で行なわれ、得られた酸化繊維束、最後にそれを炭素化して得られた炭素繊維束の引張弾性率は、比較例1の1.17倍(227.1を194.4で割った結果により)、即ち引張弾性率が17%向上する。
Figure 0006667568
Tensile elasticity of the oxidized fiber bundle obtained in the microwave manufacturing process which is the method of manufacturing the oxidized fiber of the present invention of Example 1 shown in Table 2 and finally obtained by carbonizing the oxidized fiber bundle The modulus is 1.17 times that of Comparative Example 1 (from the result of dividing 227.1 by 194.4), that is, the tensile modulus is improved by 17%.

本発明及び従來の加熱工程による該繊維束の該酸化繊維束を比較すると、本発明では従來の加熱工程の所要時間40分より、10分間短縮可能なため、製造効率が3倍向上、製造時間が短縮されること、本発明では従來の加熱工程に対して、炭素繊維束の引張強度が30%、引張弾性率が17%向上すること、本発明では従來の加熱工程に対して、該酸化繊維束20Aの該酸化繊維21における該酸化層211の断面積が該酸化繊維21の断面積99.0%以上を占めているから、顕著なスキン・コア構造がなく、該酸化繊維束20Aの断面が均一に近づいているので、炭素繊維束の引張強度と引張弾性率が向上するということで、本発明では比較的に、より積極的かつ信頼性のある手段として、炭素繊維の性能を向上することができる。 Comparing the oxidized fiber bundle of the fiber bundle according to the present invention and the conventional heating step, the present invention can reduce the time required for the conventional heating step by 40 minutes to 10 minutes, thereby improving the production efficiency by three times. In the present invention, the production time is shortened, the tensile strength of the carbon fiber bundle is improved by 30% and the tensile elastic modulus is improved by 17% with respect to the conventional heating step. Since the cross-sectional area of the oxidized layer 211 in the oxidized fiber 21 of the oxidized fiber bundle 20A occupies 99.0% or more of the cross-sectional area of the oxidized fiber 21, there is no remarkable skin-core structure, Since the cross section of the fiber bundle 20A is approaching uniform, the tensile strength and the tensile modulus of the carbon fiber bundle are improved. Performance can be improved.

本発明の酸化繊維の製造方法は実施の時、該繊維束に対して、24kW/mの集束マイクロ波処理を5〜10分間施すのが、好適な実施形態であり、もちろん、該酸化繊維の製造方法により、該繊維束に対して、24kW/mの集束マイクロ波処理を5〜10分間施すことが可能であること、図3に示すように、該伝送ユニット30は、繊維束20を供給するための供給装置31、該繊維束20を引いて、加熱炉33を通過させるよう連続送りするための巻取装置32を備えてなり、該マイクロ波処理ユニット40は、該加熱炉33にマイクロ波を発生する該マグネトロン41、及び該加熱炉33に酸素含有エアを供給すための送気装置42が設けられており、本発明の酸化繊維の製造方法は、該繊維束20が該加熱炉33を通過後、該巻取装置32の巻取りによらず、それに続く炭素化して炭素繊維束を作るという連続製造方法に、または巻かれている該繊維束20が該供給装置31による巻出し、該巻取装置32による巻き取るという製造方法に適用するものである。 In a preferred embodiment of the method for producing an oxidized fiber of the present invention, the fiber bundle is subjected to a focused microwave treatment of 24 kW / m 2 for 5 to 10 minutes at the time of implementation. Can be subjected to a focusing microwave treatment of 24 kW / m 2 for 5 to 10 minutes by the manufacturing method described in FIG. 3. As shown in FIG. And a winding device 32 for pulling the fiber bundle 20 and continuously feeding it through a heating furnace 33. The microwave processing unit 40 includes the heating furnace 33 The magnetron 41 for generating microwaves and an air supply device 42 for supplying oxygen-containing air to the heating furnace 33 are provided. After passing through the heating furnace 33, A continuous manufacturing method in which a carbon fiber bundle is produced by subsequent carbonization instead of winding by the winding device 32, or the wound fiber bundle 20 is unwound by the supply device 31, and the winding device 32 The method is applied to a manufacturing method of winding by using

もちろん、本発明の酸化繊維の製造方法は、バッチ(batch)製造方法にも適用し、バッチ製造方法の実施例は次のような手順で行なわれるが、例えば図9に示すように、本発明の酸化繊維の製造方法は、該繊維束20を該酸化繊維束20Aに予備酸化するのに適用するものである。 Of course, the method for producing oxidized fibers of the present invention is also applied to a batch production method, and an embodiment of the batch production method is performed in the following procedure. For example, as shown in FIG. Is applied to pre-oxidize the fiber bundle 20 into the oxidized fiber bundle 20A.

糸供給手順S01: 該繊維束20を用意すること、該繊維束20は単纖維または複数の該纖維を集め、束ねてなり、該繊維束20は、ポリアクリロニトリル(PAN)纖維、瀝青繊維またはその他の有機繊維の何れか一つでもよいこと。 Yarn supply procedure S01: preparing the fiber bundle 20, the fiber bundle 20 is made by collecting and bundling a single fiber or a plurality of the fibers, and the fiber bundle 20 is made of polyacrylonitrile (PAN) fiber, bituminous fiber or other Any one of the organic fibers may be used.

マイクロ波処理手順S02:該繊維束20を該マイクロ波条件で暴露するが、該マイクロ波条件は、マイクロ波の周波数300〜300,000MHz、マイクロ波出力1〜1000kW/m2、作業温度100〜600℃、及び酸素、空気、オゾンの何れか一つまたはそれらの混合である雰囲気ガスが含まれていること。 Microwave treatment procedure S02: The fiber bundle 20 is exposed under the microwave condition, the microwave condition being a microwave frequency of 300 to 300,000 MHz, a microwave output of 1 to 1000 kW / m2, and a working temperature of 100 to 600. ℃, and an atmosphere gas which is any one of oxygen, air and ozone or a mixture thereof.

本発明の酸化繊維の製造方法では、該マイクロ波処理ユニット40は酸素含有エアを該加熱炉33に供給する該送気装置42が設けられる実施形態にて、該送気装置42から該加熱炉33へ送入される酸素含有エアは酸素、空気、オゾンの何れか一つまたはそれらの混合でもよい。 In the manufacturing method of the oxidized fiber of the present invention, in the embodiment in which the microwave processing unit 40 is provided with the air supply device 42 that supplies oxygen-containing air to the heating furnace 33, The oxygen-containing air sent to 33 may be any one of oxygen, air, ozone, or a mixture thereof.

本発明の酸化繊維の製造方法における該伝送ユニット30は、繊維束20を供給するための供給装置31、該繊維束20を引いて、加熱炉33を通過させるよう連続送りするための巻取装置32を備えてなり、該マイクロ波処理ユニット40は、該加熱炉33に該マイクロ波を発生する該マグネトロン41、及び該加熱炉33に酸素含有エアを供給すための送気装置42が設けられており、該巻取装置32、該マグネトロン41と該送気装置42は、制御ユニット50と電気的に接続しており、該制御ユニット50により、該巻取装置32、該マグネトロン41と該送気装置42が運転するかどうかを制御し、そして、加工される該繊維束20の特性または製品規格により、該巻取装置32の回転数、該マグネトロン41の出力及び該送気装置42の流量などの運転パラメーターを設定することができる。 The transmission unit 30 in the oxidized fiber manufacturing method of the present invention includes a supply device 31 for supplying the fiber bundle 20, and a winding device for pulling the fiber bundle 20 and continuously feeding the fiber bundle 20 through the heating furnace 33. The microwave processing unit 40 is provided with the magnetron 41 that generates the microwave to the heating furnace 33, and the air supply device 42 for supplying oxygen-containing air to the heating furnace 33. The winding device 32, the magnetron 41, and the air supply device 42 are electrically connected to a control unit 50, and the control unit 50 controls the winding device 32, the magnetron 41, and the air supply device. Controls the operation of the air blower 42 and, depending on the characteristics of the fiber bundle 20 to be processed or the product specifications, the number of revolutions of the winder 32, the output of the magnetron 41 and the air blower The operating parameters, such as 42 of the flow rate can be set.

本発明の酸化繊維の製造方法における該伝送ユニット30は、該繊維束20を供給する該供給装置31、該繊維束20を引いて、該加熱炉33を通過させるよう連続送するための該巻取装置32を備えてなり、更に、該加熱炉33内に該保温ユニット34が配置され、図10に示すように、該保温ユニット34の蓄熱効果を利用して、該加熱炉33内のプリセットされた作業温度を維持し、省エネという目的を果たすことができること、図10に示すように、該供給装置31により、複数の該繊維束20が互いに平行に配列され、該加熱炉33へと供給されることになっている。 The transmission unit 30 in the oxidized fiber manufacturing method of the present invention includes the supply device 31 that supplies the fiber bundle 20, the winding device for pulling the fiber bundle 20, and continuously feeding the fiber bundle 20 through the heating furnace 33. The heating unit 33 is provided in the heating furnace 33, and the heat retaining unit 34 is disposed in the heating furnace 33. As shown in FIG. As shown in FIG. 10, a plurality of the fiber bundles 20 are arranged in parallel with each other and supplied to the heating furnace 33 by the supply device 31. Is supposed to be.

本発明の酸化繊維の製造方法は実施の時、図3に示すように、該伝送ユニット30は、該加熱炉33内部に、該繊維束20送り経路の上下位置にそれぞれ保温ユニット34が配置、または図10に示すように、該加熱炉33内部に、該繊維束20送り経路を囲む該保温ユニット34が配置され、それによって、該繊維束20が均一に熱を受けるように設けられる。 When the method for producing oxidized fiber of the present invention is carried out, as shown in FIG. 3, the transmission unit 30 includes a heating unit 33 inside the heating furnace 33, and a heating unit 34 disposed at a vertical position of the fiber bundle 20 feeding path. Alternatively, as shown in FIG. 10, the heat retaining unit 34 surrounding the fiber bundle 20 feeding path is disposed inside the heating furnace 33, whereby the fiber bundle 20 is provided so as to receive heat uniformly.

上述した本発明の酸化繊維の製造方法によるそれぞれ実施可能な形態では、該保温ユニット34は、金屬酸化物、炭化物、マイクロ波の高反応性材料の何れか一つ、またはその組み合わせでもよい。 In each of the above-described embodiments of the present invention, the heat retaining unit 34 may be made of any one of a metal oxide, a carbide, and a microwave highly reactive material, or a combination thereof.

本発明の酸化繊維の製造方法では実施の時、該マイクロ波処理ユニット40は図3に示すように、該繊維束20送り経路の上下位置にそれぞれ該マグネトロン41が配置、または該繊維束20送り経路を囲む複数の該マグネトロン41が配置され、それによって、該繊維束20に集束マイクロ波処理を均一に行なうように設けられる。 In the manufacturing method of the oxidized fiber of the present invention, at the time of execution, as shown in FIG. 3, the microwave processing unit 40 has the magnetron 41 disposed at the upper and lower positions of the fiber bundle 20 feeding path, respectively. A plurality of the magnetrons 41 surrounding the path are arranged, so that the fiber bundle 20 is provided so as to perform the focused microwave processing uniformly.

図4に示すのは、上述したように、該繊維束20に対して、マイクロ波出力12kW/mの集束マイクロ波処理を220℃で、40分間施すと、該酸化繊維21の酸化程度が89%に達し、従來の加熱工程ではマイクロ波なしで、該繊維束20を270℃で加熱してから40分間後、該酸化繊維21の酸化程度が70%に達すること。それゆえ、本発明の酸化繊維の製造方法では従來の加熱工程に対して、比較的に低い温度で、酸化程度を高めることができることから、熱エネルギー消費削減が可能になる。 FIG. 4 shows that, as described above, when the fiber bundle 20 is subjected to a focused microwave treatment with a microwave output of 12 kW / m 2 at 220 ° C. for 40 minutes, the degree of oxidation of the oxidized fiber 21 is reduced. In the conventional heating step, the degree of oxidation of the oxidized fibers 21 reaches 70% 40 minutes after heating the fiber bundle 20 at 270 ° C. without microwaves. Therefore, in the method for producing oxidized fiber of the present invention, the degree of oxidation can be increased at a relatively low temperature with respect to the conventional heating step, so that heat energy consumption can be reduced.

表3に示すように、表3は電熱管加熱による従來の製造工程及び、本発明の酸化繊維の製造方法であるマイクロ波の製造工程で行なわれ、測定された該繊維束20、該酸化繊維束20A及びそれに続く炭素化して得られた炭素繊維束の引張強度比較表であり、前述した従來の電熱管加熱は製造条件として、該加熱炉の温度270℃、処理時間40分で行われ、それによって得られた物理的性質は比較例1に示し、前述した本発明の酸化繊維の製造方法であるマイクロ波の製造工程は製造条件として、該加熱炉の温度220℃、マイクロ波の周波数2450MHz、処理時間為40分で行われるが、マイクロ波出力22kW/mで得られた物理的性質は実施例2、マイクロ波出力20kW/mで得られた物理的性質は実施例3、マイクロ波出力16kW/mで得られた物理的性質は実施例4、マイクロ波出力15kW/mで得られた物理的性質は実施例5に示され、比較例1及び全ての実施例の該繊維束20は、ポリアクリロニトリルで製造されたものであり、また、比較例1及び各実施例における該酸化繊維束20Aの該酸化繊維21の断面を走査型電子顕微鏡(SEM, Scanning Electron Microscope)で実体画像を撮って算出されることだが、該酸化層211の断面積を該酸化繊維21の断面積で割り、即ち該酸化層211が該酸化繊維21を占める割合が表3に示される。 As shown in Table 3, Table 3 shows that the fiber bundle 20 and the oxidized fiber were measured in the conventional manufacturing process by heating the electric heating tube and in the microwave manufacturing process, which is the method for manufacturing the oxidized fiber of the present invention. It is a comparison table of the tensile strength of the fiber bundle 20A and the carbon fiber bundle obtained by subsequent carbonization. The above-mentioned conventional heating of an electric heating tube is performed at a temperature of 270 ° C. in the heating furnace and a processing time of 40 minutes as production conditions. The physical properties obtained thereby are shown in Comparative Example 1, and the microwave manufacturing process, which is the above-described method for manufacturing an oxidized fiber of the present invention, is performed under the following conditions: The processing was performed at a frequency of 2450 MHz and a processing time of 40 minutes. The physical properties obtained at a microwave output of 22 kW / m 2 were obtained in Example 2, and the physical properties obtained at a microwave output of 20 kW / m 2 were obtained in Example 3. ,micro Output 16 kW / physical properties obtained in m 2 Example 4, the physical properties obtained in microwave power 15 kW / m 2 is shown in Example 5, the fiber of Comparative Example 1 and all examples The bundle 20 is made of polyacrylonitrile, and the cross section of the oxidized fiber 21 of the oxidized fiber bundle 20A in the comparative example 1 and each example is substantialized by a scanning electron microscope (SEM, Scanning Electron Microscope). As calculated by taking an image, the sectional area of the oxidized layer 211 is divided by the sectional area of the oxidized fiber 21, that is, the ratio of the oxidized layer 211 to the oxidized fiber 21 is shown in Table 3.

Figure 0006667568
表3に示すように、実施例5では、本発明の酸化繊維の製造方法であるマイクロ波の製造工程で行なわれて得られた酸化繊維束、最後にそれを炭素化して得られた炭素繊維束の引張強度は比較例1の1.13倍、即ち、引張強度が13%向上し、該酸化層211の断面積を該酸化繊維21の断面積で割って51.2%となり、即ち該酸化層211が該酸化繊維21の51.2%を占め、実施例4では、本発明の酸化繊維の製造方法であるマイクロ波の製造工程で行なわれて得られた酸化繊維束、最後にそれを炭素化して得られた炭素繊維束の引張強度は比較例1の1.17倍、即ち引張強度が17%向上し、該酸化層211の断面積を該酸化繊維21の断面積で割って61.5%となり、即ち該酸化層211が該酸化繊維21の61.5%を占め、実施例3では、本発明の酸化繊維の製造方法であるマイクロ波の製造工程で行なわれて得られた酸化繊維束、最後にそれを炭素化して得られた炭素繊維束の引張強度は比較例1の1.23倍、即ち引張強度が23%向上し、該酸化層211の断面積を該酸化繊維21の断面積で割って82.7%となり、即ち該酸化層211が該酸化繊維21の82.7%を占め、実施例2では、本発明の酸化繊維の製造方法であるマイクロ波の製造工程で行なわれて得られた酸化繊維束、最後にそれを炭素化して得られた炭素繊維束の引張強度は比較例1の1.27倍、即ち引張強度が27%向上し、該酸化層211の断面積を該酸化繊維21の断面積で割って91.3%となり、即ち該酸化層211が該酸化繊維21の91.3%を占め、実施例1では、本発明の酸化繊維の製造方法であるマイクロ波の製造工程で行なわれて得られた酸化繊維束、最後にそれを炭素化して得られた炭素繊維束の引張強度は比較例1の1.3倍、即ち引張強度が30%向上し、該酸化層211の断面積を該酸化繊維21の断面積で割って99.0%となり、即ち該酸化層211が該酸化繊維21の99.0%を占める。
Figure 0006667568
As shown in Table 3, in Example 5, the oxidized fiber bundle obtained by performing the microwave manufacturing process as the oxidized fiber manufacturing method of the present invention, and finally the carbon fiber obtained by carbonizing the oxidized fiber bundle The tensile strength of the bundle is 1.13 times that of Comparative Example 1, that is, the tensile strength is improved by 13%, and the cross-sectional area of the oxide layer 211 is divided by the cross-sectional area of the oxidized fiber 21 to be 51.2%. The oxidized layer 211 occupies 51.2% of the oxidized fiber 21. In Example 4, the oxidized fiber bundle obtained by performing the microwave manufacturing process of the oxidized fiber manufacturing method of the present invention, and finally the The carbon fiber bundle obtained by carbonizing the carbon fiber bundle has a tensile strength 1.17 times that of Comparative Example 1, that is, the tensile strength is improved by 17%, and the sectional area of the oxide layer 211 is divided by the sectional area of the oxide fiber 21. 61.5%, that is, the oxidized layer 211 makes 61.5% of the oxidized fiber 21. Therefore, in Example 3, the tensile strength of the oxidized fiber bundle obtained by performing the microwave manufacturing process of the oxidized fiber manufacturing method of the present invention, and finally the carbon fiber bundle obtained by carbonizing the oxidized fiber bundle was 1.23 times that of Comparative Example 1, that is, the tensile strength is improved by 23%, and the sectional area of the oxidized layer 211 is divided by the sectional area of the oxidized fiber 21 to be 82.7%. In the second embodiment, the oxidized fiber bundle obtained by performing the microwave manufacturing process, which is the method for manufacturing the oxidized fiber according to the present invention, is finally carbonized. The tensile strength of the carbon fiber bundle thus obtained is 1.27 times that of Comparative Example 1, that is, the tensile strength is improved by 27%, and the sectional area of the oxide layer 211 is divided by the sectional area of the oxide fiber 21 to be 91.3%. That is, the oxidized layer 211 occupies 91.3% of the oxidized fiber 21, and Is the tensile strength of the oxidized fiber bundle obtained by performing the microwave manufacturing process of the oxidized fiber production method of the present invention, and finally, the carbon fiber bundle obtained by carbonizing it. 0.3 times, that is, the tensile strength is improved by 30%, and the sectional area of the oxidized layer 211 is divided by the sectional area of the oxidized fiber 21 to be 99.0%. Occupies 0%.

本発明に掲示された該酸化繊維21は、該酸化層211と芯部212を備えてなり、該酸化層211は該芯部212の外側を被覆するように設けられ、該酸化層211が少なくとも、酸化繊維21の50%以上を、または該酸化層211断面積が少なくとも、該酸化繊維21断面積の50%以上を占めており、図11に示すように、該酸化層211が少なくとも該酸化繊維21の80%以上を、 または該酸化層211断面積が少なくとも該酸化繊維21断面積の80%以上を占めている。 The oxidized fiber 21 according to the present invention includes the oxidized layer 211 and a core 212, and the oxidized layer 211 is provided so as to cover the outside of the core 212. , 50% or more of the oxidized fibers 21 or the cross-sectional area of the oxidized layer 211 occupies at least 50% or more of the oxidized fiber 21, and as shown in FIG. 80% or more of the fiber 21 or the cross-sectional area of the oxide layer 211 occupies at least 80% of the cross-sectional area of the oxidized fiber 21.

もちろん、本発明に掲示された該酸化繊維21は、該繊維束20を上述した本発明の実施可能ないずれか一つの酸化繊維の製造方法で作られるものであり、該酸化層211が該マイクロ波の条件で形成されているから、該酸化層211はマイクロ波酸化層であり、また、該酸化繊維束20Aの該酸化繊維21の該酸化層211は少なくとも、該酸化繊維21の50%以上を占めている。 Needless to say, the oxidized fiber 21 posted in the present invention is formed by forming the fiber bundle 20 by any one of the above-described oxidized fiber manufacturing methods which can be performed by the present invention, and the oxidized layer 211 is formed by the micro layer. Since the oxide layer 211 is formed under the wave condition, the oxide layer 211 is a microwave oxide layer, and the oxide layer 211 of the oxide fiber 21 of the oxide fiber bundle 20A is at least 50% or more of the oxide fiber 21. Occupy.

実施の時、該繊維束20は、ポリアクリロニトリル(PAN)、瀝青またはその他の有機繊維の何れか一つでもよい。もちろん、該酸化繊維にマイクロ波24kW/mを照射し、該繊維束20への集束マイクロ波処理を10分間施したあと、該酸化繊維束20Aの該酸化繊維21の該酸化層211が該酸化繊維21の99.0%を、または該酸化層211の断面積が該酸化繊維21の断面積の99.0%を占めている。 In operation, the fiber bundle 20 may be any one of polyacrylonitrile (PAN), bitumen or other organic fibers. Of course, the oxidized fiber is irradiated with microwaves of 24 kW / m 2 and subjected to a focusing microwave treatment on the fiber bundle 20 for 10 minutes, and then the oxidized layer 211 of the oxidized fiber 21 of the oxidized fiber bundle 20A is removed. 99.0% of the oxidized fibers 21 or the cross-sectional area of the oxidized layer 211 occupies 99.0% of the cross-sectional area of the oxidized fibers 21.

本発明に掲示された酸化繊維の製造方法では従來の技術に対して、マイクロ波処理ユニットによる集束マイクロ波で、繊維束への超高速予備酸化処理を施し、繊維束を酸化繊維束に加工することにより、酸化繊維束の酸化時間を有効に短縮すると同時に、酸化繊維束の酸化繊維に対して、集束マイクロ波による酸化処理を施したあとの酸化層が少なくとも、該酸化繊維の断面積50%以上を占めるから、酸化繊維のスキン・コア構造を有効に低減し、ないし、酸化繊維に顕著なスキン・コア構造を持たせないように設けられ、比較的により積極的かつ信頼性のある手段として、炭素繊維の性能を向上することができる。 According to the method for producing oxidized fiber disclosed in the present invention, the fiber bundle is subjected to ultra-high-speed pre-oxidation treatment using a focused microwave by a microwave processing unit to process the fiber bundle into an oxidized fiber bundle. By doing so, the oxidation time of the oxidized fiber bundle can be effectively shortened, and at the same time, the oxidized layer of the oxidized fiber bundle subjected to the oxidation treatment by the focused microwave has at least a cross-sectional area of at least 50%. % Or more, it is a relatively more aggressive and reliable means provided to effectively reduce the skin-core structure of the oxidized fiber and to prevent the oxidized fiber from having a pronounced skin-core structure. As a result, the performance of the carbon fiber can be improved.

上述した実施例は、本発明の技術コンセプトや特徴を説明するのに用いられるのみで、該技術分野が分かる者が本発明の内容を理解して、それに基づいて実施できるようにすることを目的とし、それを以って本発明の特許範囲を制限してはならないとし、本発明に掲示されたコンセプトに基づき、それらの変更や改造を行なっても、全て本発明の特許請求範囲に含まれるものとする。 The embodiments described above are only used to explain the technical concept and features of the present invention, and are intended to enable those skilled in the art to understand the contents of the present invention and implement it based on it. Therefore, the patent scope of the present invention should not be limited thereby, and even if they are changed or modified based on the concept described in the present invention, they are all included in the claims of the present invention. Shall be.

10 酸化繊維
11 纖維
111 酸化層
112 芯部
113 スキン・コア介面
20 繊維束
20A 酸化繊維束
21 酸化繊維
211 酸化層
212 芯部
30 伝送ユニット
31 供給装置
32 巻取装置
33 加熱炉
331 送気口
332 排気口
34 保温ユニット
40 マイクロ波処理ユニット
41 マグネトロン
42 送気装置
50 制御ユニット
S01 糸供給手順
S02 マイクロ波処理手順
DESCRIPTION OF SYMBOLS 10 Oxidized fiber 11 Fiber 111 Oxidized layer 112 Core part 113 Skin core interface 20 Fiber bundle 20A Oxidized fiber bundle 21 Oxidized fiber 211 Oxidized layer 212 Core part 30 Transmission unit 31 Feeding device 32 Winding device 33 Heating furnace 331 Air supply port 332 Exhaust port 34 Heat insulation unit 40 Microwave processing unit 41 Magnetron 42 Air supply device 50 Control unit S01 Yarn supply procedure S02 Microwave processing procedure

Claims (12)

繊維束(20)を酸化繊維束(20A)に予備酸化するために用いられる酸化繊維の製造方法であって、
前記繊維束(20)は、単繊維または複数の繊維を集め、束ねてなり、
前記酸化繊維束(20A)は、単一の酸化繊維(21)または複数の前記酸化繊維(21)を集め、束ねてなり、
前記酸化繊維の製造方法は、次のように、
糸供給手順(S01):前記繊維束(20)を用意する、
マイクロ波処理手順(S02):前記繊維束(20)をマイクロ波条件で暴露して、前記酸化繊維束(20A)にする、
という手順が含まれ、
前記繊維束(20)は、重ね巻きの繰り返しにより加熱炉(33)を通過しつつ、マイクロ波処理ユニット(40)によって連続的に照射され、
前記重ね巻きの繰り返しでは、前記繊維束(20)は、前記加熱炉(33)の前部から前記加熱炉(33)内に入り、前記加熱炉(33)の後部に送られ、更に、前記繊維束(20)は、前記加熱炉(33)の後部から前記加熱炉(33)の前部に送られ、再度、前記繊維束(20)は、前記加熱炉(33)の前部から前記加熱炉(33)の後部に送られ
前記マイクロ波条件は、マイクロ波の周波数300〜300,000MHz、マイクロ波出力1〜1000kW/m 、作業温度100〜600℃、処理時間1〜40分、及び酸素、空気、オゾンの何れか一つまたはそれらの混合である雰囲気ガスが含まれていることを特徴とする、
酸化繊維の製造方法。
A method for producing oxidized fibers used for pre-oxidizing a fiber bundle (20) into an oxidized fiber bundle (20A),
The fiber bundle (20) is made by collecting and bundling a single fiber or a plurality of fibers,
The oxidized fiber bundle (20A) is formed by collecting and bundling a single oxidized fiber (21) or a plurality of the oxidized fibers (21),
The method for producing the oxidized fiber is as follows:
Yarn supply procedure (S01): preparing the fiber bundle (20);
Microwave treatment procedure (S02): exposing the fiber bundle (20) under microwave conditions to form the oxidized fiber bundle (20A);
Procedure is included,
The fiber bundle (20) is continuously irradiated by the microwave processing unit (40) while passing through the heating furnace (33) by repeating lap winding,
In the repetition of the lap winding, the fiber bundle (20) enters the heating furnace (33) from the front of the heating furnace (33) and is sent to the rear of the heating furnace (33). The fiber bundle (20) is sent from the rear part of the heating furnace (33) to the front part of the heating furnace (33), and again, the fiber bundle (20) is sent from the front part of the heating furnace (33). Sent to the rear of the heating furnace (33) ,
The microwave conditions include a microwave frequency of 300 to 300,000 MHz, a microwave output of 1 to 1000 kW / m 2 , a working temperature of 100 to 600 ° C., a processing time of 1 to 40 minutes, and any one of oxygen, air, and ozone. Characterized in that it contains an ambient gas which is one or a mixture thereof ,
A method for producing oxidized fibers.
前記マイクロ波出力は10〜24kW/mであることを特徴とする、
請求項に記載の酸化繊維の製造方法。
The microwave power is 10 to 24 kW / m 2 ,
A method for producing an oxidized fiber according to claim 1 .
マイクロ波の周波数は2000〜3000MHz、前記作業温度は150〜350℃、前記処理時間は5〜20分であることを特徴とする、
請求項に記載の酸化繊維の製造方法。
The microwave frequency is 2000-3000 MHz, the working temperature is 150-350 ° C., and the processing time is 5-20 minutes,
A method for producing an oxidized fiber according to claim 1 .
前記繊維束(20)は、ポリアクリロニトリル(PAN)繊維、瀝青繊維またはその他の有機繊維の何れか一つであることを特徴とする、
請求項1に記載の酸化繊維の製造方法。
The fiber bundle (20) may be any one of polyacrylonitrile (PAN) fiber, bitumen fiber, and other organic fibers.
A method for producing an oxidized fiber according to claim 1.
繊維束(20)を酸化繊維束(20A)に予備酸化するために用いられる酸化繊維の製造方法であって、
前記繊維束(20)は、単繊維または複数の繊維を集め、束ねてなり、
前記酸化繊維束(20A)は、単一の酸化繊維(21)または複数の前記酸化繊維(21)を集め、束ねてなり、
前記酸化繊維の製造方法は、次のように、
a.伝送ユニット(30)とマイクロ波処理ユニット(40)の配置、
b.前記繊維束(20)の供給:前記繊維束(20)を前記伝送ユニット(30)にセッティングし、前記伝送ユニット(30)で、前記繊維束(20)を前記マイクロ波処理ユニット(40)に通過させる、
c.前記マイクロ波処理ユニット(40)の立ち上げ:前記マイクロ波処理ユニット(40)で、マイクロ波条件を制御する、
d.前記伝送ユニット(30)の立ち上げ:前記伝送ユニット(30)で、前記繊維束(20)を送り、前記マイクロ波条件で、連続的時間に処理し、前記繊維束(20)を前記酸化繊維束(20A)にする、
という手順が含まれ、
前記繊維束(20)は、重ね巻きの繰り返しにより加熱炉(33)を通過しつつ、前記マイクロ波処理ユニット(40)によって連続的に照射され、
前記重ね巻きの繰り返しでは、前記繊維束(20)は、前記加熱炉(33)の前部から前記加熱炉(33)内に入り、前記加熱炉(33)の後部に送られ、更に、前記繊維束(20)は、前記加熱炉(33)の後部から前記加熱炉(33)の前部に送られ、再度、前記繊維束(20)は、前記加熱炉(33)の前部から前記加熱炉(33)の後部に送られ
前記伝送ユニット(30)は、前記繊維束(20)を供給すための供給装置(31)、前記繊維束(20)を引いて、前記加熱炉(33)を通過させるよう連続送りするための巻取装置(32)を備えており、
前記マイクロ波処理ユニット(40)は、前記加熱炉(33)にマイクロ波の周波数と前記マイクロ波出力を発生するためのマグネトロン(41)、及び、前記加熱炉(33)に前記雰囲気ガスを供給するための送気装置(42)を備えており、
前記巻取装置(32)、前記マグネトロン(41)と前記送気装置(42)は、制御ユニット(50)と電気的に接続していることを特徴とする、
酸化繊維の製造方法。
A method for producing an oxidized fiber used for pre-oxidizing a fiber bundle (20) into an oxidized fiber bundle (20A),
The fiber bundle (20) is formed by collecting and bundling a single fiber or a plurality of fibers,
The oxidized fiber bundle (20A) is formed by collecting and bundling a single oxidized fiber (21) or a plurality of the oxidized fibers (21),
The method for producing the oxidized fiber is as follows:
a. Arrangement of the transmission unit (30) and the microwave processing unit (40),
b. Supply of the fiber bundle (20): The fiber bundle (20) is set in the transmission unit (30), and the fiber bundle (20) is transmitted to the microwave processing unit (40) by the transmission unit (30). Let through,
c. Starting up the microwave processing unit (40): controlling the microwave conditions in the microwave processing unit (40);
d. Start-up of the transmission unit (30): The transmission unit (30) sends the fiber bundle (20) and processes the fiber bundle (20) for a continuous time under the microwave condition, and then converts the fiber bundle (20) to the oxidized fiber. Make a bundle (20A)
Procedure is included,
The fiber bundle (20) is continuously irradiated by the microwave processing unit (40) while passing through the heating furnace (33) by repeating lap winding,
In the repetition of the lap winding, the fiber bundle (20) enters the heating furnace (33) from the front of the heating furnace (33) and is sent to the rear of the heating furnace (33). The fiber bundle (20) is sent from the rear part of the heating furnace (33) to the front part of the heating furnace (33), and again, the fiber bundle (20) is sent from the front part of the heating furnace (33). Sent to the rear of the heating furnace (33) ,
The transmission unit (30) includes a supply device (31) for supplying the fiber bundle (20), and a feeding device (31) for pulling the fiber bundle (20) and continuously feeding the fiber bundle (20) through the heating furnace (33). A winding device (32),
The microwave processing unit (40) supplies the heating furnace (33) with a magnetron (41) for generating a microwave frequency and the microwave output, and supplies the atmosphere gas to the heating furnace (33). An air supply device (42) for performing
The winding device (32), the magnetron (41) and the air supply device (42) are electrically connected to a control unit (50) .
A method for producing oxidized fibers.
前記マイクロ波条件は、マイクロ波の周波数300〜300,000MHz、マイクロ波出力1〜1000kW/m、作業温度100〜600℃、及び酸素、空気、オゾンの何れか一つまたはそれらの混合である雰囲気ガスが含まれていることを特徴とする、
請求項に記載の酸化繊維の製造方法。
The microwave conditions are a microwave frequency of 300 to 300,000 MHz, a microwave output of 1 to 1000 kW / m 2 , a working temperature of 100 to 600 ° C., and any one of oxygen, air, and ozone or a mixture thereof. Characterized by containing atmospheric gas,
A method for producing an oxidized fiber according to claim 5 .
前記処理時間は1〜40分であることを特徴とする、
請求項に記載の酸化繊維の製造方法。
The processing time is 1 to 40 minutes,
A method for producing an oxidized fiber according to claim 6 .
前記マイクロ波出力は10〜24kW/mであることを特徴とする、
請求項に記載の酸化繊維の製造方法。
The microwave power is 10 to 24 kW / m 2 ,
A method for producing an oxidized fiber according to claim 6 .
マイクロ波の周波数は2000〜3000MHz、前記作業温度は150〜350℃であることを特徴とする、
請求項に記載の酸化繊維の製造方法。
The microwave frequency is 2000-3000 MHz, and the working temperature is 150-350 ° C.,
A method for producing an oxidized fiber according to claim 6 .
前記繊維束(20)は、ポリアクリロニトリル(PAN)繊維、瀝青繊維またはその他の有機繊維の何れか一つであることを特徴とする、
請求項に記載の酸化繊維の製造方法。
The fiber bundle (20) may be any one of polyacrylonitrile (PAN) fiber, bitumen fiber, and other organic fibers.
A method for producing an oxidized fiber according to claim 5 .
前記加熱炉(33)内部には、保温ユニット(34)が設けられていることを特徴とする、
請求項に記載の酸化繊維の製造方法。
A heating unit (34) is provided inside the heating furnace (33).
A method for producing an oxidized fiber according to claim 5 .
前記保温ユニット(34)は、金屬酸化物、炭化物、マイクロ波の高反応性材料のいずれか一つ、またはその組み合わせでもよいことを特徴とする、
請求項11に記載の酸化繊維の製造方法。
The heat retaining unit (34) may be made of any one of a metal oxide, a carbide, a microwave highly reactive material, or a combination thereof.
A method for producing an oxidized fiber according to claim 11 .
JP2018072900A 2018-01-29 2018-04-05 Method for producing oxidized fiber and oxidized fiber Active JP6667568B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW107103128 2018-01-29
TW107103128A TWI695099B (en) 2018-01-29 2018-01-29 Oxidized fiber

Publications (2)

Publication Number Publication Date
JP2019131940A JP2019131940A (en) 2019-08-08
JP6667568B2 true JP6667568B2 (en) 2020-03-18

Family

ID=62116203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018072900A Active JP6667568B2 (en) 2018-01-29 2018-04-05 Method for producing oxidized fiber and oxidized fiber

Country Status (6)

Country Link
US (1) US20190233977A1 (en)
EP (1) EP3517660A1 (en)
JP (1) JP6667568B2 (en)
KR (1) KR20200068527A (en)
CN (1) CN110093685A (en)
TW (1) TWI695099B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110983493A (en) * 2019-12-28 2020-04-10 西安康本材料有限公司 Process for improving carbonization efficiency of PAN-based carbon fiber
CN112142487B (en) * 2020-09-22 2021-09-10 中国科学院山西煤炭化学研究所 Microwave-assisted asphalt oxidation non-melting method
KR102458266B1 (en) * 2021-12-10 2022-10-24 케이에이에프 주식회사 Biodegradable polyolefin fiber and manufacturing method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2392143A1 (en) * 1977-05-25 1978-12-22 British Petroleum Co PROCESS FOR MANUFACTURING CARBON OR GRAPHITE FIBERS FROM NATURAL ORGANIC MATERIAL FIBERS BY USE OF HYPERFREQUENCES
US6733737B1 (en) * 2001-08-29 2004-05-11 Wright Materials Research Corp. Rapid oxidation/stabilization technique for carbon foams, carbon fibers and C/C composites
CN1202297C (en) * 2002-03-05 2005-05-18 陈新谋 New technology and device for pdyacrylonitril fiber preoxidation and carbonation
US7534854B1 (en) * 2005-03-29 2009-05-19 Ut-Battelle, Llc Apparatus and method for oxidation and stabilization of polymeric materials
US7824495B1 (en) * 2005-11-09 2010-11-02 Ut-Battelle, Llc System to continuously produce carbon fiber via microwave assisted plasma processing
RU2416682C1 (en) * 2009-07-28 2011-04-20 Марина Владимировна Соболева Method of stabilising carbonaceous fibre and method of producing carbon fibre
BR112012005159A2 (en) * 2009-09-11 2016-05-03 Toho Tenax Europe Gmbh method for stabilizing polyacrylonitrile yarn using chemical stabilization reactions
TWI384098B (en) * 2009-12-30 2013-02-01 High module carbon fiber and fabricating method thereof
JP2011162898A (en) * 2010-02-06 2011-08-25 Toho Tenax Co Ltd Carbon fiber precursor fiber and method for producing carbon fiber by using the same
CN102505188B (en) * 2011-11-10 2013-07-10 中国科学院宁波材料技术与工程研究所 Method for preparing activated carbon fiber by using polyvinylidene chloride as matrix
CN104047073B (en) * 2014-06-26 2016-02-10 吉林大学 A kind of preoxidized polyacrylonitrile treating apparatus and method
CN105696113B (en) * 2015-12-04 2018-06-26 江西大有科技有限公司 A kind of devices and methods therefor using nonequilibrium plasma manufacture carbon fiber
CN105544021A (en) * 2016-02-18 2016-05-04 上海应用技术学院 Method for inhibiting unevenness of structures of carbon fibers
JP6446573B1 (en) * 2018-01-18 2018-12-26 マイクロ波化学株式会社 Microwave processing apparatus and carbon fiber manufacturing method
TWM564598U (en) * 2018-01-29 2018-08-01 永虹先進材料股份有限公司 Oxidized fiber structure

Also Published As

Publication number Publication date
CN110093685A (en) 2019-08-06
TWI695099B (en) 2020-06-01
TW201932652A (en) 2019-08-16
KR20200068527A (en) 2020-06-15
US20190233977A1 (en) 2019-08-01
EP3517660A1 (en) 2019-07-31
JP2019131940A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP3216682U (en) Fiber pre-oxidation equipment
JP6667568B2 (en) Method for producing oxidized fiber and oxidized fiber
KR101689861B1 (en) Nanocarbon composite carbon fiber with low cost and high performance and their preparation method
JP6063045B2 (en) Carbonization method and carbon fiber production method
US10316433B2 (en) Carbon fiber and method for producing carbon fiber
US20120181162A1 (en) Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre
KR101755267B1 (en) Carbon fiber using electron beam cross-linked polyacrylonitrile fiber and method for preparing the same
JP6667567B2 (en) Fiber pre-oxidation equipment
CN211522400U (en) Microwave heating carbon fiber precursor annealing-pre-oxidation treatment equipment
JP3216683U (en) Oxidized fiber structure
TWI695096B (en) Oxidized fiber manufacturing method
RU2740139C1 (en) Method of producing carbon fibrous materials from hydrate-and-cellulose fibers
CN118531529A (en) Pre-oxidation method of mesophase pitch carbon fiber
JP2004232134A (en) Method for producing carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200225

R150 Certificate of patent or registration of utility model

Ref document number: 6667568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250