JP6663820B2 - Indolylbenzothiadiazole derivative, method for producing indolylbenzothiadiazole derivative, and organic fluorescent material - Google Patents

Indolylbenzothiadiazole derivative, method for producing indolylbenzothiadiazole derivative, and organic fluorescent material Download PDF

Info

Publication number
JP6663820B2
JP6663820B2 JP2016153851A JP2016153851A JP6663820B2 JP 6663820 B2 JP6663820 B2 JP 6663820B2 JP 2016153851 A JP2016153851 A JP 2016153851A JP 2016153851 A JP2016153851 A JP 2016153851A JP 6663820 B2 JP6663820 B2 JP 6663820B2
Authority
JP
Japan
Prior art keywords
group
indolylbenzothiadiazole
derivative
formula
alkyloxycarbonyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016153851A
Other languages
Japanese (ja)
Other versions
JP2017057191A (en
Inventor
傑 伊藤
傑 伊藤
真年 淺見
真年 淺見
武士 山田
武士 山田
智啓 田口
智啓 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Publication of JP2017057191A publication Critical patent/JP2017057191A/en
Application granted granted Critical
Publication of JP6663820B2 publication Critical patent/JP6663820B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)

Description

本発明は、インドリルベンゾチアジアゾール誘導体、インドリルベンゾチアジアゾール誘導体の製造方法及び有機蛍光材料に関する。   The present invention relates to an indolylbenzothiadiazole derivative, a method for producing an indolylbenzothiadiazole derivative, and an organic fluorescent material.

固体蛍光性の有機分子が機械的刺激により発光色を変化させ、加熱や溶媒蒸気にさらすことにより元の発光色に戻る現象は蛍光メカノクロミズムと呼ばれ、近年徐々に報告例が増えているが珍しい現象である(非特許文献1、特許文献1、2)。   The phenomenon in which solid fluorescent organic molecules change the emission color by mechanical stimulation and return to the original emission color by heating or exposure to solvent vapor is called fluorescence mechanochromism, and the number of reports is gradually increasing in recent years. This is a rare phenomenon (Non-Patent Document 1, Patent Documents 1 and 2).

特許第5697030号公報Japanese Patent No. 5697030 WO2012/039508号WO2012 / 039508

Chem. Soc. Rev. 2012, 41, 3878Chem. Soc. Rev. 2012, 41, 3878

機械的刺激を加えることにより発光特性が変化する固体蛍光性の有機分子は、通常、元の状態に戻すために加熱や溶媒蒸気にさらす必要があり、この点で不便である。また、このような分子は従来、多くの工程を経て合成されており、簡便な方法で合成できる固体蛍光性の有機分子が待ち望まれている。さらに、蛍光性有機分子は溶液中で高効率発光する(高い蛍光量子収率を示す)場合であっても固体状態では濃度消光によりほとんど発光しなくなる。このため、熱や光などの外部刺激により発光特性が変化する分子は、一般に、固体状態での発光効率(蛍光量子収率)が低いという問題がある。   Solid-fluorescent organic molecules whose light-emitting properties are changed by the application of mechanical stimulus usually require heating or exposure to solvent vapor to restore the original state, which is inconvenient in this respect. In addition, such a molecule has been conventionally synthesized through many steps, and a solid fluorescent organic molecule that can be synthesized by a simple method has been awaited. Furthermore, even when the fluorescent organic molecule emits light with high efficiency in a solution (having a high fluorescence quantum yield), it hardly emits light in the solid state due to concentration quenching. For this reason, molecules whose luminescence characteristics change due to external stimuli such as heat or light generally have a problem that luminescence efficiency (fluorescence quantum yield) in a solid state is low.

本発明は、上記問題に鑑み、機械的刺激により発光色を変化させた後に、加熱や溶媒蒸気にさらすだけでなく、室温付近で自発的に元の発光色に戻ることができ、短段階で簡便に合成でき、且つ、固体状態で高い蛍光量子収率を示す蛍光性有機分子を提供することを課題とする。   The present invention has been made in view of the above problems, and after changing the emission color by mechanical stimulation, not only exposure to heating and solvent vapor, but also can return to the original emission color spontaneously near room temperature, An object of the present invention is to provide a fluorescent organic molecule which can be easily synthesized and has a high fluorescence quantum yield in a solid state.

本発明者らは鋭意研究を重ねた結果、上記課題は、下記式(1)で表されるインドリルベンゾチアジアゾール誘導体を提供することによって解決できることを見出した。   As a result of intensive studies, the present inventors have found that the above problem can be solved by providing an indolylbenzothiadiazole derivative represented by the following formula (1).

本発明は一側面において、下記式(1)で表されるインドリルベンゾチアジアゾール誘導体である。
(式(1)中、R1〜R4、及び、R6〜R8は、それぞれ、互いに独立して水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。
また、R5は、アルキルオキシカルボニル基、アリールオキシカルボニル基、アシル基、アルキルスルホニル基またはアリールスルホニル基である。
また、R9は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。)
One aspect of the present invention is an indolylbenzothiadiazole derivative represented by the following formula (1).
(In the formula (1), R 1 to R 4 and R 6 to R 8 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group , An amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group or an aryl group.
R 5 is an alkyloxycarbonyl group, an aryloxycarbonyl group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group.
R 9 represents a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group. , An alkyl group, a cycloalkyl group, an aralkyl group or an aryl group. )

本発明のインドリルベンゾチアジアゾール誘導体は一実施形態において、前記R5が、ピバロイル基、ベンゾイル基、トシル基、または、下記式(2)から選択される群のうちのいずれか1つである。
(式(2)中、R10はtert−ブチル基、エチル基、イソプロピル基、イソブチル基またはベンジル基である。)
In one embodiment, in the indolylbenzothiadiazole derivative of the present invention, R 5 is a pivaloyl group, a benzoyl group, a tosyl group, or any one of the group selected from the following formula (2).
(In the formula (2), R 10 is a tert-butyl group, an ethyl group, an isopropyl group, an isobutyl group or a benzyl group.)

本発明は別の一側面において、下記式(3)で表されるインドリルベンゾチアジアゾール誘導体である。
(式(3)中、R9はハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。また、R6は水素原子、メチル基、ホルミル基またはシアノ基である。)
In another aspect, the present invention is an indolylbenzothiadiazole derivative represented by the following formula (3).
(In the formula (3), R 9 is a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, formyl Group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and R 6 is a hydrogen atom, a methyl group, a formyl group, or a cyano group.)

本発明は更に別の一側面において、下記式(4)で表されるインドリルベンゾチアジアゾール誘導体である。
(式(4)中、R9はハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。また、R10はtert−ブチル基、エチル基、イソプロピル基、イソブチル基またはベンジル基である。)
In still another aspect, the present invention is an indolylbenzothiadiazole derivative represented by the following formula (4).
(In the formula (4), R 9 is a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, formyl Group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and R 10 is a tert-butyl group, an ethyl group, an isopropyl group, an isobutyl group, or a benzyl group.)

本発明は更に別の一側面において、下記式(5)で表されるインドリルベンゾチアジアゾール誘導体である。
(式(5)中、R9はハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。また、R5は、ピバロイル基、ベンゾイル基またはトシル基である。)
In still another aspect, the present invention is an indolylbenzothiadiazole derivative represented by the following formula (5).
(In the formula (5), R 9 represents a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, formyl Group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and R 5 is a pivaloyl group, a benzoyl group, or a tosyl group.)

本発明のインドリルベンゾチアジアゾール誘導体は別の一実施形態において、前記R9が、メチル基、エチル基またはイソプロピル基である。 In another embodiment of the indolylbenzothiadiazole derivative of the present invention, R 9 is a methyl group, an ethyl group or an isopropyl group.

本発明は更に別の一側面において、下記式(6)で表されるボロン酸と、下記式(7)で表されるブロモベンゾチアジアゾールとを反応させることで、前記式(1)に記載のインドリルベンゾチアジアゾール誘導体を得るインドリルベンゾチアジアゾール誘導体の製造方法である。
(式(6)または式(7)中、R1〜R4、及び、R6〜R8は、それぞれ、互いに独立して水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。
また、R5は、アルキルオキシカルボニル基、アリールオキシカルボニル基、アシル基、アルキルスルホニル基またはアリールスルホニル基である。
また、R9は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。)
In a further aspect of the present invention, a boronic acid represented by the following formula (6) is reacted with a bromobenzothiadiazole represented by the following formula (7) to obtain a compound represented by the formula (1). This is a method for producing an indolylbenzothiadiazole derivative to obtain an indolylbenzothiadiazole derivative.
(In the formula (6) or the formula (7), R 1 to R 4 and R 6 to R 8 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryl It is an oxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group or an aryl group.
R 5 is an alkyloxycarbonyl group, an aryloxycarbonyl group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group.
R 9 represents a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group. , An alkyl group, a cycloalkyl group, an aralkyl group or an aryl group. )

本発明は更に別の一側面において、本発明のインドリルベンゾチアジアゾール誘導体を有機蛍光色素として用いた有機蛍光材料である。   In still another aspect, the present invention is an organic fluorescent material using the indolylbenzothiadiazole derivative of the present invention as an organic fluorescent dye.

本発明の有機蛍光材料は一実施形態において、蛍光パターニング材料、蛍光スイッチング材料または蛍光センサー材料である。   In one embodiment, the organic fluorescent material of the present invention is a fluorescent patterning material, a fluorescent switching material, or a fluorescent sensor material.

本発明の蛍光性有機分子によれば、以下の効果が得られる。
・短段階で簡便に合成できる。
・固体状態でも濃度消光を起こさず、良好な蛍光量子収率で発光する。
・機械的刺激により発光色を変化させた後に、加熱や溶媒蒸気にさらすだけでなく、室温付近で自発的に元の発光色に戻ることができる。
・熱やpH、或いは光に応答して発光色が変化する蛍光性高分子材料の作製にも応用することができる。
According to the fluorescent organic molecule of the present invention, the following effects can be obtained.
-Can be easily synthesized in a short stage.
-Emit light with good fluorescence quantum yield without concentration quenching even in the solid state.
-After changing the luminescent color by mechanical stimulation, it can return to the original luminescent color spontaneously near room temperature, in addition to heating and exposing to solvent vapor.
-It can be applied to the production of a fluorescent polymer material whose emission color changes in response to heat, pH, or light.

インドリルベンゾチアジアゾール誘導体1aの合成反応式である。It is a synthesis reaction formula of the indolyl benzothiadiazole derivative 1a. インドリルベンゾチアジアゾール誘導体1aの固体発光色素の蛍光メカノクロミズムを示す図である。It is a figure which shows the fluorescence mechanochromism of the solid luminescent pigment of the indolyl benzothiadiazole derivative 1a. インドリルベンゾチアジアゾール誘導体1aとその無置換体2aの結晶構造の模式図である。It is a schematic diagram of the crystal structure of the indolyl benzothiadiazole derivative 1a and its unsubstituted body 2a. インドリルベンゾチアジアゾール誘導体1b−1dの合成反応式と、各誘導体の収率及び発光極大波長を示す表である。It is a table | surface which shows the synthesis reaction formula of the indolyl benzothiadiazole derivative 1b-1d, the yield of each derivative, and emission maximum wavelength. インドリルベンゾチアジアゾール誘導体1b−1dの固体発光色素の蛍光メカノクロミズムを示す図である。It is a figure which shows the fluorescence mechanochromism of the solid luminescent pigment of indolyl benzothiadiazole derivative 1b-1d. 4−(3−メチル−1H−インドール−2−イル)−2,1,3−ベンゾチアジアゾール3aの合成反応式である。It is a synthetic reaction formula of 4- (3-methyl-1H-indol-2-yl) -2,1,3-benzothiadiazole 3a. インドリルベンゾチアジアゾール誘導体1e−1hの合成反応式と、各誘導体の収率及び発光極大波長を示す表である。It is a table | surface which shows the synthesis reaction formula of the indolyl benzothiadiazole derivative 1e-1h, the yield of each derivative, and emission maximum wavelength. インドリルベンゾチアジアゾール誘導体1e−1hの固体発光色素の蛍光メカノクロミズムを示す図である。It is a figure which shows the fluorescence mechanochromism of the solid luminescent pigment of indolyl benzothiadiazole derivative 1e-1h. インドリルベンゾチアジアゾール誘導体1i−1kの合成反応式と、各誘導体の収率及び発光極大波長を示す表である。It is a table | surface which shows the synthesis reaction formula of the indolyl benzothiadiazole derivative 1i-1k, the yield of each derivative, and emission maximum wavelength. インドリルベンゾチアジアゾール誘導体1i−1kの固体発光色素の蛍光メカノクロミズムを示す図である。It is a figure which shows the fluorescence mechanochromism of the solid luminescent pigment of indolyl benzothiadiazole derivative 1i-1k. インドリルベンゾチアジアゾール誘導体1l、1mの合成反応式である。It is a synthetic reaction formula of indolyl benzothiadiazole derivatives 11 and 1 m. インドリルベンゾチアジアゾール誘導体1l、1mの固体発光色素の蛍光メカノクロミズムを示す図である。It is a figure which shows the fluorescence mechanochromism of the solid luminescent pigment | dye of an indolyl benzothiadiazole derivative 11 and 1m.

(インドリルベンゾチアジアゾール誘導体)
本発明のインドリルベンゾチアジアゾール誘導体は、下記式(1)で表される。
(式(1)中、R1〜R4、及び、R6〜R8は、それぞれ、互いに独立して水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。
また、R5は、アルキルオキシカルボニル基、アリールオキシカルボニル基、アシル基、アルキルスルホニル基またはアリールスルホニル基である。
また、R9は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。)
(Indolyl benzothiadiazole derivative)
The indolylbenzothiadiazole derivative of the present invention is represented by the following formula (1).
(In the formula (1), R 1 to R 4 and R 6 to R 8 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group , An amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group or an aryl group.
R 5 is an alkyloxycarbonyl group, an aryloxycarbonyl group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group.
R 9 represents a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group. , An alkyl group, a cycloalkyl group, an aralkyl group or an aryl group. )

本発明のインドリルベンゾチアジアゾール誘導体は、電子供与基としてのインドリル基と、電子求引基としてのベンゾチアジアゾール基を有し、さらにインドリル基の窒素原子上に前述のR5基を有している。通常の蛍光性有機分子は、溶液状態で効率良く発光する場合でも固体状態では多分子間で芳香環や複素環がスタッキングすることで濃度消光が起こるため、蛍光量子収率が低下する。本発明のインドリルベンゾチアジアゾール誘導体は、電子豊富なインドリル基から電子不足なベンゾチアジアゾール環への電荷移動に基づく蛍光を示し、嵩高い電子求引性置換基であるR5基(アルキルオキシカルボニル基、アリールオキシカルボニル基、アシル基、アルキルスルホニル基またはアリールスルホニル基)が固体状態におけるベンゾチアジアゾール環の多分子間でのスタッキングを抑制するため、式(1)の状態において固体状態で良好な蛍光量子収率(約15〜60%)を示す。本化合物は、結晶状態において、固体発光するが蛍光メカノクロミズムを示さない無置換体と同じく、ベンゾチアジアゾール環を逆平行にしてスタッキングしているが、ベンゾチアジアゾール環が水平方向にずれた状態にある(後述の図3)。このため、蛍光メカノクロミズムが発現し、機械的刺激により発光色を変化させた後に元の発光色に放置するだけで戻ることができ、加熱や蒸気にさらすといった操作が不要となる。本発明のインドリルベンゾチアジアゾール誘導体によれば、溶液中だけでなく、固体状態でも濃度消光を起こさず高効率発光することができる。また、インドール誘導体とベンゾチアジアゾール誘導体の置換基を変更するのみで蛍光発光色の異なる各種誘導体を簡便に合成することができる。また、これらを高分子材料にドープすることで、熱やpH、光等の外部刺激に応答して発光色が変化する蛍光性高分子材料への応用が可能となる。 The indolyl benzothiadiazole derivative of the present invention has an indolyl group as an electron donating group and a benzothiadiazole group as an electron withdrawing group, and further has the aforementioned R 5 group on the nitrogen atom of the indolyl group. . Even when a normal fluorescent organic molecule emits light efficiently in a solution state, in a solid state, concentration quenching occurs due to stacking of aromatic rings and heterocycles among multiple molecules, so that the fluorescence quantum yield decreases. The indolyl benzothiadiazole derivative of the present invention exhibits fluorescence based on charge transfer from an electron-rich indolyl group to an electron-deficient benzothiadiazole ring, and has a bulky electron-withdrawing substituent, R 5 group (alkyloxycarbonyl group). , An aryloxycarbonyl group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group) suppresses the stacking of the benzothiadiazole ring among multiple molecules in the solid state, so that a good fluorescence quantum in the solid state in the state of the formula (1) is obtained. The yield (about 15-60%) is shown. In the crystalline state, the benzothiadiazole ring is stacked antiparallel to the unsubstituted compound that emits solid light but does not show fluorescence mechanochromism in the crystalline state, but the benzothiadiazole ring is shifted horizontally. (FIG. 3 described below). For this reason, fluorescence mechanochromism develops, and after changing the emission color by mechanical stimulation, it is possible to return to the original emission color only by leaving the original emission color, and an operation such as heating or exposing to steam becomes unnecessary. According to the indolylbenzothiadiazole derivative of the present invention, high-efficiency light emission can be achieved without concentration quenching not only in a solution but also in a solid state. Further, various derivatives having different fluorescence emission colors can be easily synthesized only by changing the substituents of the indole derivative and the benzothiadiazole derivative. Further, by doping these into a polymer material, application to a fluorescent polymer material whose emission color changes in response to external stimuli such as heat, pH, and light becomes possible.

また、R5は、ピバロイル基、ベンゾイル基、トシル(p−トルエンスルホニル)基、または、下記式(2)から選択される群のうちのいずれか1つであってもよい。
(式(2)中、R10はtert−ブチル基、エチル基、イソプロピル基、イソブチル基またはベンジル基である。)
R 5 may be a pivaloyl group, a benzoyl group, a tosyl (p-toluenesulfonyl) group, or any one of the group selected from the following formula (2).
(In the formula (2), R 10 is a tert-butyl group, an ethyl group, an isopropyl group, an isobutyl group or a benzyl group.)

また、本発明のインドリルベンゾチアジアゾール誘導体は、下記式(3)で表されてもよい。
(式(3)中、R9はハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。また、R6は水素原子、メチル基、ホルミル基またはシアノ基である。)
Further, the indolylbenzothiadiazole derivative of the present invention may be represented by the following formula (3).
(In the formula (3), R 9 is a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, formyl Group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and R 6 is a hydrogen atom, a methyl group, a formyl group, or a cyano group.)

また、本発明のインドリルベンゾチアジアゾール誘導体は、下記式(4)で表されてもよい。
(式(4)中、R9はハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。また、R10はtert−ブチル基、エチル基、イソプロピル基、イソブチル基またはベンジル基である。)
Further, the indolylbenzothiadiazole derivative of the present invention may be represented by the following formula (4).
(In the formula (4), R 9 is a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, formyl Group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and R 10 is a tert-butyl group, an ethyl group, an isopropyl group, an isobutyl group, or a benzyl group.)

また、本発明のインドリルベンゾチアジアゾール誘導体は、下記式(5)で表されてもよい。
(式(5)中、R9はハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。また、R5は、ピバロイル基、ベンゾイル基またはトシル基である。)
Further, the indolylbenzothiadiazole derivative of the present invention may be represented by the following formula (5).
(In the formula (5), R 9 represents a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, formyl Group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and R 5 is a pivaloyl group, a benzoyl group, or a tosyl group.)

本発明のインドリルベンゾチアジアゾール誘導体は、前記R9が、メチル基、エチル基またはイソプロピル基であってもよい。 In the indolylbenzothiadiazole derivative of the present invention, R 9 may be a methyl group, an ethyl group or an isopropyl group.

(インドリルベンゾチアジアゾール誘導体の製造方法)
次に、本発明のインドリルベンゾチアジアゾール誘導体の製造方法について詳述する。前述の式(1)で表されるインドリルベンゾチアジアゾール誘導体は、下記式(6)で表されるボロン酸と、下記式(7)で表されるブロモベンゾチアジアゾールとを、例えば、パラジウム触媒を用いた鈴木−宮浦クロスカップリング反応等の公知の方法で反応させることで得られる。
(式(6)または式(7)中、R1〜R4、及び、R6〜R8は、それぞれ、互いに独立して水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。
また、R5は、アルキルオキシカルボニル基、アリールオキシカルボニル基、アシル基、アルキルスルホニル基またはアリールスルホニル基である。
また、R9は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。)
(Production method of indolylbenzothiadiazole derivative)
Next, the method for producing the indolylbenzothiadiazole derivative of the present invention will be described in detail. The indolylbenzothiadiazole derivative represented by the above formula (1) is obtained by reacting a boronic acid represented by the following formula (6) with a bromobenzothiadiazole represented by the following formula (7), for example, by using a palladium catalyst. It can be obtained by a known method such as the Suzuki-Miyaura cross coupling reaction used.
(In the formula (6) or the formula (7), R 1 to R 4 and R 6 to R 8 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryl It is an oxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group or an aryl group.
R 5 is an alkyloxycarbonyl group, an aryloxycarbonyl group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group.
R 9 represents a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group. , An alkyl group, a cycloalkyl group, an aralkyl group or an aryl group. )

(有機蛍光材料)
本発明のインドリルベンゾチアジアゾール誘導体を有機蛍光色素として用いて有機蛍光材料を作製することができる。当該有機蛍光色素を、例えばポリマーにドープすることで、機械的刺激(物理的な力による変形等)を加えることで特性の発光色に変化し、放置することで元の色に戻る有機蛍光材料が得られる。また、これを応用して加熱、光照射による光酸発生、または、酸添加によるpH制御等の外部刺激を受けた部位のみ色調が変化する有機蛍光材料を得ることもできる。
(Organic fluorescent material)
An organic fluorescent material can be produced using the indolylbenzothiadiazole derivative of the present invention as an organic fluorescent dye. An organic fluorescent material that changes its emission color by applying a mechanical stimulus (such as deformation due to physical force) by doping the organic fluorescent dye into a polymer, for example, and then returns to the original color when left to stand Is obtained. Further, by applying this, it is also possible to obtain an organic fluorescent material in which the color tone changes only in a portion that has been subjected to an external stimulus such as heating, generation of photoacid by light irradiation, or pH control by addition of acid.

さらに、前述の有機蛍光材料を、例えば、蛍光パターニング材料、蛍光スイッチング材料または蛍光センサー材料等に用いることができる。   Further, the above-described organic fluorescent material can be used as, for example, a fluorescent patterning material, a fluorescent switching material, a fluorescent sensor material, or the like.

固体状態や溶液状態において機械的刺激や周囲の極性環境に応じて発光色が変化する前述の有機蛍光材料は、具体的には、高感度な蛍光検出を利用した下記の用途に応用することができる。
・書き込み、消去可能な蛍光記憶材料
・材料中の部分的な歪みの検出(自発的に発光色が戻ることで繰り返し利用可能)
・高分子材料の劣化(極性変化)の検出
・高分子重合の経時変化、高分子材料の重合度評価
・生体内の極性変化を可視化する蛍光プローブ
The above-mentioned organic fluorescent material, whose emission color changes in response to mechanical stimulation or surrounding polar environment in a solid state or solution state, can be specifically applied to the following applications utilizing high-sensitivity fluorescence detection. it can.
・ Writable and erasable fluorescent storage material ・ Detection of partial distortion in the material (can be used repeatedly by returning the emission color spontaneously)
・ Detection of deterioration (polarity change) of polymer material ・ Change over time of polymer polymerization, evaluation of polymerization degree of polymer material ・ Fluorescent probe to visualize polarity change in living body

以下に、本発明を実施例でさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

(実施例1:N−Boc−3−メチルインドリルベンゾチアジアゾール1aの合成とその蛍光メカノクロミズム)
N−Boc−3−メチルインドールにテトラヒドロフラン(THF)中、−20℃でリチウムジイソプロピルアミド(LDA)を作用させた後、ホウ酸トリイソプロピルを加えて1時間半反応させることで、N−Boc−3−メチルインドール−2−ボロン酸を得た。なお、「Boc」は下記式(8)で示すように、tert−ブトキシカルボニル基を示す。次に、得られたボロン酸を単離することなくテトラキス(トリフェニルホスフィン)パラジウム(20mol%)存在下、4−ブロモ−2,1,3−ベンゾチアジアゾールとジオキサン/炭酸カリウム水溶液混合溶媒中、95℃で4時間反応させることで、インドリルベンゾチアジアゾール誘導体1aを収率84%で得た(図1)。合成した1aの発光特性を測定したところ、1aは固体状態で発光極大波長485nmで発光し、その蛍光量子収率は0.46であった。また、トルエン中では発光極大波長523nm、蛍光量子収率0.43での発光が観測された。
(Example 1: Synthesis of N-Boc-3-methylindolyl benzothiadiazole 1a and its fluorescence mechanochromism)
N-Boc-3-methylindole was reacted with lithium diisopropylamide (LDA) at -20 ° C in tetrahydrofuran (THF) at -20 ° C, and triisopropyl borate was added to react for 1.5 hours. 3-Methylindole-2-boronic acid was obtained. Note that “Boc” represents a tert-butoxycarbonyl group as shown by the following formula (8). Next, in a mixed solvent of 4-bromo-2,1,3-benzothiadiazole and dioxane / potassium carbonate aqueous solution in the presence of tetrakis (triphenylphosphine) palladium (20 mol%) without isolation of the obtained boronic acid, By reacting at 95 ° C. for 4 hours, an indolylbenzothiadiazole derivative 1a was obtained with a yield of 84% (FIG. 1). When the emission characteristics of the synthesized 1a were measured, 1a emitted light at a maximum emission wavelength of 485 nm in a solid state, and its fluorescence quantum yield was 0.46. In toluene, light emission with a maximum emission wavelength of 523 nm and a fluorescence quantum yield of 0.43 was observed.

また、以下に1aの融点、赤外線吸収スペクトル(KBr法):IR(KBr)、1H NMRスペクトル、13C NMRスペクトルの測定結果を示す。
1a:
融点>140℃(分解)
IR (KBr): vmax 3072, 3051, 2998, 2983, 2933, 2915, 2864, 1720, 1601, 1534, 1473, 1457, 1391, 1353, 1333, 1273, 1236, 1203, 1170, 1151, 1128, 1112, 1064, 1008, 912, 901, 872, 851, 842, 832, 810, 757, 742 cm-1.
1H NMR (300 MHz, CDCl3): δ (ppm) 8.29 (d, J = 8.7 Hz, 1H), 8.04 (dd, J = 1.1, 8.7 Hz, 1H), 7.57 (dd, J = 6.8, 8.7 Hz, 1H), 7.61 - 7.55 (m, 2H), 7.40 (ddd, J = 1.5, 7.5, 8.7 Hz, 1H), 7.31 (dt, J = 1.1, 7.5 Hz, 1H), 2.21 (s, 3H), 0.98 (s, 9H).
13C NMR (126 MHz, CDCl3): δ (ppm) 154.9, 154.8, 149.9, 136.7, 130.9, 130.3, 129.3, 129.0, 128.2, 125.1, 122.6, 120.9, 119.1, 118.0, 115.5, 82.4, 27.4, 9.4.
In addition, the measurement results of the melting point of 1a, infrared absorption spectrum (KBr method): IR (KBr), 1 H NMR spectrum, and 13 C NMR spectrum are shown below.
1a:
Melting point> 140 ℃ (decomposition)
IR (KBr): v max 3072, 3051, 2998, 2983, 2933, 2915, 2864, 1720, 1601, 1534, 1473, 1457, 1391, 1353, 1333, 1273, 1236, 1203, 1170, 1151, 1128, 1112 , 1064, 1008, 912, 901, 872, 851, 842, 832, 810, 757, 742 cm -1 .
1 H NMR (300 MHz, CDCl 3 ): δ (ppm) 8.29 (d, J = 8.7 Hz, 1H), 8.04 (dd, J = 1.1, 8.7 Hz, 1H), 7.57 (dd, J = 6.8, 8.7 Hz, 1H), 7.61-7.55 (m, 2H), 7.40 (ddd, J = 1.5, 7.5, 8.7 Hz, 1H), 7.31 (dt, J = 1.1, 7.5 Hz, 1H), 2.21 (s, 3H) , 0.98 (s, 9H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 154.9, 154.8, 149.9, 136.7, 130.9, 130.3, 129.3, 129.0, 128.2, 125.1, 122.6, 120.9, 119.1, 118.0, 115.5, 82.4, 27.4, 9.4 .

固体蛍光色素1aに対し、スパチュラで擦ることによる機械的刺激を加えたところ、その発光色は青緑色から黄緑色へと長波長シフトした。また、機械的刺激により変化した発光色は室温下10秒程度放置することで自発的に元の発光色へ戻った(図2)。通常、機械的刺激により発光色が可逆的に変化する蛍光メカノクロミズムを示す分子は、元の状態に戻すために加熱や溶媒蒸気にさらす必要がある。機械的刺激により変化した発光色が室温下短時間で自発的に元の色に戻るのは極めて珍しい現象である。   When a mechanical stimulus was applied to the solid fluorescent dye 1a by rubbing with a spatula, the emission color shifted from blue-green to yellow-green with a longer wavelength. The luminescent color changed by the mechanical stimulus spontaneously returned to the original luminescent color when left at room temperature for about 10 seconds (FIG. 2). Usually, molecules exhibiting fluorescent mechanochromism, whose emission color is reversibly changed by mechanical stimulation, need to be heated or exposed to a solvent vapor in order to return to the original state. It is an extremely rare phenomenon that the luminescent color changed by a mechanical stimulus returns to the original color spontaneously in a short time at room temperature.

そこで、1aの単結晶を作成し、X線結晶構造解析を行ったところ、結晶状態において1aは、固体発光するが蛍光メカノクロミズムを示さない無置換体2aと同じく、ベンゾチアジアゾール環を逆平行にしてスタッキングしていることが明らかとなった。しかし1aは、ベンゾチアジアゾール環が水平方向にずれた状態にあり、このことが蛍光メカノクロミズムの発現に寄与していると推察される(図3)。   Therefore, a single crystal of 1a was prepared and subjected to X-ray crystal structure analysis. In the crystalline state, 1a had a benzothiadiazole ring made antiparallel to the unsubstituted 2a which emits solid light but does not show fluorescence mechanochromism. It was clear that they were stacking. However, in 1a, the benzothiadiazole ring was shifted in the horizontal direction, which is presumed to have contributed to the development of fluorescent mechanochromism (FIG. 3).

(実施例2:各種置換基を有するインドリルベンゾチアジアゾール誘導体の合成とその蛍光メカノクロミズム)
発光色および機械的刺激により変化した発光色の持続時間を調節することを目的として、種々の置換基を有する3−メチルインドリルベンゾチアジアゾール誘導体を合成した。なお、以下の検討ではいずれも合成した化合物の単離精製法を確立しておらず、収率には改善の余地がある。まず、ベンゾチアジアゾール環にメチル基、ホルミル基、シアノ基を有する1b−1dの合成を行った(図4)。無置換体1aの合成と同様に、N−Boc−3−メチルインドールから合成したボロン酸に対し、置換基R6の異なる種々のブロモベンゾチアジアゾールをパラジウム触媒存在下で反応させることで、カップリング体1b−1dを収率51−71%で得た(図4)。合成した1b−1dのトルエン中での蛍光スペクトルを測定したところ、R6にメチル基を有する1bは1aと同程度の発光極大波長(523nm)であり、ホルミル基やシアノ基を有する1c、1dでは40nm程度長波長シフトした。
(Example 2: Synthesis of indolyl benzothiadiazole derivative having various substituents and its fluorescence mechanochromism)
In order to control the emission color and the duration of the emission color changed by mechanical stimulation, 3-methylindolylbenzothiadiazole derivatives having various substituents were synthesized. In any of the following studies, no method for isolating and purifying the synthesized compound has been established, and there is room for improvement in the yield. First, 1b-1d having a methyl group, a formyl group, and a cyano group on the benzothiadiazole ring was synthesized (FIG. 4). As in the synthesis of the unsubstituted product 1a, the coupling is performed by reacting boronic acid synthesized from N-Boc-3-methylindole with various bromobenzothiadiazoles having different substituents R 6 in the presence of a palladium catalyst. The product 1b-1d was obtained in a yield of 51-71% (FIG. 4). When the fluorescence spectrum of the synthesized 1b-1d in toluene was measured, 1b having a methyl group at R 6 had the same emission maximum wavelength (523 nm) as 1a, and 1c and 1d having a formyl group and a cyano group. In this case, the wavelength was shifted by about 40 nm.

また、以下に1b、1c及び1dで表されるインドリルベンゾチアジアゾール誘導体の融点、赤外線吸収スペクトル(KBr法):IR(KBr)、1H NMRスペクトル、13C NMRスペクトルの測定結果をそれぞれ示す。 The melting points, infra-red absorption spectra (KBr method): IR (KBr), 1 H NMR spectrum and 13 C NMR spectrum of the indolylbenzothiadiazole derivatives represented by 1b, 1c and 1d are shown below.

1b:
融点>160℃(分解)
IR (KBr): vmax 3070, 3053, 2982, 2932, 2914, 2861, 1720, 1596, 1456, 1354, 1335, 1243, 1214, 1147, 1093, 1077, 1008, 884, 874, 854, 844, 818, 755, 741, 689, 669 cm-1.
1H NMR (500 MHz, CDCl3): δ (ppm) 8.27 (d, J = 8.2 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.3 Hz, 1H), 7.45 (d, J = 7.3 Hz, 1H), 7.38 (dd, J = 7.3, 8.2 Hz, 1H), 7.29 (dd, J = 7.3, 8.0 Hz, 1H), 2.80 (s, 3H), 2.19 (s, 3H), 1.02 (s, 9H).
13C NMR (126 MHz, CDCl3): δ (ppm) 155.4, 154.8, 150.0, 136.6, 131.3, 131.1, 130.4, 129.3, 127.9, 125.5, 124.9, 122.5, 119.0, 117.7, 115.4, 82.4, 27.4, 18.0, 9.4.
1b:
Melting point> 160 ℃ (decomposition)
IR (KBr): v max 3070, 3053, 2982, 2932, 2914, 2861, 1720, 1596, 1456, 1354, 1335, 1243, 1214, 1147, 1093, 1077, 1008, 884, 874, 854, 844, 818 , 755, 741, 689, 669 cm -1 .
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 8.27 (d, J = 8.2 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 7.46 (d, J = 7.3 Hz, 1H) , 7.45 (d, J = 7.3 Hz, 1H), 7.38 (dd, J = 7.3, 8.2 Hz, 1H), 7.29 (dd, J = 7.3, 8.0 Hz, 1H), 2.80 (s, 3H), 2.19 ( s, 3H), 1.02 (s, 9H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 155.4, 154.8, 150.0, 136.6, 131.3, 131.1, 130.4, 129.3, 127.9, 125.5, 124.9, 122.5, 119.0, 117.7, 115.4, 82.4, 27.4, 18.0 , 9.4.

1c:
融点>140℃(分解)
IR (KBr): vmax 3072, 3048, 2985, 2935, 2912, 2852, 1720, 1698, 1589, 1573, 1539, 1471, 1455, 1390, 1352, 1331, 1262, 1241, 1215, 1145, 1092, 1073, 1007, 873, 850, 802, 756, 741, 688 cm-1.
1H NMR (300 MHz, CDCl3): δ (ppm) 10.80 (s, 1H), 8.33 (d, J = 6.9 Hz, 1H), 8.26 (dd, J = 1.4, 7.9 Hz, 1H), 7.76 (d, J = 6.9 Hz, 1H), 7.62 (dd, J = 1.3, 8.2 Hz, 1H), 7.44 (ddd, J = 1.4, 8.2, 8.8 Hz, 1H), 7.33 (ddd, J = 1.3, 7.9, 8.8 Hz, 1H), 2.25 (s, 3H), 1.08 (s, 9H).
13C NMR (126 MHz, CDCl3): δ (ppm) 188.8, 155.3, 152.9, 149.8, 136.8, 134.2, 132.3, 130.19, 130.16, 128.0, 126.8, 125.8, 122.9, 119.6, 119.4, 115.5, 83.1, 27.5, 9.5.
1c:
Melting point> 140 ℃ (decomposition)
IR (KBr): v max 3072, 3048, 2985, 2935, 2912, 2852, 1720, 1698, 1589, 1573, 1539, 1471, 1455, 1390, 1352, 1331, 1262, 1241, 1215, 1145, 1092, 1073 , 1007, 873, 850, 802, 756, 741, 688 cm -1 .
1 H NMR (300 MHz, CDCl 3 ): δ (ppm) 10.80 (s, 1H), 8.33 (d, J = 6.9 Hz, 1H), 8.26 (dd, J = 1.4, 7.9 Hz, 1H), 7.76 ( d, J = 6.9 Hz, 1H), 7.62 (dd, J = 1.3, 8.2 Hz, 1H), 7.44 (ddd, J = 1.4, 8.2, 8.8 Hz, 1H), 7.33 (ddd, J = 1.3, 7.9, 8.8 Hz, 1H), 2.25 (s, 3H), 1.08 (s, 9H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 188.8, 155.3, 152.9, 149.8, 136.8, 134.2, 132.3, 130.19, 130.16, 128.0, 126.8, 125.8, 122.9, 119.6, 119.4, 115.5, 83.1, 27.5 , 9.5.

1d:
融点>140℃(分解)
IR (KBr): vmax 3101, 3074, 3054, 2989, 2938, 2910, 2860, 2225, 1717, 1583, 1541, 1456, 1382, 1367, 1355, 1336, 1274, 1241, 1215, 1143, 1093, 1007, 969, 885, 862, 850, 837, 817, 756, 742, 688, 667 cm-1.
1H NMR (500 MHz, CDCl3): δ (ppm) 8.24 (d, J = 8.2 Hz, 1H), 8.15 (d, J = 7.3 Hz, 1H), 7.65 (d, J = 7.3 Hz, 1H), 7.62 (d, J = 7.6 Hz, 1H), 7.44 (dd, J = 7.6, 8.2 Hz, 1H), 7.34 (dd, J = 7.4, 8.2 Hz, 1H), 2.24 (s, 3H), 1.13 (s, 9H).
13C NMR (126 MHz, CDCl3): δ (ppm) 154.2, 152.9, 149.7, 136.8, 135.8, 133.6, 130.1, 129.5, 127.6, 126.0, 123.0, 119.8, 119.5, 115.5, 115.4, 104.8, 83.4, 27.6, 9.5.
1d:
Melting point> 140 ℃ (decomposition)
IR (KBr): v max 3101, 3074, 3054, 2989, 2938, 2910, 2860, 2225, 1717, 1583, 1541, 1456, 1382, 1367, 1355, 1336, 1274, 1241, 1215, 1143, 1093, 1007 , 969, 885, 862, 850, 837, 817, 756, 742, 688, 667 cm -1 .
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 8.24 (d, J = 8.2 Hz, 1H), 8.15 (d, J = 7.3 Hz, 1H), 7.65 (d, J = 7.3 Hz, 1H) , 7.62 (d, J = 7.6 Hz, 1H), 7.44 (dd, J = 7.6, 8.2 Hz, 1H), 7.34 (dd, J = 7.4, 8.2 Hz, 1H), 2.24 (s, 3H), 1.13 ( s, 9H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 154.2, 152.9, 149.7, 136.8, 135.8, 133.6, 130.1, 129.5, 127.6, 126.0, 123.0, 119.8, 119.5, 115.5, 115.4, 104.8, 83.4, 27.6 , 9.5.

合成した1b−1dはいずれも固体状態で発光し、1b−1dは蛍光メカノクロミズムを示した(図5)。メチル基を有する1bとホルミル基を有する1cはそれぞれ、機械的刺激を加えることで緑色から黄色、黄色から橙色に発光色が変化し、どちらも室温下2分程度で元の発光色に戻った。また、シアノ基を有する1dでは機械的刺激により発光色が橙色から赤色に変化し、室温下で元の発光色に戻るまで10分以上必要であった。   All of the synthesized 1b-1d emitted light in a solid state, and 1b-1d exhibited fluorescent mechanochromism (FIG. 5). The emission color of 1b having a methyl group and 1c having a formyl group changed from green to yellow and yellow to orange, respectively, upon application of mechanical stimulation, and both returned to the original emission color in about 2 minutes at room temperature. . In the case of 1d having a cyano group, the emission color changed from orange to red due to mechanical stimulation, and it took 10 minutes or more to return to the original emission color at room temperature.

次に、インドール環の窒素原子上の置換基が異なる各種化合物を合成するため、1aの脱Boc化を行った。すなわち、1aをジクロロメタン中、過剰量のトリフルオロ酢酸(TFA)と室温で16時間反応させ、4−(3−メチル−1H−インドール−2−イル)−2,1,3−ベンゾチアジアゾール3aを収率99%で得た(図6)。   Next, in order to synthesize various compounds having different substituents on the nitrogen atom of the indole ring, de-Bocation of 1a was performed. That is, 1a is reacted with an excess amount of trifluoroacetic acid (TFA) in dichloromethane at room temperature for 16 hours to give 4- (3-methyl-1H-indol-2-yl) -2,1,3-benzothiadiazole 3a. It was obtained with a yield of 99% (FIG. 6).

また、以下に3aの融点、赤外線吸収スペクトル(KBr法):IR(KBr)、1H NMRスペクトル、13C NMRスペクトルの測定結果を示す。 The melting point of 3a, infrared absorption spectrum (KBr method): IR (KBr), 1 H NMR spectrum and 13 C NMR spectrum are shown below.

3a:
融点123 - 124℃
IR (KBr): vmax 3482, 3381, 3054, 2963, 2861, 1645, 1588, 1541, 1523, 1481, 1463, 1445, 1435, 1394, 1380, 1367, 1332, 1309, 1250, 1238, 1184, 1163, 1154, 1127, 1108, 1051, 904, 884, 858, 841, 807, 791, 746, 740, 687 cm-1.
1H NMR (500 MHz, CDCl3): δ (ppm) 10.47 (br s, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 7.3 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.56 (dd, J = 7.3, 8.8 Hz, 1H), 7.41 (dd, J = 0.9, 8.0 Hz, 1H), 7.22 (ddd, J = 0.9, 7.0, 7.6 Hz, 1H), 7.12 (ddd, J = 0.9, 7.0, 8.0 Hz, 1H), 2.56 (s, 3H).
13C NMR (126 MHz, CDCl3): δ (ppm) 155.4, 152.6, 135.9, 130.0, 129.8, 129.2, 126.3, 125.5, 123.1, 119.4, 119.1, 118.9, 111.5, 111.1, 11.4.
3a:
123-124 ° C
IR (KBr): v max 3482, 3381, 3054, 2963, 2861, 1645, 1588, 1541, 1523, 1481, 1463, 1445, 1435, 1394, 1380, 1367, 1332, 1309, 1250, 1238, 1184, 1163 , 1154, 1127, 1108, 1051, 904, 884, 858, 841, 807, 791, 746, 740, 687 cm -1 .
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 10.47 (br s, 1H), 7.80 (d, J = 8.8 Hz, 1H), 7.81 (d, J = 7.3 Hz, 1H), 7.61 (d , J = 7.6 Hz, 1H), 7.56 (dd, J = 7.3, 8.8 Hz, 1H), 7.41 (dd, J = 0.9, 8.0 Hz, 1H), 7.22 (ddd, J = 0.9, 7.0, 7.6 Hz, 1H), 7.12 (ddd, J = 0.9, 7.0, 8.0 Hz, 1H), 2.56 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 155.4, 152.6, 135.9, 130.0, 129.8, 129.2, 126.3, 125.5, 123.1, 119.4, 119.1, 118.9, 111.5, 111.1, 11.4.

得られた3aに対し、2当量の水素化ナトリウム存在下、置換基R10の異なる種々のクロロギ酸エステル(2当量)をTHF中室温で12〜19時間反応させることで、R10にエチル基(Et)、イソプロピル基(i−Pr)、イソブチル基(i−Bu)、ベンジル基(Bn)を有するインドリルベンゾチアジアゾール誘導体1e−1hを収率50−73%で得た(図7)。いずれもトルエン溶液中での発光極大波長は同程度であった。 The obtained 3a, 2 equivalents of sodium hydride presence, a variety of different chloroformate of substituent R 10 (2 eq) is reacted 12-19 hours at room temperature in THF, ethyl R 10 group (Et), an indolylbenzothiadiazole derivative 1e-1h having an isopropyl group (i-Pr), an isobutyl group (i-Bu), and a benzyl group (Bn) was obtained in a yield of 50-73% (FIG. 7). In each case, the emission maximum wavelength in the toluene solution was almost the same.

また、以下に1e、1f、1g及び1hで表されるインドリルベンゾチアジアゾール誘導体の融点、赤外線吸収スペクトル(KBr法):IR(KBr)、1H NMRスペクトル、13C NMRスペクトルの測定結果をそれぞれ示す。 The melting points, infra-red absorption spectrum (KBr method): IR (KBr), 1 H NMR spectrum, and 13 C NMR spectrum of the indolylbenzothiadiazole derivatives represented by 1e, 1f, 1g, and 1h are shown below. Show.

1e:
融点97 - 98℃
IR (KBr): vmax 3049, 2978, 2930, 2912, 2869, 1733, 1601, 1538, 1479, 1456, 1412, 1379, 1328, 1320, 1302, 1281, 1226, 1198, 1161, 1128, 1117, 1025, 889, 848, 830, 810, 742, 704, 676 cm-1.
1H NMR (300 MHz, CDCl3): δ (ppm) 8.26 (d, J = 8.6 Hz, 1H), 8.04 (dd, J = 0.9, 8.7 Hz, 1H), 7.70 (dd, J = 7.0, 8.7 Hz, 1H), 7.61 - 7.53 (m, 2H), 7.41 (ddd, J = 1.2, 7.2, 8.6 Hz, 1H), 7.33 (ddd, J = 0.9, 7.2, 8.2 Hz, 1H), 4.03 - 3.90 (m, 2H), 2.21 (s, 3H), 0.68 (t, J = 7.0 Hz, 3H).
13C NMR (126 MHz, CDCl3): δ (ppm) 154.82, 154.77, 151.4, 136.4, 130.9, 130.5, 129.3, 129.2, 127.7, 125.3, 122.9, 121.1, 119.2, 118.6, 115.5, 62.4, 13.3, 9.4.
1e:
Melting point 97-98 ° C
IR (KBr): v max 3049, 2978, 2930, 2912, 2869, 1733, 1601, 1538, 1479, 1456, 1412, 1379, 1328, 1320, 1302, 1281, 1226, 1198, 1161, 1128, 1117, 1025 , 889, 848, 830, 810, 742, 704, 676 cm -1 .
1 H NMR (300 MHz, CDCl 3 ): δ (ppm) 8.26 (d, J = 8.6 Hz, 1H), 8.04 (dd, J = 0.9, 8.7 Hz, 1H), 7.70 (dd, J = 7.0, 8.7 Hz, 1H), 7.61-7.53 (m, 2H), 7.41 (ddd, J = 1.2, 7.2, 8.6 Hz, 1H), 7.33 (ddd, J = 0.9, 7.2, 8.2 Hz, 1H), 4.03-3.90 ( m, 2H), 2.21 (s, 3H), 0.68 (t, J = 7.0 Hz, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 154.82, 154.77, 151.4, 136.4, 130.9, 130.5, 129.3, 129.2, 127.7, 125.3, 122.9, 121.1, 119.2, 118.6, 115.5, 62.4, 13.3, 9.4 .

1f:
融点108 - 109℃
IR (KBr): vmax 3072, 3044, 2975, 2926, 2874, 2857, 1731, 1604, 1535, 1457, 1392, 1368, 1339, 1317, 1267, 1230, 1203, 1166, 1130, 1103, 1064, 1010, 899, 852, 834, 803, 766, 757, 707, 675 cm-1.
1H NMR (500 MHz, CDCl3): δ (ppm) 8.30 (d, J = 8.6 Hz, 1H), 8.05 (dd, J = 1.1, 8.8 Hz, 1H), 7.70 (dd, J = 7.0, 8.8 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.56 (dd, J = 1.1, 7.0 Hz, 1H), 7.41 (dd, J = 7.2, 8.6 Hz, 1H), 7.32 (dd, J = 7.2, 8.0 Hz, 1H), 4.78 (quin, J = 6.3 Hz, 1H), 2.21 (s, 3H), 0.90 (d, J = 6.3 Hz, 3H), 0.52 (d, J = 6.3 Hz, 3H).
13C NMR (126 MHz, CDCl3): δ (ppm) 154.9, 154.8, 150.8, 136.6, 130.9, 130.4, 129.23, 129.21, 128.0, 125.2, 122.9, 121.1, 119.1, 118.4, 115.6, 70.3, 21.5, 20.7, 9.4.
1f:
Melting point 108-109 ℃
IR (KBr): v max 3072, 3044, 2975, 2926, 2874, 2857, 1731, 1604, 1535, 1457, 1392, 1368, 1339, 1317, 1267, 1230, 1203, 1166, 1130, 1103, 1064, 1010 , 899, 852, 834, 803, 766, 757, 707, 675 cm -1 .
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 8.30 (d, J = 8.6 Hz, 1H), 8.05 (dd, J = 1.1, 8.8 Hz, 1H), 7.70 (dd, J = 7.0, 8.8 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.56 (dd, J = 1.1, 7.0 Hz, 1H), 7.41 (dd, J = 7.2, 8.6 Hz, 1H), 7.32 (dd, J = 7.2, 8.0 Hz, 1H), 4.78 (quin, J = 6.3 Hz, 1H), 2.21 (s, 3H), 0.90 (d, J = 6.3 Hz, 3H), 0.52 (d, J = 6.3 Hz, 3H) ).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 154.9, 154.8, 150.8, 136.6, 130.9, 130.4, 129.23, 129.21, 128.0, 125.2, 122.9, 121.1, 119.1, 118.4, 115.6, 70.3, 21.5, 20.7 , 9.4.

1g:
融点138 - 140℃
IR (KBr): vmax 3074, 3042, 3014, 2974, 2955, 2926, 2893, 2874, 1729, 1602, 1535, 1466, 1457, 1404, 1381, 1351, 1325, 1269, 1229, 1204, 1166, 1130, 1112, 1064, 1030, 1013, 965, 945, 900, 854, 830, 810, 768, 758, 707, 675 cm-1.
1H NMR (300 MHz, CDCl3): δ (ppm) 8.28 (d, J = 8.7 Hz, 1H), 8.04 (dd, J = 1.1, 8.7 Hz, 1H), 7.70 (dd, J = 6.8, 8.7 Hz, 1H), 7.64 - 7.56 (m, 2H), 7.42 (ddd, J = 1.2, 7.5, 8.7 Hz, 1H), 7.33 (dt, J = 1.1, 7.5 Hz, 1H), 3.84 (dd, J = 7.0, 10.4 Hz, 1H), 3.57 (dd, J = 6.2, 10.4 Hz, 1H), 2.21 (s, 3H), 1.31 - 1.15 (m, 1H), 0.54 (d, J = 5.3 Hz, 3H), 0.52 (d, J = 5.3 Hz, 3H).
13C NMR (126 MHz, CDCl3): δ (ppm) 154.8, 154.7, 151.6, 136.5, 130.8, 130.4, 129.2, 129.1, 127.6, 125.3, 122.9, 121.1, 119.1, 118.7, 115.5, 73.0, 27.2, 18.64, 18.57, 9.5.
1g:
138-140 ° C
IR (KBr): v max 3074, 3042, 3014, 2974, 2955, 2926, 2893, 2874, 1729, 1602, 1535, 1466, 1457, 1404, 1381, 1351, 1325, 1269, 1229, 1204, 1166, 1130 , 1112, 1064, 1030, 1013, 965, 945, 900, 854, 830, 810, 768, 758, 707, 675 cm -1 .
1 H NMR (300 MHz, CDCl 3 ): δ (ppm) 8.28 (d, J = 8.7 Hz, 1H), 8.04 (dd, J = 1.1, 8.7 Hz, 1H), 7.70 (dd, J = 6.8, 8.7 Hz, 1H), 7.64-7.56 (m, 2H), 7.42 (ddd, J = 1.2, 7.5, 8.7 Hz, 1H), 7.33 (dt, J = 1.1, 7.5 Hz, 1H), 3.84 (dd, J = 7.0, 10.4 Hz, 1H), 3.57 (dd, J = 6.2, 10.4 Hz, 1H), 2.21 (s, 3H), 1.31-1.15 (m, 1H), 0.54 (d, J = 5.3 Hz, 3H), 0.52 (d, J = 5.3 Hz, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 154.8, 154.7, 151.6, 136.5, 130.8, 130.4, 129.2, 129.1, 127.6, 125.3, 122.9, 121.1, 119.1, 118.7, 115.5, 73.0, 27.2, 18.64 , 18.57, 9.5.

1h:
融点116 - 118℃
IR (KBr): vmax 3059, 3050, 3035, 2940, 2917, 2860, 1723, 1598, 1534, 1498, 1456, 1398, 1349, 1329, 1309, 1268, 1230, 1202, 1161, 1127, 1115, 1064, 1038, 1028, 1014, 979, 957, 934, 901, 849, 837, 827, 809, 754, 734, 693, 677 cm-1.
1H NMR (300 MHz, CDCl3): δ (ppm) 8.31 (d, J = 8.7 Hz, 1H), 7.86 (dd, J = 1.2, 8.7 Hz, 1H), 7.63 - 7.54 (m, 2H), 7.50 (dd, J = 1.2, 6.8 Hz, 1H), 7.41 (ddd, J = 1.5, 7.5, 8.7 Hz, 1H), 7.33 (dt, J = 1.2, 7.5 Hz, 1H), 7.25 - 7.19 (m, 1H), 7.19 - 7.13 (m, 2H), 6.77 - 6.72 (m, 2H), 4.93 (d, J = 12.0 Hz, 1H), 4.88 (d, J = 12.0 Hz, 1H), 2.18 (s, 3H).
13C NMR (126 MHz, CDCl3): δ (ppm) 154.58, 154.55, 151.3, 136.6, 134.0, 130.9, 130.5, 129.2, 128.8, 128.44, 128.36, 128.0, 127.4, 125.4, 123.0, 121.2, 119.2, 118.9, 115.6, 68.5, 9.5.
1h:
Melting point 116-118 ℃
IR (KBr): v max 3059, 3050, 3035, 2940, 2917, 2860, 1723, 1598, 1534, 1498, 1456, 1398, 1349, 1329, 1309, 1268, 1230, 1202, 1161, 1127, 1115, 1064 , 1038, 1028, 1014, 979, 957, 934, 901, 849, 837, 827, 809, 754, 734, 693, 677 cm -1 .
1 H NMR (300 MHz, CDCl 3 ): δ (ppm) 8.31 (d, J = 8.7 Hz, 1H), 7.86 (dd, J = 1.2, 8.7 Hz, 1H), 7.63-7.54 (m, 2H), 7.50 (dd, J = 1.2, 6.8 Hz, 1H), 7.41 (ddd, J = 1.5, 7.5, 8.7 Hz, 1H), 7.33 (dt, J = 1.2, 7.5 Hz, 1H), 7.25-7.19 (m, 1H), 7.19-7.13 (m, 2H), 6.77-6.72 (m, 2H), 4.93 (d, J = 12.0 Hz, 1H), 4.88 (d, J = 12.0 Hz, 1H), 2.18 (s, 3H ).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 154.58, 154.55, 151.3, 136.6, 134.0, 130.9, 130.5, 129.2, 128.8, 128.44, 128.36, 128.0, 127.4, 125.4, 123.0, 121.2, 119.2, 118.9 , 115.6, 68.5, 9.5.

合成した1e−1hはいずれも固体状態で発光するとともに、蛍光メカノクロミズムを示した(図8)。エチル基を有する1eは、機械的刺激を加えることで固体発光色が青緑色から黄緑色に変化し、変化した発光色は約1分後に元の色に戻った。イソプロピル基を有する1fの場合は、固体発光色が青色から黄色に変化し、約30秒後に元の色に戻った。イソブチル基を有する1gは発光色が戻る速度が最も大きく、機械的刺激により緑色から黄色に変化した発光色は直ちに(約3秒後)元に戻った。同様に、ベンジル基を有する1hは、緑色から黄色に変化した発光色が室温下1分程度で元に戻った。このように、カルバミン酸エステルの置換基を変更することによって、発光色および機械的刺激により変化した発光色が元に戻るまでの時間を調節することができた。   All of the synthesized 1e-1h emitted light in a solid state and exhibited fluorescence mechanochromism (FIG. 8). In the case of 1e having an ethyl group, the solid emission color changed from blue-green to yellow-green upon application of a mechanical stimulus, and the changed emission color returned to the original color after about 1 minute. In the case of 1f having an isopropyl group, the solid emission color changed from blue to yellow, and returned to the original color after about 30 seconds. The emission color of 1 g having an isobutyl group was the fastest to return the luminescent color, and the luminescent color changed from green to yellow due to mechanical stimulation returned immediately (after about 3 seconds). Similarly, for 1h having a benzyl group, the emission color changed from green to yellow was restored in about 1 minute at room temperature. As described above, by changing the substituent of the carbamate, it was possible to adjust the emission color and the time until the emission color changed by the mechanical stimulus returns to the original state.

クロロギ酸エステルを用いた1e−1hの合成と同様に、3aに水素化ナトリウム存在下、塩化ピバロイル、塩化ベンゾイル、または塩化p−トルエンスルホニルをTHF中室温で一晩反応させることで、ピバロイル(Piv)基、ベンゾイル(Bz)基、トシル(Ts)基を有するインドリルベンゾチアジアゾール誘導体1i−1kをそれぞれ収率41%、46%、40%で得た(図9)。   As in the synthesis of 1e-1h using chloroformate, pivaloyl chloride (Piv) was reacted with pivaloyl chloride, benzoyl chloride, or p-toluenesulfonyl chloride in THF at room temperature overnight in the presence of sodium hydride. ), A benzoyl (Bz) group, and an indolyl benzothiadiazole derivative 1i-1k having a tosyl (Ts) group were obtained at yields of 41%, 46%, and 40%, respectively (FIG. 9).

また、以下に1i、1j及び1kで表されるインドリルベンゾチアジアゾール誘導体の融点、赤外線吸収スペクトル(KBr法):IR(KBr)、1H NMRスペクトル、13C NMRスペクトルの測定結果をそれぞれ示す。 The melting points, infra-red absorption spectrum (KBr method): IR (KBr), 1 H NMR spectrum and 13 C NMR spectrum of the indolylbenzothiadiazole derivatives represented by 1i, 1j and 1k are shown below.

1i:
融点95.6 - 96.2℃
IR (KBr): vmax 3065, 2970, 2927, 2864, 1715, 1475, 1449, 1327, 1299, 1220, 1172, 1126, 908, 856, 841, 823, 810, 776, 756, 750, 638, 619 cm-1.
1H NMR (500 MHz, CDCl3): δ (ppm) 8.05 (dd, J = 0.9, 8.4 Hz, 1H), 7.70 (dd, J = 6.9, 8.4 Hz, 1H), 7.64 (dd, J = 0.8, 7.2 Hz, 1H), 7.60 (dd, J = 0.9, 6.9 Hz, 1H), 7.53 (dd, J = 0.8, 8.2 Hz, 1H), 7.33 (ddd, J = 0.8, 7.8, 8.2 Hz, 1H), 7.25 (ddd, J = 0.8, 7.8, 8.2 Hz, 1H), 2.28 (s, 3H), 0.96 (s, 9H).
13C NMR (126 MHz, CDCl3): δ (ppm) 184.9, 155.1, 153.4, 136.4, 131.1, 130.5, 129.4, 129.2, 127.1, 124.3, 121.4, 121.3, 119.4, 116.5, 112.2, 43.9, 27.8, 9.9.
1i:
95.6-96.2 ° C
IR (KBr): v max 3065, 2970, 2927, 2864, 1715, 1475, 1449, 1327, 1299, 1220, 1172, 1126, 908, 856, 841, 823, 810, 776, 756, 750, 638, 619 cm -1 .
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 8.05 (dd, J = 0.9, 8.4 Hz, 1H), 7.70 (dd, J = 6.9, 8.4 Hz, 1H), 7.64 (dd, J = 0.8 , 7.2 Hz, 1H), 7.60 (dd, J = 0.9, 6.9 Hz, 1H), 7.53 (dd, J = 0.8, 8.2 Hz, 1H), 7.33 (ddd, J = 0.8, 7.8, 8.2 Hz, 1H) , 7.25 (ddd, J = 0.8, 7.8, 8.2 Hz, 1H), 2.28 (s, 3H), 0.96 (s, 9H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 184.9, 155.1, 153.4, 136.4, 131.1, 130.5, 129.4, 129.2, 127.1, 124.3, 121.4, 121.3, 119.4, 116.5, 112.2, 43.9, 27.8, 9.9 .

1j:
融点191.2 - 191.6℃
IR (KBr): vmax 3052, 2913, 2858, 1673, 1598, 1598, 1535, 1473, 1453, 1390, 1351, 1331, 1230, 1201, 1152, 1051, 1024, 902, 874, 853, 829, 812, 761, 748, 716, 697, 669 cm-1.
1H NMR (500 MHz, CDCl3): δ (ppm) 7.80 - 7.76 (m, 1H), 7.69 - 7.64 (m, 2H), 7.54 - 7.52 (m, 2H), 7.44 (d, J = 7.3 Hz, 2H), 7.34 - 7.28 (m, 2H), 7.21 (t, J = 9.1 Hz, 1H), 7.05 (t, J = 7.9 Hz, 2H), 2.33 (s, 3H).
13C NMR (126 MHz, CDCl3): δ (ppm) 169.6, 154.6, 153.6, 137.3, 135.1, 131.94, 131.88, 130.4, 130.1, 129.2, 129.0, 127.5, 126.6, 125.1, 122.9, 121.0, 119.3, 118.9, 114.6, 9.7.
1j:
191.2-191.6 ° C
IR (KBr): v max 3052, 2913, 2858, 1673, 1598, 1598, 1535, 1473, 1453, 1390, 1351, 1331, 1230, 1201, 1152, 1051, 1024, 902, 874, 853, 829, 812 , 761, 748, 716, 697, 669 cm -1 .
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 7.80-7.76 (m, 1H), 7.69-7.64 (m, 2H), 7.54-7.52 (m, 2H), 7.44 (d, J = 7.3 Hz , 2H), 7.34-7.28 (m, 2H), 7.21 (t, J = 9.1 Hz, 1H), 7.05 (t, J = 7.9 Hz, 2H), 2.33 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 169.6, 154.6, 153.6, 137.3, 135.1, 131.94, 131.88, 130.4, 130.1, 129.2, 129.0, 127.5, 126.6, 125.1, 122.9, 121.0, 119.3, 118.9 , 114.6, 9.7.

1k:
融点177.5 - 178.3℃
IR (KBr): vmax 3067, 2975, 2921, 1597, 1537, 1452, 1371, 1360, 1222, 1188, 1173, 1132, 1121, 1089, 1018, 951, 900, 830, 820, 811, 757, 683, 667 cm-1.
1H NMR (500 MHz, CDCl3): δ (ppm) 8.30 (d, J = 8.2 Hz, 1H), 8.11 (dd, J = 0.9, 8.8 Hz, 1H), 7.73 (dd, J = 7.0, 8.8 Hz, 1H), 7.61 (dd, J = 0.9, 7.0 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.40 (dd, J = 7.2, 8.2 Hz, 1H), 7.32 (dd, J = 7.2, 8.0 Hz, 1H), 7.27 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 8.2 Hz, 2H), 2.26 (s, 3H), 2.02 (s, 3H).
13C NMR (126 MHz, CDCl3): δ (ppm) 154.63, 154.62, 144.4, 137.4, 135.1, 132.2, 131.5, 131.3, 129.2, 128.8, 126.7, 125.38, 125.35, 123.8, 122.1, 121.5, 119.4, 115.8, 21.5, 9.7.
1k:
177.5-178.3 ° C
IR (KBr): v max 3067, 2975, 2921, 1597, 1537, 1452, 1371, 1360, 1222, 1188, 1173, 1132, 1121, 1089, 1018, 951, 900, 830, 820, 811, 757, 683 , 667 cm -1 .
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 8.30 (d, J = 8.2 Hz, 1H), 8.11 (dd, J = 0.9, 8.8 Hz, 1H), 7.73 (dd, J = 7.0, 8.8 Hz, 1H), 7.61 (dd, J = 0.9, 7.0 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.40 (dd, J = 7.2, 8.2 Hz, 1H), 7.32 (dd, J = 7.2, 8.0 Hz, 1H), 7.27 (d, J = 8.2 Hz, 2H), 6.96 (d, J = 8.2 Hz, 2H), 2.26 (s, 3H), 2.02 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 154.63, 154.62, 144.4, 137.4, 135.1, 132.2, 131.5, 131.3, 129.2, 128.8, 126.7, 125.38, 125.35, 123.8, 122.1, 121.5, 119.4, 115.8 , 21.5, 9.7.

窒素原子上にアシル基またはトシル基を有する1i−1kも固体状態で発光し、蛍光メカノクロミズムを示した(図10)。ピバロイル基を有する1iでは、固体発光色が機械的刺激により黄色から橙色に変化し、室温下2分程度で元の発光色に戻った。ベンゾイル基を有する1jでは、黄色から黄橙色への蛍光メカノクロミズムを示し、発光色は室温下2分程度で元に戻った。また、トシル基を有する1kも同様に、機械的刺激により青緑色から黄緑色へ発光色が変化し、その発光色は元に戻るのに室温下10分以上要した。   1i-1k having an acyl group or a tosyl group on the nitrogen atom also emitted light in a solid state and exhibited fluorescent mechanochromism (FIG. 10). In 1i having a pivaloyl group, the solid emission color changed from yellow to orange due to mechanical stimulation, and returned to the original emission color in about 2 minutes at room temperature. 1j having a benzoyl group exhibited fluorescence mechanochromism from yellow to yellow-orange, and the emitted color returned to its original state in about 2 minutes at room temperature. Similarly, for 1k having a tosyl group, the emission color changed from blue-green to yellow-green due to mechanical stimulation, and it took 10 minutes or more at room temperature to return to the original emission color.

(実施例3:N−Boc−3−置換インドリルベンゾチアジアゾール1l、1mの合成とその蛍光メカノクロミズム)
実施例1と同様に、N−Boc−3−置換インドールにテトラヒドロフラン(THF)中、−20℃でリチウムジイソプロピルアミド(LDA)を作用させた後、ホウ酸トリイソプロピルを加えて1時間半反応させることで、N−Boc−3−置換インドール−2−ボロン酸を得た。次に、得られたボロン酸を単離することなくテトラキス(トリフェニルホスフィン)パラジウム(20mol%)存在下、4−ブロモ−2,1,3−ベンゾチアジアゾールとジオキサン/炭酸カリウム水溶液混合溶媒中、95℃で4時間反応させることで、インドリルベンゾチアジアゾール誘導体1l、1mをそれぞれ収率48%、64%で得た。合成した1l、1mのトルエン中での発光スペクトルを測定したところ、どちらも1aよりわずかに短波長シフトした位置に発光極大が観測された(図11)。
(Example 3: Synthesis of N-Boc-3-substituted indolylbenzothiadiazole 1 l, 1 m and its fluorescence mechanochromism)
In the same manner as in Example 1, lithium diisopropylamide (LDA) is allowed to act on N-Boc-3-substituted indole in tetrahydrofuran (THF) at −20 ° C., and triisopropyl borate is added to react for 1.5 hours. This gave N-Boc-3-substituted indole-2-boronic acid. Next, in a mixed solvent of 4-bromo-2,1,3-benzothiadiazole and dioxane / potassium carbonate aqueous solution in the presence of tetrakis (triphenylphosphine) palladium (20 mol%) without isolation of the obtained boronic acid, By reacting at 95 ° C. for 4 hours, indolyl benzothiadiazole derivatives 11 and 1 m were obtained in a yield of 48% and 64%, respectively. When the emission spectra of the synthesized 1 l and 1 m toluene were measured, in each case, the emission maximum was observed at a position slightly shifted in wavelength from 1a (FIG. 11).

また、以下に1l、1mの融点、赤外線吸収スペクトル(KBr法):IR(KBr)、1H NMRスペクトル、13C NMRスペクトルの測定結果をそれぞれ示す。
1l:
融点128.0 - 128.6 ℃(分解)
IR (KBr): vmax 2969, 1732, 1601, 1538, 1454, 1411, 1392, 1369, 1332, 1286, 1254, 1223, 1149, 1116, 1089, 1018, 905, 878, 846, 815, 796, 763, 743, 705 cm-1.
1H NMR (500 MHz, CDCl3): δ (ppm) 8.31 (d, J = 8.5 Hz, 1H), 8.04 (dd, J = 8.8, 1.3 Hz, 1H), 7.69 (dd, J = 8.8, 6.6 Hz, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.56 (dd, J = 6.6, 1.1 Hz, 1H), 7.39 (dd, J = 8.5, 7.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 2.68 (dt, J = 21.8, 7.6 Hz, 1H), 2.53 (dt, J = 21.8, 7.6 Hz, 1H), 1.20 (t, J = 7.6 Hz, 3H), 0.97 (s, 9H).
13C NMR (126 MHz, CDCl3): δ (ppm) 155.0, 154.9, 149.9, 136.9, 130.3, 129.3, 128.7, 128.3, 124.9, 124.2, 122.6, 121.0, 119.2, 115.6, 82.4, 27.4, 17.8, 15.3.
The following shows the melting points of 1 l and 1 m, and the measurement results of infrared absorption spectrum (KBr method): IR (KBr), 1 H NMR spectrum, and 13 C NMR spectrum, respectively.
1l:
128.0-128.6 ° C (decomposition)
IR (KBr): v max 2969, 1732, 1601, 1538, 1454, 1411, 1392, 1369, 1332, 1286, 1254, 1223, 1149, 1116, 1089, 1018, 905, 878, 846, 815, 796, 763 , 743, 705 cm -1 .
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 8.31 (d, J = 8.5 Hz, 1H), 8.04 (dd, J = 8.8, 1.3 Hz, 1H), 7.69 (dd, J = 8.8, 6.6 Hz, 1H), 7.63 (d, J = 7.6 Hz, 1H), 7.56 (dd, J = 6.6, 1.1 Hz, 1H), 7.39 (dd, J = 8.5, 7.6 Hz, 1H), 7.30 (t, J = 7.6 Hz, 1H), 2.68 (dt, J = 21.8, 7.6 Hz, 1H), 2.53 (dt, J = 21.8, 7.6 Hz, 1H), 1.20 (t, J = 7.6 Hz, 3H), 0.97 (s , 9H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 155.0, 154.9, 149.9, 136.9, 130.3, 129.3, 128.7, 128.3, 124.9, 124.2, 122.6, 121.0, 119.2, 115.6, 82.4, 27.4, 17.8, 15.3 .

1m:
融点>145℃(分解)
IR (KBr): vmax 3075, 3015, 2973, 2931, 2873, 1721, 1600, 1536, 1456, 1417, 1366, 1331, 1274, 1236, 1210, 1157, 1110, 1087, 999, 903, 868, 851, 818, 811, 769, 754 cm-1.
1H NMR (500 MHz, CDCl3): δ (ppm) 8.34 (d, J = 8.2 Hz, 1H), 8.05 (dd, J = 8.8, 1.0 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.69 (dd, J = 8.8, 6.7 Hz, 1H), 7.52 (dd, J = 6.7, 1.0 Hz, 1H), 7.36 (dd, J = 8.2, 7.9 Hz, 1H), 7.27 (t, J = 7.9 Hz, 1H), 2.93 (sept, J = 7.3 Hz, 1H), 1.42 (d, J = 7.3 Hz, 3H), 1.26 (d, J = 7.3 Hz, 3H), 0.95 (s, 9H).
13C NMR (126 MHz, CDCl3): δ (ppm) 155.1, 154.8, 149.8, 137.2, 129.3, 129.21, 129.20, 128.6, 128.0, 127.7, 124.6, 122.2, 121.1, 120.7, 115.8, 82.4, 27.4, 26.3, 22.6, 22.3.
1m:
Melting point> 145 ° C (decomposition)
IR (KBr): v max 3075, 3015, 2973, 2931, 2873, 1721, 1600, 1536, 1456, 1417, 1366, 1331, 1274, 1236, 1210, 1157, 1110, 1087, 999, 903, 868, 851 , 818, 811, 769, 754 cm -1 .
1 H NMR (500 MHz, CDCl 3 ): δ (ppm) 8.34 (d, J = 8.2 Hz, 1H), 8.05 (dd, J = 8.8, 1.0 Hz, 1H), 7.80 (d, J = 7.9 Hz, 1H), 7.69 (dd, J = 8.8, 6.7 Hz, 1H), 7.52 (dd, J = 6.7, 1.0 Hz, 1H), 7.36 (dd, J = 8.2, 7.9 Hz, 1H), 7.27 (t, J = 7.9 Hz, 1H), 2.93 (sept, J = 7.3 Hz, 1H), 1.42 (d, J = 7.3 Hz, 3H), 1.26 (d, J = 7.3 Hz, 3H), 0.95 (s, 9H).
13 C NMR (126 MHz, CDCl 3 ): δ (ppm) 155.1, 154.8, 149.8, 137.2, 129.3, 129.21, 129.20, 128.6, 128.0, 127.7, 124.6, 122.2, 121.1, 120.7, 115.8, 82.4, 27.4, 26.3 , 22.6, 22.3.

合成した1l、1mはいずれも固体状態で発光するとともに、蛍光メカノクロミズムを示した。また、固体蛍光色素1l、1mに対し、スパチュラで擦ることによる機械的刺激を加えた。その結果、エチル基を有する1lでは、固体発光色が青緑色から黄緑色へと変化し、発光色は室温下10分程度放置することで自発的に元の発光色へ戻った。また、イソプロピル基を有する1mも同様に、固体発光色が青緑色から黄緑色へと変化し、発光色は室温下2分程度放置することで自発的に元の発光色へ戻った(図12)。   Each of the synthesized 1l and 1m emitted light in a solid state and exhibited fluorescent mechanochromism. In addition, mechanical stimulation by rubbing with a spatula was applied to 1 l and 1 m of the solid fluorescent dye. As a result, in 1 l having an ethyl group, the solid emission color changed from blue-green to yellow-green, and the emission color spontaneously returned to the original emission color by being left at room temperature for about 10 minutes. Similarly, the solid emission color of 1 m having an isopropyl group changed from blue-green to yellow-green, and the emission color spontaneously returned to the original emission color by being left at room temperature for about 2 minutes (FIG. 12). ).

Claims (9)

下記式(1)で表されるインドリルベンゾチアジアゾール誘導体。
(式(1)中、R1〜R4、及び、R6〜R8は、それぞれ、互いに独立して水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。
また、R5は、アルキルオキシカルボニル基、アリールオキシカルボニル基、アシル基、アルキルスルホニル基またはアリールスルホニル基である。
また、R9は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。)
An indolylbenzothiadiazole derivative represented by the following formula (1).
(In the formula (1), R 1 to R 4 and R 6 to R 8 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group , An amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group or an aryl group.
R 5 is an alkyloxycarbonyl group, an aryloxycarbonyl group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group.
R 9 represents a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group. , An alkyl group, a cycloalkyl group, an aralkyl group or an aryl group. )
前記R5が、ピバロイル基、ベンゾイル基、トシル基、または、下記式(2)から選択される群のうちのいずれか1つである請求項1に記載のインドリルベンゾチアジアゾール誘導体。
(式(2)中、R10はtert−ブチル基、エチル基、イソプロピル基、イソブチル基またはベンジル基である。)
2. The indolyl benzothiadiazole derivative according to claim 1, wherein R 5 is one selected from the group consisting of a pivaloyl group, a benzoyl group, a tosyl group, and the following formula (2). 3.
(In the formula (2), R 10 is a tert-butyl group, an ethyl group, an isopropyl group, an isobutyl group or a benzyl group.)
下記式(3)で表されるインドリルベンゾチアジアゾール誘導体。
(式(3)中、R9はハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。また、R6は水素原子、メチル基、ホルミル基またはシアノ基である。)
An indolylbenzothiadiazole derivative represented by the following formula (3).
(In the formula (3), R 9 is a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, formyl Group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and R 6 is a hydrogen atom, a methyl group, a formyl group, or a cyano group.)
下記式(4)で表されるインドリルベンゾチアジアゾール誘導体。
(式(4)中、R9はハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。また、R10はtert−ブチル基、エチル基、イソプロピル基、イソブチル基またはベンジル基である。)
An indolylbenzothiadiazole derivative represented by the following formula (4).
(In the formula (4), R 9 is a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, formyl Group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and R 10 is a tert-butyl group, an ethyl group, an isopropyl group, an isobutyl group, or a benzyl group.)
下記式(5)で表されるインドリルベンゾチアジアゾール誘導体。
(式(5)中、R9はハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。また、R5は、ピバロイル基、ベンゾイル基またはトシル基である。)
An indolylbenzothiadiazole derivative represented by the following formula (5).
(In the formula (5), R 9 represents a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, formyl Group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group, or an aryl group, and R 5 is a pivaloyl group, a benzoyl group, or a tosyl group.)
前記R9が、メチル基、エチル基またはイソプロピル基である請求項1〜5のいずれか一項に記載のインドリルベンゾチアジアゾール誘導体。 The indolylbenzothiadiazole derivative according to claim 1, wherein R 9 is a methyl group, an ethyl group, or an isopropyl group. 下記式(6)で表されるボロン酸と、下記式(7)で表されるブロモベンゾチアジアゾールとを反応させることで、前記式(1)に記載のインドリルベンゾチアジアゾール誘導体を得るインドリルベンゾチアジアゾール誘導体の製造方法。
(式(6)または式(7)中、R1〜R4、及び、R6〜R8は、それぞれ、互いに独立して水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。
また、R5は、アルキルオキシカルボニル基、アリールオキシカルボニル基、アシル基、アルキルスルホニル基またはアリールスルホニル基である。
また、R9は、ハロゲン原子、ヒドロキシ基、アルコキシ基、アラルキルオキシ基、アリールオキシ基、ニトロ基、アミノ基、アミド基、カルボキシ基、アルキルオキシカルボニル基、アリールオキシカルボニル基、ホルミル基、シアノ基、アルキル基、シクロアルキル基、アラルキル基またはアリール基である。)
An indolylbenzothiadiazole derivative represented by the above formula (1) is obtained by reacting a boronic acid represented by the following formula (6) with a bromobenzothiadiazole represented by the following formula (7). A method for producing a thiadiazole derivative.
(In the formula (6) or the formula (7), R 1 to R 4 and R 6 to R 8 each independently represent a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryl It is an oxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group, an alkyl group, a cycloalkyl group, an aralkyl group or an aryl group.
R 5 is an alkyloxycarbonyl group, an aryloxycarbonyl group, an acyl group, an alkylsulfonyl group or an arylsulfonyl group.
R 9 represents a halogen atom, a hydroxy group, an alkoxy group, an aralkyloxy group, an aryloxy group, a nitro group, an amino group, an amide group, a carboxy group, an alkyloxycarbonyl group, an aryloxycarbonyl group, a formyl group, a cyano group. , An alkyl group, a cycloalkyl group, an aralkyl group or an aryl group. )
請求項1〜6のいずれか一項に記載のインドリルベンゾチアジアゾール誘導体を有機蛍光色素として用いた有機蛍光材料。   An organic fluorescent material using the indolylbenzothiadiazole derivative according to any one of claims 1 to 6 as an organic fluorescent dye. 蛍光パターニング材料、蛍光スイッチング材料または蛍光センサー材料である請求項8に記載の有機蛍光材料。   The organic fluorescent material according to claim 8, which is a fluorescent patterning material, a fluorescent switching material, or a fluorescent sensor material.
JP2016153851A 2015-09-16 2016-08-04 Indolylbenzothiadiazole derivative, method for producing indolylbenzothiadiazole derivative, and organic fluorescent material Active JP6663820B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015183206 2015-09-16
JP2015183206 2015-09-16

Publications (2)

Publication Number Publication Date
JP2017057191A JP2017057191A (en) 2017-03-23
JP6663820B2 true JP6663820B2 (en) 2020-03-13

Family

ID=58389673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016153851A Active JP6663820B2 (en) 2015-09-16 2016-08-04 Indolylbenzothiadiazole derivative, method for producing indolylbenzothiadiazole derivative, and organic fluorescent material

Country Status (1)

Country Link
JP (1) JP6663820B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7299574B2 (en) * 2019-03-04 2023-06-28 凸版印刷株式会社 Coating liquid, cured film, and laminate
JP7311851B2 (en) * 2019-03-04 2023-07-20 凸版印刷株式会社 Composition, cured film and laminate
JP7311852B2 (en) * 2019-03-04 2023-07-20 凸版印刷株式会社 Composition, cured film and laminate
CN111116545B (en) * 2020-03-04 2023-03-17 太原理工大学 Erasable fluorescent material unlocked based on external stimulus
CN114316219B (en) * 2021-12-15 2023-11-28 北京大学深圳研究生院 Polymer with electrochromic and thermochromic properties as well as preparation method and application thereof

Also Published As

Publication number Publication date
JP2017057191A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6663820B2 (en) Indolylbenzothiadiazole derivative, method for producing indolylbenzothiadiazole derivative, and organic fluorescent material
JP3341090B2 (en) Oxadiazole derivative and method for producing the same
JP2019509977A (en) Luminescent compound
Ge et al. The synthesis, characterization and optical properties of novel 1, 3, 4-oxadiazole-containing imidazo [1, 5-a] pyridine derivatives
CN107108590B (en) Molecules exhibiting dual emission properties
Lin et al. One-pot formation of fluorescent γ-lactams having an α-phosphorus ylide moiety through three-component α (δ′)-Michael reactions of phosphines with an enyne and N-tosyl aldimines
JP5522447B2 (en) Azo-boron complex compound and method for producing the same
JP6521728B2 (en) Indolyl benzothiadiazole derivative, method for producing indolyl benzothiadiazole derivative and organic fluorescent material
Soeta et al. [4+ 1] Cycloaddition of N-acylimine derivatives with isocyanides: efficient synthesis of 5-aminooxazoles and 5-aminothiazoles
Shaikh et al. Electron-deficient molecules: photophysical, electrochemical, and thermal investigations of naphtho [2, 3-f] quinoxaline-7, 12-dione derivatives
Wawrzinek et al. Synthesis and spectroscopic properties of a FRET pair based on PPO and DBD dyes
JP3687791B2 (en) Novel rare earth complexes with circularly polarized light emission
JP7222517B2 (en) Novel compound and its manufacturing method
Muschelknautz et al. Consecutive three-component synthesis of film luminescent indolone merocyanines with L-amino acid ester donors
CN107188906A (en) Dibenzo phospha cyclopentadinyl compound and its synthetic method and application
TW200531994A (en) Color filter for electrical display device
Kim et al. Synthesis of 3-aminoindole derivatives: combination of Thorpe–Ziegler cyclization and unexpected allylindium-mediated decyanation
Hagimori et al. Synthesis of 6-(4-diethylamino) phenyl-2-oxo-2H-pyran-3-carbonitorile derivatives and their fluorescence in solid state and in solutions
JP6269956B2 (en) Furylthiazole compound
Safaei et al. Isocyanide-based three component reaction for synthesis of highly cyano substituted furan derivatives
Abdulla et al. Synthesis of bis‐pyrrole tetra esters and alcohols as novel mimetics of the anticancer mitomycin
KR101478884B1 (en) Bisindolylmaleimied-based compound, and process for the same
KR20200041551A (en) Novel imidazole-based derivatives having excellent fluorescence properties and synthesizing method thereof
Wang et al. Synthesis, X-ray crystal structure, and optical properties of novel 9, 9-diethyl-1, 2-diaryl-1, 9-dihydrofluoreno [2, 3-d] imidazoles
JP2005225819A (en) Azole compound having pyrrole ring and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R150 Certificate of patent or registration of utility model

Ref document number: 6663820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250