JP6662485B1 - ネットワーク管理装置、故障区間判定方法、及びプログラム - Google Patents

ネットワーク管理装置、故障区間判定方法、及びプログラム Download PDF

Info

Publication number
JP6662485B1
JP6662485B1 JP2019187232A JP2019187232A JP6662485B1 JP 6662485 B1 JP6662485 B1 JP 6662485B1 JP 2019187232 A JP2019187232 A JP 2019187232A JP 2019187232 A JP2019187232 A JP 2019187232A JP 6662485 B1 JP6662485 B1 JP 6662485B1
Authority
JP
Japan
Prior art keywords
failure
section
network management
management device
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019187232A
Other languages
English (en)
Other versions
JP2021064843A (ja
Inventor
鈴木 宏実
宏実 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2019187232A priority Critical patent/JP6662485B1/ja
Application granted granted Critical
Publication of JP6662485B1 publication Critical patent/JP6662485B1/ja
Publication of JP2021064843A publication Critical patent/JP2021064843A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】監視用フレームを使った疎通確認にて、多重障害等に対して適切な区間判定を行う。【解決手段】LAGを含むネットワークの通信装置に接続するターゲット端末に対し、宛先アドレスをターゲット端末アドレスとし、値を連続的に掃引した仮想アドレスを送信元アドレスに設定した監視用フレームを、第1の時間間隔でネットワーク管理装置から送信する。ターゲット端末から全く応答が受信されない場合、その間の疎通断と判断する。第2の時間、疎通断のターゲット端末がある場合、障害として検出し、第3の時間経過後に区間判定処理を行う。その際、障害有無の実パターンと判定パターンと照合し、サイレント故障区間の候補を抽出する。第1の区間判定処理後、新障害が検知されると、第3の時間経過後に第2の区間判定処理を行う。第1の区間判定処理での障害が第2の区間判定処理まで継続していれば、それを実パターンから外して実パターンと照合する。【選択図】図9

Description

本発明は、ネットワーク管理装置、故障区間判定方法、及びプログラムに関する。
イーサネット(Ethernet)(登録商標)の運用・保守・管理(Operation Administration and Maintenance:OAM)を標準化した技術であるイーサネットOAMは、ITU−T(International Telecommunication Union Telecommunication Standardization Sector)がY.1731として標準化しており、IEEE802(Institute of Electrical and Electronics Engineers)でもIEEE802.1ag等として規定している。イーサネットOAMにおいて、MEP(MEG(Maintenance Entity Group) End Point(保守エンティティグループ端点))はイーサネットOAMフレーム(「OAMフレーム」とも略記される)を生成、終端する保守端点(エンドポイント)である。MIP(MEG Intermediate Point(保守エンティティグループ中間点))はOAMフレームを中継するMEGの中間点である。
リンクアグリゲーション(Link Aggregation)は、複数の物理ポート(インタフェース)をリンクアグリゲーションメンバーポートとし、論理的に1本の回線(論理リンク)として収容するリンクアグリゲーショングループ(Ling Aggregation Group:LAG)を構成することにより、例えば隣接ノードとの間の通信帯域を広げる。ポートの束をリンクアグリゲーショングループ(LAG)という。LAGでは、予め用意された複数個のハッシュ値(ハッシュキー)をLAGメンバーポートに均等に割り当て、フレームのMAC(Media Access Control)アドレス、ポートID、又は、VLAN(Virtual Local Area Network) ID等を基に、ハッシュ値(ハッシュキー)に変換し、ハッシュ値に基づき送出インタフェース(ポート)を決めるのが一般的である。図14に模式的に示すように、OSI(Open Systems Interconnection)参照モデルのレイヤ2(L2)スイッチ(SW1)では、LAGから送出するフレームを、例えばフレームヘッダの宛先MACアドレス及び/又は送信元MAC(Media Access Control)アドレスから変換されたハッシュ値(ハッシュキー)に基づき、LAGの複数の回線(リンク)のうちいずれか1つのインタフェース(ポート)に振り分ける。
イーサネットOAMのLB(Loop Back)フレームを利用して、レイヤ2での疎通確認を行う場合、送信元MACアドレス、宛先MACアドレスとするLBM(Loop Back Massage)フレームは、該MACアドレスに基づくハッシュ計算により振り分け先となるポートが決まる。したがって、当該ポートには、該LBMフレームは到達するが、他のポートの到達性を確認することはできない。
この問題に対して、本願発明者は、特許文献1において、LBMフレーム等の監視用のフレームヘッダの送信元MACアドレスとして所定アドレス範囲で値を連続的に可変(掃引)させた複数の仮想MACアドレスを設定した複数の監視用のフレームを、宛先に宛てて送信するネットワーク管理装置を提案している。
また、特許文献2において、本願発明者は、複数のターゲット端末宛に複数の監視フレーム(ヘッダの送信元MACアドレスとして所定アドレス範囲で値を連続的に可変(掃引)させた複数の仮想MACアドレスを設定したフレーム)に対するターゲット端末ごとの応答フレームの受信の有無と故障区間判定条件(判定パターン)に基づき、前記複数の監視フレームの送信経路および応答フレームの返信経路のいずれか一方もしくは両方のサイレント故障の区間を判定するネットワーク管理装置を提案している。なお、サイレント故障は、スイッチ(通信装置)等において、検出されるリンクダウン等以外の故障をいう。リンクアグリゲーションでは、リンクアグリゲーショングループ(LAG)内に予め待機用(スタンバイ)の回線を用意しておき、運用中の回線が障害となったときに待機用の回線と切り替えることによって、リンクアグリゲーショングループとして運用する回線数を維持するスタンバイ機能、あるいは、回線本数を縮減させて通信を継続させる機能がある。しかし、サイレント故障の回線は、回線障害と認識されない場合があり、この場合、回線の切り替え等は行われず、サイレント故障の回線は、アクティブなLAGメンバーポートとしてそのまま留まる。
図1は、ネットワーク構成の一例を示す図であり、特許文献2等の開示に基づき、サイレント故障区間判定の例を説明するための図である(なお、図1のネットワーク構成は本発明の実施形態でも参照される)。
図1を参照すると、ネットワーク管理装置100は、多段(図1では4段)に接続された通信装置1−15で構成されるネットワークを管理する。ネットワークは、対向する通信装置間の区間において、複数の回線を束ねたLAGで接続される区間を少なくとも1つ含む。図1の例では、対向する通信装置間の区間は全てLAGで接続されていることを想定しているが、対向する通信装置間の全ての区間がLAGである必要はないことは勿論である。また、ネットワーク管理装置100は、最前段の通信装置1に通信接続されているが、通信装置1上にネットワーク管理装置100を実装し、ネットワーク監視時等に、通信装置1においてネットワーク管理装置100を機能させるようにしてもよい。通信装置1−15は例えばL2スイッチからなる。多段に接続された通信装置の配置に関して、ネットワーク管理装置100側に近い方の通信装置を前段、ターゲット端末A−H側の通信装置を後段という。
ネットワーク管理装置100は、ネットワークのエッジの通信装置(例えばエッジスイッチ)6−9、12−15にそれぞれ接続されるターゲット端末A−D、E−Hの各々を宛先として、フレームヘッダの宛先MACアドレス欄を、ターゲット端末のMACアドレスとし、該ヘッダの送信元MACアドレス欄に、予め定められた所定範囲(例えばネットワークにおけるLAGメンバーポート数の最大数以上)で値を連続的に掃引した仮想送信元MACアドレス情報を設定した複数の監視用フレームを生成して、各ターゲット端末に送信する。ネットワーク管理装置100は、複数のターゲット端末A−Hからの応答フレームの有無と、区間の故障判定条件(判定パターン)に基づき、故障区間を判定する。
応答フレームは、監視用のフレームを受信したターゲット端末A−Hにおいて作成され、フレームヘッダの宛先MACアドレス情報を、監視用のフレームの送信元情報(仮想送信元MACアドレス)とし、送信元MACアドレス情報を、該ターゲット端末のMACアドレスとし、必要に応じて、応答フレームである識別コードが設定される。なお、ターゲット端末は、例えばOpenblocks(ぷらっとホーム株式会社の登録商標)等のマイクロサーバであってもよい。
以下では、図1の各通信装置がLBMフレームを送信元MACアドレスと宛先MACアドレスを用いて、通信装置1から通信装置6までの経路上にある最大4本のLAGメンバーポートを有する全てのLAGポートへ双方向で網羅性を持って振り分けを行わせた一例について、図15を参照して説明する。
ネットワーク管理装置100から、少なくとも経路上のLAGメンバーポート数の最大値以上の数で、送信元MACアドレスをスイープした複数の監視用のフレームを、ターゲット端末の宛先MACアドレスに対して送信する。この時、送信元MACアドレス(16進数12桁)の一桁目を連番で4つ変えた監視用のフレームを送信してもよい。この方法により、通信装置1では、例えば監視用のフレームを送信元MACアドレスと宛先MACアドレスの情報から計算されたハッシュ値を用いて、LAGメンバーポートへ(4つのLAGメンバーポートへ均等に)網羅性を持った振り分けを行わせることで、4つ全てのポートに対して、ネットワーク管理装置100からターゲット端末方向の回線のトラフィックの正常性を確認する。
次に、通信装置1からの監視用のフレームは通信装置2に入力され、通信装置2では、監視用のフレームに含まれる送信元MACアドレスと宛先MACアドレスを用いて計算されたハッシュ値を用いて4つのLAGメンバーポートへ振り分けを行う。通信装置4では、通信装置2からの監視用のフレームを送信元MACアドレスと宛先MACアドレスの情報から計算されたハッシュ値を用いて2つのLAGポートへ振り分けを行う。通信装置6では、通信装置4からの監視用のフレームの宛先MACアドレス(ターゲット端末AのMACアドレス)が接続するポートに、監視用のフレームを転送する。
ターゲット端末Aでは、通信装置6から受信した4つの監視用のフレームに対して、応答フレームを4つ返信する。応答フレームのフレームヘッダの宛先MACアドレスは、監視用のフレームの送信元MACアドレスであるそれぞれ互いに異なる4つの仮想送信元MACアドレスとし、送信元MACアドレスはターゲット端末AのMACアドレスとして、応答フレームをネットワーク管理装置100宛てに送信する。
通信装置6では、ターゲット端末Aからの応答フレームの送信元MACアドレスと宛先MACアドレスの情報から計算されたハッシュ値を用いて、LAGポートへの(2つのLAGポートへ均等に)振り分けを行う。通信装置4では、通信装置6から受信した応答フレームを送信元MACアドレスと宛先MACアドレスの情報からLAGポートへの(4つのLAGポートへ均等に)振り分けを行う。通信装置2では、通信装置4から受信した応答フレームを送信元MACアドレスと宛先MACアドレスの情報から計算されたハッシュ値を用いて、LAGポートへの(4つのLAGポートへ均等に)振り分けを行う。このことにより、4つ全てのポートに対して、監視用のフレームとは逆向きのトラフィック方向の回線のトラフィックの正常性を確認する。通信装置1では、通信装置2から受信した応答フレームの宛先MACアドレス(ネットワーク管理装置100のMACアドレス)が接続するポートに、応答フレームを転送し、応答フレームはネットワーク管理装置100で受信される。
図1の例では、ネットワーク管理装置100において、ターゲット端末B−Hに対しても、値を連続的に掃引した仮想送信元MACアドレス情報を設定した複数の監視用のフレームを送信する。ネットワーク管理装置100において、ターゲット端末A−Hの各々に対して送信した複数の監視用フレームに対応する複数の応答フレームの全てがターゲット端末A−Hの各々から受信された場合、ターゲット端末A−Hとの間の区間の接続性が確認される。図2(A)の判定パターン、(C)の実パターン1のA−Hは、ターゲット端末A−Hに対応する。
図2(C)の実パターン1=A、B、C、Dの「X」は、ネットワーク管理装置100とターゲット端末A、B、C、Dとの間で障害(断)が検出されたことを表している。ネットワーク管理装置100において、ターゲット端末A(B、C、D)宛てに送信したN個の監視用フレームに対して該ターゲット端末A(B、C、D)からN個の応答フレームが受信されなかった場合(例えば(N−1)個以下の応答フレームしか受信されなかった場合)、障害(断)としてもよい。あるいは、ネットワーク管理装置100において、ターゲット端末A(B、C、D)に対してN個の監視用フレームを所定間隔で送信し、(N−1)個以下の応答フレームしか受信されないというケースが連続してM回(M>=2)続いた場合に、障害として検出するようにしてもよい。
図2(A)の判定パターンにおいて、番号1−14、20は、図1の区間に対応し、サイレント故障の区間と、ネットワーク管理装置100とターゲット端末A−Hとの間の障害の有無の対応関係の一例(「X」は障害を示す)を設定したテーブルである。実パターン1は、図2(A)の判定パターン1と完全に一致し(図2(C)の精度(Accuracy)=100%)、区間1をサイレント故障の区間と判定する。また、実パターン1は、区間20のサイレント故障に対応する判定パターン20とは、A−Dで一致し、精度(Accuracy)は50%となる。
図3の例において、実パターン2=C、Dの場合(図3(C))、判定パターン(図3(A))の区間5と一致し精度(Accuracy)=100%であり、区間1の精度(Accuracy)=50%、区間20の精度(Accuracy)=25%である(図3(B))。
図4の例において、実パターン3=A−Fの場合(図4(C))、判定パターン(図4(A))の区間20の精度(Accuracy)=75%である(図4(B))。
図5の例において、実パターン4=Eの場合(図5(C))、判定パターン(図5(A))の区間10は精度(Accuracy)=100%、区間8、9の精度(Accuracy)は、25%、区間20(判定パターン20)の精度(Accuracy)は12.5%である(図5(B))。
イーサネットOAMのLBMフレーム(ヘッダの送信元MACアドレス欄に予め定められた所定範囲で値を連続的に掃引した仮想送信元MACアドレス情報を設定)を使ったとしても、多重障害が発生すると正しい区間判定ができない、あるいは多重障害と単一故障との区別ができない場合がある。例えば、図2において、実パターン1は、ネットワーク管理装置100とターゲット端末A−Dとの間で障害が検出された場合であり、区間1の精度(Accuracy)を100%としているが、区間3、4、6、7が同時に故障区間である場合、あるいは、区間2、5が、同時に故障区間である場合にも、監視用フレームの送信に対する応答フレームの受信の有無に基づく障害のパターンは、実パターン1となる。
また、図3において、実パターン2、すなわち、ネットワーク管理装置100とターゲット端末C、Dとの間で障害が検出された場合、区間5の精度(Accuracy)を100%としているが、区間6、7が障害の場合も、実パターン2となる。
例えば、図4において、実パターン3、すなわち、ネットワーク管理装置100とターゲット端末A−Fとの間で障害が検出された場合では、区間20を精度(Accuracy)=75%でサイレント故障の区間としているが、区間3、4、6、7、10、12が同時に故障の場合、あるいは、区間2、5、10、12が同時に故障の場合も、実パターン3に該当する。
特開2018−125834号公報 特許第6436262号公報
Silverman, B.W., 1981. Using kernel density estimates to investigate multimodality. Journal of Royal Statistical Society B, 43, 97-99.
上記したように、関連技術(例えば特許文献2等)の手法に基づき、イーサネットOAMフレーム(ヘッダの送信元MACアドレス欄に予め定められた所定範囲で値を連続的に掃引した仮想送信元MACアドレス情報を設定)を使って網羅的に疎通確認を行ったとしても、多重障害が発生すると、
正しい区間判定ができない、又は、
多重障害と単一故障との区別ができない、
場合がある。
本発明の目的は、監視用フレームを使って疎通確認を行う場合に、多重障害等に対してより適切な区間判定を可能とする装置、方法、プログラムを提供することにある。
本発明の一形態によれば、複数の通信装置が多段に接続されたネットワークを管理するネットワーク管理装置であって、
対向する前記通信装置間の区間の少なくとも1つが、複数の回線を束ねたLAG(Link Aggregation Group)を含む前記ネットワークの端部の前記通信装置に接続する複数のターゲット端末の各々に対して、宛先アドレス欄を前記ターゲット端末のアドレスとし、所定範囲で値を連続的に掃引した複数の仮想アドレスを送信元アドレス欄にそれぞれ設定した複数の監視用フレームを、予め定められた第1の時間間隔で送信する手段と、
前記ターゲット端末から前記複数の監視用フレームに対する応答フレームが1つでも受信されない場合、前記ネットワーク管理装置と前記ターゲット端末との間の疎通断と判断し、
前記複数のターゲット端末の各々に対する前記複数の前記監視用フレームの前記第1の時間間隔での送信と前記応答フレームの受信の有無の確認を繰り返し、予め定められた第2の時間の間、前記ネットワーク管理装置との間で疎通断のターゲット端末がある場合、前記ネットワーク管理装置と前記ターゲット端末との間の障害として検出する手段と、
前記ネットワークの区間ごとのサイレント故障に対応させて前記複数のターゲット端末と前記ネットワーク管理装置との間の障害の有無のパターンを予め規定した判定パターンを記憶する記憶部と、
前記障害を検出してから予め定められた第3の時間経過後に第1の区間判定処理を行い、前記複数のターゲット端末のそれぞれに関する前記ネットワーク管理装置との間の障害の有無を示す実パターンと、前記判定パターンとの照合に基づき、サイレント故障区間の候補を抽出する手段と、
前記第1の区間判定処理の後に、前記ネットワーク管理装置と前記複数のターゲット端末との間で新たな障害が検知されると、該障害検知時点から、前記第3の時間経過後に第2の区間判定処理を行い、
前記第2の区間判定処理では、前記第1の区間判定処理でサイレント故障区間の判定に用いられた前記障害が、前記第2の区間判定処理まで継続している場合には、前記障害を、前記第2の区間判定処理における前記複数の前記ターゲット端末に関する前記ネットワーク管理装置との間の障害の有無を示す実パターンから外した上で、前記判定パターンとの照合に基づき、サイレント故障の区間の候補を抽出する手段と、を備えたネットワーク管理装置が提供される。
本発明の一形態によれば、複数の通信装置が多段に接続されたネットワークを管理するネットワーク管理装置による故障区間判定方法であって、
対向する前記通信装置間の区間の少なくとも1つが、複数の回線を束ねたLAG(Link Aggregation Group)を含む前記ネットワークの端部の前記通信装置に接続する複数のターゲット端末の各々に対して、宛先アドレス欄を前記ターゲット端末のアドレスとし、所定範囲で値を連続的に掃引した複数の仮想アドレスを送信元アドレス欄にそれぞれ設定した複数の監視用フレームを、予め定められた第1の時間間隔で送信し、
前記ターゲット端末から前記複数の監視用フレームに対する応答フレームが1つでも受信されない場合、前記ネットワーク管理装置と前記ターゲット端末との間の疎通断と判断し、
前記複数のターゲット端末の各々に対する前記複数の前記監視用フレームの前記第1の時間間隔での送信と前記応答フレームの受信の有無の確認を繰り返し、予め定められた第2の時間の間、前記ネットワーク管理装置との間で疎通断のターゲット端末がある場合、前記ネットワーク管理装置と前記ターゲット端末との間の障害として検出し、
前記障害を検出してから予め定められた第3の時間経過後に第1の区間判定処理を行い、前記複数のターゲット端末のそれぞれに関する前記ネットワーク管理装置との間の障害の有無を示す実パターンと、前記ネットワークの区間ごとのサイレント故障に対応させて前記複数のターゲット端末と前記ネットワーク管理装置との間の障害の有無のパターンを予め規定した判定パターンとの照合に基づき、サイレント故障区間の候補を抽出し、
前記第1の区間判定処理の後に、前記ネットワーク管理装置と前記複数のターゲット端末との間で新たな障害が検知されると、該障害検知時点から、前記第3の時間経過後に第2の区間判定処理を行い、
前記第2の区間判定処理では、前記第1の区間判定処理でサイレント故障区間の判定に用いられた前記障害が、前記第2の区間判定処理まで継続している場合には、前記障害を、前記第2の区間判定処理における前記複数の前記ターゲット端末に関する前記ネットワーク管理装置との間の障害の有無を示す実パターンから外した上で、前記判定パターンとの照合に基づき、サイレント故障の区間の候補を抽出する、故障区間判定方法が提供される。
本発明の一形態によれば、複数の通信装置が多段に接続されたネットワークを管理するネットワーク管理装置を構成するコンピュータに、
対向する前記通信装置間の区間の少なくとも1つが、複数の回線を束ねたLAG(Link Aggregation Group)を含む前記ネットワークの端部の前記通信装置に接続する複数のターゲット端末の各々に対して、宛先アドレス欄を前記ターゲット端末のアドレスとし、所定範囲で値を連続的に掃引した複数の仮想アドレスを送信元アドレス欄にそれぞれ設定した複数の監視用フレームを、予め定められた第1の時間間隔で送信する処理と、
前記ターゲット端末から前記複数の監視用フレームに対する応答フレームが1つでも受信されない場合、前記ネットワーク管理装置と前記ターゲット端末との間の疎通断と判断する処理と、
前記複数のターゲット端末の各々に対する前記複数の前記監視用フレームの前記第1の時間間隔での送信と前記応答フレームの受信の有無の確認を繰り返し、予め定められた第2の時間の間、前記ネットワーク管理装置との間で疎通断のターゲット端末がある場合、前記ネットワーク管理装置と前記ターゲット端末との間の障害として検出する処理と、
前記障害を検出してから予め定められた第3の時間経過後に第1の区間判定処理を行い、前記複数のターゲット端末のそれぞれに関する前記ネットワーク管理装置との間の障害の有無を示す実パターンと、前記ネットワークの区間ごとのサイレント故障に対応させて前記複数のターゲット端末と前記ネットワーク管理装置との間の障害の有無のパターンを予め規定した判定パターンとの照合に基づき、サイレント故障区間の候補を抽出する処理と、
前記第1の区間判定処理の後に、前記ネットワーク管理装置と前記複数のターゲット端末との間で新たな障害が検知されると、該障害検知時点から、前記第3の時間経過後に第2の区間判定処理を行い、前記第2の区間判定処理では、前記第1の区間判定処理でサイレント故障区間の判定に用いられた前記障害が、前記第2の区間判定処理まで継続している場合には、前記障害を、前記第2の区間判定処理における前記複数の前記ターゲット端末に関する前記ネットワーク管理装置との間の障害の有無を示す実パターンから外した上で、前記判定パターンとの照合に基づき、サイレント故障の区間の候補を抽出する処理と、を実行させるプログラムが提供される。
本発明の形態の1つによれば、上記プログラムを記憶したコンピュータ読み出し可能な記録媒体((例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM))等の半導体ストレージ、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc)等のnon-transitory computer readable recording medium)が提供される。
本発明によれば、監視用フレームを使って疎通確認を行う場合に、多重障害等に対してより適切な区間判定を提供することができる。
ネットワーク構成例を説明する図である。 関連技術の故障区間判定の例を説明する図である。 関連技術の故障区間判定の例を説明する図である。 関連技術の故障区間判定の例を説明する図である。 関連技術の故障区間判定の例を説明する図である。 本発明の一実施形態を説明する図である。 本発明の一実施形態における故障区間判定の例を説明する図である。 本発明の一実施形態における故障区間判定の例を説明する図である。 本発明の一実施形態の処理を説明する図である。 本発明の一実施形態の構成例を説明する図である。 本発明の一実施形態を説明する図である。 イーサOAM LBMフレームのフレームフォーマットを説明する図である。 PINGフレームのフレームフォーマットを説明する図である。 LAGのハッシュ値に基づく振り分けを説明する図である。 監視用フレームと応答フレームの経路(LAGの振り分け)を説明する図である。
本発明の例示的な実施形態について説明する。図6は、本発明の一実施形態を説明する図である。本発明の一実施形態のネットワーク管理装置は、例えば、図1の複数の通信装置が多段に接続されたネットワークを管理するネットワーク管理装置100に適用して好適とされる。なお、本発明の一実施形態のネットワーク管理装置は、前述した関連技術のネットワーク管理装置とは、構成、機能が相違しているが、以下では、図1を参照して説明する都合で、参照符号100を付して説明する。
本発明の一実施形態において、ネットワーク管理装置100は、ネットワーク端部の複数の通信装置に接続する複数のターゲット端末A−Hの各々に対して複数の監視用フレームを予め定められた第1の時間間隔(例えば3秒間隔、ただし、この値に制限されない)で送信する。複数の監視用フレームは、フレームヘッダの宛先MAC(Media Access Control)アドレス欄には宛先のターゲット端末のMACアドレスが設定され、送信元MACアドレス欄には、所定範囲で値を連続的に掃引した仮想MACアドレスが設定されている。監視用フレームは例えばイーサネットOAMのLBMフレームであってもよい。
本発明の一実施形態において、ネットワーク管理装置100は、図1において、ターゲット端末Aから前記複数の監視用フレームに対する応答フレームが1つでも受信されない場合、ネットワーク管理装置100と前記ターゲット端末Aとの間の疎通断(単に「断」ともいう)と判断する。ターゲット端末B―Hの各々についても同様とする。
本発明の一実施形態において、ネットワーク管理装置100は、予め定められた第2の時間(デバウンスタイム(debounce time):例えば10秒)の間、第1の時間間隔でのターゲット端末A−Hの各々に対する複数の監視用フレームの送信と、ターゲット端末A−Hの各々からの複数の監視用フレームに対する複数の応答フレームの受信の有無の確認を繰り返し、前記第2の時間(デバウンスタイム)の間、断と判断され続けたターゲット端末(応答フレームが受信されないターゲット端末)がある場合、ネットワーク管理装置100と当該ターゲット端末との間の障害として検出するようにしてもよい。
図6では、タイムスタンプ:0−10秒の期間に、本発明の一実施形態のネットワーク管理装置100とターゲット端末Aとの間の障害が検出され、続く10−20秒の期間に、本発明の一実施形態のネットワーク管理装置100とターゲット端末Bとの間の障害が検出されている。
本発明の一実施形態において、ネットワーク管理装置100は、ネットワークの区間の障害(断)に対応する複数のターゲット端末A−Hに関する障害の有無のパターンを規定した判定パターンを記憶した記憶部を有する。
本発明の一実施形態において、ネットワーク管理装置100は、ターゲット端末Aとの間での前記障害を検出してから予め定められた第3の時間(ホールドタイム:図6では60秒)経過後に、区間判定処理を行う。図6の例では、タイムスタンプ:70秒に1回目の区間判定処理1を行う。
本発明の一実施形態のネットワーク管理装置100は、区間判定処理1(タイムスタンプ:70秒)では、前記複数のターゲット端末のそれぞれに関するネットワーク管理装置100との間の障害の有無を示す実パターン(ターゲット端末A、Bとの間で障害有り)と、判定パターン(図2(A))との照合に基づき、故障区間判定を行い、サイレント故障区間の候補を抽出する。
本発明の一実施形態のネットワーク管理装置100において、区間判定処理1(1回目)の後のタイムスタンプ:80−90秒の期間に、区間判定処理1で判定に用いたターゲット端末とは別のターゲット端末Hとの間で障害が検知される。ターゲット端末Hとの間で該障害検出から第3の時間(ホールドタイム)経過後に、次の区間判定処理2を行う(タイムスタンプ:150秒)。
本発明の一実施形態のネットワーク管理装置100は、区間判定処理2(タイムスタンプ:150秒)では、前回の区間判定処理1(タイムスタンプ:70秒)で故障区間の判定に用いられたターゲット端末A、Bの障害が、区間判定処理2まで継続している場合であっても、障害がない(すなわち、断していない)ものとして扱うようにしてもよい。
例えば、ネットワーク管理装置100は、区間判定処理2において、ターゲット端末A、Bとの間の障害が区間判定処理2にまで継続している場合、ターゲット端末A、Bの障害を、複数のターゲット端末A−Hに関するネットワーク管理装置100との間の障害の有無を示す実パターンから外し、区間判定処理1の後に検出された障害からなる実パターンと、判定パターンとの照合に基づき、サイレント故障区間の候補を抽出する。この場合、ネットワーク管理装置100は、区間判定処理2において、ターゲット端末G、Hとの間を障害とした実パターンと、判定パターンとを照合することでサイレント故障区間を判定する。
同様にして、本発明の一実施形態のネットワーク管理装置100は、区間判定処理2(タイムスタンプ:150秒)の後に検知された障害の状態変化(例えば障害有りから障害無しへの状態変化)を用いて、区間判定処理3(タイムスタンプ:240秒)を行う場合、前の区間判定処理(タイムスタンプ:150秒)で故障区間判定に用いられた既存の障害(ターゲット端末G、Hとの間の障害)については、実パターンから外し、断していないものとして、区間判定処理を行うようにしてもよい。
本発明の一実施形態のネットワーク管理装置100は、区間判定処理の後、ターゲット端末との間の障害(区間判定処理の判定に用いられた障害)が全て復旧しているか復旧判定を行う。障害が全て復旧していれば、復旧と判定する。図6の例では、ネットワーク管理装置100は、区間判定処理3(タイムスタンプ:240秒)の後に復旧と判定している。
本発明の一実施形態において、ネットワーク管理装置100が障害(断)を検出してから、区間判定処理を行うまでの第3の時間(ホールドタイム)は、全ターゲット端末A−Hに対して最低でも1つの監視フレームの送信と1つの応答フレームの受信が完了する時間以上としてもよい。第3の時間(ホールドタイム)は、一つの障害で断を検出し終わる時間以下であってもよい。
本発明の一実施形態において、ネットワーク管理装置100は、上記した各区間判定処理において、単位時間(例えば第2の時間)毎の障害発生件数の時系列データから、単峰性(Uni-modal)、二峰性(Bi-modal)、多峰性(Multi-modal)を判定するようにしてもよい。ネットワーク管理装置100は、単峰性であれば、単一故障として区間判定を行い、単峰性以外の場合には、多重故障として、単一故障としての区間判定対象としないようにしてもよい。
この場合、ネットワーク管理装置100において、峰がいくつであるか否かの判定には、よく知られたカーネル密度推定を行うことで、確率密度分布の極大数(モードの数)を推定するようにしてもよい。
各タイムスタンプt1,..,tnに対して、カーネル関数Kとして、平均0、標準偏差=1の正規分布K(u)(Gaussianカーネル)を用い、バンド幅h(カーネル関数の広がりの幅を定義)を指定したカーネル密度推定量

Figure 0006662485

(ただし、nはカーネル関数の個数)

Figure 0006662485

を用いてもよい。
Figure 0006662485
は時刻tにおける正規分布の重なりを表している。tは図7の横軸の時刻、tは例えば各タイムスタンプ(離散時間:20,30, 40,・・・180, ・・)である。
Gaussianカーネルによる密度推定では、バンド幅h(Gaussianカーネルではバンド幅は標準偏差)を増加した場合に、極大(モード)数が増えることはない。このため、極大(モード)数がkである最小のバンド幅を用いてカーネル密度推定量が推定される。この場合、極大(モード)数kを1から始め帰無仮説H K(母集団はたかだかk個のモードしか持たない)(対立仮説H K(母集団はkより多くのモードを持つ))が棄却されたら、検定モード数kを1つ増やし、帰無仮説H Kが棄却できない場合のkを極大数としてもよい。検定統計量は、極大(モード)数=kであるような最小のバンド幅hcrit(=多くてもk個のモードを有するhの下限)とする(非特許文献1)。なお、上記したSilvermanの検定に制限されるものでなく、ヒストグラムにおいて、峰の数が未知であっても、データを峰ごとに正しく分類できるようにする任意の手法を適法してもよい。
本発明の一実施形態において、ネットワーク管理装置100において、多峰性検定の結果、極大(モード)数k=1(単峰性:Unimodal)であれば、単一故障として区間判定を行う。
k=2(二峰性:Bi-modal)やk>=3(多峰性:Multi-modal)であれば、障害発生頻度の分布(時間分布)が一部で重なっており、多重故障として、単一故障としての区間判定は行わないか、区間判定対象から除外する。前述したように、ネットワーク管理装置100において、この時の区間判定処理は、既存のターゲット端末の障害(断)(前回の区間判定処理で判定に用いられた障害)は、「疎通有」として判定を行う。
図7は、ターゲット端末からの応答時刻に対する疎通断発生件数の時間推移の一例を示す図であり、横軸は、タイムスタンプ(応答時刻)に対応し、縦軸は、当該各応答時刻における疎通断の発生件数である。なお、図7の例では、ターゲット端末の台数は、図1の例(8台)と相違している(例えば百乃至千のオーダ)。応答時刻は、ネットワーク管理装置100において、複数のターゲット端末に監視用フレーム(例えばLBMフレーム)を同時に送信し、該複数のターゲット端末から応答フレーム(LBRフレーム)が所定時間以上経過しても受信されず、受信タイムアウトが発生した時刻に対応する。
図7の例では、疎通断の発生件数の極大(モード)はタイムスタンプ:70秒の40件とタイムスタンプ:110秒の35件である。すなわち、疎通断の発生件数の分布の極大(モード)数は2であり、二峰性(Bimodal)であることが分かる。この場合、ネットワーク管理装置100は、疎通断の発生件数の2つの分布(略正規分布)のそれぞれについて、障害が発生したターゲット端末毎に区間判定を行うようにしてもよい。すなわち、複数のターゲット端末のそれぞれに関する障害の有無を示す実パターンとして、障害が発生した複数のターゲット端末のうちの1つを障害とした他は正常とした実パターンと、判定パターンを照合し、サイレント故障区間の候補を抽出するようにしてもよい。
二峰性、多峰性等、分布の極大(モード)が時間的に近い多重障害が発生した場合に、ネットワーク管理装置100は、実際の障害発生区間が候補として表示されるように、実パターンを判定パターンにマッチングさせる際に、判定パターンにおいて、該実パターンの部分集合の要素であるターゲット端末を1つでも含む区間は、全て精度(accuracy)を算出するようにしてもよい。
本発明の一実施形態において、ネットワーク管理装置100において、複数のターゲット端末のそれぞれに関する障害の有無を示す実パターンの部分集合に対して、判定パターンとの照合に基づき、故障区間の候補を抽出するようにしてもよい。
図8は、区間判定にあたり、実パターンの部分集合を判定パターンと照合させる例を説明する図である。図8(C)の実パターン5は、ネットワーク管理装置100において、ターゲット端末A、B、G、Hとの間の障害が検出されていることを示している。
実パターン5と、図8(A)の判定パターンとの照合の結果、区間20は精度(Accuracy):50%である。
ネットワーク管理装置100は、図8(C)の実パターン5(=A、B、G、H)を、図8(D)のように、部分集合1−1〜1−6に分割する。なお、実パターン5の部分集合は空集合を除くと15個あるが、図8(D)では、その一部が例示されている。
図8(D)において、
部分集合1−1の要素は、ターゲット端末A、B、
部分集合1−2の要素は、ターゲット端末G、H、
部分集合1−3の要素は、ターゲット端末A、
部分集合1−4の要素は、ターゲット端末B、
部分集合1−5の要素は、ターゲット端末G、
部分集合1−6の要素は、ターゲット端末H、
であり、各要素のターゲット端末とネットワーク管理装置100との間が障害である。
図8(B)に示すように、部分集合1−1は、区間2が精度(Accuracy):100%、区間1は精度(Accuracy):50%である。部分集合1−2は、区間11が精度(Accuracy):66.6%、区間8、9が精度(Accuracy):50%である。部分集合1−3は、区間3が精度(Accuracy):100%である。部分集合1−4は、区間4が精度(Accuracy):100%である。部分集合1−5は、区間13が精度(Accuracy):100%である。部分集合1−6は、区間14が精度(Accuracy):100%である。
なお、本発明の一実施形態において、ネットワーク管理装置100は実パターン5の部分集合として、1つの要素の部分集合1−3〜1−6を用いて、図8(A)の判定パターンと照合するようにしてもよい。ネットワーク管理装置100は、精度(Accuracy):100%をサイレント故障の区間候補として表示装置に出力し、さらに、精度(Accuracy)が所定の値以上の区間について、精度(Accuracy)の値に基づきランク分けして、表示するようにしてもよい。
図9は、本発明の一実施形態のネットワーク管理装置100の動作を説明する流れ図である。ネットワーク管理装置100は、一定時間間隔(第1の時間)で監視用フレームを複数のターゲット端末A−H宛てに送信する(S11)。第2の時間の間、監視用フレームの送信先のターゲット端末A−Hからの応答フレームが受信されない場合、ネットワーク管理装置100と当該ターゲット端末との間の区間を障害と判定(検出)する(S12)。
ネットワーク管理装置100は、ターゲット端末で障害が検出されると、ホールド時間待機する(S13)。ホールド時間の間も、ネットワーク管理装置100による、一定時間間隔(第1の時間)で監視用フレームのターゲット端末A−H宛てに送信と受信フレームの確認等は行われる。ネットワーク管理装置100は、ホールド時間経過後、区間判定処理を行う(S14)。
ネットワーク管理装置100は、区間判定処理後、復旧処理を行う(S15)。復旧処理は、該区間判定処理において判定パターンと照合される実パターンで障害とされたターゲット端末に監視用フレームを送信しターゲット端末とネットワーク管理装置100間が、疎通有りかをチェックすることで行うようにしてもよい。
図10は、本発明の一実施形態のネットワーク管理装置100の構成の一例を示す図である。図10を参照すると、管理モジュール101は、区間判定部121と、区間判定結果出力部122を備えた監視制御部102と、仮想送信元MACアドレス設定部131を備えたフレーム作成部103と、フレーム送信部104と、応答フレーム受信判定部105と、判定パターンを記憶した記憶部106と、第1の時間(監視用フレームの送信間隔)、第2の時間(デバウンスタイム)、ホールド時間(第3の時間)をそれぞれ管理する3つのタイマ107を備えている。
イーサネットカード等のネットワークインタフェースカード(Network Interface Card:NIC)110のトランスミッタ111とレシーバ112(トランスミッタ111とレシーバ112をあわせてトランスミッタといい光モジュールで構成される)は、伝送メディアとして、例えばUTP(Unshielded Twisted Pair)ケーブル(例えばカテゴリ3(10BASE−Tのイーサネット規格で10Mbps(Megabit per second)、100BASE−T2/T4の規格で100Mbps)乃至カテゴリ6(1000BASE−T、1000BASE−TXの規格で1Gbps(Giga bit per second)))、STP(Shielded Twisted Pair)ケーブル、又は光ファイバ、あるいは同軸ケーブル(100base)等で有線接続する構成としてもよい。NIC110は、全二重方式のポイント・ツー・ポイント(point to point)イーサネットリンクを構成するようにしてもよい。
監視用のフレームの一例としてのイーサネットOAMフレームは、例えば、論理チャネル(制御チャネル、トラフィックチャネル)と伝送チャネルを繋ぐ機能を実行するレイヤ2(MAC(Media Access Control)サブレイヤ)で受信処理される。PINGを機能の一部として含むICMP(Internet Control Message Protocol)はレイヤ3で受信処理される。
イーサネットOAMの保守・管理に関する処理を行う管理モジュール101は、NIC110のデバイスドライバ等に、L2(データリンク層)処理モジュール(サブレイヤ)として実装するようにしてもよい。なお、管理モジュール101は、機能の一部を、NIC110のデバイスドライバの管理用のアプリケーションとして実装するようにしてもよい。
フレーム作成部103は、フレームヘッダに宛先MACアドレス、送信元MACアドレスやタイプ、オペコード、MEGレベル等を設定した監視用のフレーム(例えば前記監視用フレームは、EOE(Ethernet over Ethernet)PINGフレーム、Ether−OAM(Ethernet Operations,Administration,Maintenance)のLBM(Loop Back Message)フレーム、又はPINGフレーム)を作成する。図12は、LBMフレームのフレームフォーマットを説明する図である。図13は、EOE PINGフレームのフレームフォーマットを説明する図である。PINGはICMP(Internet Control Message Protocol)のエコー要求(echo request)パケットを宛先ホストに送信し、宛先ホストからエコー応答(echo reply)が返って来ることで到達性を確認する。
仮想送信元MACアドレス設定部131は、例えばベンダーに割り当てられたMACアドレス(6オクテット)の下位3オクテットのうち(上位3オクテットはOUI(Organizationally Unique Identifier))、他のネットワーク機器のMACアドレスと衝突しないMACアドレスの中から(NIC110のMACアドレスとも異なる)、予め用意されたMACアドレスのうち予め定められた所定範囲(例えばネットワークで使用されるLAGメンバーポート数の最大数以上)で連続する値を仮想送信元MACアドレスとして、複数の監視用のフレームの送信元MACアドレス欄に設定する。
あるいは、仮想送信元MACアドレス設定部131は、ベンダーに割り当てられたMACアドレスの下位3オクテットのうち他のネットワーク機器のMACアドレスと衝突しないMACアドレスの中から(NIC110のMACアドレスとも異なる)、予め用意されたMACアドレスを記憶部に保持しておき、予め定められた所定範囲(例えばネットワークで使用されるLAGメンバーポート数の最大数以上)で連続する値を仮想送信元MACアドレスとして選択するようにしてもよい。
また、ネットワーク内の通信装置において、MAC振分ルールとせずに、その他の振分ルールとしてVLAN振分を用いている場合には、LAGメンバーポート数以上の数の連続的な値で掃引する送信元情報は、MACアドレスの代わりにVIDに限定しても良い。あるいは、振分ルールが混在しているネットワークである場合を想定してLAGメンバーポート数の最大数以上でMACアドレスとVIDの双方の送信元情報を連続的な値で掃引する方法を併用するようにしてもよい(図14参照)。
フレーム送信部104は、送信元MACアドレス欄に仮想送信元MACアドレスが設定された監視用のフレームを、例えばプロミスキャス・モード(promiscuous mode)に設定されたNIC110に送出しトランスミッタ111を介してネットワークに送信する。フレーム送信部104は、送信した監視用のフレームに対して送信時刻情報(タイムスタンプ)を、送信ID(Transmission ID)と対応させて、不図示の記憶部に保持するようにしてもよい。なおフレーム送信部104は、異なる値に設定された仮想送信元MACアドレスを送信元MACアドレスとした複数の監視用のフレームを連続送信又は同時送信するようにしてもよい。また、フレーム送信部104は、送信IDに対応させて、監視用のフレームの宛先MACアドレス、仮想送信元MACアドレス、監視用のフレームの送信時刻を対応させて、不図示の記憶部(テーブル)で管理するようにしてもよい。後述する応答フレーム受信判定部105において、受信したフレームが、正常な監視用フレームの応答フレームであるかの確認処理の効率化、容易化に資する。
NIC110とそのデバイスドライバは、イーサネットOAMモード(ループバックモード)に設定されている場合、レシーバ112で受信したフレームを応答フレーム受信判定部105に渡す。
NIC110とそのデバイスドライバでは、例えば以下のような制御が行われる。例えば監視用のフレームによる監視モード時以外(通常モード)には、NIC110でフレームを受信すると、そのヘッダの宛先MACアドレスが、該NIC110の固有のMACアドレス(またはブロードキャストアドレス)と一致するか確認し、MACアドレスが一致しない場合、当該フレームを廃棄する。
監視用のフレームによる監視モード時には、NIC110等へのモード設定に基づき、NIC110とそのデバイスドライバは、受信フレームの宛先MACアドレスとNIC110のMACアドレスとが一致するか比較判定せずに、レシーバ112で受信した全てのフレームを応答フレーム受信判定部105に渡すようにしてもよい。
監視制御部102は、監視用のフレームによるループバックモード時に、NIC110とそのデバイスドライバをプロミスキャス・モード (promiscuous mode)に設定し、受信した全てのフレームを応答フレーム受信判定部105に渡すようにしてもよい。
本実施形態において、監視用のフレームに対する応答フレーム(例えばLBRフレーム又は、Echo Reply)が受信された時に、該LBRフレームの宛先MACアドレスは、NIC110の固有のMACアドレスと異なる仮想送信元MACアドレスに設定されており、NIC110のMACアドレスとは一致しないが、廃棄されず、そのまま、応答フレーム受信判定部105に渡され、応答フレーム受信判定部105でフレームヘッダの内容が解析される。
応答フレーム受信判定部105は、例えば、
・受け取ったフレームの宛先MACアドレスが送信済のLBMフレームの送信元に設定した仮想送信元MACアドレスである、
・送信元MACアドレスが送信済のLBMフレームの宛先に設定したLAGメンバーポートのMACアドレスである、
・OAM Ether-type(2オクテット)が、“0x8902”である、
・オペコードがLBR(=4)、
・受け取ったフレームがLBRフレームであり、LBMフレームの送信時刻(記憶部に保持されている)から予め定められた時間が経過する前に受信している、
場合に、LBRフレームの正常な受信であると判定する。応答フレーム受信判定部105は、さらにOAMフレームのMEGレベルを判別してもよい。
応答フレーム受信判定部105は、前述したフレーム送信部104によるLBMフレームの宛先MACアドレス、仮想送信元MACアドレス、LBMフレームの送信時刻を記憶管理する記憶部(テーブル)を参照して、今回受信したLBRフレームの受信時刻と、LBMフレームの送信時刻との差分から、予め定められた時間が経過しているか否かを判断する構成としてもよい。
応答フレーム受信判定部105は、上記要件に合致しないフレームは、LBRフレームでないか、LBRフレームの正常受信ではないと判定して、廃棄する。
なお、監視用のフレームによる監視モード時に、NIC110とそのデバイスドライバは、フレームヘッダの宛先MACアドレス欄と仮想送信元MACアドレスとを比較し、一致する受信フレームだけを選択して、応答フレーム受信判定部105に渡し、宛先MACアドレス欄が仮想送信元MACアドレス以外の受信フレームを全て廃棄する構成としてもよい。この場合、応答フレーム受信判定部105では、受け取ったフレームの宛先MACアドレスが送信済の監視用のフレームの送信元に設定した仮想送信元MACアドレスと一致するか否かの判定処理は省略される。また、全ての受信フレームを応答フレーム受信判定部105に供給する場合と比べて、応答フレーム受信判定部105の処理負荷が軽減する。
監視制御部102は、ターゲット端末宛てに、フレームヘッダの送信元MACアドレス欄に互いに異なる仮想送信元MACアドレスを設定した複数の監視用フレームを送信した後、当該ターゲット端末から、予め定められた所定の時間以内に、複数の監視用フレームに対応する複数の応答フレームを検出したことを応答フレーム受信判定部105から通知されない場合(1つでも応答フレームが受信されなかった場合)、当該ターゲット端末との間の接続の切断(“loss of connectivity”)と判断する。
一方、応答フレーム受信判定部105において、複数の監視用フレームに対応する複数の応答フレームを全て受信したことを検出すると、応答フレーム受信判定部105はその旨を監視制御部102に通知する。
ネットワーク管理装置100における記憶部106の判定パターンは、図8(A)に示したように、ネットワークの各区間について、該区間と、該区間が障害(断)である場合の複数のターゲット端末A−Hとの間の疎通断との対応を含む。
区間判定部121は、フレームヘッダの送信元MACアドレス欄を仮想送信元MACアドレスに設定した監視用フレームの送信先のターゲット端末A−Hからの応答フレームが一定時間(第2の時間:デバウンスタイム)、受信されない場合、当該ターゲット端末との間の区間の障害と判定(検出)し、タイマ107をスタートさせ、第3の時間(ホールド時間)経過によるタイムアウト時に、区間判定処理を行う。区間判定部121において、前回の区間判定処理でサイレント故障区間の判定に用いられた障害が、今回の区間判定処理まで継続している場合には、該障害を、今回の区間判定処理における実パターンから外した上で、判定パターンとの照合に基づき、サイレント故障の区間の候補を抽出するようにしてもよい。
区間判定結果出力部122は、区間判定部121による区間判定結果(サイレント故障の区間候補)を不図示の表示装置に出力する。区間判定結果出力部122は、区間判定部121による区間判定結果(サイレント故障の区間候補)を通信接続する不図示の端末(例えば保守端末)等に送信し、該端末に表示出力するようにしてもよい。
図11は、ネットワーク管理装置100をサーバ等のコンピュータ200で構成した例を説明する図である。プロセッサ(CPU(Central Processing Unit)、データ処理装置)201と、半導体メモリ(例えばRAM(Random Access Memory)、ROM(Read Only Memory)、又は、EEPROM(Electrically Erasable and Programmable ROM)等)、HDD(Hard Disk Drive)、CD(Compact Disc)、DVD(Digital Versatile Disc)等の少なくともいずれかを含む記憶装置202と、表示装置203と、ネットワークインタフェースカード(NIC)110を備えている。記憶装置202に、上記実施形態で説明したネットワーク管理装置100の機能を実現するプログラムを記憶しておき、プロセッサ201が該プログラムを読み出して実行することで、コンピュータ200をネットワーク管理装置100として動作させるようにしてもよい。
なお、上記の特許文献1、2、非特許文献1の各開示を、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ乃至選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。
100 ネットワーク管理装置(サーバ)
101 管理モジュール
102 監視制御部
103 フレーム作成部
104 フレーム送信部
105 応答フレーム受信判定部
106 記憶部
107 タイマ
108 管理モジュール
110 ネットワークインタフェースカード(NIC)
111 トランスミッタ
112 レシーバ
121 区間判定部
122 区間判定結果出力部
131 仮想送信元MACアドレス設定部
200 コンピュータ
201 プロセッサ
202 記憶装置
203 表示装置

Claims (11)

  1. 複数の通信装置が多段に接続されたネットワークを管理するネットワーク管理装置であって、
    対向する前記通信装置間の区間の少なくとも1つが、複数の回線を束ねたLAG(Link Aggregation Group)を含む前記ネットワークの端部の前記通信装置に接続する複数のターゲット端末の各々に対して、宛先アドレス欄を前記ターゲット端末のアドレスとし、所定範囲で値を連続的に掃引した複数の仮想アドレスを送信元アドレス欄にそれぞれ設定した複数の監視用フレームを、予め定められた第1の時間間隔で送信する手段と、
    前記ターゲット端末から前記複数の監視用フレームに対する応答フレームが1つでも受信されない場合、前記ネットワーク管理装置と前記ターゲット端末との間の疎通断と判断し、
    前記複数のターゲット端末の各々に対する前記複数の前記監視用フレームの前記第1の時間間隔での送信と前記応答フレームの受信の有無の確認を繰り返し、予め定められた第2の時間の間、前記ネットワーク管理装置との間で疎通断のターゲット端末がある場合、前記ネットワーク管理装置と前記ターゲット端末との間の障害として検出する手段と、
    前記ネットワークの区間ごとのサイレント故障に対応させて前記複数のターゲット端末と前記ネットワーク管理装置との間の障害の有無のパターンを予め規定した判定パターンを記憶する記憶部と、
    前記障害を検出してから予め定められた第3の時間経過後に第1の区間判定処理を行い、前記複数のターゲット端末のそれぞれに関する前記ネットワーク管理装置との間の障害の有無を示す実パターンと、前記判定パターンとの照合に基づき、サイレント故障区間の候補を抽出する手段と、
    前記第1の区間判定処理の後に、前記ネットワーク管理装置と前記複数のターゲット端末との間で新たな障害が検知されると、該障害検知時点から、前記第3の時間経過後に第2の区間判定処理を行い、
    前記第2の区間判定処理では、前記第1の区間判定処理でサイレント故障区間の判定に用いられた前記障害が、前記第2の区間判定処理まで継続している場合には、前記障害を、前記第2の区間判定処理における前記複数の前記ターゲット端末に関する前記ネットワーク管理装置との間の障害の有無を示す実パターンから外した上で、前記判定パターンとの照合に基づき、サイレント故障の区間の候補を抽出する手段と、
    を備えた、ことを特徴とするネットワーク管理装置。
  2. 前記第1及び第2の区間判定処理において、前記第2の時間毎の障害発生件数の分布から、該分布の単峰性であるか否かを判定し、単峰性であれば単一故障として区間判定を行い、単峰性以外の場合、多重故障として扱い単一故障としての区間判定対象としない、請求項1記載のネットワーク管理装置。
  3. 前記各区間判定処理において、前記複数のターゲット端末のそれぞれに関する前記ネットワーク管理装置との間の障害の有無を示す実パターンについて、前記実パターンの部分集合に対して、前記判定パターンとの照合に基づき、サイレント故障区間の候補を抽出する手段を備えた請求項1又は2に記載のネットワーク管理装置。
  4. 前記実パターンのうち、前記ネットワーク管理装置との間で障害が検出された複数のターゲット端末のうちの1つのみを障害とし、他を障害無しとする複数の実パターンを生成し、生成した前記複数の実パターンの各々と前記判定パターンとを照合し、サイレント故障区間の候補を抽出する、請求項3記載のネットワーク管理装置。
  5. 前記障害を検出してから区間判定処理を行うまでの前記第3の時間は、前記複数のターゲット端末に対して最低でも1つの監視フレームの送信と1つの応答フレームの受信が完了する時間以上の値に設定される、請求項1乃至4のいずれか1項に記載のネットワーク管理装置。
  6. 前記監視用フレームは、EOE(Ethernet over Ethernet)PINGフレーム、Ether−OAM(Ethernet Operations,Administration,Maintenance)のLB(Loop back)フレーム、又はPINGフレームのいずれかである、請求項1乃至5のいずれか1項に記載のネットワーク管理装置。
  7. 複数の通信装置が多段に接続されたネットワークを管理するネットワーク管理装置による故障区間判定方法であって、
    対向する前記通信装置間の区間の少なくとも1つが、複数の回線を束ねたLAG(Link Aggregation Group)を含む前記ネットワークの端部の前記通信装置に接続する複数のターゲット端末の各々に対して、宛先アドレス欄を前記ターゲット端末のアドレスとし、所定範囲で値を連続的に掃引した複数の仮想アドレスを送信元アドレス欄にそれぞれ設定した複数の監視用フレームを、予め定められた第1の時間間隔で送信し、
    前記ターゲット端末から前記複数の監視用フレームに対する応答フレームが1つでも受信されない場合、前記ネットワーク管理装置と前記ターゲット端末との間の疎通断と判断し、
    前記複数のターゲット端末の各々に対する前記複数の前記監視用フレームの前記第1の時間間隔での送信と前記応答フレームの受信の有無の確認を繰り返し、予め定められた第2の時間の間、前記ネットワーク管理装置との間で疎通断のターゲット端末がある場合、前記ネットワーク管理装置と前記ターゲット端末との間の障害として検出し、
    前記障害を検出してから予め定められた第3の時間経過後に第1の区間判定処理を行い、前記複数のターゲット端末のそれぞれに関する前記ネットワーク管理装置との間の障害の有無を示す実パターンと、前記ネットワークの区間ごとのサイレント故障に対応させて前記複数のターゲット端末と前記ネットワーク管理装置との間の障害の有無のパターンを予め規定した判定パターンとの照合に基づき、サイレント故障区間の候補を抽出し、
    前記第1の区間判定処理の後に、前記ネットワーク管理装置と前記複数のターゲット端末との間で新たな障害が検知されると、該障害検知時点から、前記第3の時間経過後に第2の区間判定処理を行い、
    前記第2の区間判定処理では、前記第1の区間判定処理でサイレント故障区間の判定に用いられた前記障害が、前記第2の区間判定処理まで継続している場合には、前記障害を、前記第2の区間判定処理における前記複数の前記ターゲット端末に関する前記ネットワーク管理装置との間の障害の有無を示す実パターンから外した上で、前記判定パターンとの照合に基づき、サイレント故障の区間の候補を抽出する、ことを特徴とする故障区間判定方法。
  8. 前記第1及び第2の区間判定処理において、前記第2の時間毎の障害発生件数の分布から、該分布の単峰性であるか否かを判定し、単峰性であれば単一故障として区間判定を行い、単峰性以外の場合、多重故障として扱い単一故障としての区間判定対象としない、請求項7記載の故障区間判定方法。
  9. 前記各区間判定処理において、前記複数のターゲット端末のそれぞれに関する前記ネットワーク管理装置との間の障害の有無を示す実パターンについて、前記実パターンの部分集合に対して、前記判定パターンとの照合に基づき、サイレント故障区間の候補を抽出する手段を備えた請求項7又は8に記載の故障区間判定方法。
  10. 前記実パターンのうち、前記ネットワーク管理装置との間で障害が検出された複数のターゲット端末のうちの1つのみを障害とし、他を障害無しとする複数の実パターンを生成し、生成した前記複数の実パターンの各々と前記判定パターンとを照合し、サイレント故障区間の候補を抽出する、請求項9記載の故障区間判定方法。
  11. 複数の通信装置が多段に接続されたネットワークを管理するネットワーク管理装置を構成するコンピュータに、
    対向する前記通信装置間の区間の少なくとも1つが、複数の回線を束ねたLAG(Link Aggregation Group)を含む前記ネットワークの端部の前記通信装置に接続する複数のターゲット端末の各々に対して、宛先アドレス欄を前記ターゲット端末のアドレスとし、所定範囲で値を連続的に掃引した複数の仮想アドレスを送信元アドレス欄にそれぞれ設定した複数の監視用フレームを、予め定められた第1の時間間隔で送信する処理と、
    前記ターゲット端末から前記複数の監視用フレームに対する応答フレームが1つでも受信されない場合、前記ネットワーク管理装置と前記ターゲット端末との間の疎通断と判断する処理と、
    前記複数のターゲット端末の各々に対する前記複数の前記監視用フレームの前記第1の時間間隔での送信と前記応答フレームの受信の有無の確認を繰り返し、予め定められた第2の時間の間、前記ネットワーク管理装置との間で疎通断のターゲット端末がある場合、前記ネットワーク管理装置と前記ターゲット端末との間の障害として検出する処理と、
    前記障害を検出してから予め定められた第3の時間経過後に第1の区間判定処理を行い、前記複数のターゲット端末のそれぞれに関する前記ネットワーク管理装置との間の障害の有無を示す実パターンと、前記ネットワークの区間ごとのサイレント故障に対応させて前記複数のターゲット端末と前記ネットワーク管理装置との間の障害の有無のパターンを予め規定した判定パターンと、の照合に基づき、サイレント故障区間の候補を抽出する処理と、
    前記第1の区間判定処理の後に、前記ネットワーク管理装置と前記複数のターゲット端末との間で新たな障害が検知されると、該障害検知時点から、前記第3の時間経過後に第2の区間判定処理を行い、前記第2の区間判定処理では、前記第1の区間判定処理でサイレント故障区間の判定に用いられた前記障害が、前記第2の区間判定処理まで継続している場合には、前記障害を、前記第2の区間判定処理における前記複数の前記ターゲット端末に関する前記ネットワーク管理装置との間の障害の有無を示す実パターンから外した上で、前記判定パターンとの照合に基づき、サイレント故障の区間の候補を抽出する処理と、
    を実行させるプログラム。
JP2019187232A 2019-10-11 2019-10-11 ネットワーク管理装置、故障区間判定方法、及びプログラム Active JP6662485B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019187232A JP6662485B1 (ja) 2019-10-11 2019-10-11 ネットワーク管理装置、故障区間判定方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019187232A JP6662485B1 (ja) 2019-10-11 2019-10-11 ネットワーク管理装置、故障区間判定方法、及びプログラム

Publications (2)

Publication Number Publication Date
JP6662485B1 true JP6662485B1 (ja) 2020-03-11
JP2021064843A JP2021064843A (ja) 2021-04-22

Family

ID=69998115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019187232A Active JP6662485B1 (ja) 2019-10-11 2019-10-11 ネットワーク管理装置、故障区間判定方法、及びプログラム

Country Status (1)

Country Link
JP (1) JP6662485B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115410292A (zh) * 2022-07-29 2022-11-29 成都赛力斯科技有限公司 车辆故障分析方法、装置、计算机设备和存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115410292A (zh) * 2022-07-29 2022-11-29 成都赛力斯科技有限公司 车辆故障分析方法、装置、计算机设备和存储介质
CN115410292B (zh) * 2022-07-29 2023-10-27 成都赛力斯科技有限公司 车辆故障分析方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
JP2021064843A (ja) 2021-04-22

Similar Documents

Publication Publication Date Title
US8085670B2 (en) Method and system for originating connectivity fault management (CFM) frames on non-CFM aware switches
US7496055B2 (en) Layer 2 loop detection system
US8125914B2 (en) Scaled Ethernet OAM for mesh and hub-and-spoke networks
US8274911B2 (en) Network monitoring system and path extracting method
US20080112331A1 (en) Method and system for transmitting connectivity fault management messages in ethernet,and a node device
US20080062874A1 (en) Network monitoring device and network monitoring method
US20080298258A1 (en) Information transfer capability discovery apparatus and techniques
JP6332544B1 (ja) ネットワーク管理装置、ネットワークシステム、方法、及びプログラム
CN101909006A (zh) 双向转发检测报文发送、接收方法及其装置与通信系统
JP6662485B1 (ja) ネットワーク管理装置、故障区間判定方法、及びプログラム
CN103401716A (zh) 网络性能测量的方法、网管设备和网元设备
JP6601531B2 (ja) ネットワーク管理装置、ネットワークシステム、方法、及びプログラム
US7843854B2 (en) Network loop detection using known static addresses
EP1770905B1 (en) Detecting inactive links in a communication network
CN108282383B (zh) 一种实现故障处理的方法及设备
JP6662486B1 (ja) ネットワーク管理装置、故障区間判定方法、及びプログラム
US20100246412A1 (en) Ethernet oam fault propagation using y.1731/802.1ag protocol
US8755288B2 (en) Network system, layer 2 switch, and method of detecting occurrence of a fault in a network
CN112769653B (zh) 一种基于网口绑定的网络检测与切换方法、系统及介质
CN112202634B (zh) 一种网络链路故障检测及传递方法及系统
JP2018125834A (ja) ネットワークシステムとネットワーク管理装置及び方法とプログラム
KR100492520B1 (ko) 인트라넷의 계층적 장애관리방법
JP6460278B1 (ja) ネットワーク管理装置、方法、及びプログラム
CN107733677B (zh) 一种叠加网络的告警生成方法和装置
JP7243202B2 (ja) ネットワーク管理装置、方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191011

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191011

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6662485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150