JP6664777B1 - Method and system for creating state discrimination model of structure - Google Patents
Method and system for creating state discrimination model of structure Download PDFInfo
- Publication number
- JP6664777B1 JP6664777B1 JP2019063613A JP2019063613A JP6664777B1 JP 6664777 B1 JP6664777 B1 JP 6664777B1 JP 2019063613 A JP2019063613 A JP 2019063613A JP 2019063613 A JP2019063613 A JP 2019063613A JP 6664777 B1 JP6664777 B1 JP 6664777B1
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- model
- data
- vibration data
- state determination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000002159 abnormal effect Effects 0.000 claims abstract description 63
- 238000004458 analytical method Methods 0.000 claims abstract description 55
- 238000004364 calculation method Methods 0.000 claims abstract description 22
- 238000010801 machine learning Methods 0.000 claims abstract description 11
- 238000007619 statistical method Methods 0.000 claims abstract description 10
- 238000013473 artificial intelligence Methods 0.000 claims abstract description 9
- 230000005856 abnormality Effects 0.000 claims description 14
- 230000002950 deficient Effects 0.000 claims description 7
- 230000006870 function Effects 0.000 claims description 7
- 238000003745 diagnosis Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 abstract description 6
- 238000005259 measurement Methods 0.000 description 15
- 238000013461 design Methods 0.000 description 14
- 238000012916 structural analysis Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 6
- 230000007547 defect Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000010420 art technique Methods 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 238000007418 data mining Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013433 optimization analysis Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/92—Protection against other undesired influences or dangers
- E04B1/98—Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Architecture (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Computer Hardware Design (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Building Environments (AREA)
Abstract
【課題】 構造物から測定した振動データを入力とし、その構造物の現在状態が正常か異常かを精度良く判別できる状態判別モデルの作成方法及びその作成システムを提供すること。【解決手段】 構造物に対する振動データを入力して当該振動データの診断を行う構造物の状態判別モデルの作成方法及びその作成システムである。本発明のシステムは、構造物の振動モデルを内蔵したデータ生成装置及び状態判別モデルを作成するモデル作成装置を含む演算ユニットと、データ生成装置で生成された振動データを記憶するデータベースと、を備え、データ生成装置は、振動モデルに模擬振動を入力して振動解析による演算を行うことにより正常振動データ及び異常振動データを得てデータベースに転送し、モデル作成装置は、正常振動データ及び異常振動データを含むビッグデータに人工知能を含む機械学習及び統計学的手法を適用することにより、構造物に対する状態判別モデルを作成する。【選択図】図1PROBLEM TO BE SOLVED: To provide a method and a system for creating a state determination model that can accurately determine whether the current state of the structure is normal or abnormal by inputting vibration data measured from the structure. Kind Code: A1 A method and system for creating a state determination model of a structure that inputs vibration data for a structure and diagnoses the vibration data. The system of the present invention comprises a data generating device having a built-in vibration model of a structure and a calculation unit including a model creating device for creating a state determination model, and a database for storing vibration data generated by the data generating device. The data generation device inputs normal vibration data and abnormal vibration data by inputting simulated vibration to the vibration model and performs calculation by vibration analysis, and transfers it to the database. A state discrimination model for a structure is created by applying machine learning including artificial intelligence and statistical methods to big data including. [Selection diagram] Fig. 1
Description
本発明は、構造物に対する振動データを入力して当該振動データの診断を行う構造物の状態判別モデル作成方法及びその作成システムに関する。 The present invention relates to a method and a system for creating a state discrimination model of a structure for inputting vibration data for the structure and diagnosing the vibration data.
建築物等の構造物は、付近を走行する交通手段等から発生される定常的な振動や、地震等の非定常的な振動を受けることにより、疲労や経年による劣化が生じることがある。実際の構造物設計は、経年による劣化や地震等の突発的に大きな振動にも長期にわたって耐え得るように振動データを用いた構造解析等を用いて行われることが多い。 BACKGROUND ART A structure such as a building may be deteriorated due to fatigue or aging due to stationary vibration generated by a transportation means or the like traveling nearby or non-stationary vibration such as an earthquake. Actual structure design is often performed using structural analysis using vibration data so as to withstand suddenly large vibrations such as deterioration due to aging and earthquakes for a long period of time.
このように大型の構造物に対して、数値シミュレーションによる解析を利用した設計を行うためのデータを取得する振動試験技術として、振動の実測値に数値シミュレーションによる構造解析を組み合わせて、振動の入力に対する構造物の応答特性や損傷の予測を行う手法が知られている。そして、これらの予測データを用いたCAEによる具体的な構造物の設計も実用化されている。 As a vibration test technology to acquire data for designing a large structure using analysis by numerical simulation for such a large structure, by combining structural analysis by numerical simulation with the measured value of vibration, 2. Description of the Related Art Techniques for predicting response characteristics and damage of structures are known. Design of specific structures by CAE using these prediction data has also been put to practical use.
CAEによる構造物の設計を行う際には、多くの場合、CADを用いて作成した構造物の解析モデルを用いて構造解析や振動解析等を行い、その解析結果を実際の構造物の設計データに反映する手法が取られている。この手法によれば、実際の構造物あるいはこれを模した物を作製しなくても形状や材質等の設計変更を容易に行うことが可能となる。 When designing a structure by CAE, in many cases, structural analysis and vibration analysis are performed using an analysis model of the structure created using CAD, and the analysis results are used as the design data of the actual structure. A method is adopted to reflect this. According to this method, it is possible to easily change the design such as the shape and the material without manufacturing an actual structure or a product imitating the structure.
このような解析モデルを作成あるいは改良する手法として、例えば、特許文献1には、モデルを定められた大きさの要素に分割する過程と、このモデルの要素に関する節点座標ベクトルに関する節点座標ベクトルについて固有値解析を行って固有ベクトルを算出する過程と、算出された固有ベクトルから形状の変更の候補を定める設計変数を生成する過程と、生成された設計変数を用いて構造最適化の解析を行う過程と、この構造最適化の結果を出力する過程と、を有するモデルの形状を修正して構造の最適化を行う設計システムにおける構造最適化方法が開示されている。この方法によれば、設計変更を行う際の設計変数の設定をコンピュータが自動で行うため、設計者のスキルに依存せずに最適な形状を導き出すことができるとされている。
As a method of creating or improving such an analysis model, for example,
また、特許文献2には、既存解析モデルが複数の部分解析モデルからなる複合的解析モデルである場合に、この複合的解析モデルについて、上記部分解析モデルのいずれかを変更対象部分解析モデルとして加えた形状変更を当該変更対象部分解析モデルに隣り合う隣接部分解析モデルに反映させることで、この隣接部分解析モデルに上記形状変更と連動した形状変更を加える連動変更処理を行う隣接部分解析モデル連動部を備えた、既存解析モデルに所望の形状変更を加えることで目的の解析モデルの作成を行う解析モデル作成システムが開示されている。このシステムによれば、既存解析モデルを利用して目的の複合的解析モデルを作成する場合に、部分的な形状変更等に伴うメッシュの歪み等を抑制して、目的解析モデルの生成をより省力的に行うことができるとされている。
Further, in
従来のCADを用いた解析モデルの作成は、設計対象の構造物に類似した構造物の設計データを流用あるいは参考にして実行されることが多く、例えば、従来の構造物の設計データや振動解析データ等を集約したビッグデータを用いて、統計学的手法等を応用して設計する手法が考えられる。こうした従来の構造物の設計データや振動解析データ等をベースに設計を行った解析モデルでは、その構造物が正常に動作あるいは機能している状態での測定データが適用されるため、例えば振動データを入力した場合の演算結果では、その結果が異常であるかどうかの判別はできない。 The creation of an analysis model using conventional CAD is often performed by using or referring to design data of a structure similar to the structure to be designed. For example, the design data and vibration analysis of a conventional structure are often used. A method of designing using big data in which data and the like are aggregated and applying a statistical method or the like can be considered. In an analysis model designed based on such conventional structure design data and vibration analysis data, measurement data in a state where the structure is operating or functioning normally is applied. Cannot be determined based on the calculation result when "." Is input.
このため、解析モデルによる演算結果から構造物の現在状態が正常か異常かを判別するためには、構造物の破壊限界等の具体的な異常時の測定データを取得しておき、解析モデルによる演算結果と当該異常時の測定データとを対比する手法が考えられる。しかしながら、このような異常時のデータを取得することは極めて困難であるため、あくまでも構造物が正常に動作あるいは機能している状態での測定データを基準に判別することとなり、結果として構造物の現在状態の判別精度を犠牲にせざるを得ないという問題があった。 For this reason, in order to determine whether the current state of the structure is normal or abnormal based on the calculation result by the analysis model, specific measurement data at the time of abnormality such as the limit of failure of the structure is acquired, and the analysis model is used. A method of comparing the calculation result with the measurement data at the time of the abnormality can be considered. However, since it is extremely difficult to acquire data at the time of such an abnormality, the determination is made based on measurement data in a state where the structure is normally operating or functioning, and as a result, the structure There is a problem that the accuracy of determining the current state has to be sacrificed.
そこで、本発明の目的は、構造物から測定した振動データを入力とし、その構造物の現在状態が正常か異常かを精度良く判別できる状態判別モデルの作成方法及びその作成システムを提供することにある。 Therefore, an object of the present invention is to provide a method and a system for creating a state determination model capable of accurately inputting vibration data measured from a structure and determining whether the current state of the structure is normal or abnormal. is there.
上記課題を解決するために、本発明による、構造物に対する振動データを入力して当該振動データの診断を行う構造物の状態判別モデル作成方法は、前記構造物の振動モデルに模擬振動を入力して振動解析による演算を行うことにより正常振動データ及び異常振動データを得て、その後、得られた前記正常振動データ及び前記異常振動データを含むビッグデータに人工知能を含む機械学習及び統計学的手法を適用することにより、前記構造物の状態判別モデルを作成することを特徴とする。 In order to solve the above problems, a method for creating a state discrimination model of a structure for inputting vibration data for a structure and diagnosing the vibration data according to the present invention includes inputting simulated vibration to a vibration model of the structure. Normal vibration data and abnormal vibration data by performing calculation by vibration analysis, and then machine learning and statistical methods including artificial intelligence in the obtained big data including the normal vibration data and the abnormal vibration data Is applied to create a state determination model of the structure.
また、本発明による、構造物に対する振動データを入力して当該振動データの診断を行う構造物の状態判別モデルの作成システムは、前記構造物の振動モデルを内蔵したデータ生成装置及び状態判別モデルを作成するモデル作成装置を含む演算ユニットと、前記データ生成装置で生成された前記振動データを記憶するデータベースと、を備え、前記データ生成装置は、前記振動モデルに模擬振動を入力して振動解析による演算を行うことにより正常振動データ及び異常振動データを得て前記データベースに転送し、前記モデル作成装置は、前記正常振動データ及び前記異常振動データを含むビッグデータに人工知能を含む機械学習及び統計学的手法を適用することにより、前記構造物に対する状態判別モデルを作成することを特徴とする。 Further, according to the present invention, a system for creating a state discrimination model of a structure for inputting vibration data for a structure and diagnosing the vibration data includes a data generation device incorporating the vibration model of the structure and a state discrimination model. An arithmetic unit including a model creation device to be created, and a database for storing the vibration data generated by the data generation device, wherein the data generation device inputs a simulated vibration to the vibration model and performs a vibration analysis. By performing the calculation, the normal vibration data and the abnormal vibration data are obtained and transferred to the database, and the model creation device performs machine learning and statistics including artificial intelligence in the big data including the normal vibration data and the abnormal vibration data. The method is characterized in that a state determination model for the structure is created by applying a dynamic method.
かかる発明によれば、振動解析で得られた構造物の正常振動データ及び異常振動データを含むビッグデータに対して、人工知能を含む機械学習及び統計学的手法を適用して当該構造物の状態判別モデルを作成することにより、作成された状態判別モデルは、異常振動データを考慮した演算結果が得られるため、その構造物の現在状態が正常か異常かを精度良く判別できる。 According to this invention, machine learning and statistical methods including artificial intelligence are applied to big data including normal vibration data and abnormal vibration data of a structure obtained by vibration analysis, and the state of the structure is applied. By creating the discrimination model, the created state discrimination model can obtain a calculation result in consideration of the abnormal vibration data, so that it is possible to accurately determine whether the current state of the structure is normal or abnormal.
以下、本発明の代表的な一例による構造物の状態判別モデルの作成方法及びその作成システムについて図面を用いて説明する。 Hereinafter, a method and system for creating a state determination model of a structure according to a representative example of the present invention will be described with reference to the drawings.
図1は、本発明の代表的な一例による構造物の状態判別モデルの作成システムを示す概要図である。また、図2は、図1で示した解析モデルの構成を示す概略図であって、図2(a)は構造解析モデルを示し、図2(b)は状態判別モデルを示す。本発明の代表的な一例による構造物の状態判別モデルの作成システム100は、測定対象となる構造物の振動データを測定する振動センサ110と、構造物の異常を判別するための状態判別モデルを作成する演算ユニット120と、振動データを格納するデータベース130と、を含む。また、作成システム100は、後述する図4に示すように、測定の開始指令や振動センサ110による測定条件を設定するための入力装置140と、この入力装置140によって入力された測定条件や構造物の各種情報さらには判別結果等を表示する表示装置150と、を含むように構成してもよい。
FIG. 1 is a schematic diagram showing a system for creating a state determination model of a structure according to a representative example of the present invention. FIG. 2 is a schematic diagram showing the configuration of the analysis model shown in FIG. 1. FIG. 2A shows a structural analysis model, and FIG. 2B shows a state determination model. A
振動センサ110は、構造物の測定箇所に直接取り付けて振動を測定するタイプや、構造物に対して非接触でもその振動を検知できるタイプのいずれのものも適用できるが、例えば、圧電センサ等の振動変位を電気信号に変換して検出するタイプが用いられる。また、図1に示す具体例において、振動センサ110は、測定した振動データにその取得位置(場所)や測定時刻等の固有情報を付加したもの接続線112を介して演算ユニット120に送信する。
As the
演算ユニット120は、測定対象である構造物を模擬した構造解析モデルSMを含むデータ生成装置122と、データベース130に格納された振動データを用いて状態判別モデルDMを生成するモデル作成装置124と、を含む。なお、演算ユニット120は、図1に示す構造物の状態判別モデルの作成システム100全体の動作を制御する中央制御装置(図示せず)を含んでもよい。
The
データベース130は、正常振動データ134及び異常振動データ136を含むビッグデータ132を格納する記憶手段として構成される。正常振動データ134及び異常振動データ136は、上記したデータ生成装置122の構造解析モデルSMで出力されたものや、同一の構造物について過去に取得された実際の振動データ、あるいは対象となる構造物に類似する構造物で故障等の異常が発生した際の振動データ等、様々な条件あるいは環境で生成又は測定されたものを含み得る。
The
ここで、データベース130は、ビッグデータ132として、振動データとともに当該振動データを測定した振動センサ110の設置位置や、その判別結果が異常であった場合の異常発生位置(範囲)、あるいはその異常の深刻度といった情報を付加して保存しておいてもよい。これらの追加情報は、構造解析モデルSMで正常振動データ134あるいは異常振動データ136を生成する際や、状態判別モデルDMを作成する際に参照される。
Here, the
演算ユニット120に含まれるデータ生成装置122は、構造解析モデルSMに模擬的振動(例えば振動センサ110からの入力用データ等)を入力し、数値演算による結果を振動データとしてデータベース130に出力する。ここで、図2(a)に示すように、構造解析モデルSMは、例えば有限要素法等の数値解析手法によって構造物を模擬したモデルであって、CAE等による構造物の設計図面に基づいて、当該構造物に欠陥等の不良がない正常振動解析モデルSM1と構造物の一部に意図的に欠陥等の不良部分を形成した異常振動解析モデルSM2とを含むものとして構成される。
The
データ生成装置122の構造解析モデルSMから出力された振動データは、正常振動解析モデルSM1の演算結果による正常振動データ134と、異常振動解析モデルSM2の演算結果による異常振動データ136とを含むビッグデータ132として、データベース130に送信される。なお、データ生成装置122は、異常振動データ136の出力値が所定の閾値を超えた場合に、当該異常振動データ136に異常の深刻度を示す情報を追加する機能をさらに有してもよい。このとき、異常振動データ136には、上記不良部分の重要度あるいは深刻度に応じて、異常の重みづけを示すデータがさらに付加されてもよい。
The vibration data output from the structural analysis model SM of the
通常、正常振動データ134は、構造物が正常に機能あるいは動作している場合に出力される振動データであるため、構造物の設計データをそのまま適用したモデルを用いて演算することができる。一方、異常振動データ136は、構造物に敢えて異常な箇所や過負荷等が発生した状態を模擬しなければ取得が困難である。そこで、本発明では、例えば異常振動解析モデルSM2として、振動モデルの一部に意図的に不良部分を含ませたものを作成し、これに模擬振動を入力して振動解析による演算を行うことにより異常振動データ136を得る。このとき、上記した不良部分は、振動モデルの複数箇所に設けてもよい。
Normally, the
また、異常振動データ136を得る手法として、異常診断解析モデルSM2に過大あるいは過小な模擬振動を入力した状態で、振動解析による演算を行って得るようにしてもよい。これらの手法により、様々なパターンの異常振動データ136を模擬的に取得することが可能となる。
In addition, as a method of obtaining the
一方、モデル作成装置124は、後述するデータベース130にアクセスしてビッグデータ132から正常振動データ134及び異常振動データ136を読み込み、これらの振動データに対して人工知能を含む機械学習及び統計学的手法を適用することにより、構造物に対応した状態判別モデルDMを作成する。ここで、モデル作成装置124では、状態判別モデルDMを作成するにあたり、多量の振動データからなるビッグデータ132を用いて、統計解析を中心とした手法や、データマイニング、機械学習、ディープラーニング等のニューラルネットワークを応用した手法等の様々な手法を組合せて適用することができる。また、モデル作成装置124は、随時更新されるビッグデータ132に定期的にアクセスして、状態判別モデルDMを修正あるいは更新するようにしてもよい。
On the other hand, the
状態判別モデルDMは、図2(b)に示すように、入力した振動データが構造物を伝播して出力した場合の出力振動データを演算する振動伝播モデルDM1と、入力した振動データが構造物を伝播したときにその振動が構造物に与える負荷や変位等を演算する状態出力モデルDM2とを含むものとして構成される。なお、本実施例では、振動伝播モデルDM1と状態出力モデルDM2とを別々のモデルとして定義した場合を例示しているが、構造物を模擬したモデルを共通化し、当該モデルに上記した出力振動データを演算する機能と構造物の状態出力を演算する機能とを持たせるように構成してもよい。 As shown in FIG. 2B, the state determination model DM includes a vibration propagation model DM1 for calculating output vibration data when the input vibration data propagates through the structure and outputs the vibration data. And a state output model DM2 for calculating a load, a displacement, and the like that the vibration gives to the structure when the light propagates. In this embodiment, the case where the vibration propagation model DM1 and the state output model DM2 are defined as separate models is illustrated. However, a model simulating a structure is shared, and the output vibration data described above is used for the model. And a function of calculating the state output of the structure may be provided.
振動伝播モデルDM1は、多数の振動データ取得場所の箇所に対する正常振動データ134及び異常振動データ136をそれぞれ予め読込み、これらに人工知能を含む機械学習および統計学的手法を適用して演算ルールを生成する。その結果として、例えば、構造物を模したモデルの所定の入力位置に何らかの振動データ(振動センサ110で測定された振動データ)を入力した際に、その振動が構造物内を伝播して所定の出力位置に出力した場合の出力振動データを演算して出力する。このとき、振動伝播モデルDM1は、演算した出力振動データが所定の閾値を超えたか否かで正常か異常かを判別したり、あるいは既にデータベース130に保存されている正常振動データ134又は異常振動データ136と対比して正常か異常かを判別し、その情報を出力振動データに付加する機能を有してもよい。
The vibration propagation model DM1 reads in
一方、状態出力モデルDM2は、多数の振動センサ110から取得された振動データをそれぞれ振動伝搬モデルDM1に与えて演算させた結果や、データベース130に格納されている個々の振動センサの情報(センサの位置、異常な振動データと判別された際の構造物全体への影響度、あるいは異常な振動データの深刻度等の付加的情報)を入力として、これらの振動データに人工知能を含む機械学習および統計学的手法を適用して演算ルールを生成する。その結果として、例えば、振動センサ110で測定された振動データを入力した際に、その測定位置や測定時刻等の固有情報を参照して、入力された振動データが構造物の形状や材質等の特性に照らして正常な振動状態を表すのか、あるいは異常な振動状態を表すのかを演算して出力する。
On the other hand, the state output model DM2 is obtained by giving the vibration data acquired from the large number of
このとき、状態出力モデルDM2は、データベース130に格納されている個々の振動センサの情報(センサの位置、異常な振動データと判別された際の構造物全体への影響度、あるいは異常な振動データの深刻度等の付加的情報)とを考慮して、構造物における異常の発生部位(範囲)やその深刻度を判別する。また、状態出力モデルDM2は、複数位置での振動データを同時に入力し、これら複数位置の演算結果を構造物全体の評価として統合する機能を有するように構成してもよい。 At this time, the state output model DM2 includes information on the individual vibration sensors stored in the database 130 (the position of the sensor, the degree of influence on the entire structure when it is determined that the vibration data is abnormal, or the abnormal vibration data). In consideration of the additional information (e.g., the degree of seriousness of the structure), the site (range) where the abnormality occurs in the structure and the severity thereof are determined. Further, the state output model DM2 may be configured to have a function of simultaneously inputting vibration data at a plurality of positions and integrating the calculation results at the plurality of positions as an evaluation of the entire structure.
図3は、本発明の代表的な一例による構造物の状態判別モデルの作成方法が実行する手順を示すフローチャートである。図3に示すように、演算ユニット120は、まず振動解析モデルSMに入力される模擬振動データを取得する(ステップS1)。このとき、模擬振動としては、例えば構造物に取り付けた1つあるいは複数の振動センサ110から取得されたものを適用できる。
FIG. 3 is a flowchart showing a procedure executed by a method for creating a state determination model of a structure according to a representative example of the present invention. As shown in FIG. 3, the
続いて、演算ユニット120のデータ生成装置122は、振動解析モデルSMの正常振動解析モデルSM1を読み出し(ステップS2)、当該正常振動解析モデルSM1に模擬振動データを入力して正常振動データ134を演算させ、データベース130に出力する(ステップS3)。
Subsequently, the
次に、データ生成装置122は、振動解析モデルSMの異常振動解析モデルSM2を読み出し(ステップS4)、当該異常振動解析モデルSM2に模擬振動データを入力して異常振動データ136を演算させ、データベース130に出力する(ステップS5)。このとき、異常振動モデルSM2を複数用意しておき、1つの模擬振動データから複数の異常振動データを生成するようにしてもよい。そして、データベース130は、データ生成装置122から出力された正常振動データ134及び異常振動データ136をビッグデータ132に追加してデータを更新する(ステップS6)。
Next, the
続いて、演算ユニット120は、モデル作成装置124にデータベース130から正常振動データ134及び異常振動データ136を含むビッグデータ132を読み込む(ステップS7)。このとき、読み込まれる振動データは、ビッグデータ132のすべてを読み込んでも良いし、例えば構造物の特定箇所に振動を入力した場合のデータのみ等の所定のフィルタリングをかけたものを読み込んでも良い。
Subsequently, the
次に、モデル作成装置124は、読み込んだ正常振動データ134及び異常振動データ136に対して、人工知能を含む機械学習及び統計学的手法を適用することにより、構造物に対応した状態判別モデルDMを作成し(ステップS8)、状態判別モデルDMの作成を終了する。このとき、対象となる構造物に対して状態判別モデルDMを新規に作成した場合はこれを新たに保存し、既に作成された状態判別モデルDMを保有している場合は、既存のモデルに対して新たに作成したモデルを上書き更新して保存する。これにより、本発明による構造物の状態判別モデルの作成方法では、正常振動データだけでなく、構造物に対する異常振動データをも考慮した状態判別モデルが作成される。
Next, the
図4は、本発明による構造物の状態判別モデルの作成システムの代表的な適用例を示す概略図である。図4に示すように、本発明による構造物の状態判別モデルの作成システム100は、例えば、トンネル10やビル20等の建築物、あるいは走行するバス30等の輸送手段に適用される。本実施例において、作成システム100の振動センサ110は、トンネル10やビル20の壁面あるいはバス30の車体等の振動が伝達して測定可能な箇所に取り付けられる。
FIG. 4 is a schematic diagram showing a typical application example of a system for creating a state determination model of a structure according to the present invention. As shown in FIG. 4, a
なお、振動センサ110からの信号は、図1に示すように演算ユニット120と接続線112を介して有線で送信されても良いし、図4に示すように電磁波等の無線接続により送信されてもよい。これにより、振動の測定位置が演算ユニット120から離れた遠隔地にあった場合であっても、当該遠隔地で測定された振動データを用いて構造物の状態判別モデルを作成することができる。
Note that the signal from the
振動センサ110で取得された振動データは演算ユニット120に送信され、この振動データを受信した演算ユニット120において、図3に示した手順にしたがって測定対象である構造物の状態判別モデルの作成を実行する。ここで、演算ユニット120は、作成した状態判別モデルDMを用いて、振動センサ110で測定した振動データが正常であるか異常であるかの診断を行ったり、あるいは測定した振動データを用いて構造物の現在状態を判別する判別装置(図示せず)をさらに含むように構成してもよい。このとき、判別装置は、構造物における異常の発生部位(範囲)やその深刻度を判別する機能を有するのが好ましい。
The vibration data acquired by the
また、演算ユニット120は、上記した判別装置において診断した振動データが異常と判別された場合に、警報を発する警報装置(図示せず)をさらに含むように構成してもよい。警報装置としては、例えば、ブザーやサイレン等の音声によるものや、ランプあるいはモニター等の表示によるもの、さらにはこれらを組合せたもの等が適用できる。
Further, the
さらに、測定対象が移動する輸送手段等の場合には、図4に示した状態判別モデルの作成システム100を構造物(バス30等の輸送手段)に搭載するように構成してもよい。このような構成であれば、測定した振動データを遠隔地に送信するのが困難な環境であっても、常時最新の振動データに基づいて状態判別モデルDMを作成あるいは更新することが可能となる。
Further, in the case of a transportation means or the like in which the measurement target moves, the state determination
このとき、構造物に演算ユニット120のみを搭載する軽量な構成を選択してもよい。このような軽量な構成であれば車載機器等の1機能として構成することも可能となる。
At this time, a lightweight configuration in which only the
以上のような構成を備えることにより、本発明による構造物の状態判別モデルの作成方法及びその作成システムは、データベースに格納されている正常振動データ及び異常振動データを含むビッグデータに基づいて、人工知能を含む機械学習及び統計学的手法を用いることにより状態判別モデルを作成する。このため、作成された状態判別モデルは、異常振動データを考慮した演算結果が得られることにより、その構造物の現在状態が正常か異常かを精度良く判別できる。 With the above-described configuration, the method and system for creating a state determination model of a structure according to the present invention provide an artificial model based on big data including normal vibration data and abnormal vibration data stored in a database. A state discrimination model is created by using machine learning and statistical techniques including intelligence. Therefore, the created state determination model can accurately determine whether the current state of the structure is normal or abnormal by obtaining a calculation result in consideration of the abnormal vibration data.
以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらの例に限定されるものではない。また、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 The embodiments according to the present invention and the modifications based thereon have been described above, but the present invention is not necessarily limited to these examples. Those skilled in the art will also be able to find various alternative embodiments and modifications without departing from the spirit of the invention or the scope of the appended claims.
また、上記した具体例では、本発明による構造物の状態判別モデルの作成システムを建築物や車両等に適用した場合を例示したが、振動が伝達するものであれば、例えば山や河川等の地震振動を測定したり、あるいは航空機や船舶等の車両以外の輸送機器の振動測定に適用してもよい。 Further, in the specific examples described above, the case where the system for generating a state determination model of a structure according to the present invention is applied to a building, a vehicle, or the like is illustrated. The present invention may be applied to measurement of seismic vibration or vibration measurement of transportation equipment other than vehicles such as aircraft and ships.
10 トンネル
20 ビル
30 バス
100 構造物の状態判別モデルの作成システム
110 振動センサ
112 接続線
120 演算ユニット
122 データ生成装置
124 モデル作成装置
130 データベース
132 ビッグデータ
134 正常振動データ
136 異常振動データ
140 入力装置
150 表示装置
10 Tunnel 20 Building 30
Claims (10)
前記構造物の振動モデルに模擬振動を入力して振動解析による演算を行うことにより正常振動データ及び異常振動データを得て、
その後、得られた前記正常振動データ及び前記異常振動データを含むビッグデータに人工知能を含む機械学習及び統計学的手法を適用することにより、前記構造物の状態判別モデルを作成することを特徴とする構造物の状態判別モデル作成方法。 A method for creating a state discrimination model of a structure in which vibration data for a structure is input and diagnosis of the vibration data is performed,
Normal vibration data and abnormal vibration data are obtained by inputting simulated vibration to the vibration model of the structure and performing calculation by vibration analysis,
Thereafter, by applying machine learning and statistical techniques including artificial intelligence to the obtained big data including the normal vibration data and the abnormal vibration data, a state determination model of the structure is created. Method for creating a state determination model of a structure to be changed.
前記構造物の振動モデルを内蔵したデータ生成装置及び状態判別モデルを作成するモデル作成装置を含む演算ユニットと、前記データ生成装置で生成された前記振動データを記憶するデータベースと、を備え、
前記データ生成装置は、前記振動モデルに模擬振動を入力して振動解析による演算を行うことにより正常振動データ及び異常振動データを得て前記データベースに転送し、
前記モデル作成装置は、前記正常振動データ及び前記異常振動データを含むビッグデータに人工知能を含む機械学習及び統計学的手法を適用することにより、前記構造物に対する状態判別モデルを作成することを特徴とする構造物の状態判別モデルの作成システム。 A system for creating a state determination model of a structure for inputting vibration data for a structure and diagnosing the vibration data,
An arithmetic unit including a data generation device incorporating a vibration model of the structure and a model generation device for generating a state determination model, and a database for storing the vibration data generated by the data generation device,
The data generation device obtains normal vibration data and abnormal vibration data by inputting a simulated vibration to the vibration model and performing calculation by vibration analysis, and transfers the data to the database.
The model creation device creates a state determination model for the structure by applying a machine learning and statistical method including artificial intelligence to big data including the normal vibration data and the abnormal vibration data. A system for creating a state determination model of a structure.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019063613A JP6664777B1 (en) | 2019-03-28 | 2019-03-28 | Method and system for creating state discrimination model of structure |
PCT/JP2020/008275 WO2020195537A1 (en) | 2019-03-28 | 2020-02-28 | Method and system for creating structure state determination model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019063613A JP6664777B1 (en) | 2019-03-28 | 2019-03-28 | Method and system for creating state discrimination model of structure |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019232324A Division JP2020166819A (en) | 2019-12-24 | 2019-12-24 | Method and system for creating model to discriminate state of structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6664777B1 true JP6664777B1 (en) | 2020-03-13 |
JP2020165673A JP2020165673A (en) | 2020-10-08 |
Family
ID=70000407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019063613A Active JP6664777B1 (en) | 2019-03-28 | 2019-03-28 | Method and system for creating state discrimination model of structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6664777B1 (en) |
WO (1) | WO2020195537A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111626000A (en) * | 2020-06-29 | 2020-09-04 | 杭州鲁尔物联科技有限公司 | Bridge state evaluation method, device, equipment and storage medium |
JP7448405B2 (en) | 2020-03-31 | 2024-03-12 | 大和ハウス工業株式会社 | Floor vibration prediction system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0572026A (en) * | 1991-09-18 | 1993-03-23 | Hitachi Ltd | Apparatus and method for diagnosing fault of equipment in rotary system |
JPH1049223A (en) * | 1996-07-31 | 1998-02-20 | Nissan Motor Co Ltd | Method and device for fault diagnosis using neural network |
JP2003232703A (en) * | 2002-02-13 | 2003-08-22 | Mitsubishi Heavy Ind Ltd | Abnormality-diagnosing apparatus |
-
2019
- 2019-03-28 JP JP2019063613A patent/JP6664777B1/en active Active
-
2020
- 2020-02-28 WO PCT/JP2020/008275 patent/WO2020195537A1/en active Application Filing
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7448405B2 (en) | 2020-03-31 | 2024-03-12 | 大和ハウス工業株式会社 | Floor vibration prediction system |
CN111626000A (en) * | 2020-06-29 | 2020-09-04 | 杭州鲁尔物联科技有限公司 | Bridge state evaluation method, device, equipment and storage medium |
CN111626000B (en) * | 2020-06-29 | 2023-09-29 | 杭州鲁尔物联科技有限公司 | Bridge state evaluation method, device, equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
JP2020165673A (en) | 2020-10-08 |
WO2020195537A1 (en) | 2020-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2699881B1 (en) | Structural health management system and method based on combined physical and simulated data | |
KR102098888B1 (en) | System and method for disaster prediction and analysis of structures, and a recording medium having computer readable program for executing the method | |
TWI683058B (en) | Failure probability assessment system | |
JP6442091B2 (en) | Automobile parts destruction prevention system, automobile parts destruction prevention method, and non-transitory computer-readable medium | |
KR102064328B1 (en) | Apparatus for providing earthquake damage prediction information of building and method thereof | |
US9964468B1 (en) | Optimizing sensor placement for structural health monitoring | |
Van der Auweraer | Structural dynamics modeling using modal analysis: applications, trends and challenges | |
WO2019146315A1 (en) | Abnormality detection system, abnormality detection method, and program | |
JP6664777B1 (en) | Method and system for creating state discrimination model of structure | |
JP2009053938A (en) | Equipment diagnosing system and equipment-diagnosing method on the basis of multiple model | |
CN113569445A (en) | Steel structure health monitoring system and method based on digital twinning technology | |
JP6989398B2 (en) | Failure diagnostic device, failure diagnosis method, and failure diagnosis program | |
JP6618846B2 (en) | Management apparatus and control method | |
CN115562225A (en) | Industrial robot operation and maintenance management method and device, computer equipment and storage medium | |
CN115455793A (en) | High-rise structure complex component stress analysis method based on multi-scale model correction | |
WO2020195536A1 (en) | Structural anomaly assessment method and anomaly assessment system | |
US6101432A (en) | Vehicle rattle detection method and system | |
JPWO2018164102A1 (en) | Diagnostic cost output device, diagnostic cost output method, and computer readable recording medium | |
JP2021068068A (en) | Event estimation system and event estimation method | |
JP2020166819A (en) | Method and system for creating model to discriminate state of structure | |
RU2699918C1 (en) | Diagnostic method of technical state of buildings and structures | |
JP6742014B1 (en) | Abnormality discrimination method for structure and abnormality discrimination system | |
JP6782936B1 (en) | Structure state discrimination model creation method and its creation system | |
KR20210059365A (en) | Interference checking method between 3d models, and recording medium storing program for executing the same | |
US20220044151A1 (en) | Apparatus and method for electronic determination of system data integrity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20190426 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190605 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190621 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20190621 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20191111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6664777 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |