JP6665258B1 - External pressure load device, test method for irradiated fuel pellets - Google Patents

External pressure load device, test method for irradiated fuel pellets Download PDF

Info

Publication number
JP6665258B1
JP6665258B1 JP2018206315A JP2018206315A JP6665258B1 JP 6665258 B1 JP6665258 B1 JP 6665258B1 JP 2018206315 A JP2018206315 A JP 2018206315A JP 2018206315 A JP2018206315 A JP 2018206315A JP 6665258 B1 JP6665258 B1 JP 6665258B1
Authority
JP
Japan
Prior art keywords
heat
resistant particles
external pressure
test piece
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018206315A
Other languages
Japanese (ja)
Other versions
JP2020071162A (en
Inventor
睦 平井
睦 平井
文樹 水迫
文樹 水迫
寛 坂本
寛 坂本
晶大 鈴木
晶大 鈴木
樋口 徹
徹 樋口
中司 雅文
雅文 中司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP2018206315A priority Critical patent/JP6665258B1/en
Application granted granted Critical
Publication of JP6665258B1 publication Critical patent/JP6665258B1/en
Publication of JP2020071162A publication Critical patent/JP2020071162A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

【課題】放射線遮蔽用セル内に設置可能で、かつ高圧ガスを必要としない比較的小型で単純な機構から構成された高圧縮力(外圧)負荷機構と同機構を用いた試験方法を提供する。【解決手段】試験片を収納する凹状容器1と、前記凹状容器内に充填される耐熱性粒子5と、前記耐熱性粒子を加熱する加熱ヒータ21と、前記凹状容器の凹部に嵌合され、前記耐熱性粒子に外圧を負荷する押し棒2と、前記凹状容器を内包する雰囲気保護容器6と、前記雰囲気保護容器内に雰囲気調整ガスを供給する雰囲気調整系8と、前記試験片から放出される放出物質を検出する検出器26と、を備え、前記試験片を前記耐熱性粒子内に埋め込んで、前記加熱ヒータにより前記耐熱性粒子を加熱し、かつ、前記押し棒により前記耐熱性粒子に外圧を負荷し、当該外圧を除荷した際に前記試験片から放出される放出物質を前記検出器により検出することで、前記試験片の特性を検出することを特徴とする。【選択図】図1PROBLEM TO BE SOLVED: To provide a high compression force (external pressure) load mechanism composed of a relatively small and simple mechanism that can be installed in a radiation shielding cell and does not require high pressure gas, and a test method using the same mechanism. . SOLUTION: A concave container 1 for storing a test piece, heat resistant particles 5 filled in the concave container, a heater 21 for heating the heat resistant particles, and a concave part of the concave container are fitted, A push rod 2 that applies an external pressure to the heat-resistant particles, an atmosphere protection container 6 that encloses the concave container, an atmosphere adjustment system 8 that supplies an atmosphere adjustment gas into the atmosphere protection container, and the test piece is released. And a detector 26 for detecting a substance to be released, wherein the test piece is embedded in the heat-resistant particles, the heat-resistant particles are heated by the heater, and the heat-resistant particles are converted into the heat-resistant particles by the push rod. A characteristic of the test piece is detected by applying an external pressure and detecting a release substance released from the test piece when the external pressure is unloaded by the detector. [Selection diagram] Fig. 1

Description

本発明は、高温高圧状態から圧力を除荷した際の試験片の挙動や特性を試験するための外圧負荷装置および外圧負荷方法に係り、特に、原子炉で使用された照射済み燃料ペレットの試験に適用して有効な技術に関する。   The present invention relates to an external pressure loading device and an external pressure loading method for testing the behavior and characteristics of a test piece when pressure is unloaded from a high-temperature high-pressure state, and particularly to a test of irradiated fuel pellets used in a nuclear reactor. To apply to effective technology.

原子炉で使用される核燃料は、二酸化ウラン(UO)などの粉末状の核燃料物質を焼き固めてセラミック状にした燃料ペレットを金属製の燃料被覆管に詰めて密封した燃料棒とし、さらに数十本の燃料棒を束ねた「燃料集合体」のかたちで使用される。 The nuclear fuel used in a nuclear reactor is a fuel rod which is obtained by baking and solidifying a powdered nuclear fuel material such as uranium dioxide (UO 2 ) into a ceramic shape and filling it in a metal fuel cladding tube to form a sealed fuel rod. It is used as a "fuel assembly" consisting of ten fuel rods.

原子炉の冷却材喪失のような事故条件下においては、使用中の核燃料棒の燃料被覆管温度がその軟化温度まで急上昇し、その結果、燃料ペレットが被覆管からの拘束力を失い、燃料ペレットから核分裂生成物(FPガス:Fission Products)の放出とともにペレットが破砕・微細化し、燃料棒内で再配列し、燃料被覆管の破損に至る場合には炉水内に細分化した燃料物質が流失し、原子炉の安定性や安全性・保守管理に問題が生じる懸念がある。   Under accident conditions, such as a loss of coolant in a nuclear reactor, the fuel cladding temperature of a nuclear fuel rod in use may rise rapidly to its softening temperature, causing the fuel pellets to lose their binding force from the cladding and When fission products (FP gas: Fission Products) are released from the pellets, the pellets shatter and become finer, rearrange in the fuel rods, and when the fuel cladding breaks, the fragmented fuel material flows into the reactor water However, there is a concern that problems may arise in the stability, safety, and maintenance of the reactor.

核燃料ペレット内には原子炉で使用中にウランの核分裂とともに生成するガス(FPガス)が蓄積する。上記のように、運転中の原子炉で冷却材喪失のような事故事象を受けると、蓄積したFPガスが燃料ペレットを粉砕し微細化する可能性が考えられるため、同燃料微細化現象を理解するために燃料棒(燃料ペレット)を高温、高圧状態においた試験が要求される。   The gas (FP gas) generated during the nuclear fission of uranium during use in a nuclear reactor accumulates in the nuclear fuel pellets. As mentioned above, if an accident such as a loss of coolant occurs in an operating nuclear reactor, it is possible that the accumulated FP gas may pulverize and refine the fuel pellets. In order to do this, a test in which the fuel rods (fuel pellets) are at a high temperature and a high pressure is required.

また、試験片には多量の放射性物質が含まれるため、強固な放射線遮蔽室内で遠隔操作により試験をする必要がある。   In addition, since the test piece contains a large amount of radioactive material, it is necessary to perform the test by remote control in a strong radiation shielding room.

従来、核燃料棒に関しては、例えば約1000℃以上の被覆管が軟化するような高温まで昇温し、同時に圧力を例えば100MPa以上の高圧縮圧力まで昇圧して試験した例は少なく、同条件での試験技術および試験装置については標準的な技術仕様もない。   Conventionally, with respect to nuclear fuel rods, there are few examples in which the temperature is raised to a high temperature at which the cladding tube of about 1000 ° C. or more is softened and the pressure is simultaneously raised to a high compression pressure of, for example, 100 MPa or more. There are no standard technical specifications for test techniques and test equipment.

特開平5−39504号公報JP-A-5-39504

日本塑性加工学会編,「粉末の成形と加工」,コロナ社,1994年7月25日Japan Society for Technology of Plasticity, “Powder Forming and Processing”, Corona, July 25, 1994 河合伸泰,外2名,“熱間静水圧加圧処理(HIP)技術の現状”,「鉄と鋼」,日本鉄鋼協会,第67年(1981),第9号,p.25−32Nobuyasu Kawai, et al., “Current State of Hot Isostatic Pressing (HIP) Technology”, “Iron and Steel”, Iron and Steel Institute of Japan, 67 (1981), No. 9, p. 25-32 S. Kashibe,外1名,“Effect of external restraint on bubble swelling in UO2 fuels”,Journal of Nuclear Materials,247(1997年),p.138−146S. Kashibe, et al., “Effect of external restraint on bubble swelling in UO2 fuels”, Journal of Nuclear Materials, 247 (1997), p. 138-146 Ken. H. Yueh,外3名,“Fuel Fragmentation Data Review and Separate Effects Testing”,WRFPM 2014,Sep.14-17,2014年,No.100117Ken. H. Yueh, et al., “Fuel Fragmentation Data Review and Separate Effects Testing”, WRFPM 2014, Sep. 14-17, 2014, No. 100117 S. Yagnik,外6名,“An Investigation into Fuel Pulverization with Specific Reference to High Burn-up LOCA”,WRFPM 2014,Sep.14-17,2014年,No.100145S. Yagnik, 6 others, “An Investigation into Fuel Pulverization with Specific Reference to High Burn-up LOCA”, WRFPM 2014, Sep. 14-17, 2014, No. 100145

上記の条件に近い温度・圧力環境を達成できる一般産業界での従来技術として、例えば特許文献1や非特許文献1のようなホットプレスが知られている。ホットプレスとは、高温で成形用の粉体に圧力をかけながら製品形状に焼結する方法である。炭素製のダイスと呼ばれる型に粉末を充填し、押し棒で10MPa〜30MPaの圧力を加えて焼結する。   As a conventional technology in the general industry that can achieve a temperature and pressure environment close to the above conditions, for example, a hot press as disclosed in Patent Literature 1 and Non-Patent Literature 1 is known. Hot pressing is a method of sintering into a product shape while applying pressure to a molding powder at a high temperature. The powder is filled in a mold called a carbon die, and sintered by applying a pressure of 10 MPa to 30 MPa with a push rod.

黒鉛製ダイスや黒鉛製の発熱体を使うため大気中では焼結できず、雰囲気制御とセットで行う必要がある。また、成形材料の粉末には、押し棒の圧縮方向の一軸圧縮負荷が作用し、均一な密度分布が得られ難い。また、金型の材料強度に起因する温度や寸法上に制約を受けることなどから、高温成形ならびに大物製品の製造は困難と言われている。   Since graphite dies and graphite heating elements are used, sintering cannot be performed in the air, and it must be performed in combination with atmosphere control. In addition, a uniaxial compression load acts on the molding material powder in the compression direction of the push rod, and it is difficult to obtain a uniform density distribution. In addition, it is said that high-temperature molding and production of large products are difficult due to restrictions on the temperature and dimensions due to the material strength of the mold.

さらに、ホットプレスは粉末の成形技術であることから、高温高圧を達成できるが、核燃料棒のように被覆管内に焼き固めたUOペレットを収納した状態の試験片に圧縮荷重を均一に負荷することは不可能であり、核燃料棒の試験には適用困難である。 Furthermore, since hot pressing is a powder molding technique, high temperature and high pressure can be achieved. However, a compressive load is uniformly applied to a test specimen containing UO 2 pellets baked in a cladding tube such as a nuclear fuel rod. This is not possible and is difficult to apply to testing of nuclear fuel rods.

上記のホットプレスは、プレス加圧するため基本的に一軸方向からのみの加圧となるのに対し、非特許文献2のような熱間等方圧加圧焼結(Hot Isostatic Pressing:HIP)は、ガス圧を用いて焼結の圧力をさらに高く、数100℃〜2000℃の高温と数10MPa〜200MPaの等方的な圧力を被処理体に同時に加えて処理するプロセスで、すでに産業界で広く用いられている。   In the hot press described above, the pressure is basically applied only from the uniaxial direction in order to apply the press pressure. On the other hand, hot isostatic pressing (HIP) as in Non-Patent Document 2 is used. The process of increasing the sintering pressure by using gas pressure, and simultaneously applying a high temperature of several hundred degrees Celsius to 2000 degrees Celsius and an isotropic pressure of several tens MPa to 200 MPa to the object to be processed. Widely used.

一般的なHIP装置は、a)高圧ガスを保持する圧力容器、b)圧力容器に内蔵されるヒータ等の炉内構造物と加熱電源および制御装置、c)圧力容器に高圧ガスを供給する圧縮機等の加圧装置、d)圧力媒体のガスを貯蔵する装置、e)安全装置から構成されており、通常はアルゴン(Ar)などの不活性ガスが用いられる。   A typical HIP device includes a) a pressure vessel for holding a high-pressure gas, b) a furnace internal structure such as a heater built in the pressure vessel, a heating power supply and a control device, and c) compression for supplying the high-pressure gas to the pressure vessel. And d) a device for storing a gas of a pressure medium, and e) a safety device. Usually, an inert gas such as argon (Ar) is used.

HIPの場合、ホットプレスと比べ加圧媒体がガスであるので被処理体に均一に圧力が作用し、加圧後の形状は初期の被処理体の形状と大きく変わることがなく、変わる場合も相似的に収縮することと製品処理上の制約が比較的少ないことが大きな特徴で、この特徴を生かしてしてHIPは種々の分野に応用されている。   In the case of HIP, since the pressurized medium is a gas as compared to a hot press, pressure is uniformly applied to the object to be processed, and the shape after pressurization does not change significantly from the initial shape of the object to be processed, and sometimes changes. HIP is applied to various fields by taking advantage of this characteristic that it shrinks in a similar manner and that there are relatively few restrictions on product processing.

HIP法ではガス圧により、試験片に均一な圧縮負荷が作用するので、図4に示す従来技術のように強い放射能を伴う核燃料棒の高温圧縮試験にも利用され、例えば非特許文献3のような高圧高温下での燃料ペレットからの核分裂生成ガス(FPガス)の放出挙動に関する研究が公開されている。   In the HIP method, since a uniform compressive load acts on the test piece due to the gas pressure, the HIP method is also used for a high-temperature compression test of a nuclear fuel rod with strong radioactivity as in the prior art shown in FIG. Research on the release behavior of fission gas (FP gas) from fuel pellets under such high pressure and high temperature has been published.

図4に示す従来の外圧負荷装置では、照射済みの核燃料ペレット小片(試験片20)に隣接する加熱ヒータ21とその外周部に隣接して断熱材22が配置され、これらは耐高圧容器23内に収納されている。同高圧容器23全体は(図示していない)放射線遮蔽壁に囲まれて壁内は放射性物質が放出されないように負圧に管理されている。   In the conventional external pressure load device shown in FIG. 4, a heater 21 adjacent to the irradiated nuclear fuel pellet small piece (test piece 20) and a heat insulating material 22 adjacent to the outer periphery thereof are arranged. It is stored in. The entire high-pressure vessel 23 is surrounded by a radiation shielding wall (not shown), and the inside of the wall is controlled at a negative pressure so that radioactive substances are not released.

高圧容器23には、高圧ガス供給系24の高圧ガス貯蔵ボンベから供給されたアルゴンガス等の不活性ガスを、高圧ガス供給系24の圧縮ポンプを介して充填する。耐高圧容器23および高圧ガス供給系24は共に、高圧ガス保安法に定める高圧ガス製造施設に該当し、各種の安全基準を満たすことが求められる。   The high-pressure container 23 is filled with an inert gas such as argon gas supplied from a high-pressure gas storage cylinder of the high-pressure gas supply system 24 via a compression pump of the high-pressure gas supply system 24. Both the high-pressure container 23 and the high-pressure gas supply system 24 correspond to a high-pressure gas manufacturing facility defined by the High Pressure Gas Safety Law, and are required to satisfy various safety standards.

試験に際しては、例えばガス圧を100MPaまで上昇させ圧力計25で確認し、(図示していない)炉内温度計で検出した温度(例えば1500℃)を記録しながら、微量ガス放出用弁を介して圧力を低下させながらガス中の放射能濃度を放射能濃度計測器26に記録して、ペレット(試験片20)中の核分裂生成ガス(FPガス)の放出挙動に及ぼすガス圧と温度との関係を調べている。   At the time of the test, for example, the gas pressure is increased to 100 MPa, the pressure is checked with a pressure gauge 25, and the temperature (for example, 1500 ° C.) detected by an in-furnace thermometer (not shown) is recorded through a trace gas release valve while being recorded. The radioactivity concentration in the gas is recorded in the radioactivity concentration meter 26 while the pressure is lowered, and the effect of the gas pressure and the temperature on the release behavior of the fission gas (FP gas) in the pellet (test piece 20). Checking the relationship.

図4の外圧負荷装置では、照射済みの燃料ペレット(試験片20)を耐圧容器23内に収納して高圧を負荷して高温下で試験をすることから、装置の放射線遮蔽構造や高圧ガス保安法に定める各種の安全性確保の面から試験片20を収納するスペースは狭小で試料の大きさには制約があることから、燃料ペレットの大きさは数mm程度に限定され、燃料被覆管に燃料ペレットが収納されたような大きな体積および放射能の強い試料についての試験は不可能であった。   In the external pressure loading device shown in FIG. 4, the irradiated fuel pellets (test pieces 20) are stored in a pressure-resistant container 23 and a high pressure is applied to perform the test at a high temperature. Since the space for accommodating the test piece 20 is small and the size of the sample is restricted from the viewpoint of securing various safety specified by law, the size of the fuel pellet is limited to about several mm, Testing on large volumes and highly radioactive samples, such as those containing fuel pellets, was not possible.

さらに、耐高圧容器23内でのガス圧負荷方式では、燃料棒の事故時の急激な圧縮力の低下時を模擬するためにはガスを急激に放出する必要があり、例えば100MPaの圧縮状態を大気圧まで急激に低下させるためには密封容器(耐高圧容器23)内の体積の約1000倍程度の体積のガスを負圧管理している別の容器内に瞬時に放出させることが必要で、強い放射性物質を含む多量のガス放出は燃料取り扱い施設の安全管理面から現実的でなかった。   Further, in the gas pressure loading method in the high pressure container 23, it is necessary to rapidly release gas in order to simulate a sudden decrease in compression force in the event of a fuel rod accident. For example, a compressed state of 100 MPa is required. In order to rapidly reduce the pressure to the atmospheric pressure, it is necessary to instantaneously release a gas having a volume of about 1000 times the volume in the sealed container (high pressure container 23) into another container which is controlled under a negative pressure. The release of large amounts of gas containing strong radioactive materials was not practical from the viewpoint of safety management of fuel handling facilities.

なお、燃料ペレットからの核分裂生成ガス(FPガス)の放出挙動を高い信頼性で求めるためには、長い(長さ約20mm程度)燃料棒を供試材にすることが好ましく、そのためにはセルと称呼される放射線遮蔽施設内の遠隔操作設備を備えた小部屋を用い、本来は高圧条件で試験を行うべきである。しかしながら、高圧ガス保安法に定める耐高圧条件を満たす装置をセル内に設置することが実質的に困難であることから、非特許文献4のように代替えとして大気圧中で燃料棒を高温まで加熱し燃料ペレットからのFPガスの放出挙動を調べた例もある。   In order to determine the release behavior of fission gas (FP gas) from fuel pellets with high reliability, it is preferable to use a long (about 20 mm long) fuel rod as the test material. The test should be conducted under high-pressure conditions using a small room equipped with remote control equipment in a radiation shielding facility called "radiation shielding facility". However, since it is practically difficult to install a device that satisfies the high pressure resistance conditions defined in the High Pressure Gas Safety Act in a cell, the fuel rod is heated to a high temperature under atmospheric pressure as an alternative as in Non-Patent Document 4. In some cases, the release behavior of FP gas from fuel pellets was investigated.

本発明は、以上のような従来技術の欠陥に鑑みてなされたものであり、その目的は、放射線遮蔽用セル内に設置可能で、かつ高圧ガスを必要としない比較的小型で単純な機構から構成された高圧縮力(外圧)負荷装置と同装置を用いた試験方法を提供することにある。   The present invention has been made in view of the above-described deficiencies of the related art, and an object thereof is to provide a relatively small and simple mechanism that can be installed in a radiation shielding cell and does not require high-pressure gas. It is an object of the present invention to provide a configured high compression force (external pressure) load device and a test method using the same.

上記目的を達成するために、本発明は、試験片を収納する凹状容器と、前記凹状容器内に充填される耐熱性粒子と、前記耐熱性粒子を加熱する加熱ヒータと、前記凹状容器の凹部に嵌合され、前記耐熱性粒子に外圧を負荷する押し棒と、前記凹状容器を内包する雰囲気保護容器と、前記雰囲気保護容器内に雰囲気調整ガスを供給する雰囲気調整系と、前記試験片から放出される放出物質を検出する検出器と、を備え、前記試験片を前記耐熱性粒子内に埋め込んで、前記加熱ヒータにより前記耐熱性粒子を加熱し、かつ、前記押し棒により前記耐熱性粒子に外圧を負荷し、当該外圧を除荷した際に前記試験片から放出される放出物質を前記検出器により検出することで、前記試験片の特性を検出することを特徴とする。   In order to achieve the above object, the present invention provides a concave container for accommodating a test piece, heat-resistant particles filled in the concave container, a heater for heating the heat-resistant particles, and a concave portion of the concave container. A push rod fitted with the heat-resistant particles to apply an external pressure, an atmosphere protection container containing the concave container, an atmosphere adjustment system for supplying an atmosphere adjustment gas into the atmosphere protection container, and the test piece. A detector for detecting a substance to be released, wherein the test piece is embedded in the heat-resistant particles, the heat-resistant particles are heated by the heater, and the heat-resistant particles are pressed by the push rod. An external pressure is applied to the test piece, and a characteristic of the test piece is detected by detecting a substance released from the test piece when the external pressure is released by the detector.

また、本発明は、試験片を収納する円筒状容器と、前記円筒状容器内に充填される耐熱性粒子と、前記耐熱性粒子を加熱する加熱ヒータと、前記円筒状容器の円筒内に挿入され、前記耐熱性粒子に一方から外圧を負荷する第1の押し棒と、前記耐熱性粒子に他方から外圧を負荷する第2の押し棒と、前記円筒状容器を内包する雰囲気保護容器と、前記雰囲気保護容器内に雰囲気調整ガスを供給する雰囲気調整系と、前記試験片から放出される放出物質を検出する検出器と、を備え、前記試験片を前記耐熱性粒子内に埋め込んで、前記加熱ヒータにより前記耐熱性粒子を加熱し、かつ、前記第1の押し棒および前記第2の押し棒により前記耐熱性粒子に外圧を負荷し、当該外圧を除荷した際に前記試験片から放出される放出物質を前記検出器により検出することで、前記試験片の特性を検出することを特徴とする。   Further, the present invention provides a cylindrical container for accommodating a test piece, heat-resistant particles filled in the cylindrical container, a heater for heating the heat-resistant particles, and inserted into a cylinder of the cylindrical container. A first push rod that applies an external pressure to the heat-resistant particles from one side, a second push rod that applies an external pressure to the heat-resistant particles from the other side, and an atmosphere protection container that includes the cylindrical container. An atmosphere adjustment system that supplies an atmosphere adjustment gas into the atmosphere protection container, and a detector that detects a substance released from the test piece, wherein the test piece is embedded in the heat-resistant particles. The heat-resistant particles are heated by a heater, and an external pressure is applied to the heat-resistant particles by the first push rod and the second push rod, and released from the test piece when the external pressure is released. Emitted substance to the detector By detecting Ri, and detects a characteristic of the test piece.

また、本発明は、前記試験片は照射済み燃料ペレットであることを特徴とする照射済み燃料ペレットの試験方法である。   Further, the present invention is the method for testing irradiated fuel pellets, wherein the test piece is an irradiated fuel pellet.

本発明によれば、次に列挙する効果が得られる。   According to the present invention, the following effects can be obtained.

強い放射性物質である燃料ペレットからなる試験片を凹状容器内に耐熱性粒子と共に埋めて油圧プレスで耐熱性粒子を押し棒を介して圧縮することにより試験片に圧縮力を負荷する構造であるため、試験片を耐高圧ガス容器内に収納する必要がなく、高圧ガス供給源も使用しない方法であるため、高圧ガス保安法による規制がなく経済的に優位であるだけでなく放射性取り扱い施設の安全性向上や管理の容易さに寄与する効果がある。   Because a test piece consisting of fuel pellets, which is a strong radioactive substance, is embedded in a concave container along with heat-resistant particles, and the heat-resistant particles are compressed by a hydraulic press through a push rod to apply a compressive force to the test piece. It is not necessary to store test specimens in a high-pressure gas container and does not use a high-pressure gas supply source.Therefore, there is no regulation under the High Pressure Gas Safety Law, so it is not only economically advantageous but also safe for radioactive handling facilities. This has the effect of contributing to improved performance and ease of management.

さらに、耐熱性粒子を油圧プレスで圧縮する機構であるため、油圧解放時のプレスの除荷速度は高速で、圧縮ガス方式では体積膨張が著しく大きくなり施設の負圧維持管理が困難で不可能であったが、粒子圧縮を用いた方法では急速除荷が可能になるという重要な付随的な効果もある。   Furthermore, the mechanism that compresses the heat-resistant particles with a hydraulic press, the unloading speed of the press at the time of releasing the hydraulic pressure is high, and the compressed gas method significantly increases the volume expansion, making it difficult to maintain and maintain the negative pressure of the facility. However, the method using particle compression has an important additional effect that rapid unloading becomes possible.

これにより、放射線遮蔽用セル内に設置可能で、かつ高圧ガスを必要としない比較的小型で単純な機構から構成された高圧縮力(外圧)負荷装置と同装置を用いた試験方法を提供することができる。   This provides a high compression force (external pressure) load device that can be installed in the radiation shielding cell and has a relatively small and simple mechanism that does not require high-pressure gas, and a test method using the same. be able to.

上記した以外の課題、構成及び効果は、以下の実施形態の説明によって明らかにされる。   Problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.

本発明の一実施形態に係る外圧負荷装置の概略構成を示す断面図である。(実施例1)It is a sectional view showing the schematic structure of the external pressure load device concerning one embodiment of the present invention. (Example 1) 本発明の一実施形態に係る外圧負荷装置の概略構成を示す断面図である。(実施例2)It is a sectional view showing the schematic structure of the external pressure load device concerning one embodiment of the present invention. (Example 2) 本発明の一実施形態に係る外圧負荷装置の概略構成を示す断面図である。(実施例3)It is a sectional view showing the schematic structure of the external pressure load device concerning one embodiment of the present invention. (Example 3) 従来の外圧負荷装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the conventional external pressure load device. 試験片の圧縮力測定方法を概念的に示す図である。It is a figure which shows notionally the compression force measuring method of a test piece.

以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals, and detailed description of overlapping portions will be omitted.

図1を参照して、本発明の実施例1の外圧負荷装置および外圧負荷方法について説明する。図1は本実施例の外圧負荷装置の概略構成を示す断面図である。   First Embodiment An external pressure load device and an external pressure load method according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional view showing a schematic configuration of the external pressure load device of the present embodiment.

本実施例の外圧負荷装置は、図1に示すように、タングステン(W)などの耐熱性材料からなる凹状容器1内に試験片である長さ約20mmに切断された使用済み核燃料棒片20が耐熱性粒子5(ここでは、ジルコニア(二酸化ジルコニウム:ZrO)、粒径約0.1mmφ)に全外表面が覆われるように埋められ、耐熱性材料からなる押し棒2が充填した粒子に密着するように挿入されている。 As shown in FIG. 1, the external pressure load device according to the present embodiment includes a used nuclear fuel rod 20 cut into a length of about 20 mm, which is a test piece, in a concave container 1 made of a heat-resistant material such as tungsten (W). Is filled with heat-resistant particles 5 (here, zirconia (zirconium dioxide: ZrO 2 ), particle size of about 0.1 mmφ) so as to cover the entire outer surface, and filled with push rod 2 made of a heat-resistant material. It is inserted so as to be in close contact.

なお、凹状容器1内に耐熱性粒子5と試験片20を充填する際に容器に外部から振動を加えることで粒子の流動性を向上させた。同容器1はプレス構造を構成するプレス筐体4(上プレス筐体4aおよび下プレス筐体4b)と油圧ピストン7の間に配置され、断熱材3(上断熱材3aおよび下断熱材3b)および押し棒2を介して耐熱性粒子5を圧縮する機構になっている。   In addition, when filling the heat-resistant particles 5 and the test piece 20 into the concave container 1, the fluidity of the particles was improved by externally applying vibration to the container. The container 1 is disposed between a press housing 4 (an upper press housing 4a and a lower press housing 4b) and a hydraulic piston 7 constituting a press structure, and a heat insulator 3 (an upper heat insulator 3a and a lower heat insulator 3b). And a mechanism for compressing the heat-resistant particles 5 via the push rod 2.

さらに凹状容器1は容器内雰囲気保護用の容器6によって密封され、その外周に試料加熱ヒータ21および断熱材22を配置し、(図示していない)温度計で温度を検出しながら高温状態に保持される。   Further, the concave container 1 is sealed by a container 6 for protecting the atmosphere inside the container, and a sample heater 21 and a heat insulating material 22 are arranged on the outer periphery thereof, and the temperature is maintained at a high temperature while detecting the temperature with a thermometer (not shown). Is done.

試験では、不活性ガスを主組成(主成分)とする容器内雰囲気調整ガス8を容器内雰囲気保護用の容器6内に流しながら、プレス構造(上プレス筐体4aおよび下プレス筐体4b間)に圧縮力を発生させ、押し棒2を介して耐熱性粒子5に所定の高圧縮力(例えば100MPa)を与えると共に、凹状容器1および試験片20を高温(例えば1500℃)に昇温し、凹状容器1から流出する雰囲気ガス中に含まれる放射性物質を検出器(放射能濃度計測器26)で計測し、温度・圧力および時間経過の関係を記録することによって、試料中(試験片20)の核分裂生成物(FPガス)の放出挙動に関する情報を得る。   In the test, the press structure (between the upper press housing 4a and the lower press housing 4b) was passed while flowing the in-vessel atmosphere adjusting gas 8 containing an inert gas as the main composition (main component) into the vessel 6 for protecting the in-vessel atmosphere. ), A predetermined high compression force (for example, 100 MPa) is applied to the heat-resistant particles 5 via the push rod 2, and the concave container 1 and the test piece 20 are heated to a high temperature (for example, 1500 ° C.). The radioactive substance contained in the atmospheric gas flowing out of the concave container 1 is measured by a detector (radioactive concentration measuring instrument 26), and the relationship between the temperature, the pressure, and the lapse of time is recorded, so that the sample (the specimen 20) can be measured. The information on the release behavior of fission products (FP gas) is obtained.

また、事故時の燃料破砕現象を模擬する場合には、油圧ピストン7の圧力を急激に(或いは段階的に)開放し、プレス圧および粒子(耐熱性粒子5)の圧縮圧力を急激に(或いは段階的に)低下させ(除荷し)、その際に凹状容器1から流出する雰囲気ガス中に含まれる放射性物質を検出器(放射能濃度計測器26)で計測し、温度・圧力および時間経過の関係を記録することによって、試料中(試験片20)の核分裂生成物(FPガス)の放出挙動に関する情報を得る。さらに、加熱試験後に凹状容器1を解体して、燃料ペレット(試験片20)内に含有している微細なFPガスバブルが圧縮圧力の急激な解放によって破裂する現象およびそれに伴う燃料ペレット(試験片20)の破砕現象の有無およびその程度について観察する。   Further, when simulating the fuel crushing phenomenon at the time of an accident, the pressure of the hydraulic piston 7 is rapidly (or gradually) released, and the press pressure and the compression pressure of the particles (heat-resistant particles 5) are rapidly (or alternatively). The radioactive substance contained in the atmospheric gas flowing out of the concave container 1 is measured by a detector (radioactive concentration measuring device 26) at that time, and the temperature, pressure and time elapse are measured. Is recorded, information on the release behavior of fission products (FP gas) in the sample (test piece 20) is obtained. Further, after the heating test, the concave container 1 is disassembled, and a phenomenon in which fine FP gas bubbles contained in the fuel pellet (test piece 20) burst due to rapid release of the compression pressure and the accompanying fuel pellet (test piece 20). Observe the presence and degree of the crushing phenomenon in ()).

以上説明したように、本実施例の外圧負荷装置は、試験片20を収納する凹状容器1と、凹状容器1内に充填される耐熱性粒子5と、耐熱性粒子5を加熱する加熱ヒータ21と、凹状容器1の凹部に嵌合され、耐熱性粒子5に外圧を負荷する押し棒2と、凹状容器1を内包する雰囲気保護容器(容器内雰囲気保護用の容器6)と、雰囲気保護容器6内に雰囲気調整ガスを供給する雰囲気調整系(容器内雰囲気調整ガス8)と、試験片20から放出される放出物質を検出する検出器(放射能濃度計測器26)と、を備え、試験片20を耐熱性粒子5内に埋め込んで、加熱ヒータ21により耐熱性粒子5を加熱し、かつ、押し棒2により耐熱性粒子5に外圧を負荷し、当該外圧を除荷した際に試験片20から放出される放出物質を検出器(放射能濃度計測器26)により検出することで、試験片20の特性を検出する。   As described above, the external pressure load device according to the present embodiment includes the concave container 1 for storing the test piece 20, the heat-resistant particles 5 filled in the concave container 1, and the heater 21 for heating the heat-resistant particles 5. And a push rod 2 fitted in the concave portion of the concave container 1 and applying an external pressure to the heat-resistant particles 5, an atmosphere protection container containing the concave container 1 (a container 6 for protecting the atmosphere in the container), and an atmosphere protection container. An atmosphere adjusting system (ambient atmosphere adjusting gas 8 in the container) for supplying an atmosphere adjusting gas into the chamber 6 and a detector (radioactivity concentration measuring instrument 26) for detecting a substance released from the test piece 20 are provided. The piece 20 is embedded in the heat-resistant particles 5, the heat-resistant particles 5 are heated by the heater 21, and an external pressure is applied to the heat-resistant particles 5 by the push rod 2. Detector (radioactivity) By detecting the degree meter 26), detecting a property of the test piece 20.

本実施例によれば、放射線遮蔽用セル内に設置可能で、かつ高圧ガスを必要としない比較的小型で単純な機構から構成された高圧縮力(外圧)負荷装置と同装置を用いた照射済み燃料ペレットの試験方法を実現することができる。   According to the present embodiment, a high compression force (external pressure) load device that can be installed in a radiation shielding cell and is composed of a relatively small and simple mechanism that does not require high-pressure gas, and irradiation using the same device A test method for spent fuel pellets can be realized.

なお、試験片20として、照射済みの核燃料棒や燃料ペレットを用いた場合、加熱ヒータ21による加熱温度および押し棒2による外圧(圧縮力)の少なくともいずれか一方を変化させて、照射済みの核燃料棒や燃料ペレットから放出される核分裂生成ガス(FPガス)の放出挙動を把握(検出)することで、事故時の燃料破砕現象を模擬的に把握することができる。   When irradiated nuclear fuel rods or fuel pellets are used as the test pieces 20, at least one of the heating temperature of the heater 21 and the external pressure (compression force) of the push rod 2 is changed to change the irradiated nuclear fuel rods. By grasping (detecting) the release behavior of fission product gas (FP gas) released from rods and fuel pellets, it is possible to simulate the fuel crushing phenomenon at the time of the accident.

図2を参照して、本発明の実施例2の外圧負荷装置および外圧負荷方法について説明する。図2は本実施例の外圧負荷装置の概略構成を示す断面図である。   Second Embodiment With reference to FIG. 2, an external pressure load device and an external pressure load method according to a second embodiment of the present invention will be described. FIG. 2 is a sectional view showing a schematic configuration of the external pressure load device of the present embodiment.

本実施例の外圧負荷装置は、図2に示すように、押し棒2と耐熱性粒子5の間に耐熱性粒子5よりも粒径の大きい耐熱性粒子(粗粒)27を配置している点において、実施例1の外圧負荷装置とは異なる。その他の点は実施例1と同様である。   As shown in FIG. 2, in the external pressure load device of this embodiment, heat-resistant particles (coarse particles) 27 having a larger particle diameter than the heat-resistant particles 5 are arranged between the push rod 2 and the heat-resistant particles 5. This is different from the external pressure load device of the first embodiment. Other points are the same as in the first embodiment.

実施例1では粒経約0.1mmφの耐熱性粒子(細粒)5を加圧媒体として用いている。耐熱容器(凹状容器1)の内径と押し棒2との間には約0.05mmの直径ギャップが生じるが、加圧後には押し棒2と容器内径との間隙に耐熱性粒子(細粒)5が強固に挟まり、試験後に押し棒2を取り除く作業が著しく困難である。   In Example 1, heat-resistant particles (fine particles) 5 having a particle diameter of about 0.1 mmφ are used as a pressurizing medium. A diameter gap of about 0.05 mm is formed between the inner diameter of the heat-resistant container (concave container 1) and the push rod 2, but after pressurization, heat-resistant particles (fine particles) are formed in the gap between the push rod 2 and the inner diameter of the container. 5 are firmly pinched, and it is extremely difficult to remove the push rod 2 after the test.

そこで、本実施例では、図2に示すように、押し棒2と充填材である粒経約0.1mmφの耐熱性粒子(細粒)5との接触面に充填材(耐熱性粒子(細粒)5)の直径より大きな直径の耐熱性粒子(粗粒)27を介在させている。つまり、押し棒2と耐熱性粒子5との間に、耐熱性粒子5より粒経が大きい粗粒粒子(耐熱性粒子27)からなる粗粒粒子層を備えている。   Therefore, in this embodiment, as shown in FIG. 2, the filler (heat-resistant particles (fine particles)) is formed on the contact surface between the push rod 2 and the heat-resistant particles (fine particles) 5 having a particle diameter of about 0.1 mmφ as the filler. The heat-resistant particles (coarse particles) 27 having a diameter larger than the diameter of the particles 5) are interposed. That is, between the push rod 2 and the heat-resistant particles 5, a coarse-grained particle layer composed of coarse-grained particles (heat-resistant particles 27) having a larger particle diameter than the heat-resistant particles 5 is provided.

本実施例では、粒経約0.1mmφの耐熱性粒子(細粒)の上に粒径約1.0mmφの耐熱性粒子(粗粒)が1層以上(好ましくは2〜3層)重なるようにし、さらに押し棒2と容器内径の直径ギャップが、介在させた粗粒(耐熱性粒子27)の直径以下(好ましくは近傍値の約0.5mm)としている。つまり、押し棒2と凹状容器1の内径間の直径ギャップが、耐熱性粒子(細粒)5の粒径より大きく、粗粒粒子(耐熱性粒子27)の粒径より小さい。   In this embodiment, heat-resistant particles (coarse particles) having a particle diameter of about 1.0 mmφ overlap one or more layers (preferably 2 to 3 layers) on heat-resistant particles (fine particles) having a particle diameter of about 0.1 mmφ. In addition, the diameter gap between the push rod 2 and the inner diameter of the container is set to be equal to or less than the diameter of the interposed coarse particles (heat-resistant particles 27) (preferably, a value close to 0.5 mm). That is, the diameter gap between the push rod 2 and the inner diameter of the concave container 1 is larger than the particle size of the heat-resistant particles (fine particles) 5 and smaller than the particle size of the coarse particles (heat-resistant particles 27).

以上説明したように、本実施例によれば、実施例1の効果に加えて、押し棒2と容器内径の直径ギャップが約0.5mmと大きいため、加圧後に押し棒2は容易に分解可能で、かつ100MPaの圧縮面圧を負荷しても加圧媒体の細粒粒子(耐熱性粒子5)および粗粒粒子(耐熱性粒子27)のギャップからの漏れはなく解体までの試験作業の作業性を格段と向上させることができる。   As described above, according to the present embodiment, in addition to the effect of the first embodiment, the push rod 2 is easily disassembled after pressurization because the diameter gap between the push rod 2 and the inner diameter of the container is as large as about 0.5 mm. It is possible, and even if a compressive surface pressure of 100 MPa is applied, there is no leakage of the fine particles (heat-resistant particles 5) and the coarse particles (heat-resistant particles 27) of the pressurized medium from the gap, and the test work up to disassembly is performed. Workability can be significantly improved.

図3を参照して、本発明の実施例3の外圧負荷装置および外圧負荷方法について説明する。図3は本実施例の外圧負荷装置の概略構成を示す断面図である。   Third Embodiment An external pressure load device and an external pressure load method according to a third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a sectional view showing a schematic configuration of the external pressure load device of the present embodiment.

実施例1では凹状容器1を用いているが、本実施例の外圧負荷装置では、図3に示すように、凹状容器1に替えて耐熱性材料からなる円筒状容器28を用いており、押し棒2を上部押し棒2aと下部押し棒2bで構成している点において、実施例1の外圧負荷装置とは異なる。その他の点は実施例1と同様である。   Although the concave container 1 is used in the first embodiment, the external pressure load device of the present embodiment uses a cylindrical container 28 made of a heat resistant material instead of the concave container 1 as shown in FIG. The rod 2 is different from the external pressure load device of the first embodiment in that the rod 2 is constituted by an upper push rod 2a and a lower push rod 2b. Other points are the same as in the first embodiment.

本実施例では、充填材である耐熱性粒子5と使用済み核燃料棒片(試験片20)を円筒状容器28内に収納し、上部押し棒2aと下部押し棒2bで上下方向から耐熱性粒子5を圧縮する機構になっている。   In the present embodiment, the heat-resistant particles 5 as the filler and the spent nuclear fuel rod pieces (test pieces 20) are housed in a cylindrical container 28, and the upper heat rods 2a and the lower push rods 2b vertically move the heat resistant particles. 5 is compressed.

本実施例の外圧負荷装置は、試験片20を収納する円筒状容器28と、円筒状容器28内に充填される耐熱性粒子5と、耐熱性粒子5を加熱する加熱ヒータ21と、円筒状容器28の円筒内に挿入され、耐熱性粒子5に一方から外圧を負荷する上部押し棒2a(第1の押し棒)と、耐熱性粒子5に他方から外圧を負荷する下部押し棒2b(第2の押し棒)と、円筒状容器28を内包する雰囲気保護容器(容器内雰囲気保護用の容器6)と、雰囲気保護容器6内に雰囲気調整ガスを供給する雰囲気調整系(容器内雰囲気調整ガス8)と、試験片20から放出される放出物質を検出する(放射能濃度計測器26)と、を備え、試験片20を耐熱性粒子5内に埋め込んで、加熱ヒータ21により耐熱性粒子5を加熱し、かつ、上部押し棒2a(第1の押し棒)および下部押し棒2b(第2の押し棒)により耐熱性粒子5に外圧を負荷し、当該外圧を除荷した際に試験片20から放出される放出物質を検出器(放射能濃度計測器26)により検出することで、試験片20の特性を検出する。   The external pressure load device of the present embodiment includes a cylindrical container 28 for storing the test piece 20, the heat-resistant particles 5 filled in the cylindrical container 28, the heater 21 for heating the heat-resistant particles 5, An upper push rod 2a (first push rod) that is inserted into the cylinder of the container 28 and applies external pressure to the heat-resistant particles 5 from one side, and a lower push rod 2b (first push rod) that applies external pressure to the heat-resistant particles 5 from the other side. 2), an atmosphere protection container (container 6 for protecting the atmosphere in the container) containing the cylindrical container 28, and an atmosphere adjustment system (atmosphere adjustment gas in the container) for supplying an atmosphere adjustment gas into the atmosphere protection container 6. 8) and detecting a substance released from the test piece 20 (radioactivity concentration measuring instrument 26). The test piece 20 is embedded in the heat-resistant particles 5, and the heat-resistant particles 5 are Is heated, and the upper push rod 2a (first An external pressure is applied to the heat-resistant particles 5 by a push rod and a lower push rod 2b (a second push rod), and a substance released from the test piece 20 when the external pressure is unloaded is detected by a detector (radioactive concentration). The characteristics of the test piece 20 are detected by the detection by the measuring device 26).

本実施例によれば、実施例1の効果に加えて、試験後の解体作業(耐熱性粒子5と使用済み核燃料棒片(試験片20)の取り出し作業等)の作業性を向上させることができる。   According to the present embodiment, in addition to the effects of the first embodiment, the workability of the disassembly work after the test (such as the work of removing the heat-resistant particles 5 and the spent nuclear fuel rod pieces (test pieces 20)) can be improved. it can.

なお、図3において、下部押し棒2bと下断熱材3bとを結合(一体化)して円板付き下部押し棒として構成することも可能である。   In FIG. 3, the lower push rod 2b and the lower heat insulating material 3b may be combined (integrated) to form a lower push rod with a disk.

≪発明の作用≫
図5を参照して、本発明の作用をより具体的に説明する。図5は試験片の圧縮力測定方法を概念的に示す図である。
<< Operation of the Invention >>
The operation of the present invention will be described more specifically with reference to FIG. FIG. 5 is a diagram conceptually showing a method for measuring the compressive force of a test piece.

圧縮された粒子で試験片を圧縮することによって、高温での燃料ペレットからの核分裂生成物(FPガス)の放出を抑制ないし制御できるだけの圧縮力が発生することを確認する目的で、金属同士の接触面圧を発色で表示する圧力フイルム(PRESCALE:富士フイルム製)を金属円盤で挟む構造の面圧測定子32を作製し、図5のように容器30の凹部内に配置した。発生した面圧に方向依存性があると予測し、容器30内の各深さ位置で圧縮方向(垂直方向)と横方向(半径方向)の面圧を検出可能な方向に面圧測定子32を配置した。   In order to confirm that compressing the specimen with the compressed particles generates a compressive force that can suppress or control the release of fission products (FP gas) from fuel pellets at high temperatures, A surface pressure measuring element 32 having a structure in which a pressure film (PRESCALE: manufactured by FUJIFILM) for displaying the contact surface pressure in color was sandwiched between metal disks was produced, and was arranged in a recess of the container 30 as shown in FIG. It is predicted that the generated surface pressure has direction dependency, and the surface pressure measuring element 32 is set in a direction in which the surface pressure in the compression direction (vertical direction) and the lateral direction (radial direction) can be detected at each depth position in the container 30. Was placed.

公称圧縮面圧として、圧縮荷重を容器断面積で除して100MPaになるようにプレスで押し棒を圧縮した。試験は数回繰り返し、圧力測定フイルムの発色の程度と標準色との比較から面圧を求めた。得られた面圧の平均値と得られたデータの範囲を図5中に示している。   The push rod was compressed by a press so as to obtain a nominal compression surface pressure of 100 MPa by dividing the compression load by the cross-sectional area of the container. The test was repeated several times, and the surface pressure was determined by comparing the degree of color development of the pressure measurement film with the standard color. The average value of the obtained surface pressures and the range of the obtained data are shown in FIG.

図5に示した面圧から100MPaの公称圧縮力を加えると、粒子の圧縮作用で最小で50MPa、最高は90MPaの圧縮応力が生じていることを確認した。実際に炉内で使用された核燃料ペレットについては、非特許文献5に記載されているように、高温で40MPa〜60MPaの外圧負荷を受けると核分裂生成ガス(FPガス)の放出が停止することが知られており、軟化温度が約2700℃と高いジルコニア粒子を用いているため1500℃の高温試験でも、圧縮力は室温と同等に生じると考えられ、上記の各実施例におけるプレス構造(外圧負荷装置)により試験片である使用済み核燃料棒片や燃料ペレットに対し均一に負荷を加えることができるため、問題なく核分裂生成ガス(FPガス)の放出特性の把握試験に適用可能であるといえる。   It was confirmed that when a nominal compressive force of 100 MPa was applied from the surface pressure shown in FIG. 5, a compressive stress of particles produced a compressive stress of 50 MPa at the minimum and 90 MPa at the maximum. Regarding nuclear fuel pellets actually used in a reactor, as described in Non-Patent Document 5, when an external pressure load of 40 MPa to 60 MPa is applied at a high temperature, release of fission gas (FP gas) may stop. Since the zirconia particles having a high softening temperature of about 2700 ° C. are known, the compressive force is considered to be equal to room temperature even in a high-temperature test at 1500 ° C., and the press structure (external pressure load) in each of the above examples is considered. Since the load can be uniformly applied to the test pieces, such as the spent nuclear fuel rod pieces and the fuel pellets, the device can be said to be applicable to a test for grasping the release characteristics of fission gas (FP gas) without any problem.

なお、上記の各実施例では、押し棒2(2a,2b)の先端および容器底が平面の例を示したが、それぞれの形状は必ずしも平面に限定するものではない。容器内径も一定値の形状例を示したが内径が変動する形状も含まれる。   In each of the above embodiments, the tip of the push rod 2 (2a, 2b) and the bottom of the container have been described as being flat, but their shapes are not necessarily limited to flat. An example of a shape in which the inner diameter of the container is constant is shown, but a shape in which the inner diameter varies is also included.

また、容器の材質やガス組成および耐熱性粒子の材質・寸法(サイズ)並びに押し棒2(2a,2b)と容器内壁間のギャップ(直径ギャップ)の大きさも当然のことながら上記の実施例に限定されるものではない。   The material and gas composition of the container, the material and dimensions (size) of the heat-resistant particles, and the size of the gap (diameter gap) between the push rod 2 (2a, 2b) and the inner wall of the container are, of course, the same as those in the above embodiment. It is not limited.

さらに、各実施例では容器内雰囲気保護用の容器6を加熱ヒータ21、断熱材22より中心側(内側)に配置した例を示したが、加熱ヒータ21、断熱材22は容器内雰囲気保護用の容器6の内部に含まれる構造でも同様な効果を得ることができる。   Furthermore, in each embodiment, an example is shown in which the container 6 for protecting the atmosphere in the container is disposed on the center side (inside) of the heater 21 and the heat insulating material 22. However, the heater 21 and the heat insulating material 22 are provided for protecting the atmosphere in the container. A similar effect can be obtained with a structure included inside the container 6 of FIG.

また、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Further, the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Also, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.

本発明は、原子力発電用の放射能を有する核燃料棒や燃料ペレットからの放射性ガス放出挙動の評価に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to evaluation of radioactive gas release behavior from nuclear fuel rods and fuel pellets having radioactivity for nuclear power generation.

また、加熱加圧により放出物質が放出される試験片であれば、核燃料棒や燃料ペレット以外の工業材料の特性評価や挙動評価にも適用できる。   In addition, a test piece from which a release substance is released by heating and pressurizing can be applied to the property evaluation and behavior evaluation of industrial materials other than nuclear fuel rods and fuel pellets.

1…(耐熱性材料からなる)凹状容器、2…(耐熱性材料からなる)押し棒、2a…上部押し棒、2b…下部押し棒、3…断熱材、3a…上断熱材、3b…下断熱材、4…プレス筐体、4a…上プレス筐体、4b…下プレス筐体、5…耐熱性粒子(細粒)、6…容器内雰囲気保護用の容器、7…油圧ピストン、8…(容器内)雰囲気調整ガス、20…試験片(使用済み核燃料棒片や燃料ペレット)、21…(試料)加熱ヒータ、22…断熱材、23…耐高圧容器(高圧容器)、24…高圧ガス供給系、25…圧力計、26…放射能濃度計測器、27…耐熱性粒子(粗粒)、28…(耐熱性材料からなる)円筒状容器、29…ベース、30…(円筒状)容器、31…充填材(耐熱性粒子)、32…面圧測定子。   DESCRIPTION OF SYMBOLS 1 ... Concave container (made of heat resistant material), 2 ... Push rod (made of heat resistant material), 2a ... Top push rod, 2b ... Bottom push rod, 3 ... Insulation material, 3a ... Insulation material, 3b ... Bottom Insulating material, 4 ... Press housing, 4a ... Upper pressing housing, 4b ... Lower pressing housing, 5 ... Heat-resistant particles (fine particles), 6 ... Container for protecting the atmosphere in the container, 7 ... Hydraulic piston, 8 ... (In the container) Atmosphere adjusting gas, 20: test piece (spent nuclear fuel rod piece or fuel pellet), 21: (sample) heater, 22: heat insulating material, 23: high pressure container (high pressure container), 24: high pressure gas Supply system, 25: pressure gauge, 26: radioactivity concentration meter, 27: heat-resistant particles (coarse particles), 28: cylindrical container (made of heat-resistant material), 29: base, 30: (cylindrical) container , 31 ... filler (heat-resistant particles), 32 ... surface pressure gauge.

Claims (6)

試験片を収納する凹状容器と、
前記凹状容器内に充填される耐熱性粒子と、
前記耐熱性粒子を加熱する加熱ヒータと、
前記凹状容器の凹部に嵌合され、前記耐熱性粒子に外圧を負荷する押し棒と、
前記凹状容器を内包する雰囲気保護容器と、
前記雰囲気保護容器内に雰囲気調整ガスを供給する雰囲気調整系と、
前記試験片から放出される放出物質を検出する検出器と、を備え、
前記試験片を前記耐熱性粒子内に埋め込んで、前記加熱ヒータにより前記耐熱性粒子を加熱し、かつ、前記押し棒により前記耐熱性粒子に外圧を負荷し、当該外圧を除荷した際に前記試験片から放出される放出物質を前記検出器により検出することで、前記試験片の特性を検出することを特徴とする外圧負荷装置。
A concave container for storing the test piece,
Heat-resistant particles filled in the concave container,
A heater for heating the heat-resistant particles,
A push rod fitted into the concave portion of the concave container and applying an external pressure to the heat-resistant particles,
An atmosphere protection container containing the concave container,
An atmosphere adjustment system for supplying an atmosphere adjustment gas into the atmosphere protection container,
A detector for detecting a substance released from the test piece,
Embedding the test piece in the heat-resistant particles, heating the heat-resistant particles by the heater, and applying an external pressure to the heat-resistant particles by the push rod, when the external pressure is unloaded, An external pressure load device, wherein characteristics of the test piece are detected by detecting a substance released from the test piece by the detector.
請求項1に記載の外圧負荷装置であって、
前記押し棒と前記耐熱性粒子との間に、前記耐熱性粒子より粒経が大きい粗粒粒子からなる粗粒粒子層を備えることを特徴とする外圧負荷装置。
The external pressure load device according to claim 1,
An external pressure load device comprising a coarse particle layer made of coarse particles having a larger particle diameter than the heat resistant particles, between the push rod and the heat resistant particles.
請求項2に記載の外圧負荷装置であって、
前記押し棒と前記凹状容器の内径間の直径ギャップが、前記耐熱性粒子の粒径より大きく、前記粗粒粒子の粒径より小さいことを特徴とする外圧負荷装置。
The external pressure load device according to claim 2,
An external pressure loading device, wherein a diameter gap between the inner diameter of the push rod and the inner diameter of the concave container is larger than the particle size of the heat-resistant particles and smaller than the particle size of the coarse particles.
試験片を収納する円筒状容器と、
前記円筒状容器内に充填される耐熱性粒子と、
前記耐熱性粒子を加熱する加熱ヒータと、
前記円筒状容器の円筒内に挿入され、前記耐熱性粒子に一方から外圧を負荷する第1の押し棒と、前記耐熱性粒子に他方から外圧を負荷する第2の押し棒と、
前記円筒状容器を内包する雰囲気保護容器と、
前記雰囲気保護容器内に雰囲気調整ガスを供給する雰囲気調整系と、
前記試験片から放出される放出物質を検出する検出器と、を備え、
前記試験片を前記耐熱性粒子内に埋め込んで、前記加熱ヒータにより前記耐熱性粒子を加熱し、かつ、前記第1の押し棒および前記第2の押し棒により前記耐熱性粒子に外圧を負荷し、当該外圧を除荷した際に前記試験片から放出される放出物質を前記検出器により検出することで、前記試験片の特性を検出することを特徴とする外圧負荷装置。
A cylindrical container for storing the test piece,
Heat-resistant particles filled in the cylindrical container,
A heater for heating the heat-resistant particles,
A first push rod that is inserted into the cylinder of the cylindrical container and applies external pressure to the heat-resistant particles from one side, and a second push rod that applies external pressure to the heat-resistant particles from the other side,
An atmosphere protection container containing the cylindrical container,
An atmosphere adjustment system for supplying an atmosphere adjustment gas into the atmosphere protection container,
A detector for detecting a substance released from the test piece,
The test piece is embedded in the heat-resistant particles, the heat-resistant particles are heated by the heater, and an external pressure is applied to the heat-resistant particles by the first push rod and the second push rod. An external pressure loading device, wherein the detector detects a substance released from the test piece when the external pressure is unloaded, thereby detecting characteristics of the test piece.
前記試験片は照射済み燃料ペレットであることを特徴とする請求項1から4のいずれか1項に記載の外圧負荷装置を用いる照射済み燃料ペレットの試験方法。   The method for testing irradiated fuel pellets using an external pressure load device according to any one of claims 1 to 4, wherein the test piece is an irradiated fuel pellet. 請求項に記載の照射済み燃料ペレットの試験方法であって、
前記加熱ヒータによる加熱温度および前記押し棒による外圧の少なくともいずれか一方を変化させて、前記照射済み燃料ペレットから放出される核分裂生成ガスの放出挙動を検出することを特徴とする照射済み燃料ペレットの試験方法。
A method for testing irradiated fuel pellets according to claim 5 ,
By changing at least one of the heating temperature by the heater and the external pressure by the push rod, detecting the release behavior of the fission product gas released from the irradiated fuel pellet, Test method.
JP2018206315A 2018-11-01 2018-11-01 External pressure load device, test method for irradiated fuel pellets Active JP6665258B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018206315A JP6665258B1 (en) 2018-11-01 2018-11-01 External pressure load device, test method for irradiated fuel pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018206315A JP6665258B1 (en) 2018-11-01 2018-11-01 External pressure load device, test method for irradiated fuel pellets

Publications (2)

Publication Number Publication Date
JP6665258B1 true JP6665258B1 (en) 2020-03-13
JP2020071162A JP2020071162A (en) 2020-05-07

Family

ID=70000421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018206315A Active JP6665258B1 (en) 2018-11-01 2018-11-01 External pressure load device, test method for irradiated fuel pellets

Country Status (1)

Country Link
JP (1) JP6665258B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540491A (en) * 2020-05-14 2020-08-14 中国核动力研究设计院 Rod-shaped fuel source item release characteristic research experimental device and using method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111540491A (en) * 2020-05-14 2020-08-14 中国核动力研究设计院 Rod-shaped fuel source item release characteristic research experimental device and using method thereof

Also Published As

Publication number Publication date
JP2020071162A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
Turnbull et al. An assessment of the fuel pulverization threshold during LOCA-type temperature transients
KR20180043789A (en) Method for manufacturing a fully ceramic microencapsulated nuclear fuel
Yang et al. Uranium nitride (UN) pellets with controllable microstructure and phase–fabrication by spark plasma sintering and their thermal-mechanical and oxidation properties
JP6665258B1 (en) External pressure load device, test method for irradiated fuel pellets
Kozsda-Barsy et al. Post-test examinations on Zr-1% Nb claddings after ballooning and burst, high-temperature oxidation and secondary hydriding
Li et al. Implications of SiC irradiation creep and annealing to UN-SiC fuel rod behavior
Venkiteswaran et al. Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up
Solomon et al. Enhanced thermal conductivity oxide fuels
Björk et al. Irradiation testing of enhanced uranium oxide fuels
Rhee et al. Fabrication of sintered annular fuel pellet for HANARO irradiation test
US6669893B1 (en) Method for making neutron absorber material
McDeavitt et al. Hot-isostatic pressing of U-10Zr by a coupled grain boundary diffusion and creep cavitation mechanism
Hunn et al. Data compilation for AGR-3/4 matrix ring blank lot ARB-B1
Mishra et al. Cermet fuel for fast reactor–Fabrication and characterization
Camarano et al. Effects of beryllium and compaction pressure on the thermal diffusivity of uranium dioxide fuel pellets
Sengupta et al. Evaluation of high plutonia (44% PuO2) MOX as a fuel for fast breeder test reactor
Weaver et al. Effects of irradiation on uranium nitride under space-reactor conditions
Patnaik Separate Effects Tests for Studying Thermal Gradient Driven Cracking in UO2 Pellets Undergoing Resistive Heating
Wells et al. TRISO fuel: properties and failure modes
Zhao et al. Transient testing of oxide fuels by spark plasma sintering and finite element analysis
Chernikov HTGR fuel and fuel elements
Karpyuk et al. Investigation of the Properties of Uranium-Molybdenum Pellet Fuel for VVER.
Vasudevamurthy et al. Characteristics of Fuel Articles for Irradiation Testing in INL-TREAT and MIT-NRL
Paneru MEASUREMENT OF THERMAL PROPERTIES AND POROSITY OF CONSOLIDATED SALT.
Rhee et al. Rod-Inserted Sintering of Annular Pellets for Dual-Cooled Annular Fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200219

R150 Certificate of patent or registration of utility model

Ref document number: 6665258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250