JP6662275B2 - Method and apparatus for magnetic separation of particulate matter - Google Patents

Method and apparatus for magnetic separation of particulate matter Download PDF

Info

Publication number
JP6662275B2
JP6662275B2 JP2016229701A JP2016229701A JP6662275B2 JP 6662275 B2 JP6662275 B2 JP 6662275B2 JP 2016229701 A JP2016229701 A JP 2016229701A JP 2016229701 A JP2016229701 A JP 2016229701A JP 6662275 B2 JP6662275 B2 JP 6662275B2
Authority
JP
Japan
Prior art keywords
granular material
magnetic
belt conveyor
conveyor
magnetically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016229701A
Other languages
Japanese (ja)
Other versions
JP2018086603A (en
Inventor
勇輝 ▲高▼木
勇輝 ▲高▼木
石田 匡平
匡平 石田
真光 二瓶
真光 二瓶
孝彦 前田
孝彦 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016229701A priority Critical patent/JP6662275B2/en
Publication of JP2018086603A publication Critical patent/JP2018086603A/en
Application granted granted Critical
Publication of JP6662275B2 publication Critical patent/JP6662275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/18Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
    • B03C1/20Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation in the form of belts, e.g. cross-belt type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • B03C1/031Component parts; Auxiliary operations
    • B03C1/033Component parts; Auxiliary operations characterised by the magnetic circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/04Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/18Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with magnets moving during operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/26Magnetic separation acting directly on the substance being separated with free falling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/22Details of magnetic or electrostatic separation characterised by the magnetical field, special shape or generation

Description

本発明は、磁着性粒子を含む粒状物から磁着性粒子を磁力選別する技術に関するものであり、鉄鋼製造プロセスで発生した鉄鋼スラグから鉄分を選別回収する場合や、鉱山において鉄鉱石から高品位鉱石を選別する場合などに有用な技術である。   The present invention relates to a technology for magnetically separating magnetically adhering particles from granular materials including magnetically adhering particles, and in a case where iron is selectively recovered from steel slag generated in a steel manufacturing process, or in a mine where iron ore is highly separated. This is a useful technique when sorting high-grade ores.

製鉄所において製銑・製鋼工程で発生する鉄鋼スラグには20〜50質量%程度の鉄分が含まれている。この鉄鋼スラグをそのまま処分すると製鉄フローにおける鉄歩留まりが低下することから、スラグから鉄分を分離し、製銑・製鋼工程でリサイクルしている。スラグから鉄分を分離する手法としては、磁性を利用した磁力選別が一般的であるが、スラグ粉のように小粒径(0−5mm)のものでは、大量処理をしようとすると多層になった状態(層厚が大きい状態)で処理しなければならないため、(i)磁着性粒子(磁性体)が非磁着性粒子(非磁性体)を抱き込んでしまい、磁着側の鉄分濃度を十分に高められない、(ii)下層にある磁着性粒子が非磁着性粒子に抱き込まれて鉄分が非磁着側にロスする、という課題がある。   The iron and steel slag generated in the iron making and steel making process at the steel mill contains about 20 to 50% by mass of iron. If this steel slag is disposed of as it is, the iron yield in the steelmaking flow decreases, so iron is separated from the slag and recycled in the pig and steel making process. As a method of separating iron from slag, magnetic force separation using magnetism is generally used. However, in the case of slag powder having a small particle size (0-5 mm), multi-layer processing is attempted when mass processing is attempted. Since the treatment must be performed in a state (with a large layer thickness), (i) the magnetically adhering particles (magnetic material) embrace the non-magnetically adhering particles (non-magnetic material), and the iron concentration on the magnetically adhering side (Ii) there is a problem that the magnetically adherent particles in the lower layer are embraced by the non-magnetically adhered particles and iron is lost to the non-magnetically adhered side.

従来、このような課題を解決するために、いくつかの提案がなされている。
例えば、特許文献1には、被選別物をらせん状のスライダに通して、中心からの遠心力により非磁着物を磁石側から引き剥がす方法が提案されている。
また、特許文献2には、磁石を備えた吊り下げ型の磁力選別機を用いる方法において、原料の供給コンベヤと磁石との距離を大きくすることで、非磁着物の巻き込みを防ぐようにした方法が提案されている。
Conventionally, several proposals have been made to solve such a problem.
For example, Patent Literature 1 proposes a method in which an object to be sorted is passed through a spiral slider, and a non-magnetically attached object is peeled off from the magnet side by centrifugal force from the center.
Patent Document 2 discloses a method using a suspended magnetic separator equipped with magnets, in which the distance between the material supply conveyor and the magnets is increased to prevent entrapment of non-magnetically attached matter. Has been proposed.

特開平7−155639号公報JP-A-7-155639 特開2004−351858号公報JP-A-2004-351858

しかし、特許文献1のように、遠心力により非磁着性粒子を磁石側から引き離す手法では、磁着性粒子にも非磁着性粒子と同様に遠心力が働き、非磁着側に磁着性粒子がロスする問題がある。
また、特許文献2のように、磁石との距離を大きくして、磁着性粒子を吸着する手法においても、原料を多層の状態(層厚が大きい状態)に供給すると、下層側の磁着性粒子が非磁着性粒子に抱き込まれて非磁着側にロスする問題がある。
However, in the method of separating the non-magnetically adhering particles from the magnet side by the centrifugal force as in Patent Document 1, centrifugal force acts on the magnetically adhering particles in the same manner as the non-magnetically adhering particles, and the magnetically adhering particles are applied to the non-magnetically adhering side. There is a problem that adhesive particles are lost.
Also, in the technique of increasing the distance from the magnet and adsorbing the magnetically adhering particles, as in Patent Document 2, when the raw material is supplied in a multilayer state (a state in which the layer thickness is large), the lower layer is magnetized. There is a problem that the non-magnetic particles are entangled by the non-magnetic particles and are lost to the non-magnetic side.

したがって本発明の目的は、以上のような従来技術の課題を解決し、磁着性粒子を含む粒状物から磁着性粒子を磁力選別する方法において、磁着性粒子による非磁着性粒子の抱き込みや、非磁着性粒子による磁着性粒子の抱き込みを適正に抑えて、磁着性粒子と非磁着性粒子を精度よく分離することができる方法を提供することにある。また、本発明の他の目的は、そのような磁力選別方法の実施に好適な装置を提供することにある。   Therefore, an object of the present invention is to solve the problems of the prior art as described above, and in a method of magnetically separating magnetically adhering particles from granular materials including magnetically adhering particles, the method of non-magnetically adhering particles by the magnetically adhering particles. It is an object of the present invention to provide a method capable of accurately separating the magnetically adhering particles from the non-magnetically adhering particles while appropriately suppressing the inclusion and the inclusion of the magnetically adhering particles by the non-magnetically adhering particles. Another object of the present invention is to provide an apparatus suitable for performing such a magnetic force sorting method.

本発明者らは、上記課題を解決すべく検討を重ねた結果、以下のような新たな手法を見出した。すなわち、ベルトコンベアに原料(磁着性粒子を含む粒状物)を供給する際に、原料を自由落下させ、その落下途中の原料に磁場印加手段により磁場を印加し、この磁場印加により磁着性粒子の落下軌道をコンベア搬送方向下流側又はコンベア搬送方向上流側に誘導する(落下軌道をコンベア搬送方向下流側又はコンベア搬送方向上流側に変位させる)。これにより原料は、上層側又は下層側に磁着性粒子が偏析した状態でベルトコンベア上に堆積し、このようにベルトコンベア上で原料の上層側又は下層側に偏析した磁着性粒子を、その偏析形態(すなわち上層側への偏析又は下層側への偏析)に応じた磁力選別機能を有する磁力選別手段により磁力選別する。このような手法では、上層側又は下層側に偏析した磁着性粒子を磁力選別するので、磁着性粒子による非磁着性粒子の抱き込みや、非磁着性粒子による磁着性粒子の抱き込みが適切に抑えられ、磁着性粒子と非磁着性粒子を精度よく分離することができる。   As a result of repeated studies to solve the above problems, the present inventors have found the following new methods. That is, when a raw material (granular material containing magnetically adhering particles) is supplied to the belt conveyor, the raw material is allowed to fall freely, and a magnetic field is applied to the raw material during the fall by a magnetic field applying means. The falling trajectory of the particles is guided to the downstream side in the conveyor conveyance direction or the upstream side in the conveyor conveyance direction (the falling trajectory is displaced to the downstream side in the conveyor conveyance direction or the upstream side in the conveyor conveyance direction). Thereby, the raw material is deposited on the belt conveyor in a state where the magnetically adhered particles are segregated on the upper layer side or the lower layer side, and the magnetically adhered particles segregated on the upper side or the lower layer side of the raw material on the belt conveyor in this manner, Magnetic separation is performed by magnetic separation means having a magnetic separation function according to the segregation form (ie, segregation to the upper layer side or segregation to the lower layer side). In such a method, magnetically segregating the magnetically adhered particles segregated to the upper layer side or the lower layer side, so that the non-magnetically adhered particles are embraced by the magnetically adhered particles and the magnetically adhered particles are separated by the non-magnetically adhered particles. Entrapment is appropriately suppressed, and the magnetically adhering particles and the non-magnetically adhering particles can be accurately separated.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]磁着性粒子(x)を含む粒状物(A)から磁着性粒子(x)を磁力選別する方法であって、
粒状物(A)を上方からベルトコンベア(1)に向けて落下させるとともに、その落下空間よりもコンベア搬送方向下流側又はコンベア搬送方向上流側に配置された磁場印加手段(2)により、落下途中の粒状物(A)に磁場を印加し、該磁場印加により主たる磁着性粒子(x)の落下軌道をコンベア搬送方向下流側又はコンベア搬送方向上流側に誘導しつつ、粒状物(A)をベルトコンベア(1)上に落下させることにより、ベルトコンベア(1)上に、上層側又は下層側に磁着性粒子(x)が偏析した状態で粒状物(A)を堆積させ、
ベルトコンベア(1)上に堆積して搬送される粒状物(A)の上層側又は下層側に偏析した磁着性粒子(x)を、磁力選別手段(3)により磁力選別することを特徴とする粒状物の磁力選別方法。
The present invention has been made based on such findings, and has the following gist.
[1] A method of magnetically separating magnetically adhering particles (x) from particulate matter (A) containing magnetically adhering particles (x),
The particulate matter (A) is dropped from above toward the belt conveyor (1), and is dropped by the magnetic field applying means (2) arranged downstream of the falling space in the conveyor conveyance direction or upstream of the conveyor conveyance direction. A magnetic field is applied to the granular material (A) of the above, and by applying the magnetic field, the falling trajectory of the main magnetically adherent particles (x) is guided to the downstream side in the conveyor transport direction or the upstream side in the conveyor transport direction, and the granular material (A) is By dropping on the belt conveyor (1), the particulate matter (A) is deposited on the belt conveyor (1) in a state where the magnetically adherent particles (x) are segregated on the upper layer side or the lower layer side,
The magnetic particles (x) segregated on the upper layer side or the lower layer side of the granular material (A) deposited and conveyed on the belt conveyor (1) are magnetically separated by a magnetic force separating means (3). Magnetic separation method for granular materials.

[2]上記[1]の磁力選別方法において、ベルトコンベア(1)の上方に、粒状物(A)を供給してベルトコンベア(1)に向けて自由落下させる粒状物供給手段(4)が配置されるとともに、粒状物(A)の落下空間に面して磁場印加手段(2)が配置され、
粒状物供給手段(4)から供給された粒状物(A)をベルトコンベア(1)に向けて自由落下させ、この落下途中の粒状物(A)に対して、磁場印加手段(2)により磁場を印加することを特徴とする粒状物の磁力選別方法。
[3]上記[1]の磁力選別方法において、ベルトコンベア(1)の上方に、粒状物(A)を供給する粒状物供給手段(4)と、該粒状物供給手段(4)から供給された粒状物(A)を受けて滑落させる傾斜シュート(5)が配置されるとともに、該傾斜シュート(5)の下端直下における粒状物(A)の落下空間に面して磁場印加手段(2)が配置され、
粒状物供給手段(4)から供給された粒状物(A)を傾斜シュート(5)で受けて滑落させた後、傾斜シュート(5)の下端からベルトコンベア(1)に向けて自由落下させ、この落下途中の粒状物(A)に対して、磁場印加手段(2)により磁場を印加することを特徴とする粒状物の磁力選別方法。
[2] In the magnetic force separation method according to the above [1], a granular material supply means (4) for supplying the granular material (A) above the belt conveyor (1) and dropping the granular material (A) freely toward the belt conveyor (1) is provided. Magnetic field applying means (2) is arranged facing the falling space of the particulate matter (A),
The granular material (A) supplied from the granular material supply means (4) is dropped freely toward the belt conveyor (1), and a magnetic field is applied to the granular material (A) during the fall by the magnetic field applying means (2). Applying a magnetic force to the particles.
[3] In the magnetic force sorting method of the above [1], the granular material supply means (4) for supplying the granular material (A) above the belt conveyor (1), and the granular material supply means (4) supplies the granular material (A). An inclined chute (5) for receiving and sliding down the granular material (A), and a magnetic field applying means (2) facing the falling space of the granular material (A) immediately below the lower end of the inclined chute (5). Is placed,
After the granular material (A) supplied from the granular material supply means (4) is received by the inclined chute (5) and slid down, it is dropped freely from the lower end of the inclined chute (5) toward the belt conveyor (1), A magnetic field sorting method, wherein a magnetic field is applied to the granular material (A) during the dropping by a magnetic field applying means (2).

[4]上記[1]〜[3]のいずれかの磁力選別方法において、ベルトコンベア(1)上に堆積して搬送される粒状物(A)の上層側に偏析した磁着性粒子(x)を、ベルトコンベア(1)の上方に配置された磁力選別手段(3)に磁気吸着させて磁力選別することを特徴とする粒状物の磁力選別方法。
[5]上記[4]の磁力選別方法において、磁力選別手段(3)が、コンベア始端部(30)側のプーリが磁石プーリ(32)で構成され、コンベア搬送方向がベルトコンベア(1)と逆向きであるプーリ型磁力選別機(3a)からなり、ベルトコンベア(1)のコンベア終端部(11)の上方にプーリ型磁力選別機(3a)のコンベア始端部(30)が近接して位置することを特徴とする粒状物の磁力選別方法。
[6]上記[4]の磁力選別方法において、磁力選別手段(3)が、コンベアベルト(37)の内側に磁石プレート(38)を備え、ベルトコンベア(1)と交差する方向に配置されたベルトコンベア(3b)からなることを特徴とする粒状物の磁力選別方法。
[4] In the magnetic force separation method according to any one of the above [1] to [3], the magnetically adhering particles (x) segregated on the upper layer side of the granular material (A) deposited and conveyed on the belt conveyor (1). ) Is magnetically attracted to a magnetic force sorting means (3) disposed above the belt conveyor (1) to perform magnetic force sorting.
[5] In the magnetic force sorting method according to the above [4], the magnetic force sorting means (3) is configured such that the pulley on the side of the conveyor start end (30) is a magnet pulley (32), and the conveyor conveyance direction is the same as that of the belt conveyor (1). The pulley-type magnetic separator (3a) has a reverse direction, and the conveyor start end (30) of the pulley-type magnetic separator (3a) is positioned above the conveyor end (11) of the belt conveyor (1). A magnetic force sorting method for a granular material.
[6] In the magnetic force sorting method of the above [4], the magnetic force sorting means (3) includes a magnet plate (38) inside the conveyor belt (37) and is arranged in a direction intersecting the belt conveyor (1). A method for magnetically sorting granular materials, comprising a belt conveyor (3b).

[7]上記[1]〜[3]のいずれかの磁力選別方法において、ベルトコンベア(1)上に堆積して搬送される粒状物(A)の下層側に偏析した磁着性粒子(x)を、粒状物(A)をベルトコンベア(1)から払い出す際に磁力選別手段(3)に磁気吸着させて磁力選別することを特徴とする粒状物の磁力選別方法。
[8]上記[7]の磁力選別方法において、ベルトコンベア(1)が、コンベア終端部(11)側のプーリが磁石プーリ(16)で構成されるプーリ型磁力選別機(1a)からなり、磁力選別手段(3)が磁石プーリ(16)からなることを特徴とする磁力選別方法。
[9]上記[7]の磁力選別方法において、磁力選別手段(3)が、ベルトコンベア(1)のコンベア終端部(11)に隣接して配置されたドラム型磁力選別機(3c)からなることを特徴とする粒状物の磁力選別方法。
[7] In the magnetic force sorting method according to any one of [1] to [3], the magnetically adhering particles (x) segregated on the lower layer side of the granular material (A) deposited and conveyed on the belt conveyor (1). ) Is magnetically attracted to a magnetic force sorting means (3) when the granular material (A) is discharged from the belt conveyor (1) to perform magnetic force sorting.
[8] In the magnetic separation method according to the above [7], the belt conveyor (1) comprises a pulley-type magnetic separator (1a) in which a pulley on the side of the conveyor end portion (11) is formed by a magnet pulley (16); A magnetic force sorting method, wherein the magnetic force sorting means (3) comprises a magnet pulley (16).
[9] In the magnetic separation method according to the above [7], the magnetic separation means (3) comprises a drum type magnetic separator (3c) arranged adjacent to the conveyor end portion (11) of the belt conveyor (1). A method for magnetically sorting granular materials, characterized in that:

[10]磁着性粒子(x)を含む粒状物(A)から磁着性粒子(x)を磁力選別する装置であって、
ベルトコンベア(1)と、
該ベルトコンベア(1)の上方に配置され、粒状物(A)を供給してベルトコンベア(1)に向けて落下させる粒状物供給手段(4)と、
粒状物(A)の落下空間よりもコンベア搬送方向下流側又はコンベア搬送方向上流側に配置され、落下途中の粒状物(A)に磁場を印加することにより、主たる磁着性粒子(x)の落下軌道をコンベア搬送方向下流側又はコンベア搬送方向上流側に誘導する磁場印加手段(2)と、
ベルトコンベア(1)上に堆積して搬送される粒状物(A)の上層側又は下層側に偏析した磁着性粒子(x)を磁力選別する磁力選別手段(3)を備えることを特徴とする粒状物の磁力選別装置。
[10] An apparatus for magnetically separating magnetically adhering particles (x) from granular matter (A) containing magnetically adhering particles (x),
A belt conveyor (1),
A granular material supply means (4) disposed above the belt conveyor (1), for supplying the granular material (A) and dropping the granular material (A) toward the belt conveyor (1);
The main magnetically adhering particles (x) are arranged by applying a magnetic field to the granular material (A) which is disposed on the downstream side in the conveyor transport direction or the upstream side in the conveyor transport direction from the space where the granular material (A) falls. A magnetic field applying means (2) for guiding the falling trajectory downstream in the conveyor conveyance direction or upstream in the conveyor conveyance direction;
A magnetic separation means (3) for magnetically separating magnetically adhering particles (x) segregated on the upper layer side or the lower layer side of the granular material (A) deposited and conveyed on the belt conveyor (1); Magnetic separation device for granular materials.

[11]上記[10]の磁力選別装置において、粒状物供給手段(4)から供給されてベルトコンベア(1)に向けて自由落下する粒状物(A)の落下空間に面して磁場印加手段(2)が配置されたことを特徴とする粒状物の磁力選別装置。
[12]上記[10]の磁力選別装置において、粒状物供給手段(4)から供給された粒状物(A)を受けて滑落させる傾斜シュート(5)を備え、該傾斜シュート(5)の下端直下における粒状物(A)の落下空間に面して磁場印加手段(2)が配置されたことを特徴とする粒状物の磁力選別装置。
[13]上記[10]〜[12]のいずれかの磁力選別装置において、磁力選別手段(3)が、ベルトコンベア(1)の上方に配置され、ベルトコンベア(1)上に堆積して搬送される粒状物(A)の上層側に偏析した磁着性粒子(x)を磁気吸着する手段であることを特徴とする粒状物の磁力選別装置。
[11] In the magnetic force sorting apparatus according to the above [10], the magnetic field applying means facing the falling space of the granular material (A) supplied from the granular material supply means (4) and freely falling toward the belt conveyor (1). (2) A magnetic force sorting apparatus for granular materials, wherein (2) is arranged.
[12] The magnetic force sorting apparatus according to the above [10], further comprising an inclined chute (5) for receiving and sliding down the granular material (A) supplied from the granular material supply means (4), and a lower end of the inclined chute (5). A magnetic force sorting apparatus for a granular material, wherein a magnetic field applying means (2) is arranged facing a space where the granular material (A) falls immediately below.
[13] In the magnetic separation apparatus according to any one of [10] to [12], the magnetic separation means (3) is disposed above the belt conveyor (1), and is deposited on the belt conveyor (1) and transported. A magnetic force sorting device for magnetically adsorbing magnetically adhering particles (x) segregated on the upper layer side of the granular material (A) to be produced.

[14]上記[13]の磁力選別装置において、磁力選別手段(3)が、コンベア始端部(30)側のプーリが磁石プーリ(32)で構成され、コンベア搬送方向がベルトコンベア(1)と逆向きであるプーリ型磁力選別機(3a)からなり、ベルトコンベア(1)のコンベア終端部(11)の上方にプーリ型磁力選別機(3a)のコンベア始端部(30)が近接して位置することを特徴とする粒状物の磁力選別装置。
[15]上記[13]の磁力選別装置において、磁力選別手段(3)が、コンベアベルト(37)の内側に磁石プレート(38)を備え、ベルトコンベア(1)と交差する方向に配置されたベルトコンベア(3b)からなることを特徴とする粒状物の磁力選別装置。
[16]上記[10]〜[12]のいずれかの磁力選別装置において、磁力選別手段(3)が、ベルトコンベア(1)上に堆積して搬送される粒状物(A)の下層側に偏析した磁着性粒子(x)を、粒状物(A)をベルトコンベア(1)から払い出す際に磁気吸着する手段であることを特徴とする粒状物の磁力選別装置。
[14] In the magnetic separation apparatus according to [13], the magnetic separation means (3) is configured such that the pulley on the side of the conveyer starting end (30) is constituted by the magnet pulley (32), and the conveyor conveyance direction is the same as that of the belt conveyer (1). The pulley-type magnetic separator (3a) has a reverse direction, and the conveyor start end (30) of the pulley-type magnetic separator (3a) is positioned above the conveyor end (11) of the belt conveyor (1). A magnetic force sorting device for granular materials.
[15] In the magnetic force sorting apparatus according to the above [13], the magnetic force sorting means (3) includes the magnet plate (38) inside the conveyor belt (37) and is arranged in a direction intersecting with the belt conveyor (1). A magnetic separation device for granular materials, comprising a belt conveyor (3b).
[16] In the magnetic separation apparatus according to any one of the above [10] to [12], the magnetic separation means (3) is provided on a lower side of the granular material (A) deposited and conveyed on the belt conveyor (1). A magnetic separation device for a granular material, which is means for magnetically adsorbing the segregated magnetic particles (x) when discharging the granular material (A) from the belt conveyor (1).

[17]上記[16]の磁力選別装置において、ベルトコンベア(1)が、コンベア終端部(11)側のプーリが磁石プーリ(16)で構成されるプーリ型磁力選別機(1a)からなり、磁力選別手段(3)が磁石プーリ(16)からなることを特徴とする粒状物の磁力選別装置。
[18]上記[16]の磁力選別装置において、磁力選別手段(3)が、ベルトコンベア(1)のコンベア終端部(11)に隣接して配置されたドラム型磁力選別機(3c)からなることを特徴とする粒状物の磁力選別装置。
[19]上記[1]〜[9]のいずれかの磁力選別方法により、粒状物(A)である鉄鋼スラグ又は鉄鉱石から磁着性粒子(x)を磁力選別し、該磁着性粒子(x)を製鉄原料として回収することを特徴とする製鉄原料の製造方法。
[17] In the magnetic force sorting apparatus according to the above [16], the belt conveyor (1) comprises a pulley type magnetic force sorter (1a) in which the pulley on the side of the conveyor end portion (11) is constituted by a magnet pulley (16), A magnetic force sorting apparatus for granular materials, wherein the magnetic force sorting means (3) comprises a magnet pulley (16).
[18] In the magnetic force sorting device according to the above [16], the magnetic force sorting means (3) comprises a drum type magnetic force sorting machine (3c) arranged adjacent to the conveyor end portion (11) of the belt conveyor (1). A magnetic force sorting device for granular materials, characterized in that:
[19] The magnetically segregable particles (x) are magnetically segregated from the iron slag or iron ore, which is the granular material (A), by the magnetic segregation method according to any one of the above [1] to [9]. A method for producing a steelmaking raw material, comprising recovering (x) as a steelmaking raw material.

本発明によれば、磁着性粒子を含む粒状物から磁着性粒子を磁力選別する方法において、磁着性粒子による非磁着性粒子の抱き込みや、非磁着性粒子による磁着性粒子の抱き込みを適切に抑えて、磁着性粒子と非磁着性粒子を精度よく分離することができる。このため、鉄鋼製造プロセスで発生した鉄鋼スラグから高品位の鉄分を高い回収率で分離回収することができ、また、鉱山において鉄鉱石から高品位鉱石を高い回収率で分離回収することができる。   According to the present invention, in a method for magnetically separating magnetically adhering particles from a granular material containing magnetically adhering particles, the method of embracing the non-magnetically adhering particles by the magnetically adhering particles, It is possible to accurately separate the magnetically adhering particles from the non-magnetically adhering particles by appropriately suppressing the inclusion of the particles. Therefore, high-grade iron can be separated and recovered at a high recovery rate from the steel slag generated in the steel manufacturing process, and high-grade ore can be separated and recovered at a mine at a high recovery rate from iron ore.

本発明の磁力選別方法及び装置の一実施形態を示す模式説明図Schematic explanatory view showing one embodiment of the magnetic force sorting method and apparatus of the present invention. 図1の部分拡大図Partial enlarged view of FIG. 図1の本発明法と従来法において、粒状物から磁着性粒子が磁力選別される様子を比較して示す模式説明図(図3(a)が本発明法、図3(b)が従来法)FIG. 3A is a schematic explanatory view showing a comparison of magnetically separating magnetically adhering particles from particulate matter in the method of the present invention and the conventional method in FIG. 1 (FIG. 3A shows the method of the present invention, and FIG. 3B shows the conventional method). Law) 本発明の磁力選別方法及び装置の他の実施形態を示す模式説明図Schematic explanatory view showing another embodiment of the magnetic force sorting method and device of the present invention. 図4のV-V線に沿う矢視説明図Arrow explanatory view along the line VV in FIG. 本発明の磁力選別方法及び装置の他の実施形態を示す模式説明図Schematic explanatory view showing another embodiment of the magnetic force sorting method and device of the present invention. 本発明の磁力選別方法及び装置の他の実施形態を示す模式説明図Schematic explanatory view showing another embodiment of the magnetic force sorting method and device of the present invention. 本発明の磁力選別方法及び装置の他の実施形態を示す模式説明図Schematic explanatory view showing another embodiment of the magnetic force sorting method and device of the present invention. 実施例1において、本発明法と従来法による磁着側Fe濃度とFe歩留りの関係を示すグラフIn Example 1, a graph showing the relationship between the Fe concentration on the magnetized side and the Fe yield according to the method of the present invention and the conventional method. 実施例1において、本発明法と従来法の総合分離効率を示すグラフIn Example 1, the graph which shows the total separation efficiency of the method of this invention and the conventional method 実施例2において、本発明法と従来法による磁着側Fe濃度とFe歩留りの関係を示すグラフIn Example 2, a graph showing the relationship between the Fe concentration on the magnetized side and the Fe yield according to the method of the present invention and the conventional method. 実施例2において、本発明法と従来法の総合分離効率を示すグラフIn Example 2, the graph which shows the total separation efficiency of the method of this invention and the conventional method

本発明法は、ベルトコンベア1に磁着性粒子xを含む粒状物Aを供給する際に、粒状物Aを自由落下させ、その落下途中の粒状物Aに磁場印加手段2により磁場を印加し(磁力を作用させる)、この磁場印加により磁着性粒子xの落下軌道をコンベア搬送方向下流側又はコンベア搬送方向上流側に誘導する。すなわち、磁着性粒子xに磁力を作用させ、その落下軌道をコンベア搬送方向下流側又はコンベア搬送方向上流側に変位させる。これにより粒状物Aは、上層側又は下層側に磁着性粒子xが偏析した状態でベルトコンベア1上に堆積し、このようにベルトコンベア1上で粒状物Aの上層側又は下層側に偏析した磁着性粒子xを、その偏析形態(すなわち上層側への偏析又は下層側への偏析)に応じた磁力選別機能を有する磁力選別手段3により磁力選別するものである。このような本発明法によれば、上層側又は下層側に偏析した磁着性粒子xを磁力選別するので、磁着性粒子xによる非磁着性粒子yの抱き込みや、非磁着性粒子yによる磁着性粒子xの抱き込みが抑えられ、磁着性粒子xと非磁着性粒子yを精度よく分離することができる。   According to the method of the present invention, when the granular material A containing the magnetically adhering particles x is supplied to the belt conveyor 1, the granular material A is allowed to fall freely, and a magnetic field is applied to the granular material A during the fall by the magnetic field applying means 2. By applying the magnetic field, the fall trajectory of the magnetically adhering particles x is guided to the downstream side in the conveyor conveyance direction or the upstream side in the conveyor conveyance direction. That is, a magnetic force is applied to the magnetically adhering particles x to displace the falling trajectory downstream in the conveyor conveyance direction or upstream in the conveyor conveyance direction. As a result, the particulate matter A is deposited on the belt conveyor 1 in a state where the magnetically adhering particles x are segregated on the upper layer side or the lower layer side, and segregated on the upper side or the lower layer side of the particulate matter A on the belt conveyor 1 as described above. The magnetically adhering particles x are subjected to magnetic force separation by a magnetic force separating means 3 having a magnetic force selecting function according to the segregation form (that is, segregation to the upper layer side or segregation to the lower layer side). According to such a method of the present invention, the magnetically adhering particles x segregated on the upper layer side or the lower layer side are separated by magnetic force, so that the magnetically adhering particles x embrace the non-magnetically adhering particles y, Entrapment of the magnetic particles x by the particles y is suppressed, and the magnetic particles x and the non-magnetic particles y can be accurately separated.

図1及び図2は、本発明の磁力選別方法及び装置の一実施形態を模式的に示すものであり、図2は図1の部分拡大図である。
本発明の磁力選別装置は、磁力選別の対象である粒状物Aを搬送するベルトコンベア1と、このベルトコンベア1の上方に配置される粒状物供給手段4と、この粒状物供給手段4から供給されてベルトコンベア1に向けて落下する粒状物Aに磁場を印加する磁場印加手段2と、ベルトコンベア1上に堆積した粒状物Aから磁着性粒子xを磁力選別する磁力選別手段3を備えるが、本実施形態の磁力選別装置は、さらに、粒状物供給手段4から供給された粒状物Aを受けて滑落させる傾斜シュート5を備え、この傾斜シュート5の下端近傍に磁場印加手段2が配置されている。
1 and 2 schematically show one embodiment of the magnetic force sorting method and apparatus of the present invention, and FIG. 2 is a partially enlarged view of FIG.
The magnetic separation apparatus of the present invention includes a belt conveyor 1 that conveys a granular material A to be subjected to magnetic separation, a granular material supply unit 4 disposed above the belt conveyor 1, and a supply from the granular material supply unit 4. A magnetic field applying means 2 for applying a magnetic field to the granular material A which is dropped toward the belt conveyor 1 and a magnetic force selecting means 3 for magnetically separating the magnetically adhering particles x from the granular material A deposited on the belt conveyor 1 are provided. However, the magnetic force sorting apparatus of the present embodiment further includes an inclined chute 5 that receives and slides down the granular material A supplied from the granular material supply means 4, and the magnetic field applying means 2 is disposed near the lower end of the inclined chute 5. Have been.

前記ベルトコンベア1は、コンベア始端部10側のプーリ12と、コンベア終端部11側のプーリ13と、両プーリ12、13間に張設されたコンベアベルト14を備え、上方から落下してコンベアベルト14上に堆積した粒状物Aを水平方向に搬送する。
前記粒状物供給手段4は、本実施形態では原料供給フィーダ(振動フィーダ)で構成され、粒状物Aを供給して下方のベルトコンベア1に向けて落下させる。
前記傾斜シュート5は、コンベア搬送方向上流側に向かって下向きに傾斜したシュート面50を有し、粒状物供給手段4から供給された粒状物Aをそのシュート面50で受けて滑落させた後、下端からベルトコンベア1に向けて自由落下させる。このように粒状物供給手段4から供給された粒状物Aを傾斜シュート5を経由して落下させることにより、粒状物Aの落下軌道を安定化させることができる。
The belt conveyor 1 includes a pulley 12 at a conveyor start end 10, a pulley 13 at a conveyor end 11, and a conveyor belt 14 stretched between the pulleys 12, 13. The granular material A deposited on 14 is conveyed in the horizontal direction.
In the present embodiment, the granular material supply means 4 is constituted by a raw material supply feeder (vibration feeder), and supplies the granular material A and drops the granular material A toward the lower belt conveyor 1.
The inclined chute 5 has a chute surface 50 inclined downward toward the upstream side of the conveyor conveyance direction, and after the granular material A supplied from the granular material supply means 4 is received by the chute surface 50 and slid down, Free-fall from the lower end toward the belt conveyor 1. By dropping the granular material A supplied from the granular material supply means 4 via the inclined chute 5 in this manner, the falling trajectory of the granular material A can be stabilized.

前記磁場印加手段2は、傾斜シュート5の下端直下における粒状物Aの落下空間S1に面して配置されているが、本実施形態では、落下空間S1よりもコンベア搬送方向下流側に配置され、落下途中の粒状物Aに磁場を印加し、主たる磁着性粒子xの落下軌道をコンベア搬送方向下流側に誘導できるようにしている。
本実施形態の磁場印加手段2は、傾斜シュート5の下端に連なるようにして、シュート面50とは反対方向に傾斜して設けられた板状部21と、この板状部21の背面側に配置された磁石20(永久磁石等)で構成され、板状部21の落下空間S1に面した前面が磁力の作用面22を構成している。
ここで、図2に示すように、磁着性粒子xに対して作用面22から安定した磁力を及ぼすことができるようにするため、作用面22と磁石20(磁極)の端面は平行であることが好ましい。さらに、磁石20の磁力(吸引力)により磁着性粒子xの落下軌道をコンベア搬送方向下流側に安定的に誘導するために、作用面22に対して垂直な線Lと垂線Lとがなす角度θが60〜90°程度とすることが好ましい。
The magnetic field applying means 2 is disposed facing the falling space S1 of the granular material A immediately below the lower end of the inclined chute 5, but in the present embodiment, is disposed downstream of the falling space S1 in the conveyor conveyance direction, A magnetic field is applied to the falling particulate matter A so that the falling trajectory of the main magnetically adherent particles x can be guided downstream in the conveyor transport direction.
The magnetic field applying means 2 according to the present embodiment includes a plate-shaped portion 21 that is provided to be inclined in a direction opposite to the chute surface 50 so as to be continuous with the lower end of the inclined chute 5, and a rear surface of the plate-shaped portion 21. The front surface of the plate portion 21 facing the falling space S1 constitutes a magnetic force acting surface 22.
Here, as shown in FIG. 2, the working surface 22 and the end face of the magnet 20 (magnetic pole) are parallel in order to apply a stable magnetic force to the magnetically adherent particles x from the working surface 22. Is preferred. Further, by the magnetic force of the magnet 20 (suction force) in order to induce stable to the conveyor downstream side falling trajectory of magnetically attached particles x, the line L 1 and the perpendicular L 2 perpendicular to the working surface 22 Is preferably about 60 to 90 °.

前記磁力選別手段3は、ベルトコンベア1上に堆積して搬送される粒状物Aの上層側又は下層側に偏析した磁着性粒子xを磁力選別するものであるが、本実施形態では、落下空間S1よりもコンベア搬送方向下流側に配置された磁場印加手段2により粒状物Aに磁場を印加し、磁着性粒子xの落下軌道をコンベア搬送方向下流側に誘導するため、ベルトコンベア1上に堆積した粒状物Aの上層側に磁着性粒子xが偏析する。このため、磁力選別手段3は、ベルトコンベア1の上方に配置され、ベルトコンベア1上に堆積して搬送される粒状物Aの上層側に偏析した磁着性粒子xを磁気吸着する手段で構成される。   The magnetic force sorting means 3 is for magnetically sorting the magnetically adhering particles x segregated on the upper side or the lower side of the granular material A deposited and conveyed on the belt conveyor 1. A magnetic field is applied to the granular material A by the magnetic field applying means 2 disposed downstream of the space S1 in the conveyor transport direction, and the falling trajectory of the magnetically adhering particles x is guided to the downstream side in the conveyor transport direction. The magnetically adhering particles x are segregated on the upper layer side of the particulate matter A deposited on the substrate. For this reason, the magnetic force sorting means 3 is arranged above the belt conveyor 1 and is constituted by means for magnetically adsorbing the magnetically adhering particles x segregated on the upper layer side of the granular material A deposited and conveyed on the belt conveyor 1. Is done.

本実施形態の磁力選別手段3は、ベルトコンベア1の上方に配置されるプーリ型磁力選別機3aで構成されている。このプーリ型磁力選別機3aは、コンベア始端部(30)側のプーリが大径の磁石プーリ32で構成され、この磁石プーリ32と、コンベア終端部31側のプーリ33間にコンベアベルト34が張設されている。このプーリ型磁力選別機3aは、コンベア搬送方向がベルトコンベア1と逆向きであり、そのコンベア始端部30が、ベルトコンベア1のコンベア終端部11の上方に近接して位置するようにして配置されている。なお、プーリ型磁力選別機3aは、上部のコンベア搬送部がほぼ水平となるように、プーリ33の位置が選択される。   The magnetic force sorting means 3 of the present embodiment is constituted by a pulley type magnetic force sorter 3a disposed above the belt conveyor 1. In the pulley type magnetic force sorter 3a, the pulley on the conveyor start end (30) side is constituted by a large-diameter magnet pulley 32, and a conveyor belt 34 is stretched between the magnet pulley 32 and the pulley 33 on the conveyor end section 31 side. Has been established. The pulley-type magnetic separator 3a is arranged such that the conveyor conveyance direction is opposite to that of the belt conveyor 1, and the conveyor start end 30 is located above and near the conveyor end 11 of the belt conveyor 1. ing. In addition, the position of the pulley 33 is selected so that the upper conveyor conveyance part becomes substantially horizontal in the pulley-type magnetic separator 3a.

磁石プーリ32としては、従来公知の種々の構造のもの(例えば、再公表特許WO2014/061256の図2、図4、図5などに示される磁石プーリ)を適用できるが、本実施形態の磁石プーリ32は、コンベアベルト34を案内するプーリ本体320の内側に、プーリ本体320とは独立して回転駆動する磁石ロール321を設けたものである。磁石ロール321は、ロール周方向に異なる極性の磁石が交互に配置されている。
また、磁石プーリ32としては、(i)内側の周方向に異なる極性の磁極(永久磁石)が交互に配置され、且つこの磁極が回転可能なプーリー本体から独立して固定的に設置される固定磁石からなるもの、(ii)内側の周方向で間隔をおいて磁極(永久磁石)を配置するとともに、プーリー胴長方向で異なる極性の磁極が交互に並ぶもの、など種々のタイプのものを使用できる。
その他図面において、6は磁力選別手段3で磁力選別された磁着性粒子xを回収する磁着物回収部、7は非磁着性粒子yを回収する非磁着物回収部である。
As the magnet pulley 32, various types of conventionally known structures (for example, magnet pulleys shown in FIG. 2, FIG. 4, and FIG. 5 of WO2014 / 061256) can be applied. Reference numeral 32 is provided with a magnet roll 321 that is driven to rotate independently of the pulley body 320 inside a pulley body 320 that guides the conveyor belt 34. In the magnet roll 321, magnets having different polarities are alternately arranged in the roll circumferential direction.
As the magnet pulley 32, (i) magnetic poles (permanent magnets) of different polarities are alternately arranged in the inner circumferential direction, and the magnetic poles are fixedly installed independently of the rotatable pulley body. Various types of magnets are used, including magnets, (ii) magnetic poles (permanent magnets) with magnetic poles (permanent magnets) arranged at intervals in the inner circumferential direction, and magnetic poles of different polarities alternately arranged in the pulley body length direction. it can.
In the other drawings, reference numeral 6 denotes a magnetically attached material recovery unit that collects the magnetically adhered particles x that have been magnetically separated by the magnetic force selecting unit 3, and reference numeral 7 denotes a non-magnetically attached material recovery unit that collects non-magnetically adhered particles y.

以上述べた図1及び図2の装置による磁力選別方法について説明する。
粒状物供給手段4(原料供給フィーダ)から粒状物Aを供給し、下方のベルトコンベア1に向けて落下させるが、本実施形態では、供給された粒状物Aを、傾斜シュート5で受けて滑落させた後、傾斜シュート5の下端からベルトコンベア1に向けて自由落下させる。このように、粒状物Aを傾斜シュート5を経由して自由落下させることにより、粒状物Aの落下軌道を安定化させることができる。傾斜シュート5の下端から自由落下する途中の粒状物Aに対して、傾斜シュート5の下端直下における粒状物Aの落下空間S1に面して配置された磁場印加手段2(磁石20、作用面22を有する板状部21)により磁場を印加する。ここで、磁場印加手段2により粒状物Aに印加する最大磁場強度(作用面22での磁場強度)は、小さすぎると粒状物A中の磁着性粒子xを磁力で吸引する作用が不十分となり、一方、大きすぎると作用面22に磁着性粒子xが吸着され、磁着性粒子xが凝集して落下空間S1の閉塞などが生じる恐れがある。このため最大磁場強度(作用面22での磁場強度)は、300〜1500ガウス程度が好ましい。また、本発明法により鉄鋼スラグから金属鉄を回収する場合は、最大磁場強度は500ガウス程度が適当である。
A description will be given of a magnetic force sorting method using the above-described apparatus shown in FIGS.
The granular material A is supplied from the granular material supply means 4 (raw material supply feeder) and is dropped toward the lower belt conveyor 1. In the present embodiment, the supplied granular material A is received by the inclined chute 5 and slides down. After that, the chute 5 is freely dropped from the lower end toward the belt conveyor 1. As described above, the falling trajectory of the granular material A can be stabilized by causing the granular material A to fall freely via the inclined chute 5. The magnetic field applying means 2 (the magnet 20, the working surface 22) disposed on the falling space S <b> 1 of the granular material A just below the lower end of the inclined chute 5 with respect to the granular material A that is falling freely from the lower end of the inclined chute 5 A magnetic field is applied by the plate-shaped portion 21) having the following. Here, if the maximum magnetic field intensity (magnetic field intensity on the working surface 22) applied to the granular material A by the magnetic field applying means 2 is too small, the action of attracting the magnetically adhering particles x in the granular material A by magnetic force is insufficient. On the other hand, if it is too large, the magnetically adhering particles x may be adsorbed on the working surface 22, and the magnetically adhering particles x may aggregate to block the falling space S1. For this reason, the maximum magnetic field strength (magnetic field strength on the working surface 22) is preferably about 300 to 1500 Gauss. When recovering metallic iron from steel slag by the method of the present invention, the maximum magnetic field strength is suitably about 500 gauss.

磁場印加手段2は、落下空間S1よりもコンベア搬送方向下流側に配置されているため、磁場印加による磁力で粒状物A中の磁着性粒子xが吸引され、主たる磁着性粒子xの落下軌道がコンベア搬送方向下流側に誘導(変位)される。すなわち、磁場印加により、主たる磁着性粒子xの落下軌道はコンベア搬送方向下流側となり、主たる非磁着性粒子yの落下軌道はコンベア搬送方向上流側となる。このような落下軌道で粒状物Aをベルトコンベア1上に落下させることにより、ベルトコンベア1上に、上層側に磁着性粒子xが偏析した状態で粒状物Aを堆積させる。   Since the magnetic field applying means 2 is disposed downstream of the falling space S1 in the conveyor conveyance direction, the magnetic particles x in the granular material A are attracted by the magnetic force due to the application of the magnetic field, and the main magnetic particles x fall. The track is guided (displaced) downstream in the conveyor conveyance direction. That is, by the application of the magnetic field, the falling trajectory of the main magnetically adherent particles x is on the downstream side in the conveyor conveyance direction, and the falling trajectory of the main non-magnetically adherent particles y is on the upstream side in the conveyor conveyance direction. By dropping the particulate matter A onto the belt conveyor 1 in such a falling trajectory, the particulate matter A is deposited on the belt conveyor 1 in a state where the magnetically adherent particles x are segregated on the upper layer side.

本発明では、ベルトコンベア1上に堆積して搬送される粒状物Aの上層側又は下層側に偏析した磁着性粒子xを、その偏析形態(上層側への偏析・下層側への偏析)に応じた磁力選別機能を有する磁力選別手段3により磁力選別するものであり、本実施形態では、ベルトコンベア1上に堆積した粒状物Aの上層側に磁着性粒子xが偏析しているため、この粒状物Aの上層側に偏析した磁着性粒子xを、ベルトコンベア1の上方に配置されたプーリ型磁力選別機3a(磁力選別手段3)に磁気吸着させて磁力選別する。   In the present invention, the magnetically adhering particles x segregated on the upper layer side or the lower layer side of the granular material A deposited and conveyed on the belt conveyor 1 are separated into the segregation forms (segregation on the upper side and segregation on the lower side). In the present embodiment, the magnetically adhering particles x are segregated on the upper layer side of the particulate matter A deposited on the belt conveyor 1 in the present embodiment. Then, the magnetically adhering particles x segregated on the upper layer side of the granular material A are magnetically attracted to a pulley type magnetic separator 3a (magnetic separator 3) disposed above the belt conveyor 1 to perform magnetic separation.

すなわち、粒状物Aの上層側に偏析した磁着性粒子xは、プーリ型磁力選別機3aの磁石プーリ32にコンベアベルト34を介して吸着され、この磁石プーリ32に吸着保持された状態でコンベアベルト34により機体上部側まで搬送され、以降はコンベアベルト34上に載った状態で搬送された後、コンベア終端部31から払い出され、磁着物回収部6に回収される。一方、プーリ型磁力選別機3aに磁気吸着されなかった非磁着性粒子y(非磁着性粒子yを主体とする粒状物)は、ベルトコンベア1のコンベア終端部11から払い出され、非磁着物回収部7に回収される。   That is, the magnetically adhering particles x segregated on the upper layer side of the granular material A are adsorbed on the magnet pulley 32 of the pulley type magnetic separator 3a via the conveyor belt 34, and are conveyed while being adsorbed and held by the magnet pulley 32. After being conveyed to the upper part of the machine body by the belt 34 and thereafter conveyed while being placed on the conveyor belt 34, it is discharged from the conveyor end part 31 and collected by the magnetically attached material collection part 6. On the other hand, the non-magnetically adhering particles y (granules mainly composed of the non-magnetically adhering particles y) which have not been magnetically attracted to the pulley type magnetic separator 3a are discharged from the conveyor end portion 11 of the belt conveyor 1, and The magnetic substance is collected by the magnetic substance collection unit 7.

図3は、本発明法と従来法において、ベルトコンベア1の上方に配置されたプーリ型磁力選別機3aにより、ベルトコンベア1上の粒状物Aから磁着性粒子xが磁力選別される様子を比較して示したものであり、図3(a)が本発明法、図3(b)が従来法である。図3(b)の従来法では、粒状物A中に磁着性粒子xが分散しているため、磁着側において磁着性粒子xに抱き込まれる非磁着性粒子yが多く、また、非磁着側に磁着性粒子xが混じる量も多い。これに対して、図3(a)の本発明法では、上層側に偏析している磁着性粒子xをベルトコンベア1の上方に配置されたプーリ型磁力選別機3aにより磁力選別するため、磁着側において磁着性粒子xに抱き込まれる非磁着性粒子yが少なく、また、非磁着側に磁着性粒子xが混じる量も少ない。すなわち、磁着性粒子xと非磁着性粒子yを精度よく分離することができ、磁着性粒子xを高い回収率で回収することができる。   FIG. 3 shows a state in which the magnetically adherent particles x are magnetically separated from the granular material A on the belt conveyor 1 by the pulley type magnetic separator 3a disposed above the belt conveyor 1 in the method of the present invention and the conventional method. FIG. 3A shows the method of the present invention, and FIG. 3B shows the conventional method. In the conventional method of FIG. 3B, since the magnetic particles x are dispersed in the granular material A, many non-magnetic particles y are embraced by the magnetic particles x on the magnetic side, and In addition, the amount of the magnetic particles x mixed on the non-magnetic side is also large. On the other hand, in the method of the present invention shown in FIG. 3A, the magnetically adhered particles x segregated on the upper layer side are subjected to magnetic force separation by the pulley type magnetic force sorter 3a arranged above the belt conveyor 1. There is little non-magnetic particles y embraced by the magnetic particles x on the magnetic side, and the amount of the magnetic particles x mixed on the non-magnetic side is also small. That is, the magnetically adhering particles x and the non-magnetically adhering particles y can be accurately separated, and the magnetically adhering particles x can be recovered at a high recovery rate.

粒状物Aの上層側に偏析した磁着性粒子xを、ベルトコンベア1の上方に配置された磁力選別手段3に磁気吸着させて磁力選別する場合、磁力選別手段3としては、図1のようなプーリ型磁力選別機3a以外に種々の形式のものを適用できる。
図4及び図5は、ベルトコンベア1の上方に配置された磁力選別手段3として、吊下げ型磁力選別機を用いる場合の実施形態を示すものであり、図5は図4のV-V線に沿う矢視図である。
When the magnetically adhering particles x segregated on the upper layer side of the granular material A are magnetically adsorbed on the magnetic force selecting means 3 arranged above the belt conveyor 1 to perform magnetic force sorting, the magnetic force selecting means 3 is as shown in FIG. Various types other than the pulley-type magnetic separator 3a can be applied.
FIGS. 4 and 5 show an embodiment in which a suspended magnetic separator is used as the magnetic separator 3 disposed above the belt conveyor 1, and FIG. 5 is along the line VV in FIG. It is an arrow view.

この実施形態では、ベルトコンベア1の上方に配置される磁力選別手段3が、平面的に見てベルトコンベア1と交差する方向(本実施形態では直交する方向)に配置されたベルトコンベア3b(吊下げ型磁力選別機)で構成されている。このベルトコンベア3bは、両端のプーリ35、36と、これらプーリ35、36間に張設されたコンベアベルト37と、このコンベアベルト37の内側にコンベア長手方向に沿って配置された磁石プレート38を備えている。このベルトコンベア3bは、一端側がベルトコンベア1の直上に位置し、他端側がベルトコンベア1の側方に設置された磁着物回収部6の直上に位置するように配置され、磁石プレート38は、ベルトコンベア1の直上位置から磁着物回収部6の直上位置までの長さ範囲に設けられている。
なお、その他の構成は、図1及び図2の実施形態と同様であるので、同一の符号を付し、詳細な説明は省略する。
In this embodiment, the magnetic force selecting means 3 disposed above the belt conveyor 1 is provided with a belt conveyor 3b (a hanging direction) intersecting the belt conveyor 1 in a plan view (in the present embodiment, orthogonal to the belt conveyor 1). Down magnetic separator). The belt conveyor 3b includes pulleys 35 and 36 at both ends, a conveyor belt 37 stretched between the pulleys 35 and 36, and a magnet plate 38 disposed inside the conveyor belt 37 along the conveyor longitudinal direction. Have. The belt conveyor 3b is arranged such that one end is located immediately above the belt conveyor 1 and the other end is located immediately above the magnetically attached material collecting section 6 installed on the side of the belt conveyor 1, and the magnet plate 38 It is provided in a length range from a position directly above the belt conveyor 1 to a position directly above the magnetically attached material recovery unit 6.
The other configuration is the same as that of the embodiment shown in FIGS. 1 and 2, and thus the same reference numerals are given and the detailed description is omitted.

この実施形態では、粒状物Aの上層側に偏析した磁着性粒子xは、ベルトコンベア3b(吊下げ型磁力選別機)の磁石プレート38にコンベアベルト37を介して吸着され、この磁石プレート38に吸着保持された状態でコンベアベルト37により搬送された後、磁石プレート38の終端でベルトコンベア3bから払い出され、磁着物回収部6に回収される。一方、ベルトコンベア3bに磁気吸着されなかった非磁着性粒子y(非磁着性粒子yを主体とする粒状物)は、ベルトコンベア1のコンベア終端部11から払い出され、非磁着物回収部7に回収される。   In this embodiment, the magnetically adhering particles x segregated on the upper layer side of the granular material A are adsorbed to the magnet plate 38 of the belt conveyor 3b (suspension type magnetic separator) via the conveyor belt 37, and this magnet plate 38 After being conveyed by the conveyor belt 37 while being attracted and held by the magnet plate 38, it is discharged from the belt conveyor 3 b at the end of the magnet plate 38, and is collected by the magnetically attached material collection unit 6. On the other hand, the non-magnetic particles y which are not magnetically adsorbed to the belt conveyor 3b (granules mainly composed of the non-magnetic particles y) are discharged from the conveyor end portion 11 of the belt conveyor 1, and the non-magnetic particles are collected. Collected in the unit 7.

本発明では、ベルトコンベア1上に堆積して搬送される粒状物Aの下層側に磁着性粒子xを偏析させてもよく、この場合には、粒状物Aの落下空間S1よりもコンベア搬送方向上流側に配置された磁場印加手段2により粒状物Aに磁場を印加し、磁着性粒子xの落下軌道をコンベア搬送方向上流側に誘導する。
さきに述べたように、本発明では、ベルトコンベア1上に堆積して搬送される粒状物Aの上層側又は下層側に偏析した磁着性粒子xを、その偏析形態(上層側への偏析・下層側への偏析)に応じた磁力選別機能を有する磁力選別手段3により磁力選別するものであり、ベルトコンベア1上に堆積した粒状物Aの下層側に磁着性粒子xを偏析させる場合には、磁力選別手段3として、粒状物Aの下層側に偏析した磁着性粒子xを、粒状物Aをベルトコンベア1から払い出す際に磁気吸着する手段を用いる。
In the present invention, the magnetically adhering particles x may be segregated on the lower layer side of the granular material A that is deposited and transported on the belt conveyor 1, and in this case, the granular material A is transported on the conveyor rather than the falling space S1. A magnetic field is applied to the granular material A by the magnetic field applying means 2 arranged on the upstream side in the direction, and the falling trajectory of the magnetically adhered particles x is guided to the upstream side in the conveyor conveyance direction.
As described above, in the present invention, the magnetically adhering particles x segregated on the upper layer side or the lower layer side of the particulate matter A deposited and conveyed on the belt conveyor 1 are converted into the segregation form (segregation to the upper layer side). (Segregation to the lower layer side) Magnetic separation is performed by the magnetic separation means 3 having a magnetic separation function according to the magnetic separation function. In the case where the magnetically adhering particles x are segregated on the lower side of the granular material A deposited on the belt conveyor 1 As the magnetic force sorting means 3, means for magnetically adsorbing the magnetically adhering particles x segregated to the lower layer side of the granular material A when the granular material A is discharged from the belt conveyor 1 is used.

図6は、ベルトコンベア1上に堆積して搬送される粒状物Aの下層側に磁着性粒子xを偏析させる場合の一実施形態を示している。
傾斜シュート5は、コンベア搬送方向下流側に向かって下向きに傾斜したシュート面50を有し、粒状物供給手段4から供給された粒状物Aをそのシュート面50で受けて滑落させた後、下端からベルトコンベア1に向けて自由落下させる。
磁場印加手段2は、傾斜シュート5の下端直下における粒状物Aの落下空間S1に面して配置されているが、本実施形態では、落下空間S1よりもコンベア搬送方向上流側に配置され、落下途中の粒状物Aに磁場を印加し、主たる磁着性粒子xの落下軌道をコンベア搬送方向上流側に誘導できるようにしている。この磁場印加手段2の他の構成は、図1の実施形態と同様である。
FIG. 6 shows an embodiment in which the magnetically adhering particles x are segregated on the lower layer side of the granular material A deposited and conveyed on the belt conveyor 1.
The inclined chute 5 has a chute surface 50 inclined downward toward the downstream side in the conveyor conveyance direction. The chute 5 receives the granular material A supplied from the granular material supply means 4 on the chute surface 50 and slides the granular material A down. From the machine to the belt conveyor 1.
The magnetic field applying means 2 is disposed facing the falling space S1 of the granular material A immediately below the lower end of the inclined chute 5, but in the present embodiment, the magnetic field applying means 2 is disposed on the upstream side of the falling space S1 in the conveyor conveyance direction, and A magnetic field is applied to the particulate matter A on the way, so that the fall trajectory of the main magnetically adherent particles x can be guided to the upstream side in the conveyor conveyance direction. Other configurations of the magnetic field applying unit 2 are the same as those of the embodiment of FIG.

本実施形態では、落下空間S1よりもコンベア搬送方向上流側に配置された磁場印加手段2により粒状物Aに磁場を印加し、磁着性粒子xの落下軌道をコンベア搬送方向上流側に誘導するため、ベルトコンベア1上に堆積した粒状物Aの下層側に磁着性粒子xが偏析する。このため磁力選別手段3は、粒状物Aをベルトコンベア1から払い出す際に、粒状物Aの下層側に偏析した磁着性粒子xを磁気吸着する手段を用いるが、本実施形態では、ベルトコンベア1をプーリ型磁力選別機1aで構成し、磁力選別手段3を、このプーリ型磁力選別機1aの磁石プーリ16で構成している。   In the present embodiment, a magnetic field is applied to the granular material A by the magnetic field applying means 2 disposed upstream of the falling space S1 in the conveyor conveyance direction, and the falling trajectory of the magnetically adhered particles x is guided to the upstream side of the conveyor conveyance direction. Therefore, the magnetically adhering particles x segregate on the lower layer side of the particulate matter A deposited on the belt conveyor 1. For this reason, the magnetic force sorting means 3 uses a means for magnetically adsorbing the magnetically adhering particles x segregated to the lower layer side of the granular material A when the granular material A is discharged from the belt conveyor 1. The conveyor 1 is constituted by a pulley-type magnetic separator 1a, and the magnetic separator 3 is constituted by a magnet pulley 16 of the pulley-type magnetic separator 1a.

このプーリ型磁力選別機1aは、コンベア終端部11側のプーリが大径の磁石プーリ16で構成され、この磁石プーリ16と、コンベア始端部10側のプーリ15間にコンベアベルト17が張設されている。
磁石プーリ16としては、従来公知の種々の構造のもの(例えば、再公表特許WO2014/061256の図7、図8、特開2014−200723号公報の図1などに示される磁石プーリ)を適用できるが、本実施形態の磁石プーリ16は、コンベアベルト17を案内するプーリ本体160の内側に、プーリ本体160とは独立して回転駆動する磁石ロール161を設けたものである。磁石ロール161は、ロール周方向に異なる極性の磁石が交互に配置されている。
また、磁石プーリ16としては、(i)内側の周方向に異なる極性の磁極(永久磁石)が交互に配置され、且つこの磁極が回転可能なプーリー本体から独立して固定的に設置される固定磁石からなるもの、(ii)内側の周方向で間隔をおいて磁極(永久磁石)を配置するとともに、プーリー胴長方向で異なる極性の磁極が交互に並ぶもの、など種々のタイプのものを使用できる。
なお、その他の構成は、図1及び図2の実施形態と同様であるので、同一の符号を付し、詳細な説明は省略する。
In the pulley-type magnetic separator 1a, the pulley on the conveyor end portion 11 side is constituted by a large-diameter magnet pulley 16, and a conveyor belt 17 is stretched between the magnet pulley 16 and the pulley 15 on the conveyor start end portion 10 side. ing.
As the magnet pulley 16, those having various conventionally known structures (for example, magnet pulleys shown in FIG. 7 and FIG. 8 of WO 2014/061256 and FIG. 1 of JP-A-2014-200723) can be applied. However, the magnet pulley 16 of the present embodiment has a magnet roll 161 that is driven to rotate independently of the pulley body 160 inside a pulley body 160 that guides the conveyor belt 17. In the magnet roll 161, magnets having different polarities are alternately arranged in the roll circumferential direction.
Further, as the magnet pulley 16, (i) magnetic poles (permanent magnets) of different polarities are alternately arranged in the inner circumferential direction, and the magnetic poles are fixedly installed independently of the rotatable pulley body. Various types of magnets are used, including magnets, (ii) magnetic poles (permanent magnets) with magnetic poles (permanent magnets) arranged at intervals in the inner circumferential direction, and magnetic poles of different polarities alternately arranged in the pulley body length direction. it can.
The other configuration is the same as that of the embodiment shown in FIGS. 1 and 2, and thus the same reference numerals are given and the detailed description is omitted.

図6の実施形態では、磁場印加手段2は、落下空間S1よりもコンベア搬送方向上流側に配置されているため、磁場印加による磁力で粒状物A中の磁着性粒子が吸引され、主たる磁着性粒子xの落下軌道がコンベア搬送方向上流側に誘導される。すなわち、磁場印加により、主たる磁着性粒子xの落下軌道はコンベア搬送方向上流側となり、主たる非磁着性粒子yの落下軌道はコンベア搬送方向下流側となる。このような落下軌道で粒状物Aをベルトコンベア1上に落下させることにより、ベルトコンベア1上に、下層側に磁着性粒子xが偏析した状態で粒状物Aを堆積させる。   In the embodiment shown in FIG. 6, the magnetic field applying means 2 is disposed upstream of the falling space S1 in the conveyor conveyance direction, so that the magnetically adhering particles in the granular material A are attracted by the magnetic force due to the application of the magnetic field, and the main magnetic field is applied. The falling trajectory of the adhesive particles x is guided to the upstream side in the conveyor conveyance direction. That is, by the application of the magnetic field, the fall trajectory of the main magnetically adherent particles x is on the upstream side in the conveyor transport direction, and the fall trajectory of the main non-magnetically adherent particles y is on the downstream side in the conveyor transport direction. By dropping the granular material A onto the belt conveyor 1 in such a falling trajectory, the granular material A is deposited on the belt conveyor 1 in a state where the magnetically adhering particles x are segregated on the lower layer side.

本実施形態では、ベルトコンベア1上に堆積した粒状物Aの下層側に磁着性粒子xが偏析しているため、この粒状物Aの下層側に偏析した磁着性粒子xを、プーリ型磁力選別機1aであるベルトコンベア1の磁石プーリ16(磁力選別手段3)に磁気吸着させて磁力選別する。
すなわち、ベルトコンベア1でコンベア終端部11まで搬送された粒状物Aの下層側に偏析した磁着性粒子xは、磁石プーリ16にコンベアベルト17を介して吸着され、この磁石プーリ16に吸着保持された状態でコンベア下側まで搬送される。一方、磁石プーリ16に吸着されない非磁着性粒子yは、コンベア終端部11で先に落下して非磁着物回収部7に回収される。コンベア下側まで搬送された磁着性粒子xは、磁石プーリ16の磁力が弱まった位置で落下して磁着物回収部6に回収される。
In the present embodiment, since the magnetically adhering particles x are segregated on the lower layer side of the granular material A deposited on the belt conveyor 1, the magnetically adhering particles x segregated on the lower layer side of the granular material A are converted into a pulley type. The magnetic force is magnetically attracted to the magnet pulley 16 (magnetic force selecting means 3) of the belt conveyor 1, which is the magnetic force sorter 1a, and the magnetic force is sorted.
That is, the magnetically adhering particles x segregated to the lower layer side of the granular material A conveyed to the conveyor end portion 11 by the belt conveyor 1 are adsorbed to the magnet pulley 16 via the conveyor belt 17 and held by the magnet pulley 16. Transported to the lower side of the conveyor. On the other hand, the non-magnetic particles y that are not adsorbed by the magnet pulley 16 fall first at the conveyor end portion 11 and are collected by the non-magnetic material collection unit 7. The magnetically adhered particles x conveyed to the lower side of the conveyor fall at a position where the magnetic force of the magnet pulley 16 is weakened, and are collected by the magnetically attached matter collection unit 6.

粒状物Aの下層側に偏析した磁着性粒子xを、粒状物Aをベルトコンベア1から払い出す際に磁力選別手段3に磁気吸着させて磁力選別する場合、磁力選別手段3としては、図6のようなプーリ型磁力選別機1a以外に種々の形式のものを適用できる。
図7は、磁力選別手段3として、ベルトコンベア1のコンベア終端部11に隣接して配置されたドラム型磁力選別機3cを用いる場合の実施形態を示すものである。
ドラム型磁力選別機3cは、回転ドラム39と、この回転ドラム39の内側に配置され、回転ドラム39から独立した固定式の磁石40を備えている。この磁石40は、ドラム周方向において、ベルトコンベア1から粒状物Aが払い出される位置からドラム下端位置までの範囲で磁気吸着を行えるように設けられている。
ベルトコンベア1は、そのコンベア終端部11が回転ドラム39の上部に近接するように配置され、搬送した粒状物Aを回転ドラム39の上部に供給(払い出し)できるようにしている。
なお、その他の構成は、図1及び図2や図6の実施形態と同様であるので、同一の符号を付し、詳細な説明は省略する。
When the magnetically adhering particles x segregated to the lower layer side of the granular material A are magnetically attracted to the magnetic force sorting means 3 when the granular material A is discharged from the belt conveyor 1, and the magnetic force is sorted, the magnetic force sorting means 3 is shown in FIG. Various types other than the pulley-type magnetic separator 1a as shown in FIG.
FIG. 7 shows an embodiment in which a drum-type magnetic separator 3c arranged adjacent to the conveyor end portion 11 of the belt conveyor 1 is used as the magnetic separator 3.
The drum-type magnetic separator 3 c includes a rotating drum 39 and a fixed magnet 40 disposed inside the rotating drum 39 and independent of the rotating drum 39. The magnet 40 is provided so as to perform magnetic attraction in a range from a position where the particulate matter A is discharged from the belt conveyor 1 to a position at the lower end of the drum in the drum circumferential direction.
The belt conveyor 1 is arranged so that the conveyor end portion 11 is close to the upper part of the rotary drum 39, so that the transported granular material A can be supplied (discharged) to the upper part of the rotary drum 39.
Other configurations are the same as those of the embodiment of FIGS. 1, 2 and 6, and therefore, the same reference numerals are given and the detailed description is omitted.

本実施形態では、ベルトコンベア1上に堆積した粒状物Aの下層側に磁着性粒子xが偏析しているため、この粒状物Aの下層側に偏析した磁着性粒子xを、ドラム型磁力選別機3cの回転ドラム39に磁気吸着させて磁力選別する。
すなわち、ベルトコンベア1でコンベア終端部11まで搬送された粒状物Aは、コンベア終端部11から回転ドラム39の上部に払い出され、その際に、下層側に偏析した磁着性粒子xは、回転ドラム39に吸着され、この回転ドラム39に吸着保持された状態で回転ドラム下側まで搬送される。一方、回転ドラム39に吸着されない非磁着性粒子yは先に落下して非磁着物回収部7に回収される。回転ドラム下側まで搬送された磁着性粒子xは、磁石40の磁力が弱まった位置で落下して磁着物回収部6に回収される。
In the present embodiment, since the magnetically adhering particles x are segregated on the lower layer side of the granular material A deposited on the belt conveyor 1, the magnetically adhering particles x segregated on the lower layer side of the granular material A are converted into a drum type. The magnetic separation is performed by magnetically adsorbing the rotating drum 39 of the magnetic separation machine 3c.
That is, the granular material A conveyed to the conveyor terminal part 11 by the belt conveyor 1 is discharged from the conveyor terminal part 11 to the upper part of the rotating drum 39, and at that time, the magnetically adhering particles x segregated to the lower layer side are: It is adsorbed on the rotating drum 39 and is transported to the lower side of the rotating drum while being held by the rotating drum 39. On the other hand, the non-magnetically adhering particles y that are not adsorbed by the rotating drum 39 fall first and are collected by the non-magnetically attached matter collection unit 7. The magnetically adhered particles x conveyed to the lower side of the rotating drum fall at a position where the magnetic force of the magnet 40 is weakened, and are collected by the magnetically adhered matter collection unit 6.

本発明では、図1に示すような傾斜シュート5を設けることなく、粒状物供給手段から供給された粒状物Aをそのままベルトコンベア1に向けて自由落下させ、この落下途中の粒状物Aに対して磁場印加手段2により磁場を印加するようにしてもよい。
図8は、そのような実施形態を示しており、粒状物供給手段から供給された粒状物Aをそのままベルトコンベア1に向けて自由落下させる落下空間S2に面して磁場印加手段2が配置されている。
In the present invention, without providing the inclined chute 5 as shown in FIG. 1, the granular material A supplied from the granular material supply means 4 is allowed to freely fall toward the belt conveyor 1 as it is, and On the other hand, a magnetic field may be applied by the magnetic field applying means 2.
FIG. 8 shows such an embodiment, in which the magnetic field applying means 2 is disposed facing a falling space S2 in which the granular material A supplied from the granular material supplying means 4 falls freely toward the belt conveyor 1 as it is. Have been.

本実施形態の磁場印加手段2は、図1の実施形態と同様に、落下空間S2よりもコンベア搬送方向下流側に配置され、落下途中の粒状物Aに磁場を印加し、主たる磁着性粒子xの落下軌道をコンベア搬送方向下流側に誘導できるようにしている。
本実施形態の磁場印加手段2は、垂直に設けられた板状部21と、この板状部21の背面側に配置された磁石20(永久磁石等)で構成され、板状部21の落下空間S2に面した前面が磁力の作用面22を構成している。磁着性粒子xに対して作用面22から安定した磁力を及ぼすことができるようにするため、作用面22と磁石20(磁極)の端面は平行であることが好ましい。
なお、その他の構成は、図1及び図2の実施形態と同様であるので、同一の符号を付し、詳細な説明は省略する。
The magnetic field applying means 2 of the present embodiment is disposed downstream of the falling space S2 in the conveyor transport direction, applies a magnetic field to the granular material A in the middle of falling, as in the embodiment of FIG. The falling trajectory of x can be guided to the downstream side in the conveyor conveyance direction.
The magnetic field applying means 2 of the present embodiment is composed of a vertically provided plate-like portion 21 and a magnet 20 (a permanent magnet or the like) arranged on the back side of the plate-like portion 21. The front surface facing the space S2 constitutes the magnetic force acting surface 22. It is preferable that the working surface 22 and the end face of the magnet 20 (magnetic pole) are parallel to each other so that a stable magnetic force can be applied from the working surface 22 to the magnetically adhering particles x.
The other configuration is the same as that of the embodiment shown in FIGS. 1 and 2, and thus the same reference numerals are given and the detailed description is omitted.

この実施形態では、粒状物供給手段4(原料供給フィーダ)から粒状物Aを供給し、下方のベルトコンベア1に向けて自由落下させ、その落下途中の粒状物Aに対して、落下空間S2に面して配置された磁場印加手段2(磁石20、作用面22を有する板状部21)により磁場を印加する。この場合の最大磁場強度(作用面22での磁場強度)も、図1の実施形態と同様である。磁場印加手段2は、落下空間S2よりもコンベア搬送方向下流側に配置されているため、磁場印加による磁力で粒状物A中の磁着性粒子xが吸引され、主たる磁着性粒子xの落下軌道がコンベア搬送方向下流側に誘導される。その他の点は、図1の実施形態に関して述べた通りである。
なお、以上述べた各実施形態において、ベルトコンベア1(プーリ型磁力選別機1aを含む)、ベルトコンベア3a、プーリ型磁力選別機3aでは、これらを構成するいずれかのプーリが駆動プーリとなる。
In this embodiment, the granular material A is supplied from the granular material supply means 4 (raw material supply feeder), and is freely dropped toward the lower belt conveyor 1. A magnetic field is applied by the magnetic field applying means 2 (the magnet 20, the plate-shaped portion 21 having the working surface 22) facing the surface. The maximum magnetic field strength in this case (the magnetic field strength at the operation surface 22) is also the same as in the embodiment of FIG. Since the magnetic field applying means 2 is disposed downstream of the falling space S2 in the conveyor conveyance direction, the magnetically-attached particles x in the granular material A are attracted by the magnetic force due to the application of the magnetic field, and the main magnetically-attached particles x fall. The track is guided downstream in the conveyor transport direction. The other points are the same as described in the embodiment of FIG.
In each of the embodiments described above, in the belt conveyor 1 (including the pulley-type magnetic separator 1a), the belt conveyor 3a, and the pulley-type magnetic separator 3a, any one of these pulleys is a driving pulley.

以上述べた本発明の磁力選別方法は、鉄鋼製造プロセスで発生した鉄鋼スラグから鉄分を選別回収する場合や、鉱山において鉄鉱石から高品位鉱石を選別する場合などに有用な方法であり、本発明の磁力選別方法により、粒状物Aである鉄鋼スラグや鉄鉱石から磁着性粒子xを磁力選別することで、磁着性粒子xを製鉄原料として回収することができる。   The magnetic separation method of the present invention described above is a method useful for, for example, separating and recovering iron from steel slag generated in a steel manufacturing process, and for separating high-grade ore from iron ore in a mine. By magnetically separating the magnetically adhering particles x from the iron slag or iron ore, which is the granular material A, the magnetically adhering particles x can be collected as a raw material for iron production.

[実施例1]
粒径5mm以下に破砕した鉄鋼スラグ(Fe濃度:約51質量%)のサンプル20kgについて、以下の方法でFe分(金属鉄)の磁力選別を行った。
(1)本発明法:図1に示す実施形態による磁力選別
・磁場印加手段2の作用面での磁場強度:500ガウス
・ベルトコンベア1上での原料層の層厚:10mm
・ベルトコンベア1の搬送速度:15m/min
・ベルトコンベア1上での原料層とプーリ型磁力選別機3aとの距離:0mm
・プーリ型磁力選別機3aの作用面での磁場強度:600ガウス
[Example 1]
For a 20 kg sample of steel slag (Fe concentration: about 51% by mass) crushed to a particle size of 5 mm or less, the magnetic force of Fe (metallic iron) was separated by the following method.
(1) Method of the present invention: magnetic force sorting according to the embodiment shown in FIG. 1-magnetic field strength on the working surface of the magnetic field applying means 2: 500 gauss-layer thickness of the raw material layer on the belt conveyor 1: 10 mm
・ Conveyance speed of belt conveyor 1: 15m / min
-Distance between the raw material layer on the belt conveyor 1 and the pulley-type magnetic separator 3a: 0 mm
-Magnetic field strength on the working surface of the pulley type magnetic separator 3a: 600 gauss

(2)従来法1:磁場印加手段2を用いない以外は、図6の実施形態に準じた磁力選別
・ベルトコンベア1上での原料層の層厚:10mm
・ベルトコンベア1の搬送速度:15m/min
・ベルトコンベア1上での原料層とプーリ型磁力選別機1aとの距離:0mm
・プーリ型磁力選別機1aの作用面での磁場強度:600ガウス
(3)従来法2:磁場印加手段2を用いない以外は、図4の実施形態に準じた磁力選別
・ベルトコンベア1上での原料層の層厚:10mm
・ベルトコンベア1の搬送速度:15m/min
・ベルトコンベア1上での原料層と吊り下げ型磁力選別機との距離:5mm
・吊り下げ型磁力選別機3aの作用面での磁場強度:600ガウス
(2) Conventional method 1: Magnetic force sorting according to the embodiment of FIG. 6 except that the magnetic field applying means 2 is not used.-Layer thickness of the raw material layer on the belt conveyor 1: 10 mm
・ Conveyance speed of belt conveyor 1: 15m / min
-Distance between the raw material layer on the belt conveyor 1 and the pulley-type magnetic separator 1a: 0 mm
-Magnetic field strength on the working surface of the pulley type magnetic separator 1a: 600 gauss (3) Conventional method 2: Magnetic separator according to the embodiment of Fig. 4 except that the magnetic field applying means 2 is not used-On the belt conveyor 1 Material layer thickness: 10 mm
・ Conveyance speed of belt conveyor 1: 15m / min
・ Distance between the raw material layer on the belt conveyor 1 and the suspended magnetic separator: 5 mm
-Magnetic field strength on the working surface of the hanging type magnetic separator 3a: 600 gauss

この試験で得られた産物に関して、磁着側Fe濃度、Fe歩留りを調べた結果を図9に示す。これによれば、従来法1ではFeがスラグを抱き込んでしまうため、磁着側Fe濃度を十分に高められない。一方、従来法2では、従来法1よりは磁着側Fe濃度が高まるものの、逆にスラグがFeを抱き込んでしまい、Feのロス増加により、Fe歩留り(Fe回収率)が低下する。すなわち、従来法1、2では磁着側Fe濃度とFe歩留まりがトレードオフの関係になっている。
これに対して、本発明法では、磁着側Fe濃度とFe歩留まりが両立する結果となっており、Feとスラグの分離性能が従来法と比較して高いことがわかる。
また、図10に、本発明法と従来法1、2の総合分離効率(総合分離効率=[磁着側のFe量/原料の全Fe量]+[非磁着側のスラグ量/原料の全スラグ量]−1)を示すが、この結果からも本発明法の性能が高いことが判る。
FIG. 9 shows the results obtained by examining the magnetic concentration side Fe concentration and Fe yield of the product obtained in this test. According to this, in the conventional method 1, since Fe embraces the slag, the concentration of Fe on the magnetized side cannot be sufficiently increased. On the other hand, in the conventional method 2, although the Fe concentration on the magnetically attached side is higher than in the conventional method 1, the slag embraces the conversely, and the Fe loss (Fe recovery rate) decreases due to the increase in Fe loss. In other words, in the conventional methods 1 and 2, there is a trade-off relationship between the magnetically deposited Fe concentration and the Fe yield.
On the other hand, in the method of the present invention, the result is that both the Fe concentration on the magnetized side and the Fe yield are compatible, and it can be seen that the performance of separating Fe and slag is higher than that of the conventional method.
FIG. 10 shows the total separation efficiency of the method of the present invention and the conventional methods 1 and 2 (total separation efficiency = [Fe amount of magnetized side / total Fe amount of raw material] + [slag amount of non-magnetically bonded side / raw material of raw material] Total slag amount] -1), which shows that the performance of the method of the present invention is high.

[実施例2]
粒径1mm以下に破砕した鉄鋼スラグ(Fe濃度:約20質量%)のサンプル20kgについて、以下の方法でFe分(金属鉄)の磁力選別を行った。
(1)本発明法:図8に示す実施形態による磁力選別。
・磁場印加手段2の作用面での磁場強度:800ガウス
・ベルトコンベア1上での原料層の層厚:10mm
・ベルトコンベア1の搬送速度:15m/min
・ベルトコンベア1上での原料層とプーリ型磁力選別機3aとの距離:0mm
・プーリ型磁力選別機3aの作用面での磁場強度:1500ガウス
[Example 2]
For a 20 kg sample of iron and steel slag (Fe concentration: about 20% by mass) crushed to a particle size of 1 mm or less, magnetic separation of Fe (metallic iron) was performed by the following method.
(1) Method of the present invention: magnetic force sorting according to the embodiment shown in FIG.
-Magnetic field strength on the working surface of the magnetic field applying means 2: 800 Gauss-Layer thickness of the raw material layer on the belt conveyor 1: 10 mm
・ Conveyance speed of belt conveyor 1: 15m / min
-Distance between the raw material layer on the belt conveyor 1 and the pulley-type magnetic separator 3a: 0 mm
-Magnetic field strength on the working surface of the pulley type magnetic separator 3a: 1500 Gauss

(2)従来法1:磁場印加手段2を用いない以外は、図6の実施形態に準じた磁力選別
・ベルトコンベア1上での原料層の層厚:10mm
・ベルトコンベア1の搬送速度:15m/min
・ベルトコンベア1上での原料層とプーリ型磁力選別機1aとの距離:0mm
・プーリ型磁力選別機1aの作用面での磁場強度:1500ガウス
(3)従来法2:磁場印加手段2を用いない以外は、図4の実施形態に準じた磁力選別
・ベルトコンベア1上での原料層の層厚:10mm
・ベルトコンベア1の搬送速度:15m/min
・ベルトコンベア1上での原料層と吊り下げ型磁力選別機との距離:5mm
・吊り下げ型磁力選別機3aの作用面での磁場強度:1500ガウス
(2) Conventional method 1: Magnetic force sorting according to the embodiment of FIG. 6 except that the magnetic field applying means 2 is not used.-Layer thickness of the raw material layer on the belt conveyor 1: 10 mm
・ Conveyance speed of belt conveyor 1: 15m / min
-Distance between the raw material layer on the belt conveyor 1 and the pulley-type magnetic separator 1a: 0 mm
-Magnetic field strength at the working surface of the pulley type magnetic force separator 1a: 1500 Gauss (3) Conventional method 2: Magnetic force separation according to the embodiment of Fig. 4 except that the magnetic field applying means 2 is not used-On the belt conveyor 1 Material layer thickness: 10 mm
・ Conveyance speed of belt conveyor 1: 15m / min
・ Distance between the raw material layer on the belt conveyor 1 and the suspended magnetic separator: 5 mm
-Magnetic field strength on the working surface of the hanging type magnetic separator 3a: 1500 Gauss

この試験で得られた産物に関して、磁着側Fe濃度、Fe歩留りを調べた結果を図11に示す。また、図12に、本発明法と従来法1、2の総合分離効率(総合分離効率=[磁着側のFe量/原料の全Fe量]+[非磁着側のスラグ量/原料の全スラグ量]−1)を示す。実施例1の結果と同様、従来法1、2に較べて、本発明の性能が高いことが判る。   FIG. 11 shows the results obtained by examining the magnetic concentration side Fe concentration and Fe yield of the product obtained in this test. FIG. 12 shows the total separation efficiency of the method of the present invention and the conventional methods 1 and 2 (total separation efficiency = [Fe amount of magnetized side / total Fe amount of raw material] + [slag amount of non-magnetically bonded side / raw material of raw material] Total slag amount] -1). Similarly to the result of Example 1, it can be seen that the performance of the present invention is higher than those of Conventional Methods 1 and 2.

1 ベルトコンベア
1a プーリ型磁力選別機
2 磁場印加手段
3 磁力選別手段
3a プーリ型磁力選別機
3b ベルトコンベア
3c ドラム型磁力選別機
4 粒状物供給手段
5 傾斜シュート
6 磁着物回収部
7 非磁着物回収部
10 コンベア始端部
11 コンベア終端部
12 プーリ
13 プーリ
14 コンベアベルト
15 プーリ
16 磁石プーリ
17 コンベアベルト
20 磁石
21 板状部
22 作用面
30 コンベア始端部
31 コンベア終端部
32 磁石プーリ
33 プーリ
34 コンベアベルト
35 プーリ
36 プーリ
37 コンベアベルト
38 磁石プレート
39 回転ドラム
40 磁石
50 シュート面
160 プーリ本体
161 磁石ロール
320 プーリ本体
321 磁石ロール
S1 落下空間
S2 落下空間
x 磁着性粒子
y 非磁着性粒子
A 粒状物
REFERENCE SIGNS LIST 1 belt conveyor 1a pulley-type magnetic separator 2 magnetic-field applying means 3 magnetic-force separator 3a pulley-type magnetic separator 3b belt conveyor 3c drum-type magnetic separator 4 granular material supply means 5 inclined chute 6 magnetized material collection unit 7 nonmagnetic material collection Part 10 Conveyor start end 11 Conveyor end 12 Pulley 13 Pulley 14 Conveyor belt 15 Pulley 16 Magnet pulley 17 Conveyor belt 20 Magnet 21 Plate part 22 Working surface 30 Conveyor start end 31 Conveyor end 32 Magnet pulley 33 Pulley 34 Conveyor belt 35 Pulley 36 Pulley 37 Conveyor belt 38 Magnet plate 39 Rotating drum 40 Magnet 50 Chute surface 160 Pulley body 161 Magnet roll 320 Pulley body 321 Magnet roll S1 Falling space S2 Falling space x Magnetically adhered particles y Non-magnetically adhered particles A granular material

Claims (19)

磁着性粒子(x)を含む粒状物(A)から磁着性粒子(x)を磁力選別する方法であって、
粒状物(A)を上方からベルトコンベア(1)に向けて落下させるとともに、その落下空間よりもコンベア搬送方向下流側又はコンベア搬送方向上流側に配置された磁場印加手段(2)により、落下途中の粒状物(A)に磁場を印加し、該磁場印加により主たる磁着性粒子(x)の落下軌道をコンベア搬送方向下流側又はコンベア搬送方向上流側に誘導しつつ、粒状物(A)をベルトコンベア(1)上に落下させる(但し、磁場印加手段(2)により磁場を印加した粒状物(A)のすべてをベルトコンベア(1)上に落下させる)ことにより、ベルトコンベア(1)上に、上層側又は下層側に磁着性粒子(x)が偏析した状態で粒状物(A)を堆積させ、
ベルトコンベア(1)上に堆積して搬送される粒状物(A)の上層側又は下層側に偏析した磁着性粒子(x)を、磁力選別手段(3)により磁力選別することを特徴とする粒状物の磁力選別方法。
A method of magnetically separating magnetically adherent particles (x) from a granular material (A) containing magnetically adherent particles (x),
The particulate matter (A) is dropped from above toward the belt conveyor (1), and is dropped by the magnetic field applying means (2) arranged downstream of the falling space in the conveyor conveyance direction or upstream of the conveyor conveyance direction. A magnetic field is applied to the granular material (A) of the above, and by applying the magnetic field, the falling trajectory of the main magnetically adherent particles (x) is guided to the downstream side in the conveyor transport direction or the upstream side in the conveyor transport direction, and the granular material (A) is By dropping on the belt conveyor (1) (however, all the granular materials (A) to which the magnetic field is applied by the magnetic field applying means (2) are dropped on the belt conveyor (1)). A particulate matter (A) is deposited on the upper layer side or the lower layer side in a state where the magnetically adhering particles (x) are segregated,
The magnetic particles (x) segregated on the upper layer side or the lower layer side of the granular material (A) deposited and conveyed on the belt conveyor (1) are magnetically separated by a magnetic force separating means (3). Magnetic separation method for granular materials.
ベルトコンベア(1)の上方に、粒状物(A)を供給してベルトコンベア(1)に向けて自由落下させる粒状物供給手段(4)が配置されるとともに、粒状物(A)の落下空間に面して磁場印加手段(2)が配置され、
粒状物供給手段(4)から供給された粒状物(A)をベルトコンベア(1)に向けて自由落下させ、この落下途中の粒状物(A)に対して、磁場印加手段(2)により磁場を印加することを特徴とする請求項1に記載の粒状物の磁力選別方法。
Above the belt conveyor (1), a granular material supply means (4) for supplying the granular material (A) and dropping it freely toward the belt conveyor (1 ) is arranged, and a space for dropping the granular material (A). Magnetic field applying means (2) is arranged facing
The granular material (A) supplied from the granular material supply means (4) is dropped freely toward the belt conveyor (1), and a magnetic field is applied to the granular material (A) during the fall by the magnetic field applying means (2). The method of claim 1, wherein magnetic force is applied.
ベルトコンベア(1)の上方に、粒状物(A)を供給する粒状物供給手段(4)と、該粒状物供給手段(4)から供給された粒状物(A)を受けて滑落させる傾斜シュート(5)が配置されるとともに、該傾斜シュート(5)の下端直下における粒状物(A)の落下空間に面して磁場印加手段(2)が配置され、
粒状物供給手段(4)から供給された粒状物(A)を傾斜シュート(5)で受けて滑落させた後、傾斜シュート(5)の下端からベルトコンベア(1)に向けて自由落下させ、この落下途中の粒状物(A)に対して、磁場印加手段(2)により磁場を印加することを特徴とする請求項1に記載の粒状物の磁力選別方法。
Above the belt conveyor (1), a granular material supply means (4) for supplying the granular material (A), and an inclined chute for receiving and sliding down the granular material (A) supplied from the granular material supply means (4). (5) is arranged, and a magnetic field applying means (2) is arranged facing the falling space of the particulate matter (A) immediately below the lower end of the inclined chute (5);
After the granular material (A) supplied from the granular material supply means (4) is received by the inclined chute (5) and slid down, it is dropped freely from the lower end of the inclined chute (5) toward the belt conveyor (1), 2. The method according to claim 1, wherein a magnetic field is applied to the falling particles (A) by a magnetic field applying means (2).
ベルトコンベア(1)上に堆積して搬送される粒状物(A)の上層側に偏析した磁着性粒子(x)を、ベルトコンベア(1)の上方に配置された磁力選別手段(3)に磁気吸着させて磁力選別することを特徴とする請求項1〜3のいずれかに記載の粒状物の磁力選別方法。   The magnetically segregating particles (x) segregated on the upper layer side of the particulate matter (A) deposited and conveyed on the belt conveyor (1) are separated by a magnetic force sorting means (3) disposed above the belt conveyor (1). 4. The magnetic force sorting method for granular material according to claim 1, wherein magnetic separation is performed by magnetically attracting the magnetic particles. 磁力選別手段(3)が、コンベア始端部(30)側のプーリが磁石プーリ(32)で構成され、コンベア搬送方向がベルトコンベア(1)と逆向きであるプーリ型磁力選別機(3a)からなり、ベルトコンベア(1)のコンベア終端部(11)の上方にプーリ型磁力選別機(3a)のコンベア始端部(30)が近接して位置することを特徴とする請求項4に記載の粒状物の磁力選別方法。   The magnetic force sorting means (3) comprises a pulley type magnetic force sorter (3a) in which the pulley on the side of the conveyor start end (30) is constituted by a magnet pulley (32) and the conveyor conveyance direction is opposite to that of the belt conveyor (1). 5. The granular material according to claim 4, wherein a conveyor start end (30) of the pulley type magnetic separator (3 a) is located above the conveyor end (11) of the belt conveyor (1). 6. Magnetic sorting method for objects. 磁力選別手段(3)が、コンベアベルト(37)の内側に磁石プレート(38)を備え、ベルトコンベア(1)と交差する方向に配置されたベルトコンベア(3b)からなることを特徴とする請求項4に記載の粒状物の磁力選別方法。   The magnetic force selecting means (3) comprises a magnet plate (38) inside the conveyor belt (37) and comprises a belt conveyor (3b) arranged in a direction crossing the belt conveyor (1). Item 5. A method for magnetically sorting granular materials according to Item 4. ベルトコンベア(1)上に堆積して搬送される粒状物(A)の下層側に偏析した磁着性粒子(x)を、粒状物(A)をベルトコンベア(1)から払い出す際に磁力選別手段(3)に磁気吸着させて磁力選別することを特徴とする請求項1〜3のいずれかに記載の粒状物の磁力選別方法。   The magnetically adhering particles (x) segregated on the lower layer side of the granular material (A) deposited and conveyed on the belt conveyor (1) are removed by magnetic force when the granular material (A) is discharged from the belt conveyor (1). 4. The magnetic force sorting method according to claim 1, wherein magnetic sorting is performed by magnetically adsorbing the sorting means (3). ベルトコンベア(1)が、コンベア終端部(11)側のプーリが磁石プーリ(16)で構成されるプーリ型磁力選別機(1a)からなり、磁力選別手段(3)が磁石プーリ(16)からなることを特徴とする請求項7に記載の粒状物の磁力選別方法。   The belt conveyor (1) is composed of a pulley type magnetic separator (1a) in which the pulley on the side of the conveyor end (11) is composed of a magnet pulley (16), and the magnetic separator (3) is composed of a magnet pulley (16). The method for magnetically sorting granular materials according to claim 7, wherein: 磁力選別手段(3)が、ベルトコンベア(1)のコンベア終端部(11)に隣接して配置されたドラム型磁力選別機(3c)からなることを特徴とする請求項7に記載の粒状物の磁力選別方法。   The granular material according to claim 7, characterized in that the magnetic sorting means (3) comprises a drum-type magnetic sorting machine (3c) arranged adjacent to the conveyor end (11) of the belt conveyor (1). Magnetic force sorting method. 磁着性粒子(x)を含む粒状物(A)から磁着性粒子(x)を磁力選別する装置であって、
ベルトコンベア(1)と、
該ベルトコンベア(1)の上方に配置され、粒状物(A)を供給してベルトコンベア(1)に向けて落下させる粒状物供給手段(4)と、
粒状物(A)の落下空間よりもコンベア搬送方向下流側又はコンベア搬送方向上流側に配置され、落下途中の粒状物(A)に磁場を印加することにより、主たる磁着性粒子(x)の落下軌道をコンベア搬送方向下流側又はコンベア搬送方向上流側に誘導する磁場印加手段(2)(但し、粒状物(A)の磁力選別を行うことなく、磁場を印加した粒状物(A)のすべてをベルトコンベア(1)上に落下させる磁場印加手段)と、
ベルトコンベア(1)上に堆積して搬送される粒状物(A)の上層側又は下層側に偏析した磁着性粒子(x)を磁力選別する磁力選別手段(3)を備えることを特徴とする粒状物の磁力選別装置。
An apparatus for magnetically separating magnetically adhering particles (x) from particulate matter (A) containing magnetically adhering particles (x),
A belt conveyor (1),
A granular material supply means (4) disposed above the belt conveyor (1), for supplying the granular material (A) and dropping the granular material (A) toward the belt conveyor (1);
The main magnetically adhering particles (x) are arranged by applying a magnetic field to the granular material (A) which is disposed on the downstream side in the conveyor transport direction or the upstream side in the conveyor transport direction from the space where the granular material (A) falls. Magnetic field applying means (2) for guiding the falling trajectory to the downstream side of the conveyor conveyance direction or the upstream side of the conveyor conveyance direction (however, all of the granular materials (A) to which a magnetic field is applied without performing magnetic force sorting of the granular materials (A)) Means for applying a magnetic field to the belt conveyor (1)),
A magnetic separation means (3) for magnetically separating magnetically adhering particles (x) segregated on the upper layer side or the lower layer side of the granular material (A) deposited and conveyed on the belt conveyor (1); Magnetic separation device for granular materials.
粒状物供給手段(4)から供給されてベルトコンベア(1)に向けて自由落下する粒状物(A)の落下空間に面して磁場印加手段(2)が配置されたことを特徴とする請求項10に記載の粒状物の磁力選別装置。 The magnetic field applying means (2) is arranged facing the falling space of the granular material (A) supplied from the granular material supply means (4) and freely falling toward the belt conveyor (1). Item 11. A magnetic force sorting apparatus for granular materials according to Item 10. 粒状物供給手段(4)から供給された粒状物(A)を受けて滑落させる傾斜シュート(5)を備え、該傾斜シュート(5)の下端直下における粒状物(A)の落下空間に面して磁場印加手段(2)が配置されたことを特徴とする請求項10に記載の粒状物の磁力選別装置。   An inclined chute (5) for receiving and sliding down the granular material (A) supplied from the granular material supply means (4) faces the falling space of the granular material (A) immediately below the lower end of the inclined chute (5). 11. The apparatus according to claim 10, wherein the magnetic field applying means is disposed. 磁力選別手段(3)が、ベルトコンベア(1)の上方に配置され、ベルトコンベア(1)上に堆積して搬送される粒状物(A)の上層側に偏析した磁着性粒子(x)を磁気吸着する手段であることを特徴とする請求項10〜12のいずれかに記載の粒状物の磁力選別装置。   A magnetic separation unit (3) is disposed above the belt conveyor (1), and the magnetically adhering particles (x) segregated on the upper layer side of the granular material (A) deposited and conveyed on the belt conveyor (1). 13. A magnetic force sorting apparatus for granular materials according to claim 10, wherein said magnetically segregating means is a means for magnetically attracting particles. 磁力選別手段(3)が、コンベア始端部(30)側のプーリが磁石プーリ(32)で構成され、コンベア搬送方向がベルトコンベア(1)と逆向きであるプーリ型磁力選別機(3a)からなり、ベルトコンベア(1)のコンベア終端部(11)の上方にプーリ型磁力選別機(3a)のコンベア始端部(30)が近接して位置することを特徴とする請求項13に記載の粒状物の磁力選別装置。   The magnetic force sorting means (3) comprises a pulley type magnetic force sorter (3a) in which the pulley on the side of the conveyor start end (30) is constituted by a magnet pulley (32) and the conveyor conveyance direction is opposite to that of the belt conveyor (1). 14. Granular according to claim 13, characterized in that the conveyor start end (30) of the pulley type magnetic separator (3a) is located above the conveyor end (11) of the belt conveyor (1). Magnetic sorting device for objects. 磁力選別手段(3)が、コンベアベルト(37)の内側に磁石プレート(38)を備え、ベルトコンベア(1)と交差する方向に配置されたベルトコンベア(3b)からなることを特徴とする請求項13に記載の粒状物の磁力選別装置。   The magnetic force selecting means (3) comprises a magnet plate (38) inside the conveyor belt (37) and comprises a belt conveyor (3b) arranged in a direction crossing the belt conveyor (1). Item 14. A magnetic force sorting apparatus for granular materials according to Item 13. 磁力選別手段(3)が、ベルトコンベア(1)上に堆積して搬送される粒状物(A)の下層側に偏析した磁着性粒子(x)を、粒状物(A)をベルトコンベア(1)から払い出す際に磁気吸着する手段であることを特徴とする請求項10〜12のいずれかに記載の粒状物の磁力選別装置。   The magnetic force separating means (3) converts the magnetically adhering particles (x) segregated to the lower layer side of the granular material (A) deposited and conveyed on the belt conveyor (1), and converts the granular material (A) into the belt conveyor ( 13. A magnetic force sorting apparatus for granular materials according to claim 10, wherein said means is a magnetically attracting means when dispensing from 1). ベルトコンベア(1)が、コンベア終端部(11)側のプーリが磁石プーリ(16)で構成されるプーリ型磁力選別機(1a)からなり、磁力選別手段(3)が磁石プーリ(16)からなることを特徴とする請求項16に記載の粒状物の磁力選別装置。   The belt conveyor (1) is composed of a pulley type magnetic separator (1a) in which the pulley on the side of the conveyor end (11) is composed of a magnet pulley (16), and the magnetic separator (3) is composed of a magnet pulley (16). The magnetic separation apparatus for granular materials according to claim 16, wherein the magnetic separation apparatus comprises: 磁力選別手段(3)が、ベルトコンベア(1)のコンベア終端部(11)に隣接して配置されたドラム型磁力選別機(3c)からなることを特徴とする請求項16に記載の粒状物の磁力選別装置。   17. Granulated material according to claim 16, wherein the magnetic sorting means (3) comprises a drum type magnetic sorting machine (3c) arranged adjacent to the conveyor end (11) of the belt conveyor (1). Magnetic separator. 請求項1〜9のいずれかに記載の磁力選別方法により、粒状物(A)である鉄鋼スラグ又は鉄鉱石から磁着性粒子(x)を磁力選別し、該磁着性粒子(x)を製鉄原料として回収することを特徴とする製鉄原料の製造方法。   The magnetic separation method according to any one of claims 1 to 9, magnetically separates the magnetically adhering particles (x) from the steel slag or the iron ore, which is the granular material (A), and removes the magnetically adhering particles (x). A method for producing a steelmaking raw material, comprising recovering the raw material as a steelmaking raw material.
JP2016229701A 2016-11-28 2016-11-28 Method and apparatus for magnetic separation of particulate matter Active JP6662275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016229701A JP6662275B2 (en) 2016-11-28 2016-11-28 Method and apparatus for magnetic separation of particulate matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229701A JP6662275B2 (en) 2016-11-28 2016-11-28 Method and apparatus for magnetic separation of particulate matter

Publications (2)

Publication Number Publication Date
JP2018086603A JP2018086603A (en) 2018-06-07
JP6662275B2 true JP6662275B2 (en) 2020-03-11

Family

ID=62493262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229701A Active JP6662275B2 (en) 2016-11-28 2016-11-28 Method and apparatus for magnetic separation of particulate matter

Country Status (1)

Country Link
JP (1) JP6662275B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021016820A (en) * 2019-07-19 2021-02-15 神鋼環境メンテナンス株式会社 Magnetic material recovery device
KR102130416B1 (en) * 2019-11-07 2020-07-06 고정원 Scrap crusher

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440539Y2 (en) * 1975-07-08 1979-11-29
EP2910309B1 (en) * 2012-10-16 2022-07-27 JFE Steel Corporation Magnetic sorting apparatus, magnetic sorting method, and method for manufacturing iron source
JP6056617B2 (en) * 2013-04-03 2017-01-11 Jfeスチール株式会社 Method and apparatus for separating ferromagnetic material

Also Published As

Publication number Publication date
JP2018086603A (en) 2018-06-07

Similar Documents

Publication Publication Date Title
JP5773089B2 (en) Magnetic sorting apparatus, magnetic sorting method, and iron source manufacturing method
JP6169767B2 (en) Process and apparatus for separating all non-magnetic particles from metal scrap agglomerates to achieve pure iron scrap
KR102122190B1 (en) Magnetic separator, magnetic separation method, and iron source manufacturing method
JP6690565B2 (en) Magnetic force sorting method and device
US20140367312A1 (en) Apparatus and a method for sorting a particulate material
US8757390B2 (en) Magnetic roller type separating device
JP2018090477A (en) Method for processing steel slag
CN105728185A (en) Series grading magnetic separator
JP6662275B2 (en) Method and apparatus for magnetic separation of particulate matter
CN100566841C (en) Magnetic shaking table
JP6056617B2 (en) Method and apparatus for separating ferromagnetic material
CN105597922A (en) Magnetic cascaded sorting machine
JP6662318B2 (en) Magnetic sorting device
WO2016187860A1 (en) Anhydrous type mineral sorting apparatus
JP5842853B2 (en) Method and apparatus for separating ferromagnetic material
CN205570542U (en) Hierarchical magnet separator of series connection
CN205570541U (en) Magnetic force series connection sorter
CN104984824B (en) A kind of method for grinding magnetic separation
JP6394619B2 (en) Magnetic sorting device and magnetic sorting method
ITMI941234A1 (en) PROCEDURE AND DEVICE FOR THE SEPARATION OF STAINLESS STEEL FROM MIXED MATERIALS THAT CONTAIN IT
RU2777313C1 (en) Способ сухой магнитной сепарации магнетитсодержащих руд
Chelgani et al. Magnetic Separation
CN116457101A (en) Method and system for removing iron ore particles adhering to magnetic substrates of vertical magnetic separators due to hysteresis
RU2438793C2 (en) Method of magnetic separation and device to this end
UA17530U (en) Method of magnetic concentration of ores and materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200127

R150 Certificate of patent or registration of utility model

Ref document number: 6662275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250