JP6664714B2 - Method for reducing infectivity of abnormal prion protein and pharmaceutical composition for prevention and treatment of prion disease - Google Patents
Method for reducing infectivity of abnormal prion protein and pharmaceutical composition for prevention and treatment of prion disease Download PDFInfo
- Publication number
- JP6664714B2 JP6664714B2 JP2018517034A JP2018517034A JP6664714B2 JP 6664714 B2 JP6664714 B2 JP 6664714B2 JP 2018517034 A JP2018517034 A JP 2018517034A JP 2018517034 A JP2018517034 A JP 2018517034A JP 6664714 B2 JP6664714 B2 JP 6664714B2
- Authority
- JP
- Japan
- Prior art keywords
- mineral
- water
- weight
- prion protein
- plant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108091000054 Prion Proteins 0.000 title claims description 104
- 102000029797 Prion Human genes 0.000 title claims description 103
- 230000002159 abnormal effect Effects 0.000 title claims description 64
- 238000000034 method Methods 0.000 title claims description 45
- 208000024777 Prion disease Diseases 0.000 title claims description 22
- 230000001603 reducing effect Effects 0.000 title claims description 22
- 238000011282 treatment Methods 0.000 title claims description 17
- 239000008194 pharmaceutical composition Substances 0.000 title claims description 15
- 230000002265 prevention Effects 0.000 title claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 436
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 336
- 239000011707 mineral Substances 0.000 claims description 336
- 239000000463 material Substances 0.000 claims description 124
- 241000196324 Embryophyta Species 0.000 claims description 79
- 239000002994 raw material Substances 0.000 claims description 42
- 235000014653 Carica parviflora Nutrition 0.000 claims description 41
- 235000019738 Limestone Nutrition 0.000 claims description 37
- 239000006028 limestone Substances 0.000 claims description 37
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 34
- 239000007864 aqueous solution Substances 0.000 claims description 34
- 238000002156 mixing Methods 0.000 claims description 34
- 239000000203 mixture Substances 0.000 claims description 32
- 241000220222 Rosaceae Species 0.000 claims description 14
- 241000208140 Acer Species 0.000 claims description 9
- 235000018185 Betula X alpestris Nutrition 0.000 claims description 9
- 235000018212 Betula X uliginosa Nutrition 0.000 claims description 9
- 241000218645 Cedrus Species 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 8
- 241000208838 Asteraceae Species 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 239000012212 insulator Substances 0.000 claims description 7
- 235000003261 Artemisia vulgaris Nutrition 0.000 claims description 6
- 240000006891 Artemisia vulgaris Species 0.000 claims description 6
- 240000001548 Camellia japonica Species 0.000 claims description 6
- 241000132536 Cirsium Species 0.000 claims description 6
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 claims description 6
- 241000109365 Rosa arkansana Species 0.000 claims description 6
- 235000005066 Rosa arkansana Nutrition 0.000 claims description 6
- 239000004480 active ingredient Substances 0.000 claims description 6
- 235000018597 common camellia Nutrition 0.000 claims description 6
- 240000007651 Rubus glaucus Species 0.000 claims description 5
- 235000011034 Rubus glaucus Nutrition 0.000 claims description 5
- 235000009122 Rubus idaeus Nutrition 0.000 claims description 5
- 235000004789 Rosa xanthina Nutrition 0.000 claims description 4
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims description 3
- 241000018646 Pinus brutia Species 0.000 claims description 3
- 235000011613 Pinus brutia Nutrition 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 244000132059 Carica parviflora Species 0.000 claims 6
- 244000088415 Raphanus sativus Species 0.000 claims 1
- 235000010755 mineral Nutrition 0.000 description 302
- 238000004519 manufacturing process Methods 0.000 description 45
- 238000006243 chemical reaction Methods 0.000 description 42
- 241000243321 Cnidaria Species 0.000 description 26
- 239000000523 sample Substances 0.000 description 26
- 230000003595 spectral effect Effects 0.000 description 26
- 230000000694 effects Effects 0.000 description 24
- 238000003860 storage Methods 0.000 description 20
- 210000004556 brain Anatomy 0.000 description 17
- 241000699800 Cricetinae Species 0.000 description 16
- 230000009471 action Effects 0.000 description 15
- 208000008864 scrapie Diseases 0.000 description 14
- 238000001228 spectrum Methods 0.000 description 14
- 108090000623 proteins and genes Proteins 0.000 description 13
- 102000004169 proteins and genes Human genes 0.000 description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- 239000000919 ceramic Substances 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 12
- 230000005855 radiation Effects 0.000 description 11
- 241000242757 Anthozoa Species 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 239000010419 fine particle Substances 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 238000001262 western blot Methods 0.000 description 6
- 238000002965 ELISA Methods 0.000 description 5
- 108010067770 Endopeptidase K Proteins 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 241000220259 Raphanus Species 0.000 description 5
- 210000005013 brain tissue Anatomy 0.000 description 5
- 239000002552 dosage form Substances 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- 239000001506 calcium phosphate Substances 0.000 description 4
- 229910000389 calcium phosphate Inorganic materials 0.000 description 4
- 235000011010 calcium phosphates Nutrition 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000003814 drug Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 4
- 239000001095 magnesium carbonate Substances 0.000 description 4
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000011573 trace mineral Substances 0.000 description 4
- 235000013619 trace mineral Nutrition 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000006180 TBST buffer Substances 0.000 description 3
- 241000700605 Viruses Species 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000003574 free electron Substances 0.000 description 3
- 238000012744 immunostaining Methods 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000008399 tap water Substances 0.000 description 3
- 235000020679 tap water Nutrition 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000238586 Cirripedia Species 0.000 description 2
- 244000060011 Cocos nucifera Species 0.000 description 2
- 235000013162 Cocos nucifera Nutrition 0.000 description 2
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 2
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 2
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 208000003736 Gerstmann-Straussler-Scheinker Disease Diseases 0.000 description 2
- 206010072075 Gerstmann-Straussler-Scheinker syndrome Diseases 0.000 description 2
- 241000195947 Lycopodium Species 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 241000699673 Mesocricetus auratus Species 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 208000018756 Variant Creutzfeldt-Jakob disease Diseases 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 208000005881 bovine spongiform encephalopathy Diseases 0.000 description 2
- 208000017580 chronic wasting disease Diseases 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 201000006061 fatal familial insomnia Diseases 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 208000037956 transmissible mink encephalopathy Diseases 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000005457 Black-body radiation Effects 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000282994 Cervidae Species 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 206010027476 Metastases Diseases 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 206010029719 Nonspecific reaction Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 244000235659 Rubus idaeus Species 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004887 air purification Methods 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 230000000389 anti-prion effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229920001222 biopolymer Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000004332 deodorization Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- GPRLSGONYQIRFK-UHFFFAOYSA-N hydron Chemical compound [H+] GPRLSGONYQIRFK-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229940110728 nitrogen / oxygen Drugs 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 235000021013 raspberries Nutrition 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 238000012353 t test Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/44—Elemental carbon, e.g. charcoal, carbon black
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/02—Medicinal preparations containing materials or reaction products thereof with undetermined constitution from inanimate materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/56—Materials from animals other than mammals
- A61K35/614—Cnidaria, e.g. sea anemones, corals, coral animals or jellyfish
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/56—Materials from animals other than mammals
- A61K35/618—Molluscs, e.g. fresh-water molluscs, oysters, clams, squids, octopus, cuttlefish, snails or slugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/13—Coniferophyta (gymnosperms)
- A61K36/14—Cupressaceae (Cypress family), e.g. juniper or cypress
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/13—Coniferophyta (gymnosperms)
- A61K36/15—Pinaceae (Pine family), e.g. pine or cedar
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/20—Aceraceae (Maple family)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/28—Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/28—Asteraceae or Compositae (Aster or Sunflower family), e.g. chamomile, feverfew, yarrow or echinacea
- A61K36/282—Artemisia, e.g. wormwood or sagebrush
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/73—Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/73—Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
- A61K36/738—Rosa (rose)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K51/00—Preparations containing radioactive substances for use in therapy or testing in vivo
Landscapes
- Health & Medical Sciences (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Biotechnology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Medical Informatics (AREA)
- Botany (AREA)
- Alternative & Traditional Medicine (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Marine Sciences & Fisheries (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines Containing Plant Substances (AREA)
Description
本発明は、異常型プリオンタンパク質の感染力低減方法及びプリオン病の予防治療用医薬組成物に関する。 The present invention relates to a method for reducing infectivity of abnormal prion protein and a pharmaceutical composition for preventing and treating prion disease.
プリオンタンパク質は、タンパク質のみから構成されており、すべての哺乳動物は、唯一のプリオンタンパク質遺伝子を持っており、発現されるプリオンタンパク質は脳神経系で重要な働きをしている。
異常型プリオンタンパク質(PrPres:scrapie prion protein)は、動物の正常個体に存在する正常型プリオンタンパク質(PrPc:cellular prion protein)が変異した病的感染型プリオンタンパク質であり、プリオン病の原因となっている。異常型プリオンタンパク質は、正常型プリオンタンパク質とアミノ酸配列(一次構造)が同一であるが立体構造が異なる。The prion protein is composed solely of the protein, and all mammals have only one prion protein gene, and the expressed prion protein plays an important role in the brain nervous system.
Abnormal prion protein (PrPres: scrapie prion protein) is a pathologically transmitted prion protein in which a normal prion protein (PrPc: cellular prion protein) present in a normal animal is mutated and causes prion disease. I have. The abnormal prion protein has the same amino acid sequence (primary structure) as the normal prion protein but has a different three-dimensional structure.
プリオン病は、異常型プリオンタンパク質が蓄積することにより中枢神経が侵される疾患であり、ヒトをはじめウシ、ヤギ、ヒツジ、ブタ、サル、マウス、ラットなど多くの哺乳動物においてプリオン病の発症が認められている。さらにプリオン病は、動物種を超えてプリオンが感染、伝達する。
異常型プリオンタンパク質の有する感染性は、高圧蒸気滅菌、乾熱滅菌ではなくなることがなく、ホルマリンやアルコールなどの薬剤によって変性不活化されず、タンパク質分解酵素でも分解できない。そのため、プリオン病に有効な治療法の研究がおこなわれている。例えば、非特許文献1には、正常型プリオンタンパク質から異常型プリオンタンパク質への変換を阻害する方法が報告されている。Prion disease is a disease in which the central nervous system is affected by the accumulation of abnormal prion protein.Prion disease has been observed in many mammals, including humans, including cows, goats, sheep, pigs, monkeys, mice, and rats. Have been. In addition, prion disease is transmitted and transmitted by prions across animal species.
The infectivity of the abnormal prion protein is not eliminated by high-pressure steam sterilization and dry heat sterilization, is not denatured and inactivated by drugs such as formalin and alcohol, and cannot be degraded by proteolytic enzymes. Therefore, research on effective treatments for prion disease is being conducted. For example, Non-Patent Document 1 reports a method of inhibiting conversion of a normal prion protein to an abnormal prion protein.
一方、ミネラル成分を含有する水には、土壌改質作用、植物育成作用、有害化学物質分解作用、消臭作用、空気浄化作用等の効能がある可能性があるとされ、従来より様々なミネラル含有水やミネラル含有水の製造設備が開発されている。
本発明者らは、絶縁体で被覆された導電線及びミネラル付与材(A)を水に浸漬し、前記導電線に直流電流を導通させ、前記導電線の周囲の水に前記直流電流と同方向の水流を発生させ、前記水に超音波振動を付与して原料ミネラル水溶液(A)を形成する手段と、形成された原料ミネラル水溶液(A)に遠赤外線を照射してミネラル含有水(A)を形成する遠赤外線発生手段と、を備えたミネラル含有水製造装置(A)を開発している(特許文献1参照)。
また、本発明者らは、ミネラル含有水製造装置(A)と、互いに種類の異なるミネラル付与材(B)が充填された複数の通水容器と、複数の前記通水容器を直列に連通する送水経路と、複数の前記通水容器とそれぞれ並列した状態で前記送水経路に連結された迂回水路と、前記送水経路と前記迂回水路との分岐部にそれぞれ設けられた水流切替弁と、を備えたミネラル含有水製造装置(B)を備えたミネラル機能水製造設備を開発している(特許文献2参照)。また、本発明者らは、特許文献2で開示したミネラル機能水製造設備を使用し、ミネラル付与材の種類や配合割合を中心に検討を重ねた結果、ある特定の条件で製造されたミネラル機能水が単細胞生物やウィルス等に対する優れた防除作用を示すことを報告している(特許文献3)。また、他の原料、製造条件で製造されたミネラル機能水が身体活性化作用を有することを発見している(特許文献4)。On the other hand, it is said that water containing mineral components may have effects such as soil modification, plant growth, decomposition of harmful chemicals, deodorization, air purification, etc. Facilities for producing water containing and mineral containing water have been developed.
The present inventors immerse a conductive wire and a mineral-imparting material (A) coated with an insulator in water, pass a DC current through the conductive wire, and apply the DC current to water around the conductive wire in the same manner as the DC current. Means for generating a water flow in the direction, applying ultrasonic vibration to the water to form a raw material mineral aqueous solution (A), and irradiating the formed raw material mineral aqueous solution (A) with far-infrared rays to produce the mineral-containing water (A). ) Has been developed (see Patent Literature 1).
In addition, the present inventors connect a mineral-containing water producing apparatus (A), a plurality of water-flow containers filled with different types of mineral-imparting materials (B), and a plurality of the water-flow containers in series. A water supply path, a detour water path connected to the water supply path in a state of being in parallel with each of the plurality of water flow containers, and a water flow switching valve provided at a branch between the water supply path and the detour water path, respectively. (See Patent Document 2). In addition, the inventors of the present invention used the mineral-functional water production facility disclosed in Patent Document 2 and conducted repeated studies focusing on the types and mixing ratios of the mineral-imparting materials. It is reported that water exhibits an excellent control effect on single-celled organisms, viruses, and the like (Patent Document 3). Further, they have found that mineral water produced under other raw materials and production conditions has a body activating effect (Patent Document 4).
上述のように、従来から様々なミネラル含有水が報告されているが、ミネラル含有水の効果は科学的に実証されていないものも多くあり、ミネラル含有水の真の作用に付いては、未だ明確にされていない部分も多い。そのため、従来のミネラル含有水には、その効能を謳いながら実際には効能を有していないものや、効能を有しても実用には不十分であったり、効能の再現性が乏しいものも少なくない。
特許文献2で報告している装置を用いて製造されるミネラル機能水においても、目標とする有益な効能を発現するミネラル機能水を確実に生産できているとはいえなかった。特にミネラル含有水製造装置(A)及び(B)で使用するミネラル成分の原料(ミネラル付与材)の種類や配合割合が複雑に関与しており、どのようなミネラル付与材を用いれば、どのような効能を発現するミネラル機能水を得られるかは必ずしも判明していなかったのが実状である。そして、これまでミネラル機能水による異常型プリオンタンパク質の感染力低減作用は確認されていなかった。As mentioned above, various mineral-containing waters have been reported in the past, but the effects of mineral-containing water have not been scientifically proven in many cases, and the true action of mineral-containing water has not yet been reported. There are many parts that have not been clarified. For this reason, conventional mineral-containing water may not have the actual effect while claiming its effect, or may have an effect that is insufficient for practical use or has poor effect reproducibility. Not a few.
The mineral functional water produced by using the apparatus reported in Patent Document 2 cannot be said to be able to reliably produce a mineral functional water exhibiting a target beneficial effect. In particular, the types and mixing ratios of the raw materials (mineral-imparting materials) of the mineral components used in the mineral-containing water producing apparatuses (A) and (B) are complicatedly involved, and what kind of mineral-imparting materials are used, The fact is that it has not always been clear whether a mineral-functional water exhibiting various effects can be obtained. Until now, the effect of reducing the infectivity of abnormal prion proteins by mineral water has not been confirmed.
かかる状況下、本発明の目的は、ミネラル機能水の新たな用途として、異常型プリオンタンパク質の感染力を低減させ、プリオン病の予防治療に寄与する異常型プリオンタンパク質の感染力低減方法及びプリオン病の予防治療用医薬組成物を提供することである。 Under these circumstances, an object of the present invention is to provide a method for reducing the infectivity of abnormal prion protein which contributes to the prevention and treatment of prion disease by reducing the infectivity of abnormal prion protein as a new use of mineral functional water, and prion disease To provide a pharmaceutical composition for the prophylactic treatment of
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、特定のミネラル機能水に異常型プリオンタンパク質の感染力を低減させる作用があることを見出し、本発明に至った。 The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that specific mineral functional water has an effect of reducing the infectivity of abnormal prion protein, and have reached the present invention.
すなわち、本発明は、以下の発明に係るものである。
<1> 異常型プリオンタンパク質と、電磁波放射性のミネラル成分を含むミネラル機能水とを接触させて、異常型プリオンタンパク質の有する感染力を減少させる異常型プリオンタンパク質の感染力低減方法。
<2> 前記ミネラル成分が、テラヘルツ波を含む電磁波を放射するミネラル成分である<1>に記載の方法。
<3> 前記電磁波放射性のミネラル成分を含むミネラル機能水が、下記の工程(1)で形成されたミネラル含有水(A)と、下記の工程(2)で形成されたミネラル含有水(B)とを、1:5〜1:20(重量比)となる割合で混合して得られるミネラル機能水である<1>または<2>に記載の方法。
工程(1):
絶縁体で被覆された導電線と、キク科の草木植物及びバラ科の草木植物からなる草木植物原料、並びにカエデ、白樺、松及び杉から選択される1種以上の木本植物からなる木本植物原料を含有するミネラル付与材(A)と、を水に浸漬し、前記導電線に直流電流を導通させ、前記導電線の周囲の水に前記直流電流と同方向の水流を発生させ、前記水に超音波振動を付与して原料ミネラル水溶液(A)を形成し、次いで、原料ミネラル水溶液(A)に遠赤外線(波長6〜14μm)を照射してミネラル含有水(A)を形成する工程であって、
水に対するミネラル付与材(A)の添加量が10〜15重量%であり、前記導電線に導通させる直流電流における電流値及び電圧値が、それぞれ0.05〜0.1A及び8000〜8600Vの範囲であり、かつ、
ミネラル付与材(A)が、
前記草木植物原料として、野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ8〜12重量%、55〜65重量%、27〜33重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、
ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ17〜23重量%、8〜12重量%、65〜75重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を使用し、
当該キク科植物の乾燥粉砕物とバラ科植物の乾燥粉砕物とを、1:0.8〜1:1.2(重量比)で混合して得られる草木植物原料(A1)と、
前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ22〜28重量%、22〜28重量%、45〜55重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、
草木植物原料(A1)と木本植物原料(A2)の重量比で1:2.7〜1:3.3となるように混合して得られるミネラル付与材(A’)である工程
工程(2):
互いに種類の異なる無機系のミネラル付与材(B)が充填され、直列に接続された第1通水容器から第6通水容器に至る6個の通水容器に水を通過させてミネラル含有水(B)を形成する工程であって、
当該6個の通水容器おける、
第1通水容器内のミネラル付与材(B1)が、石灰石、化石サンゴ、貝殻をそれぞれ65〜75重量%、12.5〜17.5重量%、12.5〜17.5重量%を含む混合物、
第2通水容器内のミネラル付与材(B2)が、石灰石、化石サンゴ、貝殻、活性炭をそれぞれ37〜43重量%、12.5〜17.5重量%、37〜43重量%、2.5〜7.5重量%を含む混合物、
第3通水容器内のミネラル付与材(B3)が、石灰石、化石サンゴ、貝殻をそれぞれ75〜85重量%、12.5〜17.5重量%、2.5〜7.5重量%を含む混合物、
第4通水容器内のミネラル付与材(B4)が、石灰石、化石サンゴ、貝殻をそれぞれ85〜95重量%、2.5〜7.5重量%、2.5〜7.5重量%を含む混合物、
第5通水容器内のミネラル付与材(B5)が、石灰石、化石サンゴ、貝殻をそれぞれ75〜85重量%、7.5〜12.5重量%、7.5〜12.5重量%を含む混合物、
第6通水容器内のミネラル付与材(B6)が、石灰石、化石サンゴ、貝殻を55〜65重量%、27〜33重量%、7.5〜12.5重量%を含む混合物、
である工程
<5> 前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水CAC−717に由来するミネラル成分である<1>に記載の方法。
<6> 前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水A20ACA−717に由来するミネラル成分である<1>に記載の方法。That is, the present invention relates to the following inventions.
<1> A method for reducing the infectivity of an abnormal prion protein, which comprises bringing an abnormal prion protein into contact with mineral-functional water containing a mineral component that emits electromagnetic waves to reduce the infectivity of the abnormal prion protein.
<2> The method according to <1>, wherein the mineral component is a mineral component that emits an electromagnetic wave including a terahertz wave.
<3> The mineral-functional water containing the electromagnetic radiation-emitting mineral component is composed of the mineral-containing water (A) formed in the following step (1) and the mineral-containing water (B) formed in the following step (2). <1> or <2>, which is a mineral functional water obtained by mixing at a ratio of 1: 5 to 1:20 (weight ratio).
Step (1):
A conductive wire covered with an insulator, a plant material consisting of a plant of the family Asteraceae and a plant of the family Rosaceae, and a woody plant comprising at least one woody plant selected from maple, birch, pine and cedar; And a mineral-imparting material (A) containing a plant material, immersed in water, conducting a direct current to the conductive wire, generating a water flow in the same direction as the direct current in the water around the conductive wire, A step of forming a raw mineral aqueous solution (A) by applying ultrasonic vibration to water, and then irradiating the raw mineral aqueous solution (A) with far infrared rays (wavelength 6 to 14 μm) to form a mineral-containing water (A) And
The amount of the mineral-imparting material (A) added to water is 10 to 15% by weight, and the current value and the voltage value of the direct current conducted to the conductive wire are in the range of 0.05 to 0.1 A and 8000 to 8600 V, respectively. And
The mineral imparting material (A)
As the plant material, wild thistle (leaves, stems and flowers), mugwort (leaves and stems), and camellia (leaves and stems) are respectively 8 to 12% by weight and 55 to 65% by weight. , 27-33% by weight, dried and crushed Asteraceae plant after being dried and crushed, and
17-23% by weight, 8-12% by weight, 65-75% by weight of wild rose (leaf, flower), radish (leaf and stem), and raspberry (leaf, stem and flower), respectively Using a dry and crushed Rosaceae plant that was mixed and dried at a ratio of
A plant material (A1) obtained by mixing the dry and crushed Asteraceous plant and the dry and crushed Rosaceae plant in a ratio of 1: 0.8 to 1: 1.2 (weight ratio);
As the woody plant raw materials, maple (leaves and stems), birch (leaves, stems, and bark), cedars (leaves, stems, and bark) are each 22 to 28% by weight, A woody plant raw material (A2) comprising a dry and crushed product obtained by mixing at a ratio of 22 to 28% by weight and 45 to 55% by weight, drying, and then crushing the mixture.
Step of being a mineral-imparting material (A ′) obtained by mixing the plant material (A1) and the woody plant material (A2) in a weight ratio of 1: 2.7 to 1: 3.3.
Step (2):
Mineral-containing water (B) filled with different kinds of inorganic mineral-imparting materials, and water is passed through six water-passing containers from a first water-passing container to a sixth water-passing container connected in series, and mineral-containing water (B) is a step of forming
In the six water containers,
The mineral-imparting material (B1) in the first water passage container contains 65 to 75% by weight, 12.5 to 17.5% by weight, and 12.5 to 17.5% by weight of limestone, fossil coral, and shell, respectively. mixture,
The mineral-imparting material (B2) in the second water passage container contains limestone, fossil coral, shells, and activated carbon in an amount of 37 to 43% by weight, 12.5 to 17.5% by weight, 37 to 43% by weight, and 2.5%, respectively. A mixture comprising ~ 7.5% by weight;
The mineral-imparting material (B3) in the third water container contains limestone, fossil coral, and shells at 75 to 85% by weight, 12.5 to 17.5% by weight, and 2.5 to 7.5% by weight, respectively. mixture,
The mineral-imparting material (B4) in the fourth water passage container contains 85 to 95% by weight, 2.5 to 7.5% by weight, and 2.5 to 7.5% by weight of limestone, fossil coral, and shell, respectively. mixture,
The mineral-imparting material (B5) in the fifth water passage container contains limestone, fossil coral, and shells in an amount of 75 to 85% by weight, 7.5 to 12.5% by weight, and 7.5 to 12.5% by weight, respectively. mixture,
A mixture in which the mineral imparting material (B6) in the sixth water passage container contains 55 to 65% by weight, 27 to 33% by weight, and 7.5 to 12.5% by weight of limestone, fossil coral, and shells;
<5> The method according to <1>, wherein the mineral component is a mineral component derived from mineral functional water CAC-717 manufactured by Riken Technosystem Co., Ltd.
<6> The method according to <1>, wherein the mineral component is a mineral component derived from a mineral functional water A20ACA-717 manufactured by Riken Technosystem Co., Ltd.
<6> 電磁波放射性のミネラル成分を含むミネラル機能水を有効成分として含有するプリオン病の予防治療用医薬組成物。
<7> 前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水CAC−717に由来するミネラル成分である<6>に記載の医薬組成物。
<8> 前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水A20ACA−717に由来するミネラル成分である<6>に記載の医薬組成物。<6> A pharmaceutical composition for preventing and treating prion disease, comprising a mineral functional water containing a mineral component that emits electromagnetic waves as an active ingredient.
<7> The pharmaceutical composition according to <6>, wherein the mineral component is a mineral component derived from mineral functional water CAC-717 manufactured by Riken Technosystem Co., Ltd.
<8> The pharmaceutical composition according to <6>, wherein the mineral component is a mineral component derived from a mineral functional water A20ACA-717 manufactured by Riken Technosystem Co., Ltd.
本発明によれば、異常型プリオンタンパク質の感染力を低減させ、プリオン病の予防治療に寄与する異常型プリオンタンパク質の感染力低減方法及びプリオン病の予防治療用医薬組成物が提供される。 According to the present invention, there is provided a method for reducing infectivity of abnormal prion protein, which contributes to the prevention and treatment of prion disease by reducing the infectivity of abnormal prion protein, and a pharmaceutical composition for prevention and treatment of prion disease.
1 ミネラル機能水製造設備
2 ミネラル含有水(A)製造装置
3 ミネラル含有水(B)製造装置
10 原料ミネラル水溶液製造手段
11,W 水
12 ミネラル付与材(A)
13 反応容器
13a 壁体
14 絶縁体
15 導電線
16 超音波発生手段
17 直流電源装置
18a,18b,18c 循環経路
19 排水口
20,23 開度調節バルブ
21,25 排水バルブ
22 収容槽
24 排水管
26 水温計
29,29a〜29g,29s,29t 導電ケーブル
30 ターミナル
31 収納容器
31f フック
40 処理容器
41 原料ミネラル水溶液(A)
42 撹拌羽根
43 遠赤外線発生手段
44 ミネラル含有水(A)
45 ミネラル含有水(B)
46 混合槽
47 ミネラル機能水
51 第1通水容器
52 第2通水容器
53 第3通水容器
54 第4通水容器
55 第5通水容器
56 第6通水容器
51a〜56a 本体部
51b〜56b 切替ボタン
51c〜56c 軸心
51d〜56d 蓋体
51f〜56f フランジ部
51m〜56m ミネラル付与材(B)
51p〜56p 迂回水路
51v〜56v 水流切替弁
57,57x,57y 送水経路
57a 入水口
57b 出水口
57c メッシュストレーナ
57d 自動エア弁
58 操作盤
59 信号ケーブル
60 架台
61 キャスタ
62 レベルアジャスタ
63 原水タンク
DC 直流電流
DW 水道水
R 水流DESCRIPTION OF SYMBOLS 1 Mineral functional water production equipment 2 Mineral-containing water (A) production device 3 Mineral-containing water (B) production device 10 Raw material aqueous solution production means 11, W water 12 Mineral imparting material (A)
DESCRIPTION OF SYMBOLS 13 Reaction container 13a Wall 14 Insulator 15 Conductive wire 16 Ultrasonic wave generating means 17 DC power supply 18a, 18b, 18c Circulation path 19 Drain 20, 20 Opening control valve 21, 25 Drain valve 22 Storage tank 24 Drain pipe 26 Water temperature gauge 29, 29a to 29g, 29s, 29t Conductive cable 30 Terminal 31 Storage container 31f Hook 40 Processing container 41 Raw material mineral aqueous solution (A)
42 stirring blades 43 far-infrared ray generating means 44 mineral-containing water (A)
45 Mineral-containing water (B)
46 Mixing tank 47 Mineral functional water 51 First water container 52 Second water container 53 Third water container 54 Fourth water container 55 Fifth water container 56 Sixth water container 51a-56a Main body 51b- 56b Switch button 51c-56c Axis 51d-56d Lid 51f-56f Flange 51m-56m Mineral material (B)
51p-56p Detour water path 51v-56v Water flow switching valve 57, 57x, 57y Water supply path 57a Inlet port 57b Outlet port 57c Mesh strainer 57d Automatic air valve 58 Operation panel 59 Signal cable 60 Frame 61 Caster 62 Level adjuster 63 Raw water tank DC DC current DW tap water R water flow
以下、本発明について例示物等を示して詳細に説明するが、本発明は以下の例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、本明細書において、「〜」とはその前後の数値又は物理量を含む表現として用いるものとする。 Hereinafter, the present invention will be described in detail with reference to examples and the like. However, the present invention is not limited to the following examples and the like, and can be arbitrarily modified and implemented without departing from the gist of the present invention. In this specification, “to” is used as an expression including numerical values or physical quantities before and after “to”.
<1.異常型プリオンタンパク質の感染力低減方法>
本発明は、異常型プリオンタンパク質と、電磁波放射性のミネラル成分を含むミネラル機能水とを接触させて、異常型プリオンタンパク質の有する感染力を減少させる異常型プリオンタンパク質の感染力低減方法に関する。
また、本発明は、正常型プリオンタンパク質と、電磁波放射性のミネラル成分を含むミネラル機能水とを接触させて、正常型プリオンタンパク質を分解させることにより、異常型プリオンタンパク質の増殖を抑制する異常型プリオンタンパク質の感染力低減方法に関する。
なお、これらを総称して、以下、「本発明の感染力低減方法」又は「本発明の方法」と記載する場合がある。また、本発明の感染力低減方法に係る「電磁波放射性のミネラル成分を含むミネラル機能水」を、以下、「本発明のミネラル機能水」と記載する。<1. Method for reducing infectivity of abnormal prion protein>
The present invention relates to a method for reducing the infectivity of an abnormal prion protein, which reduces the infectivity of an abnormal prion protein by contacting the abnormal prion protein with a mineral water containing a mineral component that emits electromagnetic waves.
Further, the present invention relates to an abnormal prion protein which suppresses the growth of an abnormal prion protein by contacting the normal prion protein with a mineral functional water containing a mineral component that emits electromagnetic waves to decompose the normal prion protein. The present invention relates to a method for reducing infectivity of a protein.
These may be collectively referred to as “the method for reducing infectivity of the present invention” or “the method of the present invention”. Further, the “mineral functional water containing an electromagnetic wave-radiating mineral component” according to the method for reducing infectivity of the present invention is hereinafter referred to as “mineral functional water of the present invention”.
本発明の感染力低減方法では、本発明のミネラル機能水を異常型プリオンタンパク質に直接的又は間接的に接触させることにより、本発明のミネラル機能水を接触させることにより、異常型プリオンタンパク質の量を減少させ、異常型プリオンタンパク質の感染力を低減させる。 In the method for reducing infectivity of the present invention, the amount of abnormal prion protein is brought into contact with the abnormal functional prion protein by directly or indirectly contacting the mineral functional water of the present invention with the abnormal functional prion protein. And reduce the infectivity of the abnormal prion protein.
なお、プリオンタンパク質の量は、例えば、実施例で示すダイレクトELISA法やウエスタンブロッキング法で求めることができる。この感染力低減作用の機序については現段階では明らかでない点も多いが、ミネラル機能水に含まれるミネラル成分が放射する電磁波に由来する作用がその一つである。電磁波としてはタンパク質内の分子間運動を誘導する波長である、テラヘルツ波が有効である。そのため、ミネラル機能水におけるミネラル成分が、テラヘルツ波を含む電磁波を放射するミネラル成分であることが好ましい。 The amount of the prion protein can be determined by, for example, a direct ELISA method or a Western blocking method described in Examples. At this stage, the mechanism of the infectiousness-reducing action is not clear at present, but one of the actions is the action derived from the electromagnetic waves emitted by the mineral components contained in the mineral-functional water. As the electromagnetic wave, a terahertz wave, which is a wavelength that induces intermolecular motion in a protein, is effective. Therefore, it is preferable that the mineral component in the mineral water is a mineral component that emits electromagnetic waves including terahertz waves.
アミノ酸の結合によるタンパク質は、その立体構造に起因して正常な機能を現しているが、1次構造から始まり3次の立体形成を得て4次の折りたたみ構造を取る過程で、何らかの化学的物理的な外的影響やウィルスその他の内的影響を受けて、各構造上に結合組織の変性が起き、生体組織の病変の変化につながると考えられる。
個々のアミノ酸には固有のテラヘルツ波領域の波長吸収が確認されていることから、アミノ酸の集合であるタンパク質にもそれぞれのタンパク質固有のテラヘルツ波吸収があると推測される。そのため、タンパク質レベルの生体高分子が吸収する波長(例えば、波長300μm程度)の放射により、タンパク質の立体構造を再生することが可能である。A protein formed by the binding of amino acids exhibits a normal function due to its tertiary structure. However, in the process of starting from the primary structure, obtaining the tertiary tertiary formation and taking the quaternary folding structure, some chemical physics takes place. It is thought that the connective tissue is degenerated on each structure due to an external influence or a virus or other internal influence, which leads to a change in a lesion of a living tissue.
Since individual amino acids have been confirmed to have unique wavelength absorption in the terahertz wave region, it is presumed that proteins that are a collection of amino acids also have terahertz wave absorption unique to each protein. Therefore, it is possible to regenerate the three-dimensional structure of the protein by radiation having a wavelength (for example, a wavelength of about 300 μm) that is absorbed by the biopolymer at the protein level.
本発明の方法では、ミネラル機能水に含まれるミネラル成分が放射する電磁波に由来する作用によって、異常型プリオンタンパク質を分解、または、異常型プリオンタンパク質を正常な構造に復元することで異常型プリオンタンパク質の量が減少している。電磁波としてはタンパク質内の分子間運動を誘導する波長である、テラヘルツ波が有効である。 In the method of the present invention, the abnormal prion protein is decomposed by the action derived from the electromagnetic wave emitted by the mineral component contained in the mineral-functional water, or the abnormal prion protein is restored to a normal structure by restoring the abnormal prion protein to a normal structure. The amount has decreased. As the electromagnetic wave, a terahertz wave, which is a wavelength that induces intermolecular motion in a protein, is effective.
なお、本発明のミネラル機能水は、そのメカニズムは完全に明らかでないが、高温(例えば、60℃)で、本発明のミネラル機能水と正常型プリオンタンパク質を接触させることで、正常型プリオンタンパク質を分解する作用を有する可能性がある。そのため、高温(例えば、60℃)で、正常型プリオンタンパク質と、電磁波放射性のミネラル成分を含むミネラル機能水とを接触させて、正常型プリオンタンパク質を分解させることにより、異常型プリオンタンパク質の増殖を抑制することができる可能性がある。 Although the mechanism of the mineral functional water of the present invention is not completely clear, contacting the mineral functional water of the present invention with the normal prion protein at a high temperature (for example, 60 ° C.) converts the normal prion protein into a normal prion protein. May have the effect of decomposing. Therefore, the normal prion protein is brought into contact with a mineral functional water containing a mineral component that emits electromagnetic waves at a high temperature (for example, 60 ° C.) to decompose the normal prion protein, thereby increasing the growth of the abnormal prion protein. There is a possibility that it can be suppressed.
<2.ミネラル機能水>
本発明の感染力低減方法で使用されるミネラル機能水は、電磁波放射性のミネラル成分を含有する。なお、本発明のミネラル機能水の原料、製造条件については、<3.本発明のミネラル機能水の製造方法>において説明する。<2. Mineral functional water>
The mineral water used in the method for reducing infectivity according to the present invention contains a mineral component that emits electromagnetic waves. In addition, about the raw material of mineral-functional water of this invention, and production conditions, <3. Method for Producing Mineral Functional Water of the Present Invention>.
本明細書において、「ミネラル機能水」とは、ミネラル成分を含有し、少なくとも一種以上の有効な効能を発現するものを意味する。また、本明細書において、「ミネラル含有水」とは、ミネラル機能水を製造する際における、前段階の原料水であり、ミネラル含有水もミネラル成分を含有する。詳細は本発明のミネラル機能水の製造方法として後述する。なお、ミネラル含有水はそれ自身が有効な効能を有していても、有していなくてもよい。 In the present specification, “mineral functional water” means a water that contains a mineral component and exhibits at least one or more effective effects. Further, in the present specification, “mineral-containing water” is a raw material water in a previous stage when producing mineral functional water, and the mineral-containing water also contains a mineral component. The details will be described later as the method for producing mineral functional water of the present invention. In addition, the mineral-containing water may or may not have an effective effect by itself.
なお、本明細書において、「ミネラル成分」は、狭義のミネラルの定義である「4元素(炭素・水素・窒素・酸素)を除外した無機成分(微量元素含む)」を意味するものではなく、無機成分と共存する態様であれば、狭義の定義で除外されている前記4元素(炭素・水素・窒素・酸素)を含んでいてもよい。そのため、例えば、「植物由来のミネラル成分」は、カルシウム等の植物由来の無機成分と共に、植物由来の有機成分が含まれる場合も含む概念である。
また、(ミネラル成分を構成する)無機成分としては、例えば、ナトリウム、カリウム、カルシウム、マグネシウム、及びリン等、微量元素として鉄、亜鉛、銅、マンガン、ヨウ素、セレン、クロム、及びモリブデン等がそれぞれ例示できるがこれに限定されない。In this specification, the term “mineral component” does not mean “inorganic component (including trace elements) excluding four elements (carbon, hydrogen, nitrogen, and oxygen)” which is a definition of mineral in a narrow sense. If it coexists with an inorganic component, it may contain the four elements (carbon / hydrogen / nitrogen / oxygen) excluded in a narrow definition. Therefore, for example, the “plant-derived mineral component” is a concept including a case where a plant-derived organic component is included together with a plant-derived inorganic component such as calcium.
Examples of inorganic components (constituting mineral components) include sodium, potassium, calcium, magnesium, and phosphorus, and trace elements such as iron, zinc, copper, manganese, iodine, selenium, chromium, and molybdenum. It can be exemplified, but not limited to this.
本発明のミネラル機能水は、電磁波放射性のミネラル成分を含有し、異常型プリオンタンパク質の感染力を低減させるものであれば制限されないが、好適には後述する<3.本発明のミネラル機能水の製造方法>で説明する製造装置、原料を使用して製造される。 The mineral functional water of the present invention is not limited as long as it contains a mineral component that emits electromagnetic waves and reduces the infectivity of abnormal prion proteins. The method for producing mineral functional water of the present invention> is used using the production apparatus and the raw materials described in the above.
本発明のミネラル機能水の好適な態様の一つは、例えば、pH12以上である。本発明のミネラル機能水がpH12以上であると、強アルカリに起因する高い還元作用により、ペプチド結合とS−S結合が切断されやすくなり、異常型プリオンタンパク質の絶対量が減少し、感染力が低減する傾向にある。
なお、pHは、ミネラル機能水をpHメータで測定したpHを数値化したものである。pHメータは、実施例で示すものには限定されない。One preferred embodiment of the mineral functional water of the present invention has, for example, a pH of 12 or more. When the mineral functional water of the present invention has a pH of 12 or more, the peptide bond and the SS bond are easily cleaved by the high reducing action caused by the strong alkali, the absolute amount of the abnormal prion protein is reduced, and the infectivity is reduced. It tends to decrease.
The pH is a value obtained by digitizing the pH of the mineral water measured with a pH meter. The pH meter is not limited to those shown in the examples.
特に、本発明のミネラル機能水の好適な一例として、株式会社理研テクノシステム製ミネラル機能水CAC−717が挙げられる。
ミネラル機能水CAC−717は、電磁波放射性のミネラル成分としてカルシウム及び炭素の複合体を含む、pH12以上のミネラル機能水である。ミネラル機能水CAC−717は、pH変動が少なくアルカリ状態を保つことができる。ミネラル機能水CAC−717が、pH変動が少なくアルカリ状態を保てる理由は現段階ではその詳細は完全に明らかではないが、原料である草木植物や木本植物に由来するカルシウム及び炭素の複合体がpH緩衝剤としての機能を有し、pH変動を抑制している可能性がある。In particular, a preferred example of the mineral functional water of the present invention is a mineral functional water CAC-717 manufactured by Riken Technosystem Co., Ltd.
The mineral functional water CAC-717 is a mineral functional water having a pH of 12 or more and containing a complex of calcium and carbon as a mineral component that emits electromagnetic waves. Mineral functional water CAC-717 has a small pH fluctuation and can maintain an alkaline state. The reason why the mineral-functional water CAC-717 can maintain an alkaline state with little pH fluctuation is not completely clear at this stage, but a complex of calcium and carbon derived from plant and woody plants as raw materials is not clear. It has a function as a pH buffer, and may suppress pH fluctuation.
また、本発明のミネラル機能水の他の好適例としては、後述する実施例2に相当する、株式会社理研テクノシステム製ミネラル機能水A20ACA−717が挙げられる。ミネラル機能水A20ACA−717は、電磁波放射性のミネラル成分としてカルシウム及び炭素の複合体を含むミネラル機能水である。 Another preferred example of the mineral functional water of the present invention is a mineral functional water A20ACA-717 manufactured by Riken Techno System Co., Ltd., which corresponds to Example 2 described later. Mineral functional water A20ACA-717 is a mineral functional water containing a complex of calcium and carbon as a mineral component that emits electromagnetic waves.
また、本発明のミネラル機能水の好適な態様の一つは、本発明のミネラル機能水の分光放射率スペクトルが以下の要件(i)を満たすことである。なお、液体試料の分光放射率は、直接測定することが困難であるため、通常、参照用担体に固定して測定する方法が取られる。本発明のミネラル機能水の分光放射率スペクトルは、ミネラル機能水を担持用のセラミック粉末に固定化して測定される。例えば、ミネラル機能水CAC−717はこの要件を満たすミネラル機能水のひとつである。 One preferred embodiment of the mineral functional water of the present invention is that the spectral emissivity spectrum of the mineral functional water of the present invention satisfies the following requirement (i). Since it is difficult to directly measure the spectral emissivity of the liquid sample, a method of measuring the spectral emissivity by fixing the spectral emissivity to a reference carrier is usually employed. The spectral emissivity spectrum of the mineral water of the present invention is measured by immobilizing the mineral water on a ceramic powder for carrying. For example, mineral functional water CAC-717 is one of the mineral functional waters that meets this requirement.
要件(i):
(i)セラミック担体100重量部に対し、当該ミネラル機能水15重量部以上(好適には20重量部以上)を固定化した試料における、波長5〜7μm間及び波長14〜24μm間での黒体に対する平均放射比率(測定温度:25℃)が90%以上であること。Requirement (i):
(I) A black body at a wavelength of 5 to 7 μm and a wavelength of 14 to 24 μm in a sample in which 15 parts by weight or more (preferably 20 parts by weight or more) of the mineral functional water is immobilized on 100 parts by weight of the ceramic carrier. Average radiation ratio (measuring temperature: 25 ° C.) with respect to 90% or more.
すなわち、本発明のミネラル機能水は、25℃における黒体に対する放射比率プロファイルにおける、波長5〜7μm間及び波長14〜24μm間での値を合計し、その平均値を(25℃における黒体に対する)波長5〜7μm間及び波長14〜24μm間での平均放射比率としたときに、その平均放射比率が90%以上であることが好ましい。
25℃における黒体に対する波長5〜7μm間及び波長14〜24μm間での放射線は、中赤外線に相当し、中赤外線は近赤外線に比べ、光子エネルギーは小さいが浸透力が強く、生体内部にまで到達する性質を有する。
すなわち、本発明のミネラル機能水は、この中赤外線により、有益な効能を発現している可能性がある。That is, the mineral functional water of the present invention sums the values between the wavelengths of 5 to 7 μm and the wavelengths of 14 to 24 μm in the radiation ratio profile for the black body at 25 ° C., and averages the values (for the black body at 25 ° C.). A) When the average emission ratio is between 5 and 7 μm and between 14 and 24 μm, the average emission ratio is preferably 90% or more.
Radiation at a wavelength of 5 to 7 μm and a wavelength of 14 to 24 μm with respect to a black body at 25 ° C. corresponds to the mid-infrared ray. Has the property of reaching.
That is, the mineral-functional water of the present invention may be exhibiting a beneficial effect by this mid-infrared ray.
具体的には、本発明のミネラル機能水の好適な態様は、セラミック担体100重量部に対し、当該ミネラル機能水20重量部を固定化した試料における、波長4μm〜24μmの範囲での分光放射率スペクトル(測定温度:25℃)が、実施例で示すような、特定の形状(図12または図14に示す形状)を示す。詳細は実施例にて後述する。 Specifically, a preferred embodiment of the mineral functional water is a spectral emissivity in a wavelength range of 4 μm to 24 μm in a sample in which 20 parts by weight of the mineral functional water is immobilized on 100 parts by weight of the ceramic carrier. The spectrum (measuring temperature: 25 ° C.) shows a specific shape (the shape shown in FIG. 12 or FIG. 14) as shown in the examples. Details will be described later in Examples.
本明細書において、「放射率」とは、放射体の放射発散度とその放射体と同温度の黒体の放射発散度との比(JIS Z 8117(2002))であり、「分光放射率」とは、その温度における黒体の放射率を100%としたときの試料の放射の割合を示すものである。評価される試料は、特有の分光放射率スペクトルを有する。なお、「黒体」とは、入射する光を100%吸収し、エネルギー放射能力が最大の物体のことであり、理論的には黒体よりも大きい放射能力を示すものはない。 In the present specification, the “emissivity” is a ratio (JIS Z 8117 (2002)) between the radiant emittance of a radiator and the radiant emittance of a black body having the same temperature as the radiator, and “spectral emissivity” "Indicates the ratio of the radiation of the sample when the emissivity of the black body at that temperature is 100%. The sample to be evaluated has a unique spectral emissivity spectrum. The “black body” refers to an object that absorbs incident light at 100% and has the maximum energy radiation ability, and none of them theoretically exhibits a radiation ability greater than a black body.
分光放射率スペクトルの測定方法はJIS R 1801(2002)に規定されており、JIS R 1801(2002)に準じる装置構成を有する、フーリエ変換型赤外線分光光度測定法(FTIR)を使用した放射率測定システムで測定することができる。放射率測定システムとしては、日本電子(株)製遠赤外線輻射率測定装置(JIR−E500)を好適な一例として挙げることができる。 The method for measuring the spectral emissivity spectrum is specified in JIS R 1801 (2002), and has an apparatus configuration in accordance with JIS R 1801 (2002), and emissivity measurement using Fourier transform infrared spectrophotometry (FTIR). It can be measured by the system. As a preferred example of the emissivity measuring system, a far-infrared emissivity measuring device (JIR-E500) manufactured by JEOL Ltd. can be mentioned.
なお、液体試料の分光放射率は、直接測定することが困難であるため、通常、参照用担体に固定して測定する方法が取られる。本発明のミネラル機能水の分光放射率スペクトルは、ミネラル機能水を担持用のセラミック粉末に固定化して測定される。詳細は実施例にて後述する。 Since it is difficult to directly measure the spectral emissivity of the liquid sample, a method of measuring the spectral emissivity by fixing the spectral emissivity to a reference carrier is usually employed. The spectral emissivity spectrum of the mineral water of the present invention is measured by immobilizing the mineral water on a ceramic powder for carrying. Details will be described later in Examples.
本発明のミネラル機能水の有する様々な作用について明らかでない点が多いが、推定メカニズムを説明する。 Although there are many points that are not clear about various actions of the mineral functional water of the present invention, an estimation mechanism will be described.
まず、本発明のミネラル機能水に含まれるミネラル成分は、特殊な構造体を形成している可能性がある。間接的な証拠であるが、本発明のミネラル機能水を乾燥させて析出した電子顕微鏡による評価により、メゾスケール(Meso-Scale)の構造体(以下、「メゾ構造体」を形成されていることが示唆されている。なお、乾燥後のミネラル成分は集成した結晶状物質である。 First, the mineral component contained in the mineral-functional water of the present invention may form a special structure. As indirect evidence, a meso-scale structure (hereinafter referred to as a “meso-structure”) is formed by evaluation with an electron microscope obtained by drying and depositing the mineral water of the present invention. The mineral components after drying are aggregated crystalline substances.
上述の通り、本発明のミネラル機能水の好適な一態様では、pH12以上の強アルカリ状態を維持できる。これは液中に分散するミネラルのメゾ構造微粒子の水に対する直接的放電作用に基づく可能性があり、pH12の場合に加水分解性により単細胞生物やウィルスの細胞膜を形成するタンパク質の結合(ペプチド結合)を緩めて、これにミネラル成分が放射する電磁波が作用し、相乗的に異常型プリオンタンパク質に対する感染力低減作用を発現している可能性がある。
すなわち、本発明のミネラル機能水に含まれるミネラル成分は、ミネラル成分の少なくとも一部をメゾ構造微粒子として含有している可能性が高い。現段階ではその詳細は完全に明らかではないが、ミネラル成分が完全に水溶性の成分でなく、溶解しない微粒子(メゾ構造微粒子)として機能水中に分散していることにより、本発明の機能水の有する作用を発現するものと推測される。As described above, in a preferred embodiment of the mineral functional water of the present invention, a strongly alkaline state of pH 12 or more can be maintained. This may be due to the direct discharge action of the mesostructured fine particles of minerals dispersed in water on water. At pH 12, the binding of proteins that form the cell membrane of unicellular organisms or viruses due to their hydrolytic properties (peptide binding) It is possible that the electromagnetic wave emitted by the mineral component acts on this to act synergistically to reduce the infectivity of the abnormal prion protein.
That is, the mineral component contained in the mineral functional water of the present invention is highly likely to contain at least a part of the mineral component as mesostructured fine particles. Although the details are not completely clear at this stage, since the mineral component is not a completely water-soluble component and is dispersed in the functional water as insoluble fine particles (meso-structured fine particles), the functional water of the present invention is It is presumed to exhibit the action having.
なお、集成結晶物質であるメゾ構造微粒子は、粒径が50〜500nm程度の微粒子であり、構造内に自由電子補足性に基づくマイナス電位の自己発電力を持ち、更に水素吸蔵作用及びテラヘルツ電磁波の発生能力を有するものと推測される。メゾ構造微粒子は、高い電圧をパルスで継続的に発生させることが可能で、接触する周囲の水分子に放電し電気分解により水分子をH+イオンとOH-イオンに分解するが、メゾ構造微粒子にマイナス電位と水素吸蔵作用の物性があることから、H+イオンにメゾ構造微粒子から電子を与え水素原子(H)に戻した上で、メゾ構造微粒子内部に蓄積し固定化する。これによりH+イオンが相対的に減少することになり、例えば、pH12以上の強アルカリの状態となる、と推測される。Note that the mesostructured fine particles, which are aggregated crystalline materials, are fine particles having a particle size of about 50 to 500 nm, have a self-power of negative potential in the structure based on the free electron trapping property, and further have a hydrogen storage effect and a terahertz electromagnetic wave. It is presumed to have the ability to generate. The meso-structured fine particles can continuously generate a high voltage with a pulse, discharge the surrounding water molecules and break down the water molecules into H + ions and OH - ions by electrolysis. Because of the negative electric potential and the physical properties of the hydrogen storage effect, the H + ions are given electrons from the mesostructured fine particles and returned to hydrogen atoms (H), and then accumulated and immobilized inside the mesostructured fine particles. This leads to a relative decrease in H + ions, which is presumed to be in a strong alkali state with a pH of 12 or more, for example.
上述した推定メカニズムは、あくまで現時点での推定されるものであり、将来的に上記と異なるメカニズムが発見された場合であっても、本発明のミネラル機能水における有用な効能が制限的に解釈されるべきものではない。また、本発明のミネラル機能水には、複数の異なる有用な効能を有している可能性があり、それぞれの効能について発現メカニズムが異なる可能性もある。 The above-mentioned estimation mechanism is merely an estimation at the present time, and even if a mechanism different from the above is discovered in the future, useful effects in the mineral-functional water of the present invention are interpreted in a limited manner. It should not be. In addition, the mineral functional water of the present invention may have a plurality of different useful effects, and the expression mechanism may be different for each of the effects.
本発明のミネラル機能水は、本発明の目的を損なわない範囲で、適当な希釈用溶媒(水やアルコールなど)で希釈されていてもよい。 The mineral functional water of the present invention may be diluted with an appropriate diluting solvent (such as water or alcohol) as long as the object of the present invention is not impaired.
本発明のミネラル機能水には、その効能を損なわない範囲で、任意の成分を含んでいてもよい。任意の成分としては、本発明の目的を損なわない添加物であれば特に限定はないが、例えば、公知の懸濁剤、乳剤等が挙げられる。また、混合割合は、本願発明の目的を損なわない範囲であれば任意である。 The mineral functional water of the present invention may contain any component as long as its effectiveness is not impaired. The optional components are not particularly limited as long as they do not impair the purpose of the present invention, and include, for example, known suspending agents and emulsions. The mixing ratio is arbitrary as long as the object of the present invention is not impaired.
(本発明のミネラル機能水の用途)
本発明のミネラル機能水は、異常型プリオンタンパク質に対する感染力低減作用を有しているため、本発明のミネラル機能水を、異常型プリオンタンパク質を含む対象物に直接的又は間接的に接触させることにより、異常型プリオンタンパク質を不活性化して、その感染力低減させることができる。
このように、本発明の方法によれば、ヒトや動物への異常型プリオンタンパク質に由来するプリオン病を予防することができ、さらにはプリオン病の改善が期待できる。(Use of the mineral functional water of the present invention)
Since the mineral functional water of the present invention has an infectivity reducing effect on abnormal prion protein, the mineral functional water of the present invention is directly or indirectly contacted with a target containing an abnormal prion protein. Thereby, the abnormal prion protein can be inactivated and its infectivity can be reduced.
As described above, according to the method of the present invention, prion disease derived from abnormal prion protein in humans and animals can be prevented, and further improvement of prion disease can be expected.
対象となる代表的なプリオン病としては、ヒトではクロイツフェルト・ヤコブ病(CJD)、ゲルストマン・ストロイスラー・シャインカー症候群(GSS)や致死性家族性不眠症(FFI:Fatal Familial Insomnia)、ヒト以外では、例えば、牛海綿状脳症(BSE)、スクレイピー、鹿慢性消耗性疾患(CWD)、伝達性ミンク脳症(TME)などが挙げられる。 Representative prion diseases of interest include Creutzfeldt-Jakob disease (CJD), Gerstmann-Straussler-Scheinker syndrome (GSS) and fatal familial insomnia (FFI) in humans, and non-human. Examples include bovine spongiform encephalopathy (BSE), scrapie, deer chronic wasting disease (CWD), and transmissible mink encephalopathy (TME).
また、本発明のミネラル機能水を、プリオン病に罹患しているヒトや動物へ服用させることにより、プリオン病の予防改善が期待できる。
すなわち、本発明のプリオン病の予防治療用医薬組成物(以下、「本発明の医薬組成物」と記載する場合がある。)は、電磁波放射性のミネラル成分を含むミネラル機能水を有効成分として含有することを特徴とする。前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水CAC−717に由来するミネラル成分であることが好ましい。In addition, prevention and improvement of prion disease can be expected by taking the mineral-functional water of the present invention into humans or animals suffering from prion disease.
That is, the pharmaceutical composition for prevention and treatment of prion disease of the present invention (hereinafter sometimes referred to as “the pharmaceutical composition of the present invention”) contains, as an active ingredient, mineral functional water containing a mineral component that emits electromagnetic waves. It is characterized by doing. The mineral component is preferably a mineral component derived from mineral functional water CAC-717 manufactured by Riken Technosystem Co., Ltd.
本発明の医薬組成物は、医薬部外品又は医薬品として使用することができ、その有効量を薬学的に許容される担体とともに配合し、固形製剤又は液状製剤として経口又は非経口的に投与することができる。剤形は通常の経口投与または非経口投与に使用されるものならどのような剤形でもよい。
経口投与または非経口投与に利用される剤形としては、具体的には、固形製剤として、粉末剤、顆粒剤、錠剤、カプセル剤、トローチ等が挙げられる。また、液状製剤として内用液剤、外用液剤、懸濁剤、乳剤、シロップ剤、注射液、輸液等が例示され、これら剤形やその他の剤形が目的に応じて適宜選択される。これらの製剤は製剤上の常套手段により調製することができる。The pharmaceutical composition of the present invention can be used as a quasi-drug or pharmaceutical, and an effective amount thereof is blended with a pharmaceutically acceptable carrier, and is orally or parenterally administered as a solid preparation or a liquid preparation. be able to. The dosage form may be any dosage form used for normal oral or parenteral administration.
As the dosage form used for oral administration or parenteral administration, specific examples include solid preparations such as powders, granules, tablets, capsules, and troches. Examples of liquid preparations include liquid preparations for internal use, liquid preparations for external use, suspensions, emulsions, syrups, injections, and infusions. These dosage forms and other dosage forms are appropriately selected depending on the purpose. These preparations can be prepared by conventional methods for preparation.
また、本発明の医薬組成物は、有効成分であるミネラル機能水が、異常型プリオンタンパク質に対する感染力低減作用を発現するのに十分な割合含まれていればよく、特に制限されず、任意の形態または種類をとることができる。そのため、医薬部外品又は医薬品以外にも、例えば、機能性食品、動物用飼料等として用いることができる。 In addition, the pharmaceutical composition of the present invention is not particularly limited as long as the mineral functional water as an active ingredient is contained in a sufficient amount to exhibit an infectivity reducing effect on abnormal prion protein. It can take any form or type. Therefore, in addition to quasi-drugs or pharmaceuticals, they can be used, for example, as functional foods, animal feeds, and the like.
<3.ミネラル機能水の製造方法>
本発明のミネラル機能水は、製造方法は特に限定されないが、好適には上記特許文献2(特開2011−56366号公報)で開示された装置を使用して、同文献で開示された方法に準じる方法で製造することができる。
なお、この製造装置を使用する製造方法以外にも、電磁波放射作用を有するミネラル成分を含有するミネラル機能水を得られるならば、製造方法は限定されない。<3. Method for producing mineral functional water>
Although the production method of the mineral functional water of the present invention is not particularly limited, it is preferable to use the apparatus disclosed in Patent Document 2 (Japanese Patent Application Laid-Open No. 2011-56366) to obtain the method disclosed in this document. It can be manufactured by a method according to.
In addition to the production method using this production apparatus, the production method is not limited as long as a mineral functional water containing a mineral component having an electromagnetic wave radiation action can be obtained.
以下、特許文献2(特開2011−56366号公報)で開示された装置を使用する、本発明のミネラル機能水の製造方法の好適な実施形態について、図面を参照して説明する。なお、以下の説明は、好適なミネラル機能水である、株式会社理研テクノシステム製ミネラル機能水CAC−717を製造する方法に相当するが、これは例示であり、原料を初めとする製造条件を適宜変更することにより、他のミネラル機能水を製造することができる。 Hereinafter, a preferred embodiment of the method for producing mineral functional water of the present invention using the apparatus disclosed in Patent Document 2 (Japanese Patent Application Laid-Open No. 2011-56366) will be described with reference to the drawings. The following description corresponds to a method for producing a mineral functional water CAC-717 manufactured by Riken Techno System Co., Ltd., which is a suitable mineral functional water. Other mineral functional waters can be produced by appropriate changes.
図1に示すように、ミネラル機能水製造設備1は、ミネラル含有水(A)製造装置2と、ミネラル含有水(B)製造装置3と、ミネラル含有水(A)製造装置2で製造されたミネラル含有水(A)44にミネラル含有水(B)製造装置3で製造されたミネラル含有水(B)45を混合してミネラル機能水47を形成する混合手段である混合槽46と、を備えている。 As shown in FIG. 1, the mineral-functional water producing equipment 1 was produced by a mineral-containing water (A) producing device 2, a mineral-containing water (B) producing device 3, and a mineral-containing water (A) producing device 2. A mixing tank 46 as mixing means for mixing the mineral-containing water (B) 45 produced by the mineral-containing water (B) producing apparatus 3 with the mineral-containing water (B) 45 to form a mineral-functional water 47; ing.
ミネラル含有水(A)製造装置2は、水道から供給される水11と後述するミネラル付与材(A)12(図4参照)を原料として原料ミネラル水溶液(A)41を形成する原料ミネラル水溶液製造手段10と、原料ミネラル水溶液製造手段10で得られた原料ミネラル水溶液(A)41に遠赤外線を照射してミネラル含有水(A)44に変化させる遠赤外線発生手段43と、を備えている。 The mineral-containing water (A) production apparatus 2 produces a raw mineral aqueous solution (A) 41 by using water 11 supplied from a tap water and a mineral imparting material (A) 12 (see FIG. 4) as a raw material. And a far-infrared ray generating means 43 for irradiating the raw mineral aqueous solution (A) 41 obtained by the raw mineral aqueous solution producing means 10 with far-infrared rays to change it into mineral-containing water (A) 44.
ミネラル含有水(B)製造装置3は、外部から供給される水Wを通水容器51〜56に通過させることによってミネラル付与材から溶出したミネラル成分を含有するミネラル含有水(B)45を形成する機能を有する。 The mineral-containing water (B) producing device 3 forms the mineral-containing water (B) 45 containing the mineral component eluted from the mineral-imparting material by passing the water W supplied from the outside through the water containers 51 to 56. Has the function of
以下、ミネラル含有水(A)製造装置2及びミネラル含有水(B)製造装置3について詳細に説明する。 Hereinafter, the mineral-containing water (A) producing device 2 and the mineral-containing water (B) producing device 3 will be described in detail.
(3−1:ミネラル含有水(A)製造装置)
次に、図2〜図6に基づいて、図1に示すミネラル機能水製造設備1を構成するミネラル含有水(A)製造装置2について説明する。図1に示すように、ミネラル含有水(A)製造装置2は、水道から供給される水11と後述するミネラル付与材(A)12(図4参照)を原料として原料ミネラル水溶液(A)41を形成する原料ミネラル水溶液製造手段10(図2参照)と、原料ミネラル水溶液製造手段10で得られたミネラル含有水(A)溶液41に遠赤外線を照射してミネラル含有水(A)44に変化させる遠赤外線発生手段43(図6参照)と、を備えている。(3-1: Mineral-containing water (A) production apparatus)
Next, the mineral-containing water (A) producing apparatus 2 constituting the mineral-functional water producing facility 1 shown in FIG. 1 will be described with reference to FIGS. As shown in FIG. 1, a mineral-containing water (A) producing apparatus 2 uses a raw mineral water solution (A) 41 using water 11 supplied from a tap water and a mineral-imparting material (A) 12 (see FIG. 4) as a raw material. And a mineral-containing water (A) 44 by irradiating far-infrared rays to the mineral-containing water (A) solution 41 obtained by the raw-mineral-water solution producing means 10 (see FIG. 2). Far infrared ray generating means 43 (see FIG. 6).
図2,図3に示すように、原料ミネラル水溶液製造手段10は、水11及びミネラル付与材(A)12を収容可能な反応容器13と、絶縁体14で被覆された状態で反応容器13内の水11に浸漬された導電線15と、反応容器13内の水11に超音波振動を付与するための超音波発生手段16と、導電線15に直流電流DCを導通させるための直流電源装置17と、導電線15の周囲の水11に直流電流DCと同方向の水流Rを発生させる手段である循環経路18a,18b及び循環ポンプPと、を備えている。直流電源装置17、超音波発生手段16及び循環ポンプPはいずれも一般の商用電源からの給電により作動する。 As shown in FIGS. 2 and 3, the raw material mineral aqueous solution producing means 10 includes a reaction vessel 13 capable of storing water 11 and a mineral-imparting material (A) 12, and a reaction vessel 13 covered with an insulator 14. A conductive wire 15 immersed in water 11, ultrasonic wave generating means 16 for applying ultrasonic vibration to the water 11 in the reaction vessel 13, and a DC power supply device for conducting DC current DC to the conductive wire 15. 17, and circulation paths 18 a and 18 b and a circulation pump P which are means for generating a water flow R in the same direction as the direct current DC in the water 11 around the conductive wire 15. The DC power supply 17, the ultrasonic generator 16, and the circulation pump P all operate by power supply from a general commercial power supply.
反応容器13は、上面が開口した倒立円錐筒状であり、その頂点に相当する底部には排水口19が設けられ、この排水口19には循環ポンプPの吸込口P1に連通する循環経路18aが接続され、排水口19直下には循環経路18aへの排水量を調節するための開度調節バルブ20と、反応容器13内の水などを排出するための排水バルブ21が設けられている。 The reaction vessel 13 is in the shape of an inverted conical cylinder with an open upper surface, and a drain port 19 is provided at the bottom corresponding to the apex thereof. The drain port 19 has a circulation path 18a communicating with the suction port P1 of the circulation pump P. An opening control valve 20 for adjusting the amount of drainage to the circulation path 18a and a drainage valve 21 for discharging water and the like in the reaction vessel 13 are provided immediately below the drainage port 19.
循環ポンプPの吐出口P2には循環経路18bの基端部が接続され、循環経路18bの先端部は収容槽22に接続されている。収容槽22外周の底部付近には、収容槽22内の水11を反応容器13内へ送り込むための循環経路18cの基端部が接続され、循環経路18cの先端部は反応容器13の開口部に臨む位置に配管されている。循環経路18cには、収容槽22から反応容器13へ送り込む水量を調節するための開度調節バルブ23が設けられている。 The base end of the circulation path 18b is connected to the discharge port P2 of the circulation pump P, and the tip end of the circulation path 18b is connected to the storage tank 22. A base end of a circulation path 18c for feeding the water 11 in the storage tank 22 into the reaction vessel 13 is connected near the bottom of the outer periphery of the storage tank 22, and a tip end of the circulation path 18c is an opening of the reaction vessel 13. It is plumbed at a position facing. The circulation path 18c is provided with an opening adjustment valve 23 for adjusting the amount of water sent from the storage tank 22 to the reaction vessel 13.
収容槽22の底部には、排水バルブ25及び水温計26を有する排水管24が垂下状に接続されている。必要に応じて排水バルブ25を開くと、収容槽22内の水が排水管24の下端部から排出することができ、このとき排水管24を通過する水11の温度を水温計26で計測することができる。 A drain pipe 24 having a drain valve 25 and a water temperature gauge 26 is connected to the bottom of the storage tank 22 in a hanging manner. When the drain valve 25 is opened as necessary, the water in the storage tank 22 can be discharged from the lower end of the drain pipe 24, and at this time, the temperature of the water 11 passing through the drain pipe 24 is measured by the water temperature meter 26. be able to.
図5に示すように、導電線15とこれを被覆する絶縁体14からなる複数の導電ケーブル29(29a〜29g)はそれぞれ反応容器13内の深さの異なる複数位置に円環状をなすように配線され、これらの円環状の導電ケーブル29a〜29gはいずれも反応容器13と略同軸上に配置されている。それぞれの導電ケーブル29a〜29gの内径は倒立円錐筒状の反応容器13の内径に合わせて段階的に縮径しており、それぞれの配置箇所に対応した内径となっている。各導電ケーブル29a〜29gは、反応容器13の壁体13aに設けられた絶縁性のターミナル30に着脱可能に結線されているため、必要に応じて、円環状の部分をターミナル30から取り外したり、取り付けたりすることができる。 As shown in FIG. 5, a plurality of conductive cables 29 (29 a to 29 g) including a conductive wire 15 and an insulator 14 covering the conductive wire 15 are formed in a ring shape at a plurality of positions at different depths in the reaction vessel 13. These annular conductive cables 29 a to 29 g are arranged substantially coaxially with the reaction vessel 13. The inner diameter of each of the conductive cables 29a to 29g is reduced stepwise in accordance with the inner diameter of the inverted conical cylindrical reaction vessel 13, and has an inner diameter corresponding to each location. Since each of the conductive cables 29a to 29g is detachably connected to an insulative terminal 30 provided on the wall 13a of the reaction vessel 13, an annular portion can be removed from the terminal 30 as necessary. Can be attached.
反応容器13内の軸心に相当する部分には、絶縁性の網状体で形成された有底円筒状の収納容器31が配置され、この収納容器31内にミネラル付与材(A)12が充填されている。この収納容器31はその上部に設けられたフック31fにより、反応容器13の壁体13a上縁部に着脱可能に係止されている。 At a portion corresponding to the axis in the reaction vessel 13, a bottomed cylindrical storage vessel 31 formed of an insulating mesh is disposed, and the storage vessel 31 is filled with the mineral-imparting material (A) 12. Have been. The storage container 31 is detachably locked to the upper edge of the wall 13a of the reaction container 13 by a hook 31f provided at an upper portion thereof.
図2に示すように、循環経路18a,18bの外周にはそれぞれ導電ケーブル29s,29tが螺旋状に巻き付けられ、これらの導電ケーブル29s,29tに対し、直流電源装置17から直流電流DCが供給される。導電ケーブル29s,29tを流れる直流電流DCの向きは循環経路18a,18b内を流動する水流の向きと略一致するように設定されている。 As shown in FIG. 2, conductive cables 29s and 29t are spirally wound around the outer circumferences of the circulation paths 18a and 18b, respectively, and a DC current DC is supplied from the DC power supply 17 to these conductive cables 29s and 29t. You. The direction of the direct current DC flowing through the conductive cables 29s, 29t is set to substantially match the direction of the water flow flowing in the circulation paths 18a, 18b.
原料ミネラル水溶液製造手段10において、反応容器13内及び収容槽22内に所定量の水11を入れ、ミネラル付与材(A)12が充填された収納容器31を反応容器13内の中心にセットした後、循環ポンプPを作動させるとともに、反応容器13底部の開度調節バルブ20及び循環経路18cの開度調節バルブ23を調節して、反応容器13から排水口19、循環経路18a、循環ポンプP、循環経路18b、収容槽22及び循環経路18cを経由して再び反応容器13の上部に戻るように水11を循環させる。そして、直流電源装置17、超音波発生手段16を作動させると、収納容器31内のミネラル付与材(A)12から水11へのミネラル成分の溶出反応が始まる。 In the raw mineral aqueous solution production means 10, a predetermined amount of water 11 was put in the reaction vessel 13 and the storage tank 22, and the storage vessel 31 filled with the mineral-imparting material (A) 12 was set at the center of the reaction vessel 13. Then, while operating the circulation pump P, the opening control valve 20 at the bottom of the reaction vessel 13 and the opening control valve 23 of the circulation path 18c are adjusted, and the drain port 19, the circulation path 18a, the circulation pump P The water 11 is circulated so as to return to the upper portion of the reaction vessel 13 again via the circulation path 18b, the storage tank 22, and the circulation path 18c. Then, when the DC power supply device 17 and the ultrasonic wave generating means 16 are operated, the elution reaction of the mineral component from the mineral providing material (A) 12 in the storage container 31 to the water 11 starts.
原料ミネラル水溶液製造手段10を使用して原料ミネラル水溶液(A)を製造する際の作業条件は特に限定しないが、本実施形態では、以下の作業条件で原料ミネラル水溶液(A)の製造を行った。
(1)導電ケーブル29,29s,29tには電圧8000〜8600V、電流0.05〜0.1Aの直流電流DCを導通させた。なお、導電ケーブル29などを構成する絶縁体14はポリテトラフルオロエチレン樹脂で形成されている。
(2)反応容器13内に充填されたミネラル付与材(A)12は、水11に対し質量比で10〜15%充填されている。ミネラル付与材(A)12の具体的な説明は後述する。
(3)水11は、直流電流DCが作用するように電解質を含むものであればよい。例えば、水100リットルに対して、電解質である炭酸ナトリウムを10g程度溶解したものなどを使用しているが、地下水であればそのまま使用することができる。
(4)超音波発生手段16は周波数30〜100kHzの超音波を発生するものであり、その超音波振動部(図示せず)が反応容器13内の水11に直接触れて加振するように超音波発生手段16を配置している。The working conditions for producing the raw mineral aqueous solution (A) using the raw mineral aqueous solution producing means 10 are not particularly limited. In the present embodiment, the production of the raw mineral aqueous solution (A) is performed under the following working conditions. .
(1) A direct current DC having a voltage of 8000 to 8600 V and a current of 0.05 to 0.1 A was conducted to the conductive cables 29, 29s, and 29t. Note that the insulator 14 constituting the conductive cable 29 and the like is formed of polytetrafluoroethylene resin.
(2) The mineral-imparting material (A) 12 filled in the reaction vessel 13 is filled with 10 to 15% by mass of water 11. The specific description of the mineral imparting material (A) 12 will be described later.
(3) The water 11 only needs to contain an electrolyte so that the direct current DC acts. For example, a solution in which about 10 g of sodium carbonate as an electrolyte is dissolved in 100 liters of water is used. However, groundwater can be used as it is.
(4) The ultrasonic wave generating means 16 generates an ultrasonic wave having a frequency of 30 to 100 kHz so that the ultrasonic vibration part (not shown) directly touches the water 11 in the reaction vessel 13 and vibrates. Ultrasonic wave generating means 16 is arranged.
このような条件で原料ミネラル水溶液製造手段10を稼働させると、反応容器13内には、左ねじ方向に回転しながら排水口19に吸い込まれる水流Rが発生し、排水口19から排出された水11は、前述した循環経路18a,18bなどを経由して、再び、反応容器13内へ戻るという状態が継続される。 When the raw mineral aqueous solution production means 10 is operated under such conditions, a water flow R is generated in the reaction vessel 13 while being rotated in the left-handed screw direction and drawn into the drain port 19, and the water discharged from the drain port 19 is discharged. No. 11, the state of returning to the inside of the reaction vessel 13 again via the circulation paths 18a and 18b described above is continued.
従って、水流Rによる撹拌作用、導電ケーブル29を流れる直流電流の作用及び超音波発生手段16が水11に付与する超音波振動により、ミネラル付与材(A)12からミネラル成分が速やかに水11中に溶出して、必要とするミネラル成分が適度に溶け込んだ原料ミネラル水溶液(A)を効率良く製造することができる。 Therefore, the mineral component from the mineral-giving material (A) 12 is quickly mixed in the water 11 by the stirring action by the water flow R, the action of the direct current flowing through the conductive cable 29, and the ultrasonic vibration applied to the water 11 by the ultrasonic generating means 16. And the raw material mineral aqueous solution (A) in which the necessary mineral components are appropriately dissolved can be efficiently produced.
原料ミネラル水溶液製造手段10においては、円環状をした複数の導電ケーブル29a〜29gを反応容器13内に略同軸上に配線するとともに、反応容器13内で左ねじ方向に回転する水流Rを発生させている。従って、一定容積の反応容器13内に比較的密状態の電気エネルギーの場を形成することができ、比較的小さな容積の反応容器13内で効率良く原料ミネラル水溶液(A)を製造することができる。 In the raw mineral aqueous solution producing means 10, a plurality of annular conductive cables 29a to 29g are wired substantially coaxially in the reaction vessel 13 and a water flow R which rotates in the left-handed screw direction in the reaction vessel 13 is generated. ing. Accordingly, a relatively dense electric energy field can be formed in the reaction vessel 13 having a constant volume, and the raw material mineral aqueous solution (A) can be efficiently produced in the reaction vessel 13 having a relatively small volume. .
また、反応容器13は倒立円錐筒状であるため、円環状をした複数の導電ケーブル29a〜29gに沿って流動する水流Rを比較的容易且つ安定的に発生させることができ、これによってミネラル成分の溶出が促進される。また、倒立円錐筒状の反応容器13内を流動する水流Rは、反応容器13底部の排水口19に向かうにつれて流速が増大するため、ミネラル付与材(A)12との接触頻度も増大し、水11中に存在する自由電子eを捕捉してイオン化するミネラル量を増加させることができる。 Further, since the reaction vessel 13 is in the shape of an inverted conical cylinder, the water flow R flowing along the plurality of annular conductive cables 29a to 29g can be generated relatively easily and stably. Is promoted. In addition, since the flow rate of the water flow R flowing in the inverted conical cylindrical reaction vessel 13 increases toward the drain port 19 at the bottom of the reaction vessel 13, the frequency of contact with the mineral-imparting material (A) 12 also increases, It is possible to increase the amount of minerals that capture and ionize the free electrons e present in the water 11.
さらに、循環経路18b,18cの間に水11を貯留しながら排出する収容槽22を設けているため、反応容器13の容積を超える分量の水11を循環させながらミネラル溶出反応を進行させることが可能である。このため、原料ミネラル水溶液(A)を効率良く大量生産することができる。 Furthermore, since the storage tank 22 for storing and discharging the water 11 is provided between the circulation paths 18b and 18c, the mineral elution reaction can be advanced while circulating the water 11 in an amount exceeding the volume of the reaction vessel 13. It is possible. Therefore, the raw material mineral aqueous solution (A) can be efficiently mass-produced.
循環ポンプPを連続運転して、これらの反応を継続させると、最終的にはミネラル成分が溶出した原料ミネラル水溶液(A)が生成される。反応容器13底部の排水口19の大きさ、循環水量の多少、反応容器13の形状(特に、図2に示す軸心Cと壁体13aとの成す角度γ)などにより、水11中における自由電子eの出現状況をコントロールすることができ、ミネラル付与材(A)12に自由電子eが与える作用により、ミネラル成分の水溶性が左右される。 When the circulation pump P is continuously operated to continue these reactions, a raw mineral aqueous solution (A) in which a mineral component is eluted is finally produced. Depending on the size of the drain port 19 at the bottom of the reaction vessel 13 and the amount of circulating water, the shape of the reaction vessel 13 (particularly, the angle γ between the axis C and the wall 13a shown in FIG. The appearance state of the electron e can be controlled, and the action of the free electron e on the mineral-giving material (A) 12 affects the water solubility of the mineral component.
原料ミネラル水溶液(A)が形成されたら、この原料ミネラル水溶液(A)41を、図6に示す処理容器40内へ移す。この場合、反応容器13内において収納容器31から漏出したミネラル付与材(A)12の残留物は反応容器13の底部にある排水バルブ21から排出することができる。処理容器40内に収容した原料ミネラル水溶液(A)41は、撹拌羽根42でゆっくりと撹拌しながら、処理容器40内部に配置された遠赤外線発生手段43により遠赤外線を照射する。 When the raw material mineral aqueous solution (A) is formed, the raw material mineral aqueous solution (A) 41 is transferred into the processing vessel 40 shown in FIG. In this case, the residue of the mineral imparting material (A) 12 leaked from the storage container 31 in the reaction container 13 can be discharged from the drain valve 21 at the bottom of the reaction container 13. The raw material mineral aqueous solution (A) 41 accommodated in the processing container 40 is irradiated with far-infrared rays by the far-infrared ray generating means 43 arranged inside the processing container 40 while being slowly stirred by the stirring blades 42.
なお、遠赤外線発生手段43は、波長6〜14μm程度の遠赤外線を発生するものであれば良く、材質や発生手段などは問わないので、加熱方式であってもよい。ただし、25℃において、6〜14μm波長域の黒体放射に対して85%以上の放射比率を有するものが望ましい。 The far-infrared ray generating means 43 only needs to generate far-infrared rays having a wavelength of about 6 to 14 μm. The material and the generating means are not limited. However, at 25 ° C., those having an emission ratio of 85% or more to blackbody radiation in the 6 to 14 μm wavelength range are desirable.
図2に示す原料ミネラル水溶液製造手段10においては、水流Rによる撹拌作用、導電線15を流れる直流電流DCの作用及び超音波振動により、ミネラル付与材(A)12に含まれるミネラル成分が速やかに水11中に溶出して、必要とするミネラル成分が適度に溶け込みミネラル水溶液41を効率良く製造することができる。 In the raw material mineral aqueous solution production means 10 shown in FIG. 2, the mineral component contained in the mineral-giving material (A) 12 is quickly reduced by the stirring action of the water flow R, the action of the direct current DC flowing through the conductive wire 15, and the ultrasonic vibration. The mineral components eluted into the water 11 and the necessary mineral components are appropriately dissolved therein, so that the mineral aqueous solution 41 can be efficiently produced.
そして、図6に示す遠赤外線発生手段43において、ミネラル水溶液41に遠赤外線を照射することにより、溶解したミネラル成分と水分子とが融合して電気陰性度の高まったミネラル含有水(A)44が形成される。 Then, in the far-infrared ray generating means 43 shown in FIG. 6, by irradiating the mineral aqueous solution 41 with far-infrared rays, the dissolved mineral components and water molecules are fused to increase the electronegativity of the mineral-containing water (A) 44. Is formed.
ミネラル含有水(A)製造装置2において、前述した工程により形成されたミネラル含有水(A)44は、図1に示すように、送水経路57yを経由して混合槽46へ送り込まれ、混合槽46内において、ミネラル含有水(B)製造装置3から送り込まれたミネラル含有水(B)45と混合される。 In the mineral-containing water (A) producing apparatus 2, the mineral-containing water (A) 44 formed by the above-described process is sent to a mixing tank 46 via a water supply path 57y as shown in FIG. In 46, it is mixed with the mineral-containing water (B) 45 sent from the mineral-containing water (B) producing device 3.
以下、ミネラル付与材(A)について説明する。
ミネラル付与材(A)は、キク科の草木植物及びバラ科の草木植物からなる草木植物原料、並びにカエデ、白樺、松及び杉から選択される1種以上の木本植物からなる木本植物原料を含有する。使用される部位は、葉部、茎部、花部、樹皮部等のミネラル成分が溶出しやすい部位が適宜選択され、そのまま用いてもよいが、乾燥物として用いてもよい。
なお、キク科及びバラ科以外の草木植物以外にも他の草木植物を含んでもよいが、キク科及びバラ科の草木植物のみであることが好ましい。例えば、理由は不明であるが、アブラナ科やマツ科の草木植物を加えると、本発明のミネラル機能水の有用な効能のひとつである単細胞生物の防除作用が大きく低下する。Hereinafter, the mineral imparting material (A) will be described.
The mineral-imparting material (A) is a herbaceous plant material consisting of asteraceous plants and a Rosaceae plant, and a woody plant material consisting of one or more woody plants selected from maple, birch, pine and cedar. It contains. As a site to be used, a site where a mineral component is easily eluted, such as a leaf portion, a stem portion, a flower portion, and a bark portion, is appropriately selected, and may be used as it is, or may be used as a dried product.
In addition, other plant plants may be included in addition to plant plants other than Asteraceae and Rosaceae, but it is preferable that only plant plants of the Asteraceae and Rosaceae are included. For example, for unknown reasons, the addition of cruciferous or pinaceous plant plants greatly reduces the control effect of single-celled organisms, one of the useful effects of the mineral-functional water of the present invention.
ミネラル付与材(A)として、ミネラル付与材(A')が挙げられる。ミネラル付与材(A')は、前記草木植物原料として、野アザミ(葉部、茎部及び花部):8〜12重量%、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ8〜12重量%、55〜65重量%、27〜33重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、
ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ17〜23重量%、8〜12重量%、65〜75重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を使用し、
当該キク科植物の乾燥粉砕物とバラ科植物の乾燥粉砕物とを、1:0.8〜1:1.2(重量比)で混合して得られる草木植物原料(A1)と、
前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ22〜28重量%、22〜28重量%、45〜55重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、
草木植物原料(A1)と木本植物原料(A2)の重量比で1:2.7〜1:3.3となるように混合して得られるミネラル付与材である。Examples of the mineral-imparting material (A) include a mineral-imparting material (A ′). The mineral-imparting material (A ′) is, as the plant material, wild thistle (leaves, stems and flowers): 8 to 12% by weight, mugwort (leaves and stems), camellia (leaves and stems). ) Were mixed at a ratio of 8 to 12% by weight, 55 to 65% by weight, and 27 to 33% by weight, dried, and then pulverized, and then dried and pulverized.
17-23% by weight, 8-12% by weight, 65-75% by weight of wild rose (leaf, flower), radish (leaf and stem), and raspberry (leaf, stem and flower), respectively Using a dry and crushed Rosaceae plant that was mixed and dried at a ratio of
A plant material (A1) obtained by mixing the dry and crushed Asteraceous plant and the dry and crushed Rosaceae plant in a ratio of 1: 0.8 to 1: 1.2 (weight ratio);
As the woody plant raw materials, maple (leaves and stems), birch (leaves, stems, and bark), cedars (leaves, stems, and bark) are each 22 to 28% by weight, A woody plant raw material (A2) comprising a dry and crushed product obtained by mixing at a ratio of 22 to 28% by weight and 45 to 55% by weight, drying, and then crushing the mixture.
It is a mineral-imparting material obtained by mixing plant and plant material (A1) and woody plant material (A2) in a weight ratio of 1: 2.7 to 1: 3.3.
ミネラル付与材(A')の中でも、特には前記草木植物原料として、野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ10重量%、60重量%、30重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ20重量%、10重量%、70重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を、1:1(重量比)で混合して得られる草木植物原料(A1)と、
前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ25重量%、25重量%、50重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、草木植物原料(A1)と木本植物原料(A2)の重量比で1:3となるように混合して得られるミネラル付与材であることが好ましい。
このような草木植物原料(A1)として、株式会社理研テクノシステム製「P−100(品番)」、木本植物原料(A2)として、株式会社理研テクノシステム製「P−200(品番)」を好適に使用することができる。Among the mineral-imparting materials (A '), especially as the plant material, wild thistle (leaves, stems and flowers), mugwort (leaves and stems), camellia (leaves and stems), A dried and crushed Asteraceous plant, which was mixed at a ratio of 10% by weight, 60% by weight, and 30% by weight, dried, and crushed, as well as wild rose (leaves and flowers) and radish (leaves and leaves) Stems) and raspberries (leaves, stems and flowers) were mixed at a ratio of 20% by weight, 10% by weight, and 70% by weight, respectively, dried, and crushed. A plant material (A1) obtained by mixing at a ratio of 1: 1 (weight ratio);
As the woody plant raw materials, maple (leaves and stems), birch (leaves, stems and bark), and cedars (leaves, stems and bark) were 25% by weight and 25% by weight, respectively. %, A weight ratio of a woody plant raw material (A2) composed of a dry and crushed product obtained by mixing, drying and then pulverizing the plant material (A1) and the woody plant material (A2). It is preferable to use a mineral-giving material obtained by mixing so that the ratio becomes 1: 3.
As such a plant material (A1), “P-100 (product number)” manufactured by Riken Technosystem Co., Ltd. As a woody plant material (A2), “P-200 (product number)” manufactured by RIKEN Technosystem Co., Ltd. It can be suitably used.
(3−2:ミネラル含有水(B)製造装置)
次に、図1,図7に基づいて、ミネラル含有水(B)製造装置3の構造、機能などについて説明する。
図1,図7に示すように、ミネラル含有水(B)製造装置3は、互いに種類の異なるミネラル付与材(B)が充填された第1通水容器51〜第6通水容器56と、第1通水容器51〜第6通水容器56を直列に連通する送水経路57と、第1通水容器51〜第6通水容器56とそれぞれ並列した状態で送水経路57に連結された迂回水路51p〜56pと、各迂回水路51p〜56pと送水経路57との分岐部にそれぞれ設けられた水流切替弁51v〜56vと、を備えている。(3-2: Mineral-containing water (B) production apparatus)
Next, the structure, function, and the like of the mineral-containing water (B) producing apparatus 3 will be described with reference to FIGS.
As shown in FIGS. 1 and 7, the mineral-containing water (B) producing apparatus 3 includes first to sixth water containers 51 to 56 filled with different types of mineral imparting materials (B). A water supply path 57 that connects the first water supply vessel 51 to the sixth water supply vessel 56 in series, and a detour connected to the water supply path 57 in a state where the first water supply vessel 51 to the sixth water supply vessel 56 are respectively arranged in parallel. Water passages 51p to 56p, and water flow switching valves 51v to 56v respectively provided at branch portions of the bypass water passages 51p to 56p and the water supply passage 57 are provided.
水流切替弁51v〜56vの切替操作は、これらの水流切替弁51v〜56vと信号ケーブル59で結ばれた操作盤58に設けられた6個の切替ボタン51b〜56bを操作することによって実行することができる。6個の切替ボタン51b〜56bと6個の水流切替弁51v〜56vとがそれぞれの番号ごとに対応しているので、切替ボタン51b〜56bの何れかを操作すれば、それと対応する番号の水流切替弁51v〜56vが切り替わり、水流方向を変えることができる。 The switching operation of the water flow switching valves 51v to 56v is performed by operating six switching buttons 51b to 56b provided on an operation panel 58 connected to the water flow switching valves 51v to 56v by a signal cable 59. Can be. Since the six switching buttons 51b to 56b and the six water flow switching valves 51v to 56v correspond to the respective numbers, if any of the switching buttons 51b to 56b is operated, the water flow of the corresponding number is operated. The switching valves 51v to 56v are switched to change the water flow direction.
ここで、ミネラル付与材(B)51m〜56mは、好適には石灰石、化石サンゴ、貝殻をベースとした原料を混合して製造することができる。
まず、石灰石、化石サンゴ、貝殻に含まれる成分を分析し、それぞれに二酸化ケイ素、酸化鉄、活性炭、窒化チタン、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウムの量を評価する。そして、各成分の含有量を基に、石灰石、化石サンゴ、貝殻を混合し、ミネラル付与材(B)51m〜56mを製造する。
なお、上記ミネラル付与材(B)51m〜56mは、石灰石、化石サンゴ、貝殻の混合比によって含有する成分をコントロールすることが望ましいが、原料とする石灰石、化石サンゴ、貝殻は、産地によって含有される成分が不足する場合があるので、必要に応じて二酸化ケイ素、酸化鉄、活性炭、窒化チタン、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウムを追加してもよい。特に活性炭は、石灰石、化石サンゴ、貝殻にほとんど含まれないため、通常、別途追加する。Here, the mineral-imparting materials (B) 51 m to 56 m can be preferably produced by mixing raw materials based on limestone, fossil corals, and shells.
First, the components contained in limestone, fossil corals, and shells are analyzed, and the amounts of silicon dioxide, iron oxide, activated carbon, titanium nitride, calcium carbonate, magnesium carbonate, and calcium phosphate are evaluated respectively. Then, limestone, fossil coral, and shells are mixed based on the content of each component to produce a mineral-imparting material (B) 51 m to 56 m.
In addition, it is desirable to control the components contained in the mineral-imparting materials (B) 51 m to 56 m depending on the mixing ratio of limestone, fossil coral, and shells. However, limestone, fossil coral, and shells as raw materials are contained depending on the production area. If necessary, silicon dioxide, iron oxide, activated carbon, titanium nitride, calcium carbonate, magnesium carbonate, and calcium phosphate may be added. In particular, activated carbon is rarely contained in limestone, fossil corals and shells, and is usually added separately.
ミネラル付与材(B)51m〜56mとして、
第1通水容器51内のミネラル付与材(B1)が、石灰石、化石サンゴ、貝殻をそれぞれ70重量%、15重量%、15重量%を含む混合物、
第2通水容器52内のミネラル付与材(B2)が、石灰石、化石サンゴ、貝殻、活性炭をそれぞれ40重量%、15重量%、40重量%、5重量%を含む混合物、
第3通水容器53内のミネラル付与材(B3)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、15重量%、5重量%を含む混合物、
第4通水容器54内のミネラル付与材(B4)が、石灰石、化石サンゴ、貝殻をそれぞれ90重量%、5重量%、5重量%を含む混合物、
第5通水容器55内のミネラル付与材(B5)が、石灰石、化石サンゴ、貝殻をそれぞれ80重量%、10重量%、10重量%を含む混合物、
第6通水容器56内のミネラル付与材(B6)が、石灰石、化石サンゴ、貝殻を60重量%、30重量%、10重量%を含む混合物、であると、ミネラル含有水(A)と混合させた際に優れた防除作用を発現するミネラル含有水(B)を得ることができる。As the mineral imparting material (B) 51 m to 56 m,
A mixture containing 70% by weight, 15% by weight, and 15% by weight of limestone, fossil coral, and shells, respectively,
A mixture in which the mineral-imparting material (B2) in the second water passage container 52 contains limestone, fossil coral, shells, and activated carbon, respectively, at 40% by weight, 15% by weight, 40% by weight, and 5% by weight;
A mixture in which the mineral-imparting material (B3) in the third water container 53 includes limestone, fossil coral, and shells each containing 80% by weight, 15% by weight, and 5% by weight;
A mixture containing 90% by weight, 5% by weight, and 5% by weight of limestone, fossil coral, and shells, respectively, in the mineral-imparting material (B4) in the fourth water passage container 54;
A mixture in which the mineral-imparting material (B5) in the fifth water passage container 55 includes limestone, fossil coral, and shells each containing 80% by weight, 10% by weight, and 10% by weight;
When the mineral-imparting material (B6) in the sixth water passage container 56 is a mixture containing limestone, fossil coral, and shells at 60% by weight, 30% by weight, and 10% by weight, it is mixed with the mineral-containing water (A). It is possible to obtain mineral-containing water (B) which exhibits an excellent controlling action when the water is applied.
特に、ミネラル付与材(B1)〜(B6)に使用される、石灰石、化石サンゴ、貝殻が、以下の(1−1)〜(1−3)であることが好ましい。 In particular, the limestone, fossil coral, and shell used in the mineral-imparting materials (B1) to (B6) are preferably the following (1-1) to (1-3).
(1−1)石灰石:
下記成分を含む火山性鉱床が混在する石灰岩を粉砕した、3cm程度の小石状物
炭酸カルシウム:50重量%以上
酸化鉄:3〜9重量%の鉄
酸化チタン、炭化チタン、窒化チタンの合計:0.8重量%以上
炭酸マグネシウム:7〜10重量%
このような石灰石として、株式会社理研テクノシステム製「CC−200(品番)」を好適に使用することができる。(1-1) Limestone:
A crushed limestone containing a volcanic ore deposit containing the following components: Pebbles about 3 cm Calcium carbonate: 50% by weight or more Iron oxide: 3 to 9% by weight of iron Total of titanium oxide, titanium carbide, and titanium nitride: 0 0.8% by weight or more Magnesium carbonate: 7 to 10% by weight
As such limestone, “CC-200 (product number)” manufactured by Riken Techno System Co., Ltd. can be suitably used.
(1−2)化石サンゴ:
下記2種類の化石サンゴを1:9の重量比で混合し、3〜5mmに粉砕した粒状物
地下約100メートルより産出し重圧により結晶組成が変性した化石サンゴ
沖縄奄美大島付近の陸地から産出する化石サンゴ(炭酸カルシウムやリン酸カルシウムその他微量元素を含む)
このような化石サンゴとして、株式会社理研テクノシステム製「CC−300(品番)」を好適に使用することができる。(1-2) Fossil coral:
The following two types of fossil corals are mixed at a weight ratio of 1: 9, and a granular material crushed to 3 to 5 mm is produced from about 100 meters underground. Fossil corals whose crystal composition has been modified by heavy pressure are produced from land near Okinawa Amami Oshima. Fossil corals (including calcium carbonate, calcium phosphate and other trace elements)
As such a fossil coral, “CC-300 (product number)” manufactured by Riken Techno System Co., Ltd. can be suitably used.
(1−3)貝殻:
アワビ、トコブシ、フジツボを同じ重量で混合し3〜5mmに粉砕した粒状物
このような貝殻として、株式会社理研テクノシステム製「CC−400(品番)」を好適に使用することができる。(1-3) Shell:
Granules obtained by mixing abalone, lycopodium, and barnacle with the same weight and pulverizing to 3 to 5 mm As such a shell, "CC-400 (product number)" manufactured by Riken Techno System Co., Ltd. can be suitably used.
(1−4)活性炭
活性炭は、任意の原料から製造したものを使用することができるが、好ましくはヤシガラを原料として製造した活性炭が挙げられる。例えば、タイ産のヤシガラを原料とした、株式会社理研テクノシステム製「CC−500(品番)」が挙げられる。(1-4) Activated carbon As the activated carbon, those produced from arbitrary raw materials can be used, and activated carbon produced from coconut husk is preferred. For example, “CC-500 (product number)” manufactured by Riken Technosystem Co., Ltd., which uses Thai coconut shell as a raw material, may be mentioned.
前述した操作盤58の切替ボタン51b〜56bを操作して、水流切替弁51v〜56vを通水容器側へ切り替えれば、送水経路57を流れてきた水は、操作された水流切替弁より下流側にある第1通水容器51〜第6通水容器56内へ流れ込み、水流切替弁51v〜56vを迂回水路側へ切り替えれば、送水経路57を流れてきた水は、操作された水流切替弁より下流側の迂回水路51p〜56pへ流れ込む。従って、切替ボタン51b〜56bの何れかを操作して水流切替弁51v〜56vを選択的に切り替えることにより、第1通水容器51〜第6通水容器56ごとに異なるミネラル付与材(B)51m〜56mから溶出するミネラル成分を選択的に溶け込ませたミネラル含有水(B)45を形成することができる。 If the switching buttons 51b to 56b of the operation panel 58 described above are operated to switch the water flow switching valves 51v to 56v to the water container side, the water flowing through the water supply path 57 is located downstream from the operated water flow switching valve. If the water flows into the first water container 51 to the sixth water container 56, and switches the water flow switching valves 51v to 56v to the bypass water channel side, the water flowing through the water supply path 57 is transmitted from the operated water flow switching valve. It flows into the detour waterways 51p-56p on the downstream side. Therefore, by operating any of the switching buttons 51b to 56b to selectively switch the water flow switching valves 51v to 56v, a different mineral imparting material (B) is provided for each of the first to sixth water containers 51 to 56. The mineral-containing water (B) 45 in which the mineral component eluted from 51 m to 56 m is selectively dissolved can be formed.
次に、図8〜図11に基づいて、実際のミネラル含有水(B)製造装置3の構造、機能などについて説明する。なお、図8〜図10においては、前述した迂回水路51p〜56p,水流切替弁51v〜56v,操作盤58及び信号ケーブル59を省略している。 Next, the structure, function, and the like of the actual mineral-containing water (B) production device 3 will be described with reference to FIGS. 8 to 10, the above-described bypass water passages 51p to 56p, water flow switching valves 51v to 56v, operation panel 58, and signal cable 59 are omitted.
図8,図9に示すように、ミネラル含有水(B)製造装置3は、架台60に搭載された略円筒形状の第1通水容器51〜第6通水容器56と、これらの第1通水容器51〜第6通水容器56を直列に連通する送水経路57と、を備え、水道から供給される水Wを貯留するための原水タンク63が架台60の最上部に配置されている。原水タンク63内には、水W中の不純物を吸着する機能を有する無機質多孔体64が収容されている。架台60の底部には複数のキャスタ61及びレベルアジャスタ62が設けられている。略円筒形状の第1通水容器51〜第6通水容器56は、それぞれの軸心51c〜56c(図9参照)を水平方向に保った状態で、直方体格子構造の架台60に搭載されている。第1通水容器51〜第6通水容器56は架台60対し着脱可能である。 As shown in FIGS. 8 and 9, the mineral-containing water (B) producing apparatus 3 includes a substantially cylindrical first water container 51 to a sixth water container 56 mounted on a gantry 60 and a first water container 56. A raw water tank 63 for storing the water W supplied from the water supply is disposed at the uppermost portion of the gantry 60. The water supply path 57 connects the water passage containers 51 to the sixth water passage containers 56 in series. . In the raw water tank 63, an inorganic porous body 64 having a function of adsorbing impurities in the water W is accommodated. A plurality of casters 61 and a level adjuster 62 are provided at the bottom of the gantry 60. The substantially cylindrical first water container 51 to the sixth water container 56 are mounted on a gantry 60 having a rectangular parallelepiped lattice structure with their respective axes 51c to 56c (see FIG. 9) kept in the horizontal direction. I have. The first water container 51 to the sixth water container 56 are detachable from the gantry 60.
図10に示すように、第1通水容器51〜第6通水容器56はいずれも同じ構造であり、円筒形状の本体部51a〜56aの両端部に設けられたフランジ部51f〜56fに円板状の蓋体51d〜56dを取り付けることにより気密構造が形成されている。軸心51c〜56cが水平状態のとき本体部51a〜56aの最下部に位置する箇所に、送水経路57と連通する入水口57aが設けられ、入水口57aから遠い方の蓋体51d〜56dの最上部に、送水経路57と連通する出水口57bが設けられ、出水口57bにはメッシュストレーナ57cが取り付けられている。本体部51a〜56a外周の出水口57b直上部分には、第1通水容器51〜第6通水容器56内のエアを逃がすための自動エア弁57dが取り付けられている。 As shown in FIG. 10, the first water-flowing vessel 51 to the sixth water-flowing vessel 56 have the same structure, and have circular circles formed at flanges 51f to 56f provided at both ends of cylindrical body parts 51a to 56a. An airtight structure is formed by attaching the plate-like lids 51d to 56d. A water inlet 57a communicating with the water supply path 57 is provided at a position located at the lowermost part of the main bodies 51a to 56a when the shaft centers 51c to 56c are in a horizontal state, and the lids 51d to 56d farther from the water inlet 57a are provided. A water outlet 57b communicating with the water supply path 57 is provided at the uppermost portion, and a mesh strainer 57c is attached to the water outlet 57b. An automatic air valve 57d for releasing air in the first through sixth water containers 51-56 is attached to a portion immediately above the water outlet 57b on the outer periphery of the main bodies 51a-56a.
上流側の送水経路57から供給された水は入水口57aを通過して第1通水容器51〜第6通水容器56内へ流入し、それぞれの内部に充填されたミネラル付与材(B)51m〜56mと接触することにより各ミネラル成分が水中へ溶出するので、それぞれのミネラル付与材(B)51m〜56mに応じたミネラル成分を含有した水となって出水口57bから下流側の送水経路57へ流出する。 The water supplied from the upstream water supply passage 57 passes through the water inlet 57a, flows into the first through sixth water containers 51-56, and is provided with the mineral-imparting material (B) filled therein. Since each mineral component elutes into water by contacting with 51 m to 56 m, it becomes water containing a mineral component corresponding to each of the mineral imparting materials (B) 51 m to 56 m and becomes a water supply path downstream from the outlet 57 b. Outflow to 57.
図8〜図10に示すミネラル含有水(B)製造装置3においては、図7に示す操作盤58の切替ボタン51b〜56bの何れかを操作して、原水タンク63の水Wを、第1通水容器51〜第6通水容器56の1個以上に通過させことにより、第1通水容器51から第6通水容器56にそれぞれ充填されたミネラル付与材(B)51m〜56mにそれぞれ含まれている特徴あるミネラル成分を選択的に溶け込ませたミネラル含有水(B)45を形成することができる。 In the mineral-containing water (B) producing apparatus 3 shown in FIGS. 8 to 10, one of the switching buttons 51 b to 56 b of the operation panel 58 shown in FIG. By passing through at least one of the water-flowing containers 51 to the sixth water-flowing container 56, the mineral-imparting materials (B) 51m to 56m filled in the first water-flowing container 51 to the sixth water-flowing container 56, respectively. The mineral-containing water (B) 45 in which the characteristic mineral component contained is selectively dissolved can be formed.
また、ミネラル含有水(B)製造装置3においては、第1通水容器51〜第6通水容器56が送水経路57で直列に連結されているため、当該送水経路57に連続的に水を流すことにより、第1通水容器51〜第6通水容器56内のミネラル付与材(B)51m〜56mに応じたミネラル成分が溶け込んだミネラル含有水(B)45を大量生産することができる。 Further, in the mineral-containing water (B) production apparatus 3, since the first water passage 51 to the sixth water passage 56 are connected in series by the water passage 57, water is continuously supplied to the water passage 57. By flowing, it is possible to mass-produce the mineral-containing water (B) 45 in which the mineral components corresponding to the mineral-imparting materials (B) 51 m to 56 m in the first water container 51 to the sixth water container 56 are dissolved. .
なお、ミネラル含有水(B)製造装置3において形成されたミネラル含有水(B)45は、第6通水容器56より下流側の送水経路57xを経由して混合槽46内へ送り込まれ、その内部において、図1に示すミネラル含有水(A)製造装置2で製造されたミネラル含有水(A)44と混合されることによってミネラル機能水47が形成される。 The mineral-containing water (B) 45 formed in the mineral-containing water (B) producing device 3 is sent into the mixing tank 46 via a water supply path 57x downstream of the sixth water supply container 56, and Inside, the mineral-functional water 47 is formed by being mixed with the mineral-containing water (A) 44 produced by the mineral-containing water (A) producing apparatus 2 shown in FIG.
ミネラル含有水(A)とミネラル含有水(B)の配合割合は、ミネラル含有水(A)及びミネラル含有水(B)に含まれる原料の種類、溶出する成分濃度を考慮して適宜決定されるが、ミネラル含有水(A)とミネラル含有水(B)との重量比([ミネラル含有水(A)]:[ミネラル含有水(B)])で、1:5〜1:20の範囲であり、好適には1:7〜1:12の範囲、より好適には1:10の範囲である。
ミネラル含有水(A)が少なすぎる(ミネラル含有水(B)が多すぎる)場合、及びミネラル含有水(A)が多すぎる(ミネラル含有水(B)が少なすぎる)場合には、ミネラル機能水の有効成分が希釈されて目的とする作用が不十分になるおそれがある。The mixing ratio of the mineral-containing water (A) and the mineral-containing water (B) is appropriately determined in consideration of the types of the raw materials contained in the mineral-containing water (A) and the mineral-containing water (B) and the concentrations of the components to be eluted. Is the weight ratio of mineral-containing water (A) to mineral-containing water (B) ([mineral-containing water (A)]: [mineral-containing water (B)]) in the range of 1: 5 to 1:20. Yes, preferably in the range of 1: 7 to 1:12, more preferably in the range of 1:10.
When the amount of the mineral-containing water (A) is too small (the amount of the mineral-containing water (B) is too large), and when the amount of the mineral-containing water (A) is too large (the amount of the mineral-containing water (B) is too small), the mineral functional water Of the active ingredient may be diluted and the desired action may be insufficient.
以上、本発明のミネラル機能水の製造方法の好適な実施形態を説明したが、上述した構成を有する本発明のミネラル機能水が製造できればよく、上記好適な実施形態以外にも様々な構成を採用することもでき、制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示的に開示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。 As described above, the preferred embodiment of the method for producing mineral functional water of the present invention has been described. However, it is sufficient that the mineral functional water of the present invention having the above-described configuration can be produced, and various configurations other than the preferred embodiment are employed. And should be considered non-limiting. In particular, in the embodiments disclosed herein, matters not explicitly disclosed, such as operating conditions and operating conditions, various parameters, dimensions, weight, and volume of components, deviate from the range usually performed by those skilled in the art. Instead, a value that can be easily assumed by a person skilled in the art is adopted.
以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[実施例1]
<1>ミネラル機能水の製造
ミネラル機能水として上記本発明の実施形態で説明したミネラル機能水製造装置を用い、上述した製造方法にて、以下の原料及び方法で製造した実施例1のミネラル機能水を用いた。
1.ミネラル含有水(A)の製造
ミネラル付与材(A)の原料として、草木植物原料(A1)として、株式会社理研テクノシステム製「P−100(品番)」、木本植物原料(A2)として、株式会社理研テクノシステム製「P−200(品番)」を使用した。
「P−100」は、以下のキク科植物の乾燥粉砕物及びバラ科植物の乾燥粉砕物を1:1(重量比)で混合した草木植物原料(A1)であり、「P−200」は、以下に記載の木本植物原料(A2)である。
(A1)草木植物原料(草木植物の乾燥物)
(A1−1)キク科植物の乾燥粉砕物
野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ10重量%、60重量%、30重量%となる割合で混合し、乾燥させた後に粉砕させたもの。
(A1−2)バラ科植物の乾燥粉砕物
ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ20重量%、10重量%、70重量%の割合で混合し、乾燥させた後に粉砕させたもの。
(A2)木本植物原料(木本植物の乾燥物)
カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ25重量%、25重量%、50重量%となる割合で混合し、乾燥させた後に粉砕させたもの。[Example 1]
<1> Production of Mineral Functional Water Using the mineral functional water production apparatus described in the above embodiment of the present invention as the mineral functional water, the mineral function of Example 1 produced by the above-described production method using the following raw materials and method Water was used.
1. Manufacture of Mineral-Containing Water (A) As a raw material of the mineral-imparting material (A), "P-100 (product number)" manufactured by Riken Technosystem Co., Ltd., as a woody plant raw material (A2) "P-200 (product number)" manufactured by Riken Techno System Co., Ltd. was used.
"P-100" is a plant material (A1) obtained by mixing the following dried and crushed asteraceous plants and dried and crushed roseaceous plants at a ratio of 1: 1 (weight ratio), and "P-200" is And woody plant materials (A2) described below.
(A1) Plant material (dried plant material)
(A1-1) Dry and Pulverized Asteraceous Plant Wild thistle (leaves, stems and flowers), mugwort (leaves and stems), and camellia (leaves and stems) were each 10% by weight, 60% by weight. What was mixed at a ratio of 30% by weight, dried, and then pulverized.
(A1-2) Dry and Pulverized Rosaceae Plants Wild rose (leaves and flowers), radish (leaves and stems), and raspberry (leaves, stems and flowers) were each 20% by weight, 10% by weight, What was mixed at a ratio of 70% by weight, dried, and then pulverized.
(A2) Woody plant material (dried woody plant)
Maple (leaves and stems), birch (leaves, stems, and bark), cedars (leaves, stems, and bark) are 25% by weight, 25% by weight, and 50% by weight, respectively. A mixture obtained by mixing, drying, and then pulverizing.
上記草木植物原料(A1)と木本植物原料(A2)を、1:3(重量比)で混合したミネラル付与材(A)を、図1に示すミネラル含有水(A)製造装置2における、原料ミネラル水溶液製造手段10(図2参照)に水に対して10〜15重量%になるように入れ、原料ミネラル水溶液製造手段10の導電線に直流電流(DC8300V、100mA)を導通させ、導電線の周囲の水に直流電流と同方向の水流を発生させ、前記水に超音波振動(発振周波数50kHz、振幅1.5/1000mm)を付与して原料ミネラル水溶液(A)を形成した。次いで、後段の遠赤外線発生手段43に供給された原料ミネラル水溶液(A)に遠赤外線(波長6〜14μm)を照射することにより実施例1のミネラル含有水(A)を得た。 A mineral-imparting material (A) obtained by mixing the plant material (A1) and the woody plant material (A2) at a ratio of 1: 3 (weight ratio) was used in a mineral-containing water (A) production apparatus 2 shown in FIG. The raw mineral aqueous solution producing means 10 (see FIG. 2) is put into the raw mineral aqueous solution producing means 10 at a concentration of 10 to 15% by weight, and a direct current (8300 V DC, 100 mA) is conducted to the conductive wire of the raw mineral aqueous solution producing means 10. A water flow in the same direction as the direct current was generated in the water around the sample, and ultrasonic vibration (oscillation frequency 50 kHz, amplitude 1.5 / 1000 mm) was applied to the water to form a raw mineral aqueous solution (A). Subsequently, the mineral-containing water (A) of Example 1 was obtained by irradiating the raw mineral aqueous solution (A) supplied to the far-infrared ray generating means 43 at the subsequent stage with far-infrared rays (wavelength: 6 to 14 μm).
2.ミネラル含有水(B)の製造
ミネラル付与材(B)の原料としては、石灰石、化石サンゴ、貝殻、活性炭を粉砕・混合した混合物を使用した。ミネラル付与材(B)の原料及び第1〜6通水容器で使用した混合物(ミネラル付与材(B1)〜(B6))は、以下の通りである。
(1)原料
(1−1)石灰石:株式会社理研テクノシステム製「CC−200(品番)」
下記成分を含む火山性鉱床が混在する石灰岩を粉砕した、3cm程度の小石状物
炭酸カルシウム:50重量%以上
酸化鉄:3〜9重量%の鉄
酸化チタン、炭化チタン、窒化チタンの合計:0.8重量%以上
炭酸マグネシウム:7〜10重量%
(1−2)化石サンゴ:株式会社理研テクノシステム製「CC−300(品番)」
下記2種類の化石サンゴを1:9の重量比で混合し、3〜5mmに粉砕した粒状物
・地下約100メートルより産出し重圧により結晶組成が変性した化石サンゴ
・沖縄奄美大島付近の陸地から産出する化石サンゴ(炭酸カルシウムやリン酸カルシウムその他微量元素を含む)
(1−3)貝殻:株式会社理研テクノシステム製「CC−400(品番)」
・アワビ、トコブシ、フジツボを同じ重量で混合し3〜5mmに粉砕した粒状物
(1−4)活性炭(第2通水容器のみ使用):株式会社理研テクノシステム製「CC−500(品番)」
(2)第1〜6通水容器での使用割合
・第1通水容器:
ミネラル付与材(B1):石灰石、化石サンゴ、貝殻をそれぞれ70重量%、15重量%、15重量%混合したもの
・第2通水容器:
ミネラル付与材(B2):石灰石、化石サンゴ、貝殻、活性炭をそれぞれ40重量%、15重量%、40重量%、5重量%混合したもの(二酸化ケイ素と活性炭に相当)
・第3通水容器:
ミネラル付与材(B3):石灰石、化石サンゴ、貝殻をそれぞれ80重量%、15重量%、5重量%混合したもの
・第4通水容器:
ミネラル付与材(B4):石灰石、化石サンゴ、貝殻をそれぞれ90重量%、5重量%、5重量%混合したもの
・第5通水容器:
ミネラル付与材(B5):石灰石、化石サンゴ、貝殻をそれぞれ80重量%、10重量%、10重量%混合したもの
・第6通水容器:
ミネラル付与材(B6):石灰石、化石サンゴ、貝殻をそれぞれ60重量%、30重量%、10重量%混合したもの2. Production of Mineral-Containing Water (B) As a raw material of the mineral-imparting material (B), a mixture obtained by pulverizing and mixing limestone, fossil coral, shells, and activated carbon was used. The raw materials of the mineral-giving materials (B) and the mixtures (mineral-giving materials (B1) to (B6)) used in the first to sixth water-passing containers are as follows.
(1) Raw material (1-1) Limestone: "CC-200 (part number)" manufactured by Riken Techno System Co., Ltd.
A crushed limestone containing a volcanic ore deposit containing the following components: Pebbles about 3 cm Calcium carbonate: 50% by weight or more Iron oxide: 3 to 9% by weight of iron Total of titanium oxide, titanium carbide, and titanium nitride: 0 0.8% by weight or more Magnesium carbonate: 7 to 10% by weight
(1-2) Fossil coral: "CC-300 (part number)" manufactured by Riken Techno System Co., Ltd.
The following two types of fossil corals are mixed at a weight ratio of 1: 9, granulated to 3 to 5 mm, produced from about 100 meters underground, fossil corals whose crystal composition has been modified by gravity, and from land near Okinawa Amami Oshima Fossil corals produced (including calcium carbonate, calcium phosphate and other trace elements)
(1-3) Shell: "CC-400 (part number)" manufactured by Riken Techno System Co., Ltd.
-Granules obtained by mixing abalone, lycopodium and barnacle with the same weight and grinding to 3 to 5 mm
(1-4) Activated carbon (use only the second water container): “CC-500 (part number)” manufactured by Riken Techno System Co., Ltd.
(2) Percentage of water used in the first to sixth water tanks ・ First water tank:
Mineral-imparting material (B1): a mixture of limestone, fossil coral, and shells each of 70% by weight, 15% by weight, and 15% by weight.
Mineral-imparting material (B2): a mixture of limestone, fossil coral, shell, and activated carbon, each of which is 40% by weight, 15% by weight, 40% by weight, and 5% by weight (corresponding to silicon dioxide and activated carbon)
・ Third water container:
Mineral-imparting material (B3): a mixture of limestone, fossil coral, and shells of 80% by weight, 15% by weight, and 5% by weight, respectively.
Mineral-imparting material (B4): 90% by weight, 5% by weight, 5% by weight of limestone, fossil coral, and shell mixed respectively. Fifth water passage container:
Mineral-imparting material (B5): A mixture of limestone, fossil coral, and shells each of 80% by weight, 10% by weight, and 10% by weight.
Mineral-imparting material (B6): A mixture of limestone, fossil coral, and shells each of 60% by weight, 30% by weight, and 10% by weight.
図1の構成のミネラル含有水(B)製造装置3において、上記ミネラル付与材(B1)〜(B6)を使用した第1〜6通水容器に水を流通させることにより、ミネラル含有水(B)を得た。(B1)〜(B6)はそれぞれ50kg(合計300kg)であり、流通させる水の量は1000kg、流速は500mL/40sで設定した。 In the apparatus 3 for producing mineral-containing water (B) having the configuration shown in FIG. 1, the water is passed through the first to sixth water-flowing containers using the mineral-giving materials (B1) to (B6), whereby the mineral-containing water (B) ) Got. (B1) to (B6) were 50 kg (300 kg in total), the amount of water to be circulated was set to 1000 kg, and the flow rate was set to 500 mL / 40 s.
上記方法で形成した実施例1のミネラル含有水(A)とミネラル含有水(B)とを1:10(重量比)となるように混合して、実施例1のミネラル機能水を得た。実施例1のミネラル機能水をpHメータ(東興化学研究所製 ガラス電極式水素イオン濃度指示計 TPX−90)で測定したところ、pH12.5であった。
なお、実施例1のミネラル機能水は、株式会社理研テクノシステム製ミネラル機能水CAC−717(テラ・プロテクト(商品名)、CAC−717(品番)、開発品番号CA−C−01)に相当する。The mineral-containing water (A) and the mineral-containing water (B) of Example 1 formed by the above method were mixed at a ratio of 1:10 (weight ratio) to obtain a mineral-functional water of Example 1. It was pH 12.5 when the mineral functional water of Example 1 was measured with the pH meter (Toko Chemical Laboratory glass electrode type hydrogen ion concentration indicator TPX-90).
The mineral functional water of Example 1 is equivalent to the mineral functional water CAC-717 (Terra Protect (trade name), CAC-717 (part number), development product number CA-C-01) manufactured by Riken Technosystem Co., Ltd. I do.
<2>分光放射率の評価
セラミック担体に対し、実施例1のミネラル機能水を固定化した試料の分光放射率は、遠赤外線輻射率測定装置(日本電子(株)製JIR−E500)で測定した。当該装置は、フーリエ変換型赤外線分光光度計(FTIR)本体と、黒体炉、試料加熱炉、温度コントローラおよび付属光学系から構成される。
分光放射率の評価試料は以下の手順で作製した。
担持用のセラミック粉末(天草大矢野島産出の岩石粉末)100重量部に対し、実施例1のミネラル機能水20重量部を含水させ粘土状態にした。これを厚み5mm程度、直径2cmの円形の表面が平らな板状に加工し、1000℃で焼成することにより、試料(ミネラル機能水)に含まれるミネラル成分が固定化された評価試料を得た。
図12に、測定試料である実施例1のミネラル機能水の分光放射率スペクトル(測定温度:25℃、波長範囲:4〜24μm)を示す。また、図12には、黒体の分光放射率スペクトル(理論値)も併せて示している。なお、図12において、縦軸目盛は放射エネルギーの強さであり、1平方cm当たりのW数で示している。また、「試料」の曲線は、黒体の曲線に近接しているほど放射能力が高いことを意味する。<2> Evaluation of spectral emissivity The spectral emissivity of the sample in which the mineral-functional water of Example 1 was immobilized on the ceramic carrier was measured with a far-infrared emissivity measuring device (JIR-E500 manufactured by JEOL Ltd.). did. The apparatus includes a Fourier transform infrared spectrophotometer (FTIR) main body, a black body furnace, a sample heating furnace, a temperature controller, and an attached optical system.
An evaluation sample of the spectral emissivity was prepared in the following procedure.
20 parts by weight of the mineral functional water of Example 1 was added to 100 parts by weight of a ceramic powder for support (rock powder produced by Amakusa Oyanoshima) to obtain a clay state. This was processed into a flat plate having a thickness of about 5 mm and a circular surface with a diameter of 2 cm and baked at 1000 ° C. to obtain an evaluation sample in which the mineral components contained in the sample (mineral functional water) were immobilized. .
FIG. 12 shows a spectral emissivity spectrum (measurement temperature: 25 ° C., wavelength range: 4 to 24 μm) of the mineral functional water of Example 1 which is a measurement sample. FIG. 12 also shows the spectral emissivity spectrum (theoretical value) of the black body. In FIG. 12, the vertical axis indicates the intensity of radiant energy, and is indicated by the number of W per square cm. The curve of “sample” means that the closer to the curve of the black body, the higher the radiation ability.
また、図13に、測定試料の分光放射率スペクトルと黒体の分光放射率スペクトル(理論値)から求めた放射比率(波長範囲:4〜24μm)を示す。
図13から、波長5〜7μm間及び波長14〜24μm間の平均放射比率を算出したところ、91.7%であった。FIG. 13 shows the emissivity (wavelength range: 4 to 24 μm) obtained from the spectral emissivity spectrum of the measurement sample and the spectral emissivity spectrum (theoretical value) of the black body.
The average radiation ratio between the wavelengths of 5 to 7 μm and between the wavelengths of 14 to 24 μm was calculated from FIG. 13 and was 91.7%.
[実施例2]
<1>ミネラル機能水の製造
以下の原料及び方法で実施例2のミネラル機能水を製造した。
1.ミネラル含有水(A)の製造
ミネラル付与材(A)の原料として、草木植物原料(A1)として、株式会社理研テクノシステム製「P−101(品番)」、木本植物原料(A2)として、株式会社理研テクノシステム製「P−201(品番)」を使用した。
「P−101」は、以下のキク科植物の乾燥粉砕物及びバラ科植物の乾燥粉砕物を1:1(重量比)で混合した草木植物原料(A1)であり、「P−201」は、以下に記載の木本植物原料(A2)である。
(A1)草木植物原料(草木植物の乾燥物)
(A1−1)キク科植物の乾燥粉砕物
野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ10重量%、60重量%、30重量%となる割合で混合し、乾燥させた後に粉砕させたもの。
(A1−2)バラ科植物の乾燥粉砕物
ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ20重量%、10重量%、70重量%の割合で混合し、乾燥させた後に粉砕させたもの。
(A2)木本植物原料(木本植物の乾燥物)
カエデ(落葉)、白樺(落葉、茎部、及び樹皮部)、杉(落葉、茎部、及び樹皮部)を、それぞれ20重量%、60重量%、20重量%となる割合で混合し、乾燥させた後に粉砕させたもの。[Example 2]
<1> Production of mineral functional water The mineral functional water of Example 2 was produced using the following raw materials and method.
1. Manufacture of Mineral-Containing Water (A) As a raw material of the mineral-giving material (A), as a plant plant material (A1), “P-101 (product number)” manufactured by Riken Technosystem Co., Ltd., as a wood plant material (A2) "P-201 (product number)" manufactured by Riken Techno System Co., Ltd. was used.
"P-101" is a plant material (A1) obtained by mixing the following dried and crushed Asteraceae plant and dried and crushed Rosaceae plant at a ratio of 1: 1 (weight ratio), and "P-201" is And woody plant materials (A2) described below.
(A1) Plant material (dried plant material)
(A1-1) Dry and Pulverized Asteraceous Plant Wild thistle (leaves, stems and flowers), mugwort (leaves and stems), and camellia (leaves and stems) were each 10% by weight, 60% by weight. What was mixed at a ratio of 30% by weight, dried, and then pulverized.
(A1-2) Dry and Pulverized Rosaceae Plants Wild rose (leaves and flowers), radish (leaves and stems), and raspberry (leaves, stems and flowers) were each 20% by weight, 10% by weight, What was mixed at a ratio of 70% by weight, dried, and then pulverized.
(A2) Woody plant material (dried woody plant)
Maple (leaf), birch (leaf, stem, and bark) and cedar (leaf, stem, and bark) are mixed at a ratio of 20% by weight, 60% by weight, and 20% by weight, respectively, and dried. After crushing.
上記草木植物原料(A1)と木本植物原料(A2)を、1:5(重量比)で混合したミネラル付与材(A)を使用した以外は、実施例1と同様の方法で実施例2のミネラル含有水(A)を得た。 Example 2 was prepared in the same manner as in Example 1 except that the mineral-giving material (A) obtained by mixing the plant material (A1) and the woody plant material (A2) at a ratio of 1: 5 (weight ratio) was used. Of mineral-containing water (A).
2.ミネラル含有水(B)の製造
実施例1と共通であるため、説明を省略する。2. Production of Mineral-Containing Water (B) Description is omitted because it is common to Example 1.
上記方法で形成した実施例2のミネラル含有水(A)とミネラル含有水(B)とを1:10(重量比)となるように混合して、実施例2のミネラル機能水を得た。
なお、実施例2のミネラル機能水は、株式会社理研テクノシステム製ミネラル機能水A20ACA−717(テラ・サポート(商品名)、A20ACA−717(品番))に相当する。The mineral-containing water (A) and the mineral-containing water (B) of Example 2 formed by the above method were mixed at a ratio of 1:10 (weight ratio) to obtain a mineral-functional water of Example 2.
The mineral functional water of Example 2 corresponds to the mineral functional water A20ACA-717 (Terra Support (trade name), A20ACA-717 (product number)) manufactured by Riken Technosystem Co., Ltd.
<2>分光放射率の評価
図14に上記実施例1と同様の方法で、実施例2と対照試料のセラミック焼結体の分光放射率の評価を行った結果を示す。<2> Evaluation of Spectral Emissivity FIG. 14 shows the results of evaluation of the spectral emissivity of the ceramic sintered bodies of Example 2 and the control sample by the same method as in Example 1 described above.
[プリオンタンパク質に対する評価]
<1>Direct ELISA法での評価
実施例のミネラル機能水のプリオンタンパク質(PrP)に対する作用を、Direct ELISA法で、被験対象に対するミネラル機能水処理前後における変化量で評価した。評価に使用した材料および評価方法は以下の通りである。[Evaluation for prion protein]
<1> Evaluation by Direct ELISA Method The effect on the prion protein (PrP) of the mineral functional water of the example was evaluated by the Direct ELISA method based on the amount of change before and after the mineral functional water treatment on the test subject. The materials used for the evaluation and the evaluation method are as follows.
(測定対象検体)
・マウスリコンビナントPrP(Jena Bioscience)
・スクレイピー感染263K株ハムスター脳内PrP(ペレット状態)
(処理溶液)
・MCウォーター(CA−SI−01)
・MCウォーター(CA−C−01、主成分:炭素、カルシウム)
・Block Ace(対照)
なお、「CA−C−01」は実施例1のミネラル機能水、「CA-SI−01」は参考例のミネラル機能水、「Black Ace」は対照である。株式会社理研テクノシステム製CA-SI−01(開発品番号)は、含有されるミネラル成分がケイ素を主成分とするミネラル機能水であり、pH10である。(Sample to be measured)
・ Mouse Recombinant PrP (Jena Bioscience)
・ PrP in the brain of 263K strain hamster infected with scrapie (pellet state)
(Treatment solution)
・ MC Water (CA-SI-01)
・ MC water (CA-C-01, main component: carbon, calcium)
・ Block Ace (control)
“CA-C-01” is the mineral water of Example 1, “CA-SI-01” is the mineral water of the reference example, and “Black Ace” is the control. CA-SI-01 manufactured by Riken Technosystem Co., Ltd. (development product number) is a mineral functional water containing silicon as a main component, and has a pH of 10.
(方法)
まず、検体をプレートに吸着させ、Block Aceで非特異反応をブロックした。次いで、TBSTで洗浄し、MCウォーターを添加した。TBSTで洗浄後、6H4−HRP抗体を添加した。さらに、TBSTで洗浄後、TMBを添加し反応させた。反応停止液を添加し反応停止させた後、450nmの波長にて吸光度を測定した。
なお、定量を行うために既知PrPの希釈列を作製し、処置群間の差はt検定により有意差を検討した。(Method)
First, a sample was adsorbed to a plate, and nonspecific reaction was blocked with Block Ace. Then, it was washed with TBST and MC water was added. After washing with TBST, 6H4-HRP antibody was added. Further, after washing with TBST, TMB was added and reacted. After terminating the reaction by adding a reaction terminating solution, the absorbance was measured at a wavelength of 450 nm.
In addition, in order to perform quantification, a dilution series of known PrP was prepared, and a significant difference between treatment groups was examined by a t-test.
図15にミネラル機能水処理前後のマウスリコンビンナントPrP量の変化を示す。また、図16にスクレイピー感染ハムスター異常型プリオン量の変化を示す。 FIG. 15 shows the change in the amount of mouse recombinant PrP before and after the treatment with mineral water. FIG. 16 shows the change in the amount of abnormal prion in hamsters infected with scrapie.
図15および図16から実施例1のミネラル機能水は、マウスリコンビンナントPrPおよびスクレイピー感染ハムスター異常型プリオン量を有意に減少させることができることが確認された。このことから、ミネラル機能水で処理することにより、異常型プリオンタンパク質を、少なくとも部分的に分解または変性させることができることが確認された。 From FIG. 15 and FIG. 16, it was confirmed that the mineral-functional water of Example 1 was able to significantly reduce the amounts of mouse recombinant PrP and scrapie-infected hamster abnormal prions. From this, it was confirmed that the abnormal prion protein can be at least partially degraded or denatured by treating with mineral-functional water.
<2>ウェスタンブロッティング法による評価
200μgタンパク質を含む脳ホモジネート(263K感染ハムスター脳)200μLとMCウォーター(CA−C−01、主成分:炭素、カルシウム)20μLとを混合し、室温で1時間反応させた。次に、20μg/mLのプロテイナーゼKを加え、37℃で1時間処理した。プロテイナーゼKで処理することで、正常型プリオンタンパク質(PK感受性PrP)が分解されるため、得られるサンプルには、異常型プリオンタンパク質のみが含まれる。得られたサンプルをウェスタンブロッティング法により評価した。
コントロールとして、脳ホモジネート(263K感染ハムスター脳)200μLに変えて、200μgタンパク質を含む脳ホモジネート(正常ハムスター脳、非感染)200μLを用いて同様の操作を行ったサンプルを準備し、ウェスタンブロッティング法で評価した。<2> Evaluation by Western Blotting Method 200 μL of brain homogenate containing 200 μg protein (263K infected hamster brain) and 20 μL of MC water (CA-C-01, main component: carbon, calcium) were mixed and reacted at room temperature for 1 hour. Was. Next, 20 μg / mL of proteinase K was added, and the mixture was treated at 37 ° C. for 1 hour. By treating with proteinase K, normal prion protein (PK-sensitive PrP) is degraded, and thus the obtained sample contains only abnormal prion protein. The obtained sample was evaluated by Western blotting.
As a control, a sample prepared by performing the same operation using 200 μL of a brain homogenate (normal hamster brain, uninfected) containing 200 μg of protein instead of 200 μL of brain homogenate (263K infected hamster brain) was prepared and evaluated by Western blotting. did.
また、プロテイナーゼKで処理しなかったサンプルについても、同様に、ウェスタンブロッティング法で評価した。なお、プロテイナーゼKで処理しなかったサンプルは、異常型プリオンタンパク質(PK抵抗性PrP)と正常型プリオンタンパク質(PK感受性PrP)が含まれるサンプルである。 In addition, a sample not treated with proteinase K was similarly evaluated by Western blotting. The sample not treated with proteinase K is a sample containing an abnormal prion protein (PK-resistant PrP) and a normal prion protein (PK-sensitive PrP).
結果を図17および図18に示す。図17は、6μL/各Laneの結果であり、図18は、3μL/各Laneの結果である。なお、図中のPK(+)およびPK(−)はプロテイナーゼK処理の有無を表す。
図17および図18に示すとおり、MCウォーター処理したサンプルは、異常型プリオンタンパク質が減少していたが、正常型プリオンタンパク質には影響を与えなかった。このことから、異常型プリオンタンパク質とミネラル機能水とを接触させることで、異常型プリオンタンパク質の全体的な分解ができ、異常型プリオンタンパク質の感染力を低減させることが確認された。The results are shown in FIG. 17 and FIG. FIG. 17 shows the result of 6 μL / each Lane, and FIG. 18 shows the result of 3 μL / each Lane. PK (+) and PK (-) in the figure represent the presence or absence of proteinase K treatment.
As shown in FIGS. 17 and 18, the samples treated with MC water had reduced abnormal prion protein, but had no effect on normal prion protein. From this, it was confirmed that the contact between the abnormal prion protein and the mineral-functional water allowed the overall degradation of the abnormal prion protein and reduced the infectivity of the abnormal prion protein.
<3>in vivoでの評価
263K株シリアンハムスター8週齢、雄、計5匹を使用した。
まず、スクレイピー感染ハムスター10%脳乳剤とMCウォーター(CA−C−01またはCA−SI−01)を1:1の比率で混合し、1時間静置した。得られた溶液100μLを表1に示すようにシリアンハムスターに脳内接種した。
スクレイピーの症状が現れた個体(陽性対照、ハムスター番号P−1、P−2)については、62日後または64日後に脳を採取した。スクレイピーの症状が現れなかった個体(ハムスター番号S−1、S−2、S−3)については、72日後に脳を採取した。なお、摂取した脳組織は、−80℃で保管した。<3> Evaluation in vivo A total of five 263K strain Syrian hamsters, 8 weeks old, males were used.
First, a scrapie-infected hamster 10% brain emulsion and MC water (CA-C-01 or CA-SI-01) were mixed at a ratio of 1: 1 and allowed to stand for 1 hour. As shown in Table 1, 100 μL of the obtained solution was inoculated into Syrian hamsters in the brain.
For individuals showing the symptoms of scrapie (positive control, hamster numbers P-1, P-2), brains were collected 62 days or 64 days later. Brains were collected 72 days later from individuals (hamster numbers S-1, S-2, S-3) in which no symptoms of scrapie appeared. The ingested brain tissue was stored at -80 ° C.
次いで、脳組織を融解後、10%中性緩衝ホルマリン固定、パラフィン包埋した組織を薄切し、組織切片を作製した。組織切片を、一次抗体に抗プリオンタンパク質抗体3F4を使用し、免疫染色した後に、免疫組織学的検査による脳内PrPSc(異常型プリオンタンパク質)の蓄積や分布を観察した。Next, after the brain tissue was thawed, the tissue embedded in 10% neutral buffered formalin and embedded in paraffin was sliced to prepare a tissue section. Tissue sections were immunostained using the anti-prion protein antibody 3F4 as a primary antibody, and then the accumulation and distribution of PrP Sc (abnormal prion protein) in the brain was observed by immunohistological examination.
転移および免疫組織学的検査結果を表2に示す。また、表1および表2に示すハムスター番号P−1、S−1およびS−3の組織観察写真を図19〜図21に示す。 Table 2 shows the results of metastasis and immunohistological examination. 19 to 21 show tissue observation photographs of hamster numbers P-1, S-1, and S-3 shown in Tables 1 and 2.
図19に示すように、P−1の個体(陽性対照)は、スクレイピーの徴候が現れ、脳内には茶色いPrPScが観察された。P−2についても同様であった。
一方、図20に示すように、MCウォーター(CA−SI−01)と反応させたスクレイピー感染ハムスター脳乳剤を投与した個体であるS−1は、脳内にPrPScが観察されたが、驚くべきことに、スクレイピーの徴候が現れることがなかった。S−2の個体についても同様であった。
さらに、MCウォーター(CA−C−01)と反応させたスクレイピー感染ハムスター脳乳剤を投与した個体であるS−3は、スクレイピーの徴候が現れることがなく、図21に示すように、脳内にPrPScも観察されなかった。As shown in FIG. 19, the P-1 individual (positive control) showed signs of scrapie, and brown PrP Sc was observed in the brain. The same was true for P-2.
On the other hand, as shown in FIG. 20, in the individual S-1, which was administered with the scrapie-infected hamster brain emulsion reacted with MC water (CA-SI-01), PrP Sc was observed in the brain, which was surprising. Fortunately, there were no signs of scrapie. The same was true for the individual S-2.
Furthermore, S-3, an individual to whom a scrapie-infected hamster brain emulsion that had been reacted with MC water (CA-C-01), did not show any signs of scrapie, and as shown in FIG. No PrP Sc was observed.
以上の結果より、MCウォーターを使用することで、安全にプリオン分子を不活化できる可能性が期待される。 From the above results, it is expected that prion molecules can be safely inactivated by using MC water.
本発明によれば、異常型プリオンタンパク質に由来する疾患の予防治療を行うことができる。 ADVANTAGE OF THE INVENTION According to this invention, the preventive treatment of the disease derived from abnormal prion protein can be performed.
Claims (6)
前記電磁波放射性のミネラル成分を含むミネラル機能水が、下記の工程(1)で形成されたミネラル含有水(A)と、下記の工程(2)で形成されたミネラル含有水(B)とを、1:5〜1:20(重量比)となる割合で混合して得られるミネラル機能水であることを特徴とする異常型プリオンタンパク質の感染力低減方法(但し、ヒトに対する医療行為を除く)。
工程(1):
絶縁体で被覆された導電線と、キク科の草木植物及びバラ科の草木植物からなる草木植物原料、並びにカエデ、白樺、松及び杉から選択される1種以上の木本植物からなる木本植物原料を含有するミネラル付与材(A)と、を水に浸漬し、前記導電線に直流電流を導通させ、前記導電線の周囲の水に前記直流電流と同方向の水流を発生させ、前記水に超音波振動を付与して原料ミネラル水溶液(A)を形成し、次いで、原料ミネラル水溶液(A)に遠赤外線(波長6〜14μm)を照射してミネラル含有水(A)を形成する工程であって、
水に対するミネラル付与材(A)の添加量が10〜15重量%であり、前記導電線に導通させる直流電流における電流値及び電圧値が、それぞれ0.05〜0.1A及び8000〜8600Vの範囲であり、かつ、
ミネラル付与材(A)が、
前記草木植物原料として、野アザミ(葉部、茎部及び花部)、ヨモギ(葉部及び茎部)、ツワブキ(葉部及び茎部)を、それぞれ8〜12重量%、55〜65重量%、27〜33重量%となる割合で混合し、乾燥させた後に粉砕したキク科植物の乾燥粉砕物、及び、
ノイバラ(葉部、花部)、ダイコンソウ(葉部及び茎部)、キイチゴ(葉部、茎部及び花部)を、それぞれ17〜23重量%、8〜12重量%、65〜75重量%の割合で混合し、乾燥させた後に粉砕したバラ科植物の乾燥粉砕物を使用し、
当該キク科植物の乾燥粉砕物とバラ科植物の乾燥粉砕物とを、1:0.8〜1:1.2(重量比)で混合して得られる草木植物原料(A1)と、
前記木本植物原料として、カエデ(葉部及び茎部)、白樺(葉部、茎部、及び樹皮部)、杉(葉部、茎部、及び樹皮部)を、それぞれ22〜28重量%、22〜28重量%、45〜55重量%となる割合で混合し、乾燥させた後に粉砕した乾燥粉砕物からなる木本植物原料(A2)とを、
草木植物原料(A1)と木本植物原料(A2)の重量比で1:2.7〜1:3.3となるように混合して得られるミネラル付与材(A’)である工程
工程(2):
互いに種類の異なる無機系のミネラル付与材(B)が充填され、直列に接続された第1通水容器から第6通水容器に至る6個の通水容器に水を通過させてミネラル含有水(B)を形成する工程であって、
当該6個の通水容器おける、
第1通水容器内のミネラル付与材(B1)が、石灰石、化石サンゴ、貝殻をそれぞれ65〜75重量%、12.5〜17.5重量%、12.5〜17.5重量%を含む混合物、
第2通水容器内のミネラル付与材(B2)が、石灰石、化石サンゴ、貝殻、活性炭をそれぞれ37〜43重量%、12.5〜17.5重量%、37〜43重量%、2.5〜7.5重量%を含む混合物、
第3通水容器内のミネラル付与材(B3)が、石灰石、化石サンゴ、貝殻をそれぞれ75〜85重量%、12.5〜17.5重量%、2.5〜7.5重量%を含む混合物、
第4通水容器内のミネラル付与材(B4)が、石灰石、化石サンゴ、貝殻をそれぞれ85〜95重量%、2.5〜7.5重量%、2.5〜7.5重量%を含む混合物、
第5通水容器内のミネラル付与材(B5)が、石灰石、化石サンゴ、貝殻をそれぞれ75〜85重量%、7.5〜12.5重量%、7.5〜12.5重量%を含む混合物、
第6通水容器内のミネラル付与材(B6)が、石灰石、化石サンゴ、貝殻を55〜65重量%、27〜33重量%、7.5〜12.5重量%を含む混合物、
である工程 Abnormal prion protein, the infectivity of abnormal prion protein to reduce the infectivity of abnormal prion protein by contacting mineral functional water containing a mineral component that emits electromagnetic waves ,
The mineral functional water containing the electromagnetic wave-radiating mineral component comprises the mineral-containing water (A) formed in the following step (1) and the mineral-containing water (B) formed in the following step (2). A method for reducing infectivity of abnormal prion protein, characterized by being mineral-functional water obtained by mixing at a ratio of 1: 5 to 1:20 (weight ratio) (however, excluding medical practice for humans) .
Step (1):
A conductive wire covered with an insulator, a plant material consisting of a plant of the family Asteraceae and a plant of the family Rosaceae, and a woody plant comprising at least one woody plant selected from maple, birch, pine and cedar; And a mineral-imparting material (A) containing a plant material, immersed in water, conducting a direct current to the conductive wire, generating a water flow in the same direction as the direct current in the water around the conductive wire, A step of forming a raw mineral aqueous solution (A) by applying ultrasonic vibration to water, and then irradiating the raw mineral aqueous solution (A) with far infrared rays (wavelength 6 to 14 μm) to form a mineral-containing water (A) And
The amount of the mineral-imparting material (A) added to water is 10 to 15% by weight, and the current value and the voltage value of the direct current conducted to the conductive wire are in the range of 0.05 to 0.1 A and 8000 to 8600 V, respectively. And
The mineral imparting material (A)
As the plant material, wild thistle (leaves, stems and flowers), mugwort (leaves and stems), and camellia (leaves and stems) are respectively 8 to 12% by weight and 55 to 65% by weight. , 27-33% by weight, dried and crushed Asteraceae plant after being dried and crushed, and
17-23% by weight, 8-12% by weight, 65-75% by weight of wild rose (leaf, flower), radish (leaf and stem), and raspberry (leaf, stem and flower), respectively Using a dry and crushed Rosaceae plant that was mixed and dried at a ratio of
A plant material (A1) obtained by mixing the dry and crushed Asteraceous plant and the dry and crushed Rosaceae plant in a ratio of 1: 0.8 to 1: 1.2 (weight ratio);
As the woody plant raw materials, maple (leaves and stems), birch (leaves, stems, and bark), cedars (leaves, stems, and bark) are each 22 to 28% by weight, A woody plant raw material (A2) comprising a dry and crushed product obtained by mixing at a ratio of 22 to 28% by weight and 45 to 55% by weight, drying, and then crushing the mixture.
Step of being a mineral-imparting material (A ′) obtained by mixing the plant material (A1) and the woody plant material (A2) in a weight ratio of 1: 2.7 to 1: 3.3.
Step (2):
Mineral-containing water (B) filled with different kinds of inorganic mineral-imparting materials, and water is passed through six water-passing containers from a first water-passing container to a sixth water-passing container connected in series, and mineral-containing water (B) is a step of forming
In the six water containers,
The mineral-imparting material (B1) in the first water passage container contains 65 to 75% by weight, 12.5 to 17.5% by weight, and 12.5 to 17.5% by weight of limestone, fossil coral, and shell, respectively. mixture,
The mineral-imparting material (B2) in the second water passage container contains limestone, fossil coral, shells, and activated carbon in an amount of 37 to 43% by weight, 12.5 to 17.5% by weight, 37 to 43% by weight, and 2.5%, respectively. A mixture comprising ~ 7.5% by weight;
The mineral-imparting material (B3) in the third water-passage container contains limestone, fossil coral, and shells in 75 to 85% by weight, 12.5 to 17.5% by weight, and 2.5 to 7.5% by weight, respectively. mixture,
The mineral-imparting material (B4) in the fourth water passage container contains 85 to 95% by weight, 2.5 to 7.5% by weight, and 2.5 to 7.5% by weight of limestone, fossil coral, and shell, respectively. mixture,
The mineral-imparting material (B5) in the fifth water passage container contains limestone, fossil coral, and shells respectively in 75 to 85% by weight, 7.5 to 12.5% by weight, and 7.5 to 12.5% by weight. mixture,
A mixture in which the mineral imparting material (B6) in the sixth water passage container contains 55 to 65% by weight, 27 to 33% by weight, and 7.5 to 12.5% by weight of limestone, fossil coral, and shells;
The process that is
前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水CAC−717に由来するミネラル成分であることを特徴とする異常型プリオンタンパク質の感染力低減方法(但し、ヒトに対する医療行為を除く)。 Abnormal prion protein, the infectivity of abnormal prion protein to reduce the infectivity of abnormal prion protein by contacting mineral functional water containing a mineral component that emits electromagnetic waves ,
A method for reducing infectivity of an abnormal prion protein , wherein the mineral component is a mineral component derived from mineral-functional water CAC-717 manufactured by Riken Technosystem Co., Ltd. (however, excluding medical practices for humans) .
前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水A20ACA−717に由来するミネラル成分であることを特徴とする異常型プリオンタンパク質の感染力低減方法(但し、ヒトに対する医療行為を除く)。 Abnormal prion protein, the infectivity of abnormal prion protein to reduce the infectivity of abnormal prion protein by contacting mineral functional water containing a mineral component that emits electromagnetic waves ,
A method for reducing infectivity of an abnormal prion protein , wherein the mineral component is a mineral component derived from a mineral functional water A20ACA-717 manufactured by Riken Technosystem Co., Ltd. (however, excluding medical practices for humans) .
前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水CAC−717に由来するミネラル成分であることを特徴とするプリオン病の予防治療用医薬組成物。 It is a pharmaceutical composition for the prevention and treatment of prion disease, comprising as an active ingredient mineral functional water containing an electromagnetic wave emitting mineral component ,
A pharmaceutical composition for preventing or treating prion disease, wherein the mineral component is a mineral component derived from mineral functional water CAC-717 manufactured by Riken Technosystem Co., Ltd.
前記ミネラル成分が、株式会社理研テクノシステム製ミネラル機能水A20ACA−717に由来するミネラル成分であることを特徴とするプリオン病の予防治療用医薬組成物。 It is a pharmaceutical composition for the prevention and treatment of prion disease, comprising as an active ingredient mineral functional water containing an electromagnetic wave emitting mineral component ,
A pharmaceutical composition for preventing or treating prion disease, wherein the mineral component is a mineral component derived from a mineral functional water A20ACA-717 manufactured by Riken Technosystem Co., Ltd.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016093602 | 2016-05-09 | ||
JP2016093602 | 2016-05-09 | ||
PCT/JP2017/017555 WO2017195781A1 (en) | 2016-05-09 | 2017-05-09 | Abnormal prion protein infectiousness reduction method and pharmaceutical composition for preventive therapy of prion disease |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017195781A1 JPWO2017195781A1 (en) | 2019-03-14 |
JP6664714B2 true JP6664714B2 (en) | 2020-03-13 |
Family
ID=60267050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018517034A Active JP6664714B2 (en) | 2016-05-09 | 2017-05-09 | Method for reducing infectivity of abnormal prion protein and pharmaceutical composition for prevention and treatment of prion disease |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6664714B2 (en) |
TW (1) | TW201808312A (en) |
WO (1) | WO2017195781A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019208376A (en) * | 2018-05-31 | 2019-12-12 | 株式会社大和 | Feeding stuff, and feeding stuff additive |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69811628T2 (en) * | 1998-02-11 | 2003-12-18 | Zlb Bioplasma Ag, Bern | Process for removing pathogens of transmissible spongiform encephalophatias from protein solutions |
US20050054003A1 (en) * | 2003-09-10 | 2005-03-10 | Stenland Christopher J. | Prion clearance using particulate metal oxides |
GB0324058D0 (en) * | 2003-10-14 | 2003-11-19 | Exeter Antioxidant Therapeutic | Decontamination,disinfection or sterilization method and apparatus |
JP2016065036A (en) * | 2014-09-17 | 2016-04-28 | 株式会社理研テクノシステム | Composition for controlling virus and method for controlling virus |
JP6030270B2 (en) * | 2014-09-17 | 2016-11-24 | 株式会社理研テクノシステム | Manufacturing method of mineral functional water |
-
2017
- 2017-05-09 TW TW106115356A patent/TW201808312A/en unknown
- 2017-05-09 JP JP2018517034A patent/JP6664714B2/en active Active
- 2017-05-09 WO PCT/JP2017/017555 patent/WO2017195781A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2017195781A1 (en) | 2019-03-14 |
TW201808312A (en) | 2018-03-16 |
WO2017195781A1 (en) | 2017-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | Functionalized MoS2 nanovehicle with near‐infrared laser‐mediated nitric oxide release and photothermal activities for advanced bacteria‐infected wound therapy | |
Pan et al. | Boiling of simulated tap water: effect on polar brominated disinfection byproducts, halogen speciation, and cytotoxicity | |
WO2016043213A1 (en) | Mineral functional water and method for producing same as well as method for controlling unicellular organisms and/or viruses | |
Park et al. | Plasma-functionalized solution: A potent antimicrobial agent for biomedical applications from antibacterial therapeutics to biomaterial surface engineering | |
Wang et al. | A supramolecular vesicle based on the complexation of p‐sulfonatocalixarene with protamine and its trypsin‐triggered controllable‐release properties | |
Zhang et al. | Degradation of diazinon in apple juice by ultrasonic treatment | |
Wang et al. | Photosensitizer and autophagy promoter coloaded ROS‐responsive dendrimer‐assembled carrier for synergistic enhancement of tumor growth suppression | |
Jing et al. | Quercetin inhibiting the PD‐1/PD‐L1 interaction for immune‐enhancing cancer chemopreventive agent | |
JP6664714B2 (en) | Method for reducing infectivity of abnormal prion protein and pharmaceutical composition for prevention and treatment of prion disease | |
Elmoualij et al. | Decontamination of Prions by the Flowing Afterglow of a Reduced‐pressure N2 O2 Cold‐plasma | |
Antonopoulou et al. | Photocatalytic degradation of pentachlorophenol by NF-TiO 2: identification of intermediates, mechanism involved, genotoxicity and ecotoxicity evaluation | |
WO2017038974A1 (en) | Device for producing eluted functional water containing mineral component, and method of producing eluted functional water | |
Lee et al. | Quantifying L-ascorbic acid-driven inhibitory effect on amyloid fibrillation | |
JPWO2017038973A1 (en) | Ceramic sintered body and method for producing the same | |
WO2016148202A1 (en) | Functional mineral water and method for producing same | |
Yu et al. | Microenvironment‐Adaptive Nanozyme for Accelerating Drug‐Resistant Bacteria‐Infected Wound Healing | |
Xu et al. | Antisenescence ZIF-8/resveratrol Nanoformulation with potential for enhancement of bone fracture healing in the elderly | |
Yao et al. | Cerium oxide nanoparticles modulating the Parkinson's disease conditions: From the alpha synuclein structural point of view and antioxidant properties of cerium oxide nanoparticles | |
WO2019092550A1 (en) | Biomimetic non-immunogenic nanoassembly for the antitumor therapy | |
JP6814394B2 (en) | How to restore the abnormal protein three-dimensional structure | |
CN104664236A (en) | Method for promoting enrichment of rutin of buckwheat grains | |
Kapelle et al. | The influence of synthesis methods against anti-cancer activity of curcumin analogous | |
Wu et al. | Photocatalytic degradation of microcystin-LR by modified high-energy {001} titanium dioxide: Kinetics and mechanism study of HF8 | |
WO2017038972A1 (en) | Ceramic material and production method thereof, and eluted functional water | |
US1278278A (en) | Process of sterilizing liquids. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20181214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191029 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191212 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6664714 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S201 | Request for registration of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314201 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S804 | Written request for registration of cancellation of exclusive licence |
Free format text: JAPANESE INTERMEDIATE CODE: R314803 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |