JP6666406B2 - Photogrammetry system - Google Patents

Photogrammetry system Download PDF

Info

Publication number
JP6666406B2
JP6666406B2 JP2018182581A JP2018182581A JP6666406B2 JP 6666406 B2 JP6666406 B2 JP 6666406B2 JP 2018182581 A JP2018182581 A JP 2018182581A JP 2018182581 A JP2018182581 A JP 2018182581A JP 6666406 B2 JP6666406 B2 JP 6666406B2
Authority
JP
Japan
Prior art keywords
light receiving
receiving sensor
line laser
sensor
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018182581A
Other languages
Japanese (ja)
Other versions
JP2019023653A (en
Inventor
熊谷 薫
薫 熊谷
大友 文夫
文夫 大友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2018182581A priority Critical patent/JP6666406B2/en
Publication of JP2019023653A publication Critical patent/JP2019023653A/en
Application granted granted Critical
Publication of JP6666406B2 publication Critical patent/JP6666406B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、受光装置の傾きを検出可能な写真測量システムに関するものである。 The present invention relates to a photogrammetry system capable of detecting a tilt of a light receiving device.

測定点迄の距離測定を行なうものとして、再帰反射性を有するターゲットを測定点上に設置し、トータルステーション等の測量装置によりターゲットを測定し、測定点迄の距離を測定するものがある。   As a method for measuring the distance to a measurement point, there is a method in which a target having retroreflective properties is installed on the measurement point, and the target is measured by a surveying device such as a total station to measure the distance to the measurement point.

通常、ターゲットはポールの上端に設けられ、ポールの下端を測定点に設置している。
測定点迄の距離を正確に測定する為には、ターゲットが測定点の真上に位置している必要があり、ポールが傾斜している場合には、ポールの傾き角を検出し、ターゲットの位置を補正する必要がある。
Usually, the target is provided at the upper end of the pole, and the lower end of the pole is set at the measurement point.
In order to accurately measure the distance to the measurement point, the target must be located directly above the measurement point. If the pole is inclined, the inclination angle of the pole is detected and the target is detected. The position needs to be corrected.

従来では、測量装置本体からレーザ光を測量装置の基準線に沿って回転照射させてレーザ平面を発生させるか、或は水平方向に拡がるラインレーザを照射してレーザ平面を発生させ、レーザ光を所定間隔離れた2つの検出器で受光させる。検出器は鉛直方向に所要の長さを有しており、レーザ平面を基準にした2つの検出器の受光位置のズレ長を測り、2つの検出器の間隔とズレ長から測量装置の基準線に対するターゲットの傾き角を求めていた。   Conventionally, a laser plane is generated by rotating and irradiating a laser beam from a surveying apparatus main body along a reference line of the surveying apparatus, or a laser plane is generated by irradiating a line laser extending in the horizontal direction to generate a laser plane. Light is received by two detectors separated by a predetermined distance. The detector has a required length in the vertical direction, and measures the deviation length of the light receiving position of the two detectors with respect to the laser plane, and calculates the reference line of the surveying instrument from the distance between the two detectors and the deviation length. The inclination angle of the target with respect to was calculated.

従来の方法の場合、検出した傾き角の精度は、2つの検出器の間隔とズレ長を測る分解能で決まる様になっており、検出精度を向上させるには2つの検出器の間隔を大きくしなければならない。一方、傾き角の測定範囲は、2つの検出器の間隔と検出器の大きさ(受光範囲の大きさ)で決まり、所望の測定範囲を確保する為には、2つの検出器の間隔に比例して検出器を大きくしなければならないという問題があった。   In the case of the conventional method, the accuracy of the detected tilt angle is determined by the resolution of measuring the distance between the two detectors and the deviation length. To improve the detection accuracy, increase the distance between the two detectors. There must be. On the other hand, the measurement range of the tilt angle is determined by the interval between the two detectors and the size of the detectors (the size of the light receiving range), and is proportional to the interval between the two detectors in order to secure a desired measurement range. Therefore, there is a problem that the detector must be enlarged.

又、従来では、水平、鉛直に関する傾き角の検出は可能であるが、高精度で応答速度の速いものはなく、更に測量装置本体の基準線に対して離れたターゲットの傾きを高速且つ高精度に測定でき、小型化が可能な傾斜検出装置はなかった。   Conventionally, it is possible to detect the inclination angle with respect to the horizontal and vertical directions, but there is no one with high accuracy and high response speed, and the inclination of the target far from the reference line of the surveying instrument main body can be detected at high speed and with high accuracy. There was no tilt detection device that could be measured quickly and could be miniaturized.

本発明は斯かる実情に鑑み、ターゲットの傾き角を容易且つ高精度に検出可能な写真測量システムを提供するものである。 The present invention has been made in view of the above circumstances, and provides a photogrammetry system capable of easily and accurately detecting a tilt angle of a target.

本発明は、UAVを用いた写真測量を行う為のシステムであって、測距機能と水平回転可能に設けられ、鉛直なラインレーザを照射するラインレーザ照射部とを有する測量装置と、既知の間隔で設けられた少なくとも2つの受光部と再帰反射性を有するターゲットと演算部とを有する受光装置を備えたカメラとを具備し、前記ラインレーザ照射部を回転させ、各受光部に前記ラインレーザを走査させ、前記演算部は各受光部の受光時間のズレ及び前記測量装置の前記ターゲットの測距結果に基づき前記受光装置の傾き角を検出することで前記UAVの位置を補正し、前記カメラの傾き角により写真測量の測量結果を補正する写真測量システムに係るものである。 The present invention relates to a system for performing photogrammetry using a UAV , a surveying device having a distance measuring function and a line laser irradiating unit that is provided to be horizontally rotatable and irradiates a vertical line laser, and a known system. A camera provided with a light receiving device having at least two light receiving units provided at intervals, a target having retroreflective properties, and a calculating unit, rotating the line laser irradiation unit, and applying the line laser to each light receiving unit. The arithmetic unit corrects the position of the UAV by detecting a shift of the light receiving time of each light receiving unit and a tilt angle of the light receiving device based on a distance measurement result of the target of the surveying device, and The present invention relates to a photogrammetry system that corrects a photogrammetry result according to the inclination angle of the photogrammetry.

又本発明は、前記ラインレーザ照射部に設けられた回折格子を更に具備し、前記ラインレーザを所定の角度間隔に分割する写真測量システムに係るものである。Further, the present invention relates to a photogrammetry system further comprising a diffraction grating provided in the line laser irradiation section, and dividing the line laser into predetermined angular intervals.

又本発明は、前記受光部が周方向に所定角度ピッチで設けられた受光センサを有する多面センサであり、前記ターゲットが全周プリズムである写真測量システムに係るものである。Further, the present invention relates to a photogrammetry system in which the light receiving section is a multifaceted sensor having a light receiving sensor provided at a predetermined angular pitch in a circumferential direction, and the target is a full-circle prism.

更に又本発明は、前記測量装置が追尾機能を更に有し、該測量装置は追尾光を射出し、前記ターゲットで反射された追尾光を基に前記受光装置を追尾する写真測量システムに係るものである。Furthermore, the present invention relates to a photogrammetry system in which the surveying device further has a tracking function, the surveying device emits tracking light, and tracks the light receiving device based on the tracking light reflected by the target. It is.

本発明によれば、UAVを用いた写真測量を行う為のシステムであって、測距機能と水平回転可能に設けられ、鉛直なラインレーザを照射するラインレーザ照射部とを有する測量装置と、既知の間隔で設けられた少なくとも2つの受光部と再帰反射性を有するターゲットと演算部とを有する受光装置を備えたカメラとを具備し、前記ラインレーザ照射部を回転させ、各受光部に前記ラインレーザを走査させ、前記演算部は各受光部の受光時間のズレ及び前記測量装置の前記ターゲットの測距結果に基づき前記受光装置の傾き角を検出することで前記UAVの位置を補正し、前記カメラの傾き角により写真測量の測量結果を補正するので、各受光部間の距離の大きさによらず傾き角を検出可能であり、前記受光装置の小型化が図れると共に、前記受光装置の傾き角を容易且つ短時間で高精度に検出し、前記UAVによる写真測量の精度を向上させることができる According to the present invention, there is provided a system for performing photogrammetry using a UAV , a surveying device having a distance measuring function and a line laser irradiating unit which is provided to be horizontally rotatable and irradiates a vertical line laser, A camera equipped with a light receiving device having at least two light receiving units provided at known intervals, a target having a retroreflective property, and an arithmetic unit, rotating the line laser irradiation unit, and setting each light receiving unit to Scan the line laser, the arithmetic unit corrects the position of the UAV by detecting the shift of the light receiving time of each light receiving unit and the inclination angle of the light receiving device based on the distance measurement result of the target of the surveying device , Since the survey result of photogrammetry is corrected based on the tilt angle of the camera, the tilt angle can be detected regardless of the size of the distance between the light receiving units, and the light receiving device can be reduced in size. The tilt angle of the light receiving device can be easily and quickly detected with high accuracy, and the accuracy of photogrammetry by the UAV can be improved .

又本発明によれば、前記ラインレーザ照射部に設けられた回折格子を更に具備し、前記ラインレーザを所定の角度間隔に分割するので、1回のスキャンで各受光部に前記ラインレーザを複数回受光させることができ、検出された傾き角を平均化処理することで傾き角の検出精度をより向上させることができる。   Further, according to the present invention, the apparatus further comprises a diffraction grating provided in the line laser irradiation unit, and divides the line laser into a predetermined angular interval. The inclination angle can be detected more accurately by averaging the detected inclination angles.

又本発明によれば、前記受光部が周方向に所定角度ピッチで設けられた受光センサを有する多面センサであり、前記ターゲットが全周プリズムであるので、何れの方向からでも前記受光装置を追尾可能であると共に、各受光部に前記ラインレーザを受光させることができ、各受光部を前記傾斜検出装置に向ける必要がなくなり、作業性を向上させることができる。   Further, according to the present invention, the light receiving section is a polyhedral sensor having a light receiving sensor provided at a predetermined angular pitch in a circumferential direction, and the target is a full-circle prism, so that the light receiving device can be tracked from any direction. In addition to this, it is possible to make each light receiving unit receive the line laser, and it is not necessary to direct each light receiving unit to the inclination detecting device, so that workability can be improved.

更に又本発明によれば、前記測量装置が追尾機能を更に有し、該測量装置は追尾光を射出し、前記ターゲットで反射された追尾光を基に前記受光装置を追尾するので、手作業で前記測量装置を前記受光装置に向ける必要がなく、作業性を向上させることができるという優れた効果を発揮する Furthermore , according to the present invention, the surveying device further has a tracking function, and the surveying device emits tracking light and tracks the light receiving device based on the tracking light reflected by the target. Therefore, it is not necessary to point the surveying device at the light receiving device, and an excellent effect that workability can be improved is exhibited .

本発明の第1の実施例に係る傾斜検出システムを示す側面図である。FIG. 2 is a side view illustrating the tilt detection system according to the first embodiment of the present invention. 該傾斜検出システムに用いられる傾斜検出装置の一例を示す正面図である。FIG. 2 is a front view illustrating an example of a tilt detection device used in the tilt detection system. (A)は第1受光センサと第2受光センサの位置関係を示す図であり、(B)は前記第1受光センサと前記第2受光センサの受光状態を示す図である。(A) is a figure which shows the positional relationship of a 1st light receiving sensor and a 2nd light receiving sensor, (B) is a figure which shows the light receiving state of the said 1st light receiving sensor and the said 2nd light receiving sensor. 本発明の第2の実施例に係る往路と復路の受光信号波形を示す図である。FIG. 9 is a diagram showing light-receiving signal waveforms on a forward path and a return path according to a second embodiment of the present invention. 本発明の第3の実施例に係る傾斜検出システムを示す平面図である。FIG. 11 is a plan view illustrating a tilt detection system according to a third embodiment of the present invention. 本発明の第3の実施例に係る往路と復路の受光信号波形を示す図である。FIG. 11 is a diagram illustrating light-receiving signal waveforms on a forward path and a return path according to a third embodiment of the present invention. 本発明の第4の実施例に係る第1受光センサと第2受光センサと第3受光センサの位置関係を説明する図である。FIG. 14 is a diagram illustrating a positional relationship among a first light receiving sensor, a second light receiving sensor, and a third light receiving sensor according to a fourth embodiment of the present invention. (A)は本発明の第5の実施例に係る受光装置を示す側面図であり、(B)は該受光装置の平面図であり、(C)は各受光センサに受光されたラインレーザの受光信号波形を示す図である。(A) is a side view showing a light receiving device according to a fifth embodiment of the present invention, (B) is a plan view of the light receiving device, and (C) is a line laser received by each light receiving sensor. It is a figure showing a light reception signal waveform. 本発明の第6の実施例に係る傾斜検出システムを示す側面図である。FIG. 13 is a side view illustrating a tilt detection system according to a sixth embodiment of the present invention. (A)は方向センサの一例を示す説明図であり、(B)は方向センサを用いた方向角の検出方法を示す説明図である。(A) is an explanatory view showing an example of a direction sensor, and (B) is an explanatory view showing a direction angle detection method using the direction sensor.

以下、図面を参照しつつ本発明の実施例を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

先ず、図1に於いて、本発明の第1の実施例に係る距離測定システムについて説明する。   First, a distance measuring system according to a first embodiment of the present invention will be described with reference to FIG.

図1中、1は傾斜検出機構を有する測量装置、例えばトータルステーションである。   In FIG. 1, reference numeral 1 denotes a surveying device having an inclination detecting mechanism, for example, a total station.

該測量装置1の測定範囲内に、円柱状の受光装置2が立設されている。該受光装置2は、ポール、三脚等、所要の支持部材(図示ではポール3を示している)の上端に設けられ、前記受光装置2は例えばコーナキューブや反射シート等、再帰反射性を有するターゲット4を有している。該ターゲット4の高さ、即ち前記ポール3の下端からの高さは既知となっている。   A columnar light receiving device 2 is set up within the measurement range of the surveying device 1. The light receiving device 2 is provided on an upper end of a required support member (the pole 3 is shown in the figure) such as a pole or a tripod, and the light receiving device 2 is a target having a retroreflective property such as a corner cube or a reflection sheet. Four. The height of the target 4, that is, the height from the lower end of the pole 3, is known.

又、前記受光装置2には、鉛直方向に広がるラインレーザ5(後述)を受光可能な第1受光部である第1受光センサ6、第2受光部である第2受光センサ7が上下方向に所定の間隔で設けられており、前記第1受光センサ6と前記第2受光センサ7との間の間隔は既知となっている。   The light receiving device 2 includes a first light receiving sensor 6 as a first light receiving portion and a second light receiving sensor 7 as a second light receiving portion capable of receiving a line laser 5 (described later) spreading in a vertical direction. It is provided at a predetermined interval, and the interval between the first light receiving sensor 6 and the second light receiving sensor 7 is known.

又、前記受光装置2には、2次元の方向センサ8が設けられている。該方向センサ8は、例えば図10(A)に示される様な、画素の集合体であるプロファイルセンサであり、画素はマトリクス状で配列され、各画素がそれぞれ追尾光(後述)を受光する様になっている。   The light receiving device 2 is provided with a two-dimensional direction sensor 8. The direction sensor 8 is, for example, a profile sensor that is a group of pixels as shown in FIG. 10A, and the pixels are arranged in a matrix, and each pixel receives tracking light (described later). It has become.

前記プロファイルセンサは、例えば図10(A)に示される様に、矩形形状を有しており、左上の角部を原点とし、図10(B)に示される様に、X方向、Y方向の各列毎に走査した際の、前記追尾光の受光信号57のレベルのピーク画素位置を検出することで、前記プロファイルセンサ内での追尾光受光位置(対象物の位置)を検出できる。   The profile sensor has, for example, a rectangular shape as shown in FIG. 10 (A), and has an origin at the upper left corner, and as shown in FIG. 10 (B), in the X and Y directions. By detecting the peak pixel position of the level of the light receiving signal 57 of the tracking light when scanning is performed for each column, the light receiving position of the tracking light (the position of the object) in the profile sensor can be detected.

従って、前記プロファイルセンサにより、追尾光のY方向の受光位置を基に、前記受光装置2の前記ラインレーザ5の広がり方向と平行な平面に於ける倒れ角(前記測量装置1に対する近接離反方向の傾き角)が検出され、追尾光のX方向の受光位置を基に、前記ラインレーザ5に対する前記ポール3の軸心を中心とした回転角が検出される。尚、前記方向センサ8として、CCD、CMOSセンサを用いてもよい。   Therefore, based on the position of the tracking light received in the Y direction by the profile sensor, the inclination angle of the light receiving device 2 on a plane parallel to the spreading direction of the line laser 5 (the direction of the approaching / separating direction with respect to the surveying device 1). (A tilt angle) is detected, and a rotation angle about the axis of the pole 3 with respect to the line laser 5 is detected based on the light receiving position of the tracking light in the X direction. Incidentally, a CCD or CMOS sensor may be used as the direction sensor 8.

更に、前記受光装置2には演算部10が設けられ、該演算部10は前記第1受光センサ6及び前記第2受光センサ7で受光した前記ラインレーザ5を基に前記受光装置2の傾き角を演算すると共に、前記方向センサ8に入力された受光信号を基に前記測量装置1方向への倒れ角と前記ポール3の回転方向の傾き角を演算し、演算結果を前記測量装置1に送信する様になっている。   Further, the light receiving device 2 is provided with a calculation unit 10, which calculates a tilt angle of the light receiving device 2 based on the line laser 5 received by the first light receiving sensor 6 and the second light receiving sensor 7. Is calculated, and the inclination angle in the direction of the surveying device 1 and the inclination angle of the pole 3 in the rotating direction are calculated based on the received light signal input to the direction sensor 8, and the calculation result is transmitted to the surveying device 1. It is supposed to.

次に、図2に於いて、本実施例に用いられる前記測量装置1の一例について説明する。   Next, an example of the surveying device 1 used in the present embodiment will be described with reference to FIG.

三脚9に整準部11が設けられ、該整準部11に基盤部12が設けられている。該基盤部12に水平回転駆動部13が収納されている。該水平回転駆動部13は鉛直に延びる中空の水平出力軸14を有し、該水平出力軸14の上端に回転部である托架部15が取付けられている。   A leveling section 11 is provided on the tripod 9, and a base section 12 is provided on the leveling section 11. A horizontal rotation drive unit 13 is housed in the base unit 12. The horizontal rotation drive unit 13 has a vertically extending hollow horizontal output shaft 14, and a support 15, which is a rotating unit, is attached to the upper end of the horizontal output shaft 14.

該托架部15は凹部16を有し、該凹部16には回転部である望遠鏡部17が収納され、該望遠鏡部17は鉛直回転軸18を介して前記托架部15に回転自在に支持されている。前記望遠鏡部17には測距光軸21(図1参照)を有する視準望遠鏡19が設けられ、又不可視光の測距光を射出する測距部(図示せず)が収納されている。又、前記望遠鏡部17には、前記測距光軸21と同軸の追尾光軸に不可視光の追尾光を射出する追尾部(図示せず)が収納されている。   The mounting portion 15 has a concave portion 16, and a telescopic portion 17 as a rotating portion is housed in the concave portion 16, and the telescopic portion 17 is rotatably supported by the mounting portion 15 via a vertical rotation shaft 18. Have been. The telescope unit 17 is provided with a collimating telescope 19 having a distance measuring optical axis 21 (see FIG. 1), and houses a distance measuring unit (not shown) for emitting invisible distance measuring light. Further, the telescope unit 17 houses a tracking unit (not shown) for emitting tracking light of invisible light to a tracking optical axis coaxial with the distance measuring optical axis 21.

前記托架部15には鉛直回転駆動部23が収納され、該鉛直回転駆動部23は前記鉛直回転軸18に連結されている。前記鉛直回転駆動部23は、鉛直出力軸24を有し、該鉛直出力軸24は前記鉛直回転軸18と連結され、前記鉛直回転駆動部23の駆動により前記鉛直出力軸24、前記鉛直回転軸18を介して前記望遠鏡部17が高低方向に回転する様になっている。   A vertical rotation drive unit 23 is housed in the support unit 15, and the vertical rotation drive unit 23 is connected to the vertical rotation shaft 18. The vertical rotation drive unit 23 has a vertical output shaft 24, the vertical output shaft 24 is connected to the vertical rotation shaft 18, and the vertical rotation drive unit 23 drives the vertical output shaft 24, the vertical rotation shaft. The telescope section 17 is rotated in the vertical direction via 18.

前記水平回転駆動部13は、回転モータ25とクラッチ部26とを有している。該クラッチ部26が継状態で、前記回転モータ25の回転力が前記水平出力軸14に伝達され、前記クラッチ部26が切状態で前記水平出力軸14が前記回転モータ25から切離され、前記水平出力軸14単体で回転可能となる。又、前記クラッチ部26が切状態では、前記水平出力軸14と前記回転モータ25とは所定の摩擦力を介して連結されている。   The horizontal rotation drive unit 13 includes a rotation motor 25 and a clutch unit 26. When the clutch 26 is engaged, the rotational force of the rotary motor 25 is transmitted to the horizontal output shaft 14, and when the clutch 26 is disengaged, the horizontal output shaft 14 is separated from the rotary motor 25, The horizontal output shaft 14 can be rotated by itself. When the clutch 26 is in the disengaged state, the horizontal output shaft 14 and the rotary motor 25 are connected via a predetermined frictional force.

従って、前記托架部15は、前記水平回転駆動部13に対して相対回転可能となると共に、前記摩擦力によって位置が保持される様になっている。   Accordingly, the support portion 15 is rotatable relative to the horizontal rotation drive portion 13 and the position is held by the frictional force.

前記鉛直回転駆動部23も前記水平回転駆動部13と同様の構造である。   The vertical rotation drive unit 23 has the same structure as the horizontal rotation drive unit 13.

前記鉛直回転駆動部23は、回転モータ27とクラッチ部28とを有している。該クラッチ部28が継状態で、前記回転モータ27の回転力が前記鉛直出力軸24に伝達され、前記クラッチ部28が切状態で前記鉛直出力軸24が前記回転モータ27から切離され、前記鉛直出力軸24単体で回転可能となる。又、前記クラッチ部28が切状態では前記鉛直出力軸24と前記回転モータ27とは所定の摩擦力を介して連結され、前記クラッチ部28が切状態でも前記望遠鏡部17は任意の位置に保持される様になっている。   The vertical rotation drive unit 23 has a rotation motor 27 and a clutch unit 28. When the clutch unit 28 is engaged, the rotational force of the rotary motor 27 is transmitted to the vertical output shaft 24, and when the clutch unit 28 is disengaged, the vertical output shaft 24 is disconnected from the rotary motor 27, The vertical output shaft 24 can be rotated by itself. When the clutch unit 28 is in the disengaged state, the vertical output shaft 24 and the rotary motor 27 are connected via a predetermined frictional force, and the telescope unit 17 is held at an arbitrary position even when the clutch unit 28 is in the disengaged state. It is to be done.

尚、図示はしないが、前記水平出力軸14には水平角エンコーダが設けられ、前記水平出力軸14の回転角が検出される。又、前記鉛直出力軸24には鉛直角エンコーダが設けられ、前記鉛直出力軸24の回転角が検出される様になっている。   Although not shown, the horizontal output shaft 14 is provided with a horizontal angle encoder, and detects the rotation angle of the horizontal output shaft 14. The vertical output shaft 24 is provided with a vertical angle encoder so that the rotation angle of the vertical output shaft 24 is detected.

又、前記望遠鏡部17の上面には、上下に広がるレーザ光線(ラインレーザ5)を射出するラインレーザ照射部29が設けられている。該ラインレーザ照射部29は、鉛直回転軸31を介して前記望遠鏡部17に支持されており、前記鉛直回転軸31を中心に水平方向に回転可能となっている。又、前記ラインレーザ照射部29は水平駆動部(図示せず)を有し、前記望遠鏡部17とは独立して水平回転可能となっている。   Further, on the upper surface of the telescope unit 17, a line laser irradiation unit 29 for emitting a laser beam (line laser 5) extending vertically is provided. The line laser irradiation unit 29 is supported by the telescope unit 17 via a vertical rotation shaft 31 and is rotatable in the horizontal direction about the vertical rotation shaft 31. The line laser irradiating section 29 has a horizontal driving section (not shown), and can rotate horizontally independently of the telescope section 17.

前記ラインレーザ照射部29は、赤外光等の可視のレーザ光を射出し、レーザ光の射出口に設けられたシリンドリカルレンズ33を有している。該シリンドリカルレンズ33は水平な中心線を有し、前記ラインレーザ照射部29から射出されたレーザ光は、前記シリンドリカルレンズ33により上下方向に所定の広がり角となる様拡散され、鉛直な前記ラインレーザ5が形成される。該ラインレーザ5により鉛直なレーザ平面が形成される。該レーザ平面の広がり角は例えば20°である。   The line laser irradiating section 29 emits a visible laser beam such as an infrared ray and has a cylindrical lens 33 provided at an exit of the laser beam. The cylindrical lens 33 has a horizontal center line, and the laser light emitted from the line laser irradiator 29 is diffused by the cylindrical lens 33 so as to have a predetermined divergence angle in the vertical direction. 5 are formed. The line laser 5 forms a vertical laser plane. The spread angle of the laser plane is, for example, 20 °.

又、前記托架部15の内部には制御部20が設けられ、該制御部20は前記ターゲット4の測距、測角を実行すると共に、前記水平回転駆動部13、前記鉛直回転駆動部23等の各駆動部を制御する。又、前記制御部20は、前記受光装置2からの傾斜検出結果を受信可能であり、該受光装置2からの傾き角及び倒れ角を基に測距結果を補正する様になっている。   Further, a control unit 20 is provided inside the support unit 15, and the control unit 20 executes the distance measurement and the angle measurement of the target 4, as well as the horizontal rotation drive unit 13 and the vertical rotation drive unit 23. Etc. are controlled. Further, the control unit 20 can receive the inclination detection result from the light receiving device 2 and corrects the distance measurement result based on the inclination angle and the inclination angle from the light receiving device 2.

前記ポール3が測定点に設置されると、前記望遠鏡部17から追尾光が射出される。前記托架部15の水平回転、前記望遠鏡部17の鉛直回転の協働により追尾光を受光することで、前記視準望遠鏡19が前記ターゲット4を追尾し、該ターゲット4に測距光軸が向けられる。前記ポール3が測定点に設置された状態で、前記測距部は前記望遠鏡部17を介して測距光を射出し、前記ターゲット4からの反射光を受光して距離を測定する。又、前記水平角エンコーダ、前記鉛直角エンコーダの検出結果に基づき水平角、鉛直角を測定する。   When the pole 3 is set at the measurement point, tracking light is emitted from the telescope unit 17. The collimating telescope 19 follows the target 4 by receiving the tracking light by the cooperation of the horizontal rotation of the support unit 15 and the vertical rotation of the telescope unit 17, and the distance measuring optical axis is set to the target 4. Pointed. With the pole 3 installed at the measurement point, the distance measuring unit emits distance measuring light via the telescope unit 17 and receives reflected light from the target 4 to measure the distance. Also, the horizontal angle and the vertical angle are measured based on the detection results of the horizontal angle encoder and the vertical angle encoder.

この時、前記受光装置2が傾いていた場合には、前記ターゲット4が測定点上に位置しておらず、測定点の測距結果、測角結果に誤差が含まれる。この為、前記受光装置2の傾き角等を検出し、前記ターゲット4の3次元位置を補正する必要がある。   At this time, when the light receiving device 2 is tilted, the target 4 is not located on the measurement point, and the distance measurement result and the angle measurement result of the measurement point include an error. Therefore, it is necessary to correct the three-dimensional position of the target 4 by detecting the inclination angle of the light receiving device 2 and the like.

以下、図3(A)、図3(B)に於いて、本実施例に於ける、前記受光装置2の傾き角θの検出について説明する。尚、図3(A)は、前記第1受光センサ6と前記第2受光センサ7の位置関係を示す説明図であり、図3(A)中、34は前記受光装置2の中心線を示し、前記第1受光センサ6と前記第2受光センサ7とは鉛直方向にAだけ離れている。
又、図3(B)は、前記第1受光センサ6と前記第2受光センサ7の前記ラインレーザ5を受光した状態を示す図である。尚、傾き角θは、測量装置の基準線に対する相対傾き角を示すが、以下の説明では、前記ラインレーザ5は鉛直として説明する。
Hereinafter, detection of the inclination angle θ of the light receiving device 2 in this embodiment will be described with reference to FIGS. 3A and 3B. FIG. 3A is an explanatory diagram showing a positional relationship between the first light receiving sensor 6 and the second light receiving sensor 7. In FIG. 3A, reference numeral 34 denotes a center line of the light receiving device 2. The first light receiving sensor 6 and the second light receiving sensor 7 are separated from each other by A in the vertical direction.
FIG. 3B is a diagram showing a state in which the first light receiving sensor 6 and the second light receiving sensor 7 have received the line laser 5. The inclination angle θ indicates a relative inclination angle with respect to a reference line of the surveying instrument, but in the following description, the line laser 5 will be described as being vertical.

前記受光装置2の傾き角θを検出する際には、前記ラインレーザ照射部29より前記ラインレーザ5を照射し、該ラインレーザ5が前記第1受光センサ6と前記第2受光センサ7とに受光される様、前記ラインレーザ照射部29を定速且つ既知の角速度で所定角度往復回転(所定角度で往復走査)させる。   When detecting the inclination angle θ of the light receiving device 2, the line laser 5 is irradiated from the line laser irradiation unit 29, and the line laser 5 is applied to the first light receiving sensor 6 and the second light receiving sensor 7. The line laser irradiation unit 29 is reciprocally rotated at a constant angle and a known angular speed by a predetermined angle (reciprocal scanning at a predetermined angle) so as to be received.

前記受光装置2が傾いていた場合には、前記第1受光センサ6が前記ラインレーザ5を受光するタイミングと、前記第2受光センサ7が前記ラインレーザ5を受光するタイミングとでズレが生じる。   When the light receiving device 2 is tilted, a difference occurs between the timing when the first light receiving sensor 6 receives the line laser 5 and the timing when the second light receiving sensor 7 receives the line laser 5.

図3(A)に示される様に、この時の前記第1受光センサ6、前記第2受光センサ7間のズレ長をaとし、前記第1受光センサ6、前記第2受光センサ7間の距離をAとすると、傾き角θは以下の式で表すことができる。   As shown in FIG. 3 (A), a shift length between the first light receiving sensor 6 and the second light receiving sensor 7 at this time is a, and the distance between the first light receiving sensor 6 and the second light receiving sensor 7 is Assuming that the distance is A, the inclination angle θ can be expressed by the following equation.

θ=sin-1(a/A) θ = sin -1 (a / A)

ここで、スキャン角速度ω[rad/s]に測定距離L[mm]を乗じ、スキャン速度S[mm/s]を求めることができる。スキャン速度S[mm/s]に図3(B)に示される様な、前記第1受光センサ6と前記第2受光センサ7の受光信号35の受光時間差であるズレ時間Δt[s]を乗じることでズレ長aが求められる。即ち、ズレ長a、傾き角θは以下の式で表すことができる。ここで、スキャン角速度ω、測定距離L、ズレ時間Δtは既知である。   Here, the scan speed S [mm / s] can be obtained by multiplying the scan angular speed ω [rad / s] by the measurement distance L [mm]. The scanning speed S [mm / s] is multiplied by a shift time Δt [s] as shown in FIG. 3B, which is a light receiving time difference between the light receiving signals 35 of the first light receiving sensor 6 and the second light receiving sensor 7. Thus, the shift length a is obtained. That is, the shift length a and the inclination angle θ can be expressed by the following equations. Here, the scan angular velocity ω, the measurement distance L, and the shift time Δt are known.

a=ΔtωL[mm]   a = ΔtωL [mm]

θ=sin-1(a/A)=sin-1(ΔtωL/A) θ = sin −1 (a / A) = sin −1 (ΔtωL / A)

尚、前記ラインレーザ5によるレーザ平面と平行な平面に於ける倒れ角(近接、離反方向の傾き角)は、前記方向センサ8の受光面の基準線に対するターゲット像の上下方向の変位に基づき検出することができる。   The tilt angle of the line laser 5 in a plane parallel to the laser plane (inclination angle in the approaching and separating directions) is detected based on the vertical displacement of the target image with respect to the reference line of the light receiving surface of the direction sensor 8. can do.

傾き角θ、及び倒れ角の検出後は、検出した傾き角θ及び倒れ角を基に前記ターゲット4の3次元位置を補正することができ、測定点迄の正確な距離測定を行うことができる。   After the detection of the tilt angle θ and the tilt angle, the three-dimensional position of the target 4 can be corrected based on the detected tilt angle θ and the tilt angle, and accurate distance measurement to the measurement point can be performed. .

上記した様に、第1の実施例では、前記ラインレーザ5が形成する鉛直なレーザ平面を走査し、前記第1受光センサ6と前記第2受光センサ7とに前記ラインレーザ5を受光させることで、前記受光装置2が傾いていた場合に、前記第1受光センサ6と前記第2受光センサ7が前記ラインレーザ5を受光する時間差とその時のズレ長を基に、前記受光装置2の傾き角θを検出することができる。   As described above, in the first embodiment, the vertical laser plane formed by the line laser 5 is scanned, and the first light receiving sensor 6 and the second light receiving sensor 7 receive the line laser 5. When the light receiving device 2 is tilted, the inclination of the light receiving device 2 is determined based on the time difference between the first light receiving sensor 6 and the second light receiving sensor 7 receiving the line laser 5 and the shift length at that time. The angle θ can be detected.

従って、前記第1受光センサ6、前記第2受光センサ7間を前記ラインレーザ5が横切る時間を検出することにより傾き角θを検出可能であるので、前記第1受光センサ6と前記第2受光センサ7との間の距離を大きくする必要がなく、又前記第1受光センサ6と前記第2受光センサ7を大型化する必要がなく、前記受光装置2を小型化することができる。   Therefore, the inclination angle θ can be detected by detecting the time when the line laser 5 crosses between the first light receiving sensor 6 and the second light receiving sensor 7, so that the first light receiving sensor 6 and the second light receiving sensor 6 can be detected. There is no need to increase the distance between the light receiving device 7 and the first light receiving sensor 6 and the second light receiving sensor 7, and the light receiving device 2 can be downsized.

又、前記ラインレーザ5が、前記第1受光センサ6と前記第2受光センサ7とに受光されればよいので、前記ラインレーザ5が走査する為の回転距離は僅かでよく、前記受光装置2の傾き角を容易に且つ短時間で高精度に検出することができる。   Further, since the line laser 5 only needs to be received by the first light receiving sensor 6 and the second light receiving sensor 7, the rotation distance for the line laser 5 to scan is small, and the light receiving device 2 Can be easily and accurately detected in a short time.

次に、図1、図4に於いて、本発明の第2の実施例について説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS.

第2の実施例では、望遠鏡部17がターゲット4を追尾した状態で、追尾光軸を中心にラインレーザ照射部29を低速且つ定速で、所定の角度、例えば1°〜2°の範囲で往復させ、第1受光センサ6と第2受光センサ7に、ラインレーザ5が複数回受光される様にしている。   In the second embodiment, in a state where the telescope unit 17 tracks the target 4, the line laser irradiation unit 29 is moved at a low speed and a constant speed around the tracking optical axis at a predetermined angle, for example, in a range of 1 ° to 2 °. The line laser 5 is reciprocated so that the first light receiving sensor 6 and the second light receiving sensor 7 receive the line laser 5 a plurality of times.

尚、図4に於いては、前記第1受光センサ6と前記第2受光センサ7に前記ラインレーザ5が2回(1往復)受光された状態を示している。又、図4中、36は1回目(往路)の受光信号波形を示し、37は2回目(復路)の受光信号波形を示している。   FIG. 4 shows a state where the line laser 5 is received twice (one reciprocation) by the first light receiving sensor 6 and the second light receiving sensor 7. In FIG. 4, reference numeral 36 denotes a first (outgoing) light receiving signal waveform, and 37 denotes a second (returning) light receiving signal waveform.

傾き角θの検出精度は、前記第1受光センサ6と前記第2受光センサ7との間のズレ長を測る分解能により決定されるものであるが、受光センサの応答速度(応答時間)は各受光センサ毎に個体差がある為、該個体差により各センサ間に応答遅れが生じ、該応答遅れにより分解能が低下する虞れがある。   The detection accuracy of the inclination angle θ is determined by the resolution for measuring the deviation length between the first light receiving sensor 6 and the second light receiving sensor 7, and the response speed (response time) of the light receiving sensor is Since there is an individual difference between the light receiving sensors, a response delay occurs between the sensors due to the individual difference, and the resolution may be reduced due to the response delay.

ここで、前記第1受光センサ6の応答時間をτ1、前記第2受光センサ7の応答時間をτ2とすると、前記第1受光センサ6に対する前記第2受光センサ7の応答遅れΔτは以下の式で表すことができる。   Here, assuming that the response time of the first light receiving sensor 6 is τ1 and the response time of the second light receiving sensor 7 is τ2, the response delay Δτ of the second light receiving sensor 7 with respect to the first light receiving sensor 6 is represented by the following equation. Can be represented by

Δτ=τ2−τ1   Δτ = τ2−τ1

又、往路時の前記第1受光センサ6に対する前記第2受光センサ7の受光信号の受光時間差はΔt+Δτで表すことができ、復路時の前記第1受光センサ6に対する前記第2受光センサ7の受光信号の受光時間差は−Δt′+Δτで表すことができる。   In addition, the light receiving time difference between the first light receiving sensor 6 and the light receiving signal of the second light receiving sensor 7 with respect to the first light receiving sensor 6 can be represented by Δt + Δτ, and the light receiving time of the second light receiving sensor 7 with respect to the first light receiving sensor 6 during the backward movement. The light receiving time difference of the signal can be represented by -Δt '+ Δτ.

往路時の前記第1受光センサ6、前記第2受光センサ7間の受光時間差と、復路時の前記第1受光センサ6、前記第2受光センサ7間の受光時間差の合計は、Δt+Δt′で表すことができる。従って、往復時の前記ラインレーザ5のスキャン速度が等しい場合(Δt=Δt′)には、往路時と復路時の前記第1受光センサ6、前記第2受光センサ7間の受光時間差の合計は、2Δtとなる。従って、前記第1受光センサ6の応答遅れ、前記第2受光センサ7の応答遅れを相殺することができる。   The sum of the light receiving time difference between the first light receiving sensor 6 and the second light receiving sensor 7 on the outward path and the light receiving time difference between the first light receiving sensor 6 and the second light receiving sensor 7 on the backward path is represented by Δt + Δt ′. be able to. Therefore, when the scan speed of the line laser 5 at the time of reciprocation is equal (Δt = Δt ′), the sum of the light receiving time differences between the first light receiving sensor 6 and the second light receiving sensor 7 at the time of going and returning is: , 2Δt. Therefore, the response delay of the first light receiving sensor 6 and the response delay of the second light receiving sensor 7 can be offset.

尚、前記第1受光センサ6と前記第2受光センサ7が前記ラインレーザ5を受光する回数は、前記第1受光センサ6と前記第2受光センサ7の応答時間の差をキャンセルできる様、偶数回とするのが望ましい。   The number of times that the first light receiving sensor 6 and the second light receiving sensor 7 receive the line laser 5 is an even number so that the difference in response time between the first light receiving sensor 6 and the second light receiving sensor 7 can be canceled. It is desirable to set it to times.

上記した様に、本発明の第2の実施例では、前記ラインレーザ5を往復させ、前記第1受光センサ6と前記第2受光センサ7とに前記ラインレーザ5を2回受光させることで、前記第1受光センサ6と前記第2受光センサ7の検出感度が2倍になると共に、前記第1受光センサ6と前記第2受光センサ7との応答時間の差をキャンセルすることができる。   As described above, in the second embodiment of the present invention, the line laser 5 is reciprocated, and the first light receiving sensor 6 and the second light receiving sensor 7 receive the line laser 5 twice, The detection sensitivity of the first light receiving sensor 6 and the second light receiving sensor 7 is doubled, and the difference in response time between the first light receiving sensor 6 and the second light receiving sensor 7 can be canceled.

従って、前記第1受光センサ6と前記第2受光センサ7の応答時間の差に基づく、誤差を抑制することができ、傾き角θの検出精度をより高めることができる。   Therefore, an error based on a difference in response time between the first light receiving sensor 6 and the second light receiving sensor 7 can be suppressed, and the detection accuracy of the inclination angle θ can be further improved.

尚、第2の実施例では、前記ラインレーザ5を1往復、即ち前記第1受光センサ6と前記第2受光センサ7を2回受光させているが、前記ラインレーザ5を2往復以上させ、前記第1受光センサ6と前記第2受光センサ7を4回以上受光させてもよい。前記ラインレーザ5を前記第1受光センサ6と前記第2受光センサ7とに受光させる回数を増加させ、平均化処理を行うことで、傾き角θの検出精度をより高精度化することができる。   In the second embodiment, the line laser 5 is reciprocated once, that is, the first light receiving sensor 6 and the second light receiving sensor 7 are received twice. The first light receiving sensor 6 and the second light receiving sensor 7 may receive light four times or more. By increasing the number of times that the line laser 5 is received by the first light receiving sensor 6 and the second light receiving sensor 7 and performing the averaging process, the detection accuracy of the tilt angle θ can be further improved. .

次に、図5、図6に於いて、本発明の第3の実施例について説明する。尚、図5中、図1、図2中と同等のものには同符号を付し、その説明を省略する。   Next, a third embodiment of the present invention will be described with reference to FIGS. In FIG. 5, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof will be omitted.

第3の実施例では、シリンドリカルレンズ33よりも射出側に回折格子38を設けている。該回折格子38により、ラインレーザ5が所定の回折ピッチ(所定の角度ピッチ)b、例えば10°間隔を有する3本のラインレーザ5a〜5cに分割される。   In the third embodiment, the diffraction grating 38 is provided on the exit side of the cylindrical lens 33. The diffraction grating 38 divides the line laser 5 into three line lasers 5a to 5c having a predetermined diffraction pitch (predetermined angular pitch) b, for example, 10 ° intervals.

傾き角の検出精度はスキャン角速度の安定性に依存する様になっており、ラインレーザ照射部29を定速で回転させた場合のスキャン角速度、或は第1受光センサ6(図1参照)、第2受光センサ7(図1参照)が前記ラインレーザ5を受光した際のスキャン角速度を検出する必要がある。   The detection accuracy of the tilt angle depends on the stability of the scan angular velocity. The scan angular velocity when the line laser irradiation unit 29 is rotated at a constant speed, or the first light receiving sensor 6 (see FIG. 1), It is necessary to detect the scan angular velocity when the second light receiving sensor 7 (see FIG. 1) receives the line laser 5.

第3の実施例では、前記回折格子38により、前記ラインレーザ5a〜5c間は所定の回折ピッチ(所定の角度ピッチ)bとなっているので、例えば前記ラインレーザ5aと前記ラインレーザ5b間のスキャン角速度を一定とみなし、前記ラインレーザ5aと前記ラインレーザ5bが前記第1受光センサ6を通過する時間を検出することで、容易に前記ラインレーザ5aと前記ラインレーザ5b間のスキャン角速度を求めることができる。   In the third embodiment, the diffraction grating 38 forms a predetermined diffraction pitch (predetermined angular pitch) b between the line lasers 5a to 5c. Therefore, for example, between the line laser 5a and the line laser 5b The scan angular velocity between the line laser 5a and the line laser 5b can be easily obtained by detecting the time when the line laser 5a and the line laser 5b pass through the first light receiving sensor 6 assuming that the scan angular velocity is constant. be able to.

更に、前記ラインレーザ照射部29の回転速度にむらがあった場合でも、角度ピッチが小さい場合は、前記ラインレーザ5a〜5c間はスキャン速度を一定と見なすことができる。   Further, even when the rotation speed of the line laser irradiation unit 29 is uneven, if the angular pitch is small, the scan speed between the line lasers 5a to 5c can be regarded as constant.

従って、前記ラインレーザ5a〜5cのスキャン速度が一定でなくてもよく、前記ラインレーザ照射部29を定速で回転させるのが困難な場合であっても、高精度に受光装置2の傾き角を検出することができる。   Accordingly, the scan speed of the line lasers 5a to 5c may not be constant, and even if it is difficult to rotate the line laser irradiation unit 29 at a constant speed, the tilt angle of the light receiving device 2 can be accurately determined. Can be detected.

又、前記回折格子38により、前記ラインレーザ5を複数の前記ラインレーザ5a〜5cに分割可能であり、1回スキャンさせる間に前記第1受光センサ6、前記第2受光センサ7に前記ラインレーザ5を複数回受光させることができるので、1回のスキャンで平均化処理を行うことができ、前記受光装置2の傾き角の検出精度を向上させることができる。   Further, the line laser 5 can be divided into a plurality of the line lasers 5a to 5c by the diffraction grating 38. The line laser 5 is applied to the first light receiving sensor 6 and the second light receiving sensor 7 during one scanning. 5 can be received a plurality of times, the averaging process can be performed in one scan, and the detection accuracy of the tilt angle of the light receiving device 2 can be improved.

又、前記第1受光センサ6、前記第2受光センサ7により検出される信号波形39は、前記回折格子38により周期が安定した信号波形である。従って、前記第1受光センサ6と前記第2受光センサ7の前記信号波形39、或は前記ラインレーザ照射部29を往復させ、前記第1受光センサ6と前記第2受光センサ7の何れか一方の往路の前記信号波形39と復路の信号波形41の位相測定によりズレ時間を求めるか、或は相関処理によりズレ時間を求めることで、高分解能の傾き角の検出が可能となる。   The signal waveform 39 detected by the first light receiving sensor 6 and the second light receiving sensor 7 is a signal waveform whose period is stabilized by the diffraction grating 38. Therefore, the signal waveform 39 of the first light receiving sensor 6 and the second light receiving sensor 7 or the line laser irradiating unit 29 is reciprocated, and one of the first light receiving sensor 6 and the second light receiving sensor 7 is moved. By detecting the shift time by measuring the phase of the signal waveform 39 on the outward path and the signal waveform 41 on the return path, or by determining the shift time by correlation processing, it is possible to detect the tilt angle with high resolution.

尚、第3の実施例では、前記回折格子38により前記ラインレーザ5を3本の前記ラインレーザ5a〜5cに分割しているが、分割数は4本以上でもよい。前記ラインレーザ5を4本以上に分割することにより、前記第1受光センサ6、前記第2受光センサ7で検出される信号波形の周期数が増加し、分解能をより高めることができる。   In the third embodiment, the line laser 5 is divided into three line lasers 5a to 5c by the diffraction grating 38, but the number of divisions may be four or more. By dividing the line laser 5 into four or more, the number of periods of the signal waveform detected by the first light receiving sensor 6 and the second light receiving sensor 7 is increased, and the resolution can be further improved.

次に、図7に於いて、本発明の第4の実施例について説明する。第4の実施例では、第1受光センサ6、第2受光センサ7に加え、受光装置2(図1参照)に第3受光部である第3受光センサ42を設けている。   Next, a fourth embodiment of the present invention will be described with reference to FIG. In the fourth embodiment, in addition to the first light receiving sensor 6 and the second light receiving sensor 7, a third light receiving sensor 42 as a third light receiving unit is provided in the light receiving device 2 (see FIG. 1).

前記第1受光センサ6と前記第3受光センサ42とは、ラインレーザ5(図1参照)のレーザ平面と直交する平面上に位置している。又、前記第2受光センサ7は、前記第1受光センサ6と前記第3受光センサ42の垂直2等分線上に位置している。   The first light receiving sensor 6 and the third light receiving sensor 42 are located on a plane orthogonal to the laser plane of the line laser 5 (see FIG. 1). Further, the second light receiving sensor 7 is located on a vertical bisector of the first light receiving sensor 6 and the third light receiving sensor 42.

ここで、前記第1受光センサ6と前記第2受光センサ7の受光時間差をΔt1[s]、前記第1受光センサ6と前記第3受光センサ42の受光時間差をΔt2[s]とし、前記第2受光センサ7から前記第1受光センサ6と前記第3受光センサ42とを結んだ線迄の距離をAとし、前記第1受光センサ6から前記垂直2等分線迄の距離と前記第3受光センサ42から前記垂直2等分線迄の距離をそれぞれbとすると、傾き角θは以下の式で表すことができる。   Here, the light receiving time difference between the first light receiving sensor 6 and the second light receiving sensor 7 is Δt1 [s], the light receiving time difference between the first light receiving sensor 6 and the third light receiving sensor 42 is Δt2 [s], The distance from the second light receiving sensor 7 to the line connecting the first light receiving sensor 6 and the third light receiving sensor 42 is A, and the distance from the first light receiving sensor 6 to the vertical bisector and the third Assuming that the distance from the light receiving sensor 42 to the perpendicular bisector is b, the inclination angle θ can be expressed by the following equation.

θ=tan-1[(2b・Δt1)/{Δt2・√(A2 +b2 )・cos(tan-1(b/A))}−b/A] θ = tan −1 [(2b · Δt1) / {Δt2 · {(A 2 + b 2 ) · cos (tan −1 (b / A))} − b / A]

上記式に於いて、Aとbは既知であり、更にラインレーザ照射部29(図1参照)を定速で回転させた場合、即ち既知のスキャン角速度で該ラインレーザ照射部29を回転させることで、前記受光装置2迄の距離を求めることなく傾き角θを求めることができる。   In the above formula, A and b are known, and when the line laser irradiation unit 29 (see FIG. 1) is further rotated at a constant speed, that is, the line laser irradiation unit 29 is rotated at a known scan angular velocity. Thus, the inclination angle θ can be obtained without obtaining the distance to the light receiving device 2.

又、Δt1とΔt2を測定することで、スキャン速度を求めることができ、更に求めたスキャン速度から測定距離を求めることができる。   Further, by measuring Δt1 and Δt2, the scan speed can be obtained, and the measurement distance can be obtained from the obtained scan speed.

第4の実施例では、既知のスキャン角速度と、前記第1受光センサ6と前記第2受光センサ7の受光時間のズレ、前記第1受光センサ6と前記第3受光センサ42の受光時間のズレを基に、測定距離を求めることなく傾き角θを求めることができる。即ち、既知の回転速度と、受光部の1つを基準として他の受光部との受光時間のズレと、更に他の受光部との受光時間のズレとを基に、測定距離を求めることなく傾き角θを求めることができ、又スキャン速度及び測定距離を求めることができる。従って、測量装置1(図1参照)自体に距離測定機構が不要となり、装置構成を簡易化でき、製作コストを低減させることができる。   In the fourth embodiment, the known scan angular velocity is shifted from the light receiving time of the first light receiving sensor 6 to the light receiving time of the second light receiving sensor 7, and the light receiving time of the first light receiving sensor 6 is shifted from the light receiving time of the third light receiving sensor 42. The inclination angle θ can be obtained without obtaining the measurement distance based on That is, based on the known rotation speed, the difference in the light receiving time with the other light receiving unit with reference to one of the light receiving units, and further based on the difference in the light receiving time with the other light receiving unit, without determining the measurement distance. The inclination angle θ can be obtained, and the scan speed and the measurement distance can be obtained. Accordingly, the surveying device 1 (see FIG. 1) itself does not require a distance measuring mechanism, so that the device configuration can be simplified and the manufacturing cost can be reduced.

尚、第4の実施例では、前記受光装置2に3つの受光センサ6,7,42を設けているが、4つ以上としてもよい。又、第4の実施例を他の実施例と組合わせてもよいのは言う迄もない。   In the fourth embodiment, three light receiving sensors 6, 7, and 42 are provided in the light receiving device 2, but four or more light receiving sensors may be provided. It goes without saying that the fourth embodiment may be combined with other embodiments.

次に、図8(A)〜図8(C)に於いて、本発明の第5の実施例について説明する。   Next, a fifth embodiment of the present invention will be described with reference to FIGS. 8 (A) to 8 (C).

第5の実施例では、第1受光部として、図8(A)、図8(B)に示される様に、ポール3の軸心を中心とした円周上に等間隔で設けられた受光センサ43a〜43hを有する8面センサである第1受光センサ43が用いられている。又、第2受光部として、前記ポール3の軸心を中心とした円周上に等間隔で設けられた受光センサ44a〜44hを有する8面センサである第2受光センサ44が用いられている。更に、ターゲットとして全周プリズム45が用いられ、方向センサ8として4方向に設けられたプロファイルセンサが用いられている。   In the fifth embodiment, as shown in FIG. 8A and FIG. 8B, the light receiving portions provided at regular intervals on the circumference centered on the axis of the pole 3 as the first light receiving portion. A first light receiving sensor 43 which is an eight-surface sensor having sensors 43a to 43h is used. Further, as the second light receiving section, a second light receiving sensor 44 which is an eight-surface sensor having light receiving sensors 44a to 44h provided at equal intervals on a circumference centered on the axis of the pole 3 is used. . Further, an all-round prism 45 is used as a target, and profile sensors provided in four directions are used as the direction sensor 8.

前記受光センサ43aと前記受光センサ44a、前記受光センサ43bと前記受光センサ44b、前記受光センサ43cと前記受光センサ44c、前記受光センサ43dと前記受光センサ44d、前記受光センサ43eと前記受光センサ44e、前記受光センサ43fと前記受光センサ44f、前記受光センサ43gと前記受光センサ44g、前記受光センサ43hと前記受光センサ44hは、それぞれ対応した配置となっており、更に前記ポール3の軸心と平行な線上に同一の距離で設けられている。例えば、受光装置2が垂直に設けられている場合には、前記受光センサ43aと前記受光センサ44aはラインレーザ5を同時に受光する様になっている。尚、前記第2受光センサ44の構成は前記第1受光センサ43の構成と同等であるので、図示を省略する。   The light receiving sensor 43a and the light receiving sensor 44a, the light receiving sensor 43b and the light receiving sensor 44b, the light receiving sensor 43c and the light receiving sensor 44c, the light receiving sensor 43d and the light receiving sensor 44d, the light receiving sensor 43e and the light receiving sensor 44e, The light receiving sensor 43f and the light receiving sensor 44f, the light receiving sensor 43g and the light receiving sensor 44g, and the light receiving sensor 43h and the light receiving sensor 44h are respectively arranged correspondingly. They are provided at the same distance on the line. For example, when the light receiving device 2 is provided vertically, the light receiving sensor 43a and the light receiving sensor 44a receive the line laser 5 at the same time. Note that the configuration of the second light receiving sensor 44 is the same as the configuration of the first light receiving sensor 43, and is not shown.

例えば、図8(B)に示される様に、前記受光装置2が傾斜した状態で、前記受光センサ43aに前記ラインレーザ5が照射された場合、第1の実施例と同様、前記受光センサ43aの受光時間と前記受光センサ44aの受光時間のズレ時間Δtを基に前記受光装置2の傾き角θを検出することができる。   For example, as shown in FIG. 8B, when the line laser 5 is irradiated on the light receiving sensor 43a in a state where the light receiving device 2 is inclined, as in the first embodiment, The inclination angle θ of the light receiving device 2 can be detected based on the difference Δt between the light receiving time of the light receiving sensor 44a and the light receiving time of the light receiving sensor 44a.

又、前記第1受光センサ43と前記第2受光センサ44は8面センサとなっているので、図8(B)に示される配置では、1回のスキャンで前記受光センサ43hと前記受光センサ44h、前記受光センサ43aと前記受光センサ44a、前記受光センサ43bと前記受光センサ44bの3組の受光センサに対して前記ラインレーザ5を受光させることができる。従って、各組毎の受光信号波形46各組毎に傾き角θが検出でき、傾き角θの検出精度向上の為の平均化処理が可能となる。   Further, since the first light receiving sensor 43 and the second light receiving sensor 44 are eight-surface sensors, in the arrangement shown in FIG. 8B, the light receiving sensor 43h and the light receiving sensor 44h are scanned by one scan. The line laser 5 can be received by three sets of light receiving sensors, the light receiving sensor 43a and the light receiving sensor 44a, and the light receiving sensor 43b and the light receiving sensor 44b. Accordingly, the inclination angle θ can be detected for each group of the light receiving signal waveforms 46 for each group, and an averaging process for improving the detection accuracy of the inclination angle θ can be performed.

又、ラインレーザ照射部29(図1参照)を往復させることで、往路の前記受光信号波形46と復路の受光信号波形47を基に、前記受光センサ43h,43a,43bと前記受光センサ44h,44a,44bの応答時間の差をキャンセルし、傾き角θの検出精度を更に向上させることができる。   By reciprocating the line laser irradiating section 29 (see FIG. 1), the light receiving sensors 43h, 43a, 43b and the light receiving sensors 44h, 44h, based on the light receiving signal waveform 46 on the outward path and the light receiving signal waveform 47 on the backward path. The difference between the response times 44a and 44b can be canceled, and the detection accuracy of the inclination angle θ can be further improved.

更に、前記第1受光センサ43と前記第2受光センサ44は8面センサであり、ターゲットが前記全周プリズム45であるので、何れの方向からでも前記受光装置2を追尾可能であると共に、前記第1受光センサ43、前記第2受光センサ44をスキャンすることができる。又、前記方向センサ8が4方向に設けられたプロファイルセンサとなっているので、何れの方向からでも近接離反方向の倒れ角を検出することができる。従って、各受光部を前記測量装置1に向ける必要がなく、作業性を向上させることができる。   Further, since the first light receiving sensor 43 and the second light receiving sensor 44 are eight-surface sensors and the target is the full-circle prism 45, the light receiving device 2 can be tracked from any direction, The first light receiving sensor 43 and the second light receiving sensor 44 can be scanned. Further, since the direction sensor 8 is a profile sensor provided in four directions, the inclination angle in the approaching / separating direction can be detected from any direction. Therefore, it is not necessary to direct each light receiving section toward the surveying device 1, and workability can be improved.

尚、第5の実施例では、前記第1受光センサ43、前記第2受光センサ44を8つの受光センサを有する8面センサとしているが、7つ以下、或は9つ以上の受光センサを有する多面センサとしてもよいのは言う迄もない。   In the fifth embodiment, the first light receiving sensor 43 and the second light receiving sensor 44 are eight-surface sensors having eight light receiving sensors, but have seven or less light receiving sensors or nine or more light receiving sensors. It goes without saying that a multi-surface sensor may be used.

次に、図9に於いて、本発明の第6の実施例について説明する。第6の実施例では、UAV(Unmanned Air Vehicle:無人飛行体)48に受光装置49が取付けられている。   Next, a sixth embodiment of the present invention will be described with reference to FIG. In the sixth embodiment, a light receiving device 49 is attached to a UAV (Unmanned Air Vehicle) 48.

前記UAV48は写真測量を行う為のカメラ51を有し、該カメラ51はジンバルを介して前記UAV48に設けられ、前記カメラ51は常に鉛直姿勢となっている。該カメラ51の下方に円柱状の前記受光装置49が垂下されている。該受光装置49は前記カメラ51と一体であり、該カメラ51が鉛直姿勢の時は前記受光装置49の軸心は鉛直であり、前記カメラ51が傾斜した場合には、前記受光装置49は前記カメラ51と同一の傾斜方向、傾斜角で傾斜する様になっている。   The UAV 48 has a camera 51 for performing photogrammetry. The camera 51 is provided on the UAV 48 via a gimbal, and the camera 51 is always in a vertical posture. The columnar light receiving device 49 is hung below the camera 51. The light receiving device 49 is integral with the camera 51. When the camera 51 is in a vertical posture, the axis of the light receiving device 49 is vertical, and when the camera 51 is inclined, the light receiving device 49 is The camera is tilted in the same tilt direction and tilt angle as the camera 51.

又、前記受光装置49は第1受光センサ52と第2受光センサ53とを有し、前記第1受光センサ52と前記第2受光センサ53との間の距離は既知となっている。又、前記受光装置49は前記UAV48の方向を検出する為のカメラ54を有している。該カメラ54によって周囲の画像を撮像することで、周囲の所定の対象物を基準とした前記UAV48の向きが検出できる。例えば、前記カメラ54によって測量装置1の画像を取得することで、該測量装置1を基準とした前記UAV48の向き、方向が検出できる。更に前記受光装置49の下端には再帰反射性を有する全周プリズム55が設けられている。   Further, the light receiving device 49 has a first light receiving sensor 52 and a second light receiving sensor 53, and the distance between the first light receiving sensor 52 and the second light receiving sensor 53 is known. The light receiving device 49 has a camera 54 for detecting the direction of the UAV 48. By taking an image of the surroundings by the camera 54, the direction of the UAV 48 with respect to a predetermined surrounding object can be detected. For example, by acquiring an image of the surveying device 1 with the camera 54, the direction and direction of the UAV 48 with respect to the surveying device 1 can be detected. Further, at the lower end of the light receiving device 49, an all-round prism 55 having retroreflectivity is provided.

又、前記受光装置49は図示しない演算部及び通信部を有し、前記受光装置49の傾きや前記UAV48の方向を演算すると共に、演算結果を前記測量装置1に送信する様になっている。   Further, the light receiving device 49 has a calculation unit and a communication unit (not shown), and calculates the inclination of the light receiving device 49 and the direction of the UAV 48 and transmits the calculation result to the surveying device 1.

前記測量装置1は、前記全周プリズム55に追尾光を射出し、該全周プリズム55からの反射光を受光することで、前記UAV48を追尾すると共に、測距光を射出して前記UAV48の位置を測定可能となっている。該UAV48の位置が測定されることで、前記カメラ51により撮像された画像に基づく写真測量を前記測量装置1の座標上で行うことができる。   The surveying device 1 emits tracking light to the full-circumferential prism 55 and receives reflected light from the full-circumferential prism 55, thereby tracking the UAV 48 and emitting distance-measuring light to form the UAV 48. The position can be measured. By measuring the position of the UAV 48, photogrammetry based on the image captured by the camera 51 can be performed on the coordinates of the surveying device 1.

ここで、前記測量装置1がラインレーザ5を照射し、前記第1受光センサ52と前記第2受光センサ53に前記ラインレーザ5を受光させ、前記第1受光センサ52と前記第2受光センサ53に対する受光時間のズレを検出することで、前記UAV48の傾き角、更に前記カメラ51の傾き角を検出することができる。従って、検出した傾き角により該UAV48の位置を補正することができ、更に前記カメラ51の傾き角により写真測量の測量結果を補正することができ、該UAV48により写真測量の精度を向上させることができる。   Here, the surveying device 1 irradiates the line laser 5, the first light receiving sensor 52 and the second light receiving sensor 53 receive the line laser 5, and the first light receiving sensor 52 and the second light receiving sensor 53 The inclination angle of the UAV 48 and the inclination angle of the camera 51 can be detected by detecting the deviation of the light receiving time with respect to. Therefore, the position of the UAV 48 can be corrected based on the detected tilt angle, and the survey result of photogrammetry can be corrected based on the tilt angle of the camera 51. The UAV 48 can improve the accuracy of photogrammetry. it can.

1 測量装置
2 受光装置
4 ターゲット
5 ラインレーザ
6 第1受光センサ
7 第2受光センサ
29 ラインレーザ照射部
33 シリンドリカルレンズ
42 第3受光センサ
43 第1受光センサ
44 第2受光センサ
45 全周プリズム
REFERENCE SIGNS LIST 1 surveying device 2 light receiving device 4 target 5 line laser 6 first light receiving sensor 7 second light receiving sensor 29 line laser irradiation unit 33 cylindrical lens 42 third light receiving sensor 43 first light receiving sensor 44 second light receiving sensor 45 full circumference prism

Claims (3)

UAVを用いた写真測量を行う為のシステムであって、測距機能と水平回転可能に設けられ、鉛直なラインレーザを照射するラインレーザ照射部とを有する測量装置と、既知の間隔で設けられた少なくとも2つの受光部と再帰反射性を有するターゲットと演算部とを有する受光装置を備えたカメラと、前記ラインレーザ照射部に設けられた回折格子とを具備し、前記ラインレーザ照射部を回転させ、前記回折格子により前記ラインレーザを所定の角度間隔に分割して各受光部に前記ラインレーザを走査させ、前記演算部は各受光部の受光時間のズレ及び前記測量装置の前記ターゲットの測距結果に基づき前記受光装置の傾き角を検出することで前記UAVの位置を補正し、前記カメラの傾き角により写真測量の測量結果を補正することを特徴とする写真測量システム。 A system for performing photogrammetry using a UAV, which is provided at a known interval with a surveying device having a distance measuring function and a line laser irradiating unit which is provided to be horizontally rotatable and irradiates a vertical line laser. A camera provided with a light receiving device having at least two light receiving units, a target having retroreflective properties, and an arithmetic unit, and a diffraction grating provided in the line laser irradiation unit, and rotating the line laser irradiation unit. The line laser is divided into predetermined angular intervals by the diffraction grating, and each light receiving unit is caused to scan the line laser. The arithmetic unit is configured to measure a shift in light receiving time of each light receiving unit and measurement of the target of the surveying device. The position of the UAV is corrected by detecting a tilt angle of the light receiving device based on a distance result, and a survey result of photogrammetry is corrected by a tilt angle of the camera. Photogrammetry system. 前記受光部が周方向に所定角度ピッチで設けられた受光センサを有する多面センサであり、前記ターゲットが全周プリズムである請求項1の写真測量システム。 The photogrammetry system according to claim 1 , wherein the light receiving unit is a polyhedral sensor having a light receiving sensor provided at a predetermined angular pitch in a circumferential direction, and the target is a full-circle prism. 前記測量装置が追尾機能を更に有し、該測量装置は追尾光を射出し、前記ターゲットで反射された追尾光を基に前記受光装置を追尾する請求項1又は請求項2の写真測量システム。 3. The photogrammetry system according to claim 1, wherein the surveying device further has a tracking function, and the surveying device emits tracking light and tracks the light receiving device based on the tracking light reflected by the target.
JP2018182581A 2018-09-27 2018-09-27 Photogrammetry system Active JP6666406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018182581A JP6666406B2 (en) 2018-09-27 2018-09-27 Photogrammetry system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018182581A JP6666406B2 (en) 2018-09-27 2018-09-27 Photogrammetry system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014229755A Division JP6490401B2 (en) 2014-11-12 2014-11-12 Tilt detection system and tilt detection method

Publications (2)

Publication Number Publication Date
JP2019023653A JP2019023653A (en) 2019-02-14
JP6666406B2 true JP6666406B2 (en) 2020-03-13

Family

ID=65368453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018182581A Active JP6666406B2 (en) 2018-09-27 2018-09-27 Photogrammetry system

Country Status (1)

Country Link
JP (1) JP6666406B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021140445A (en) 2020-03-05 2021-09-16 株式会社トプコン Information processing apparatus, inference model construction method, information processing method, inference model, program, and recording medium
CN112414368B (en) * 2020-10-26 2022-03-15 湖北工业大学 Triangular elevation measurement method assisted by micro unmanned aerial vehicle
KR20230036296A (en) * 2021-09-07 2023-03-14 우재희 Method and apparatus for building safety diagnosis using laser beam irradiation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3512469B2 (en) * 1994-06-21 2004-03-29 株式会社トプコン Surveying equipment
JP4282432B2 (en) * 2003-10-14 2009-06-24 株式会社トプコン Light receiving device for rotary laser device
JP6122591B2 (en) * 2012-08-24 2017-04-26 株式会社トプコン Photogrammetry camera and aerial photography equipment

Also Published As

Publication number Publication date
JP2019023653A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6490401B2 (en) Tilt detection system and tilt detection method
US11536568B2 (en) Target instrument and surveying system
EP1411371B1 (en) Surveying and position measuring instrument with a fan-shapped light beam
JP6621305B2 (en) Surveying system
US9188430B2 (en) Compensation of a structured light scanner that is tracked in six degrees-of-freedom
KR101659893B1 (en) Laser tracker with position-sensitive detectors for searching for a target
US10895632B2 (en) Surveying system
US20160245918A1 (en) Directed registration of three-dimensional scan measurements using a sensor unit
JP3937154B2 (en) Position detection device
JP6666406B2 (en) Photogrammetry system
JP2018028464A (en) Measurement method and laser scanner
JP2012533749A (en) Equipment for optical scanning and measurement of surroundings
JP2017106813A (en) Measuring apparatus
JP2017223540A (en) Measuring system
JP6982424B2 (en) Surveying system
JP2007506109A (en) Method and system for determining the spatial position of a portable measuring device
US11500096B2 (en) Surveying instrument
US11598854B2 (en) Surveying system
US20220146621A1 (en) Measuring assembly and method
JP7344060B2 (en) 3D surveying equipment, 3D surveying method, and 3D surveying program
JP6682371B2 (en) Construction machinery control system
JP7001800B2 (en) Surveying system
JP7324097B2 (en) Three-dimensional surveying device, three-dimensional surveying method and three-dimensional surveying program
JP2019015602A (en) Survey system
JP2022054848A (en) Tracking method, laser scanner, and tracking program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200220

R150 Certificate of patent or registration of utility model

Ref document number: 6666406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250