JP6660667B2 - Rotating electric machine and its rotor - Google Patents

Rotating electric machine and its rotor Download PDF

Info

Publication number
JP6660667B2
JP6660667B2 JP2015034380A JP2015034380A JP6660667B2 JP 6660667 B2 JP6660667 B2 JP 6660667B2 JP 2015034380 A JP2015034380 A JP 2015034380A JP 2015034380 A JP2015034380 A JP 2015034380A JP 6660667 B2 JP6660667 B2 JP 6660667B2
Authority
JP
Japan
Prior art keywords
rotor
electric machine
rotating electric
slot
end plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015034380A
Other languages
Japanese (ja)
Other versions
JP2016158390A (en
Inventor
西川 博昭
博昭 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2015034380A priority Critical patent/JP6660667B2/en
Publication of JP2016158390A publication Critical patent/JP2016158390A/en
Application granted granted Critical
Publication of JP6660667B2 publication Critical patent/JP6660667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Induction Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

本発明は、かご形二次導体を備えた回転電機の回転子に係り、特に導体バーを用いる誘導電動機等に好適な回転子に関する。   The present invention relates to a rotor of a rotary electric machine having a cage secondary conductor, and more particularly to a rotor suitable for an induction motor or the like using a conductor bar.

かご形誘導電動機は、かご形回転子と回転磁界を発生する固定子を有し、かご形回転子は、回転子シャフトと、複数の電磁鋼板を積層した回転子鉄心と、複数の導体バーおよびエンドリングから成る二次導体とから構成されている。二次導体は、回転子鉄心に形成した複数のスロット内に溶融状態の導電性材料を充填して形成される。   The squirrel-cage induction motor has a squirrel-cage rotor and a stator that generates a rotating magnetic field.The squirrel-cage rotor has a rotor shaft, a rotor core in which a plurality of electromagnetic steel plates are laminated, a plurality of conductor bars and And a secondary conductor comprising an end ring. The secondary conductor is formed by filling a plurality of slots formed in the rotor core with a conductive material in a molten state.

従来のかご形誘導電動機において、導体バーとエンドリングの接合形状に関する公知例として、特許文献1および特許文献2には、エンドリング付近の電磁鋼板や端板のスロットを大きくし、導体バーの断面積を大きくすることが開示されている。また、特許文献3には、回転子スロットに面取りを施す従来技術が開示されている。   In the conventional cage-type induction motor, Patent Documents 1 and 2 disclose a known example of a joint shape between a conductor bar and an end ring in which a slot in an electromagnetic steel plate or an end plate near an end ring is enlarged to cut a conductor bar. It is disclosed that the area is increased. Patent Document 3 discloses a conventional technique for chamfering a rotor slot.

特開2014−147253号公報JP 2014-147253 A 特開2011−10498号公報JP 2011-10498 A 特開2009−11067号公報JP 2009-11067 A

特許文献1には、各導体バーにおいて、軸方向端部が軸方向中央部よりも外径側半径の大きい円弧を描くように形成することにより、導体バーとエンドリングとの接合部分の強度を高め、高速回転に伴う遠心力による二次導体の破損を抑制することが開示されている。特許文献2には、回転子鉄心は電磁鋼板の両端に端板が設置された構成とし、端板は電磁鋼板よりもスロットの面積を大きくすることにより、電流の集中を緩和するとともに、応力の集中を緩和することが開示されている。また、特許文献3には、回転子鉄心の軸方向の両端部に位置する電磁鋼板のスロットの周囲に面取り部を形成することにより、導体バーと短絡鐶の付け根部に生じる高い引っ張り応力を低減することが開示されている。   Patent Literature 1 discloses that in each conductor bar, the strength of the joint portion between the conductor bar and the end ring is reduced by forming the end portion in the axial direction so as to draw an arc having a larger outer radius than the center portion in the axial direction. It is disclosed to increase the damage of the secondary conductor due to the centrifugal force accompanying the high-speed rotation. According to Patent Document 2, the rotor core has a configuration in which end plates are provided at both ends of an electromagnetic steel plate, and the end plate has a slot area larger than that of the electromagnetic steel plate to reduce current concentration and reduce stress. It is disclosed to reduce concentration. Patent Document 3 discloses that by forming chamfers around slots of an electromagnetic steel sheet located at both ends in the axial direction of a rotor core, high tensile stress generated at the base of a conductor bar and a short-circuit ring is reduced. Is disclosed.

しかし、かご形誘導電動機を液化天然ガス(LNG)や液体窒素(LN)等の低温ガス搬送ポンプ用として用いる場合や、宇宙空間での動力源として用いる場合等、周囲環境が−100℃から−200℃程度に低下すると、電磁鋼板の材質よりも二次導体を構成する導体バーやエンドリングの材質の線膨張係数が大きいことから、常温時からの温度変化により両者の間に大きな応力が発生する。温度変化による応力の発生は極低温環境に限られるものではなく、発生する応力により二次導体が損傷する恐れがあるが、特許文献1〜3にはこの問題については何ら示唆されていない。 However, when the squirrel-cage induction motor is used for a low-temperature gas transfer pump such as liquefied natural gas (LNG) or liquid nitrogen (LN 2 ), or when used as a power source in outer space, the ambient environment must be from -100 ° C. When the temperature drops to about -200 ° C, the material of the conductor bar and the end ring constituting the secondary conductor has a larger linear expansion coefficient than the material of the magnetic steel sheet. appear. The generation of the stress due to the temperature change is not limited to the extremely low temperature environment, and the generated stress may damage the secondary conductor. However, Patent Documents 1 to 3 do not suggest this problem at all.

本発明は、この問題を解決し、低温環境等の温度変化時においても、堅牢で信頼性の高い回転電機の回転子を提供することを目的とする。   An object of the present invention is to solve this problem and to provide a robust and reliable rotor for a rotating electrical machine even when the temperature changes in a low-temperature environment or the like.

本発明のその他の目的及び特徴は、以下の記載、及び以下の実施例の説明で明らかにする。   Other objects and features of the present invention will become apparent from the following description and the following description of embodiments.

上記課題を解決するための、本発明の代表的な「回転電機」の一例を挙げるならば、固定子と回転子を有し、前記回転子は、回転子シャフトと、電磁鋼板を積層した円筒状の回転子鉄心と、該回転子鉄心の外周面付近に周方向に間隔をおいて設置された複数の回転子スロットと、該回転子スロット内に埋め込まれた導体バーと、前記回転子鉄心の両端に設置され前記各導体バーを短絡接続してかご形の二次導体を構成するエンドリングとを備える回転電機であって、前記二次導体が、溶融状態で充填された導電性材料によって形成されるものであり、前記回転子鉄心の軸方向端部に前記電磁鋼板よりも線膨張係数が大きく、前記二次導体よりも線膨張係数が小さい材質の端板を備え、前記電磁鋼板の径と前記端板の径が同じであり、前記回転子スロットの軸方向端部付近の内面に干渉抑制層を備え、前記回転子スロットの軸方向中央部には前記干渉抑制層が存在しないことを特徴とするものである。
In order to solve the above-described problems, to give an example of a typical "rotating electric machine" of the present invention, the rotating electric machine has a stator and a rotor, and the rotor has a rotor shaft and a cylindrical body in which electromagnetic steel sheets are laminated. A rotor core, a plurality of rotor slots circumferentially spaced around an outer peripheral surface of the rotor core, a conductor bar embedded in the rotor slot, and the rotor core. An end ring that is installed at both ends of the conductor bar and short-circuits each of the conductor bars to form a cage-shaped secondary conductor, wherein the secondary conductor is made of a conductive material filled in a molten state. is intended to be formed, the large linear expansion coefficient than the magnetic steel sheets in the axial end of the rotor core, includes an end plate of a material linear expansion coefficient smaller than that of the secondary conductor, the electrical steel sheet diameter and Ri diameter equal der of said end plate, said rotating The inner surface in the vicinity of the axial end portion of the slot comprises an interference suppression layer, the axially central portion of the rotor slots is characterized in that there is no the interference suppression layer.

また、本発明の代表的な「回転電機の回転子」の一例を挙げるならば、電磁鋼板を積層した円筒状の回転子鉄心と、該回転子鉄心の外周面付近に周方向に間隔をおいて設置された複数の回転子スロットと、該回転子スロット内に埋め込まれた導体バーと、前記回転子鉄心の両端に設置され前記各導体バーを短絡接続してかご形の二次導体を構成するエンドリングと、回転子シャフトと、を備えた回転電機の回転子であって、前記二次導体が、溶融状態で充填された導電性材料によって形成されるものであり、前記回転子鉄心の軸方向端部に前記電磁鋼板よりも線膨張係数が大きく、前記二次導体よりも線膨張係数が小さい材質の端板を備え、前記電磁鋼板の径と前記端板の径が同じであり、前記回転子スロットの軸方向端部付近の内面に干渉抑制層を備え、前記回転子スロットの軸方向中央部には前記干渉抑制層が存在しないことを特徴とするものである。

In addition, to give an example of a typical "rotor of a rotating electric machine" of the present invention, a cylindrical rotor core in which electromagnetic steel sheets are laminated, and a circumferential interval around an outer peripheral surface of the rotor core are provided. A plurality of rotor slots, conductor bars embedded in the rotor slots, and short-circuited connection between the conductor bars provided at both ends of the rotor core to form a cage-shaped secondary conductor. End ring, and a rotor shaft, the rotor of the rotating electrical machine comprising: the secondary conductor is formed of a conductive material filled in a molten state, the rotor core wherein the axial end portion larger linear expansion coefficient than the electromagnetic steel sheet, provided with an end plate of a material linear expansion coefficient smaller than that of the secondary conductor, Ri diameter as the same der of the end plate of the electrical steel sheet Interferes with the inner surface near the axial end of the rotor slot Comprising a control layer, the axially central portion of the rotor slots is characterized in that there is no the interference suppression layer.

本発明によれば、低温環境等の温度変化時においても、堅牢で信頼性の高い回転電機の回転子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the rotor of a durable and highly reliable rotating electric machine can be provided even at the time of temperature changes, such as a low temperature environment.

本発明の実施例1の、かご形誘導電動機の回転子の部分断面図である。FIG. 2 is a partial sectional view of a rotor of the squirrel-cage induction motor according to the first embodiment of the present invention. 本発明の実施例2の、かご形誘導電動機の回転子の部分断面図である。It is a fragmentary sectional view of the rotor of the cage induction motor of Example 2 of the present invention. 本発明の実施例3の、かご形誘導電動機の回転子の部分断面図である。It is a fragmentary sectional view of the rotor of the cage induction motor of Example 3 of the present invention. 本発明の実施例3の、回転子鉄心の端板部分の形状を示す図である。FIG. 10 is a view illustrating a shape of an end plate portion of a rotor core according to a third embodiment of the present invention. 本発明の実施例4の、かご形誘導電動機の回転子の部分断面図である。It is a fragmentary sectional view of the rotor of the cage induction motor of Example 4 of the present invention.

以下、図面に基づいて、本発明の実施例を説明する。なお、実施例を説明するための各図において、同一の機能を有する要素には同一の名称、符号を付して、その繰り返しの説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings for describing the embodiments, elements having the same functions are denoted by the same names and reference numerals, and repeated description thereof will be omitted.

図1は、本発明の実施例1のかご形誘導電動機の回転子の部分断面図である。回転子10は、回転子鉄心21と、かご形の二次導体30と、回転子鉄心21の内周側に設置される回転子シャフト11を備えている。回転子鉄心21の外周面付近には、周方向に間隔をおいて複数の回転子スロット22が設置されている。かご形の二次導体30は、これらの回転子スロット22に埋め込まれた導体バー31と、回転子鉄心21の両端に設置され各導体バー31を短絡接続するエンドリング32とで構成されている。二次導体30は、回転子鉄心21の複数の回転子スロット22にダイキャスト成形等で溶融状態の導電性材料を充填することによって形成される。回転子鉄心21は積層した電磁鋼板23の両端に端板24が積層された構成である。そして、端板24は、電磁鋼板23よりも線膨張係数が大きく、二次導体30よりも線膨張係数が小さい材質で形成されている。   FIG. 1 is a partial sectional view of a rotor of a squirrel-cage induction motor according to Embodiment 1 of the present invention. The rotor 10 includes a rotor core 21, a cage-shaped secondary conductor 30, and a rotor shaft 11 installed on the inner peripheral side of the rotor core 21. A plurality of rotor slots 22 are provided in the vicinity of the outer peripheral surface of the rotor core 21 at intervals in the circumferential direction. The cage-shaped secondary conductor 30 is composed of conductor bars 31 embedded in the rotor slots 22 and end rings 32 installed at both ends of the rotor core 21 and short-circuiting the respective conductor bars 31. . The secondary conductor 30 is formed by filling a plurality of rotor slots 22 of the rotor core 21 with a conductive material in a molten state by die casting or the like. The rotor core 21 has a configuration in which end plates 24 are laminated on both ends of a laminated electromagnetic steel plate 23. The end plate 24 is formed of a material having a higher linear expansion coefficient than the electromagnetic steel plate 23 and a lower linear expansion coefficient than the secondary conductor 30.

主成分が鉄で構成される電磁鋼板23の線膨張係数は常温付近で約12×10−6/K、−100℃から−200℃の極低温付近で約9×10−6/Kであり、主成分がアルミニウムで構成される二次導体30の線膨張係数は常温付近で約21×10−6/K、同様の極低温付近で約16×10−6/Kである。また、LNGの沸点は−162℃、LNの沸点は−196℃であり、回転子10の周囲環境がこういった冷媒である場合等、回転子10の周囲温度が常温に対し著しく低下すると、回転子10を構成する各部材の温度が−100℃から−200℃付近の極低温に到達し、熱収縮する。前述の線膨張係数の差異から、回転子鉄心21に対して二次導体30の方がより大きく寸法変化することにより、二次導体30と回転子鉄心21の回転子スロット22の両端の底部付近が干渉することで応力集中し、導体バー31とエンドリング32の境界部33に軸方向の引張応力と径方向のせん断応力が発生する。特に中形機以上の回転子サイズになると発生する応力が大きくなり、二次導体30の材料寿命を低下させる要因になる。 The linear expansion coefficient of the magnetic steel sheet 23 whose main component is iron is about 12 × 10 −6 / K near normal temperature, and about 9 × 10 −6 / K near the extremely low temperature of -100 ° C. to −200 ° C. The linear expansion coefficient of the secondary conductor 30 whose main component is made of aluminum is about 21 × 10 −6 / K near normal temperature, and about 16 × 10 −6 / K near similar low temperature. Further, the boiling point of LNG is -162 ° C., the boiling point of the LN 2 is -196 ° C., or when the surrounding environment of the rotor 10 is these refrigerant, when the ambient temperature of the rotor 10 is greatly lowered to room temperature Then, the temperature of each member constituting the rotor 10 reaches an extremely low temperature of about −200 ° C. to about −200 ° C., and thermally shrinks. Due to the difference in the coefficient of linear expansion described above, the secondary conductor 30 undergoes a larger dimensional change with respect to the rotor core 21, so that the secondary conductor 30 and the rotor core 22 near the bottoms at both ends of the rotor slot 22. Are concentrated due to the interference, and tensile stress in the axial direction and shear stress in the radial direction are generated at the boundary 33 between the conductor bar 31 and the end ring 32. In particular, when the rotor size is larger than that of a medium-sized machine, the generated stress increases, which causes a reduction in the material life of the secondary conductor 30.

本実施例によれば、回転子鉄心21の両端の端板24に、線膨張係数が電磁鋼板23よりも大きく、二次導体30よりも小さい材質を適用することで、前述した極低温環境等の温度変化時において境界部33で発生する応力が緩和される。特に、電磁鋼板23に比べて端板24の線膨張係数を二次導体30の線膨張係数に近づけることにより、温度変化時においても境界部33に働く径方向のせん断応力が緩和され、二次導体30の材料寿命の低下を抑制することが可能となる。そして、堅牢で信頼性の高い回転電機の回転子を提供することができる。   According to the present embodiment, the end plates 24 at both ends of the rotor core 21 are made of a material having a coefficient of linear expansion larger than that of the electromagnetic steel plate 23 and smaller than that of the secondary conductor 30, so that the above-described cryogenic environment or the like can be used. When the temperature changes, the stress generated at the boundary portion 33 is reduced. In particular, by making the linear expansion coefficient of the end plate 24 closer to the linear expansion coefficient of the secondary conductor 30 as compared with the electromagnetic steel sheet 23, the radial shear stress acting on the boundary portion 33 is reduced even when the temperature changes, and the secondary It is possible to suppress a reduction in the material life of the conductor 30. Further, a robust and highly reliable rotor for a rotating electric machine can be provided.

本実施例の回転子を有する回転電機は、温度変化に対する二次導体の材料寿命の低下が抑制されるため、例えば−100℃から−200℃程度の極低温環境に晒される液化天然ガスや液体窒素等の低温ガス搬送ポンプ用の電動機に好適である。   The rotating electric machine having the rotor according to the present embodiment suppresses a reduction in the material life of the secondary conductor due to a temperature change. For example, liquefied natural gas or liquid exposed to an extremely low temperature environment of about −100 ° C. to −200 ° C. It is suitable for an electric motor for a pump for transporting a low-temperature gas such as nitrogen.

図2は、本発明の実施例2のかご形誘導電動機の回転子の部分断面図である。回転子鉄心21の回転子スロット22の両端付近に干渉抑制層41を設ける。そして、回転子鉄心21の複数の回転子スロット22に溶融状態の導電性材料を充填することによって二次導体30を形成する。干渉抑制層41としては、従来から回転子スロット絶縁材として用いられている酸化クロムや不飽和ポリエステル樹脂等が挙げられるが、本実施例においては、材料の形態により不飽和ポリエステル樹脂の方がより好適である。   Second Embodiment FIG. 2 is a partial cross-sectional view of a squirrel-cage induction motor rotor according to a second embodiment of the present invention. An interference suppression layer 41 is provided near both ends of the rotor slot 22 of the rotor core 21. Then, the secondary conductor 30 is formed by filling the plurality of rotor slots 22 of the rotor core 21 with a conductive material in a molten state. Examples of the interference suppression layer 41 include chromium oxide and unsaturated polyester resin conventionally used as a rotor slot insulating material. In the present embodiment, the unsaturated polyester resin is more preferable depending on the form of the material. It is suitable.

回転子スロット22の両端付近に干渉抑制層41を設けることで、回転子鉄心の端部に於いて回転子スロット22と二次導体30の直接接触を避けられること、干渉抑制層41によるクッション効果が得られることにより、極低温時等の温度変化時に回転子スロット22と二次導体30の干渉を低減し、導体バー31とエンドリング32の境界部33に発生する応力を低減することができる。本実施例は実施例1と併用することでより効果が大きくなる。   By providing the interference suppression layers 41 near both ends of the rotor slot 22, direct contact between the rotor slot 22 and the secondary conductor 30 at the end of the rotor core can be avoided. Is obtained, it is possible to reduce the interference between the rotor slot 22 and the secondary conductor 30 at the time of a temperature change such as when the temperature is extremely low, and to reduce the stress generated at the boundary 33 between the conductor bar 31 and the end ring 32. . The effect of the present embodiment is greater when used in combination with the first embodiment.

図3は、本発明の実施例3のかご形誘導電動機の回転子の部分断面図である。実施例3では、回転子鉄心21において、電磁鋼板23のスロット形状に対して端板24のスロット形状を端部に向かって段階的に大きくする。   Third Embodiment FIG. 3 is a partial sectional view of a rotor of a squirrel-cage induction motor according to a third embodiment of the present invention. In the third embodiment, in the rotor core 21, the slot shape of the end plate 24 is gradually increased toward the end with respect to the slot shape of the electromagnetic steel plate 23.

図4に、二次導体30を除く回転子鉄心21の端板24部分の形状を示す。図4の右側の図は、端板24を回転子シャフトの軸方向から見た図であり、符号22a,22b,22cは回転子スロットの形状を表す。図4の左側の図(A)(B)(C)は、回転子スロット22の軸に垂直の方向から見た端板24等の形状を示す。応力集中を緩和する観点から、端板24のスロット形状のサイズ変化は必ずしも図4(A)のような階段状でなくても良く、図4(B)のように複数枚の端板24a,24bを一様にサイズ変更する1段階のものであっても、図4(C)のように複数枚の端板24a,24bについて連続的にサイズが変更されるテーパ状の形状であっても良い。   FIG. 4 shows the shape of the end plate 24 of the rotor core 21 excluding the secondary conductor 30. The figure on the right side of FIG. 4 is a view of the end plate 24 viewed from the axial direction of the rotor shaft, and reference numerals 22a, 22b, and 22c represent the shapes of the rotor slots. 4 (A), (B), and (C) on the left side of FIG. 4 show the shape of the end plate 24 and the like viewed from a direction perpendicular to the axis of the rotor slot 22. From the viewpoint of relieving stress concentration, the change in the size of the slot shape of the end plate 24 does not necessarily have to be a step-like shape as shown in FIG. 4A, and a plurality of end plates 24a and 24a as shown in FIG. Even if the size of the end plates 24b is uniformly changed in one stage, or the size of the end plates 24a and 24b is continuously changed as shown in FIG. good.

端板24のスロット形状を端部に向かって段階的に大きくすることで、回転子鉄心21の回転子スロット22の両端の底部と二次導体30の当りが分散され、応力集中が緩和されると共に、導体バー31とエンドリング32の境界部33の断面積が大きくなることで境界部33の機械的強度を増加させることができる。本実施例も実施例1と併用することでより効果が大きくなる。   By gradually increasing the slot shape of the end plate 24 toward the end, the contact between the bottoms at both ends of the rotor slot 22 of the rotor core 21 and the secondary conductor 30 is dispersed, and stress concentration is reduced. At the same time, the mechanical strength of the boundary 33 can be increased by increasing the cross-sectional area of the boundary 33 between the conductor bar 31 and the end ring 32. In this embodiment, the effect is further enhanced by using it in combination with the first embodiment.

図5は、本発明の実施例4のかご形誘導電動機の回転子の部分断面図である。本実施例は、実施例2と実施例3とを組合せたものである。   FIG. 5 is a partial sectional view of a rotor of a squirrel-cage induction motor according to Embodiment 4 of the present invention. This embodiment is a combination of the second embodiment and the third embodiment.

実施例3に示したように、回転子鉄心21において、電磁鋼板23のスロット形状に対して端板24のスロット形状を端部に向かって段階的に大きくする。そして、スロット形状を端部に向かって段階的に大きくした、回転子鉄心21の回転子スロット22の両端付近、すなわち端板24のスロット付近に干渉抑制層41を設ける。   As shown in the third embodiment, in the rotor core 21, the slot shape of the end plate 24 is gradually increased toward the end with respect to the slot shape of the electromagnetic steel plate 23. Then, the interference suppression layer 41 is provided near both ends of the rotor slot 22 of the rotor core 21, that is, near the slot of the end plate 24, in which the slot shape is gradually increased toward the end.

本実施例によれば、実施例3で端板24のスロット形状を拡大して生じた空間部分に対して、主に実施例2の干渉抑制層41を設けることで、より効果的に応力集中の緩和が可能となる。また、本実施例も実施例1と併用することで更に効果が大きくなる。   According to the present embodiment, stress concentration is more effectively achieved by providing the interference suppression layer 41 of the second embodiment mainly in the space created by enlarging the slot shape of the end plate 24 in the third embodiment. Can be alleviated. In addition, the effect of the present embodiment is further enhanced by using it in combination with the first embodiment.

実施例5は端板の材質を規定するもので、図1を参照して説明する。本実施例は、実施例1において、端板24の材質に特にオーステナイト系ステンレス鋼又はニッケル鋼を用いたものである。両者はともに通常の鋼鉄に対して低温脆弱性を改善した材料であり、本発明の端板24を形成する材料として好適である。オーステナイト系ステンレス鋼の中で一般的な18Cr−8Ni鋼(SUS304)の線膨張係数は常温付近で約17×10−6/K、−100℃から−200℃の極低温付近で約15×10−6/Kであり、電磁鋼板23と二次導体30の線膨張係数に対して中間の値をとるため、端板24に適用することで導体バー31とエンドリング32の境界部33に発生する応力を緩和することができる。また、ニッケル鋼はNi量の割合で線膨張係数が大幅に変化する特徴を有するが、18%Ni〜20%Ni鋼において常温値で約20×10−6/Kの値をとることから、前述の18Cr−8Ni鋼と同様の効果が得られる。また、本実施例は実施例2から実施例4と併用することで更に効果が大きくなる。 The fifth embodiment defines the material of the end plate, and will be described with reference to FIG. In this embodiment, an austenitic stainless steel or nickel steel is used as the material of the end plate 24 in the first embodiment. Both are materials having improved low-temperature brittleness with respect to ordinary steel, and are suitable as materials for forming the end plate 24 of the present invention. Among the austenitic stainless steels, a typical 18Cr-8Ni steel (SUS304) has a linear expansion coefficient of about 17 × 10 −6 / K at around normal temperature and about 15 × 10 at extremely low temperature of −100 ° C. to −200 ° C. −6 / K, which is an intermediate value with respect to the linear expansion coefficient of the electromagnetic steel sheet 23 and the secondary conductor 30, and is generated at the boundary 33 between the conductor bar 31 and the end ring 32 by applying to the end plate 24. Stress can be reduced. Nickel steel has a feature that the coefficient of linear expansion changes greatly depending on the ratio of the amount of Ni. However, since 18% Ni to 20% Ni steel takes a value of about 20 × 10 −6 / K at room temperature, An effect similar to that of the aforementioned 18Cr-8Ni steel is obtained. In addition, the present embodiment further enhances the effect when used in combination with the second to fourth embodiments.

上記の各実施例においてはかご形誘導電動機について説明したが、本発明は電動機に限らず、発電機も含めた回転電機の回転子に適用できるものである。   Although the squirrel cage induction motor has been described in each of the above embodiments, the present invention is not limited to the motor, but can be applied to a rotor of a rotating electric machine including a generator.

本発明によれば、堅牢で信頼性の高い回転電機を提供することができ、本発明は、かご形の回転子を備える回転電機全般に用いることができる。特に、温度変化の大きい低温使用の電動機、例えば液化天然ガスや液体窒素等の低温ガス搬送ポンプ用の電動機に好適である。   ADVANTAGE OF THE INVENTION According to this invention, a robust and highly reliable rotating electric machine can be provided, and this invention can be used for all the rotating electric machines provided with a cage rotor. In particular, it is suitable for a low-temperature electric motor having a large temperature change, for example, an electric motor for a low-temperature gas transfer pump for liquefied natural gas or liquid nitrogen.

10 回転子
11 回転子シャフト
21 回転子鉄心
22 回転子スロット
22a 回転子スロット(第1端板部)
22b 回転子スロット(第2端板部)
22c 回転子スロット(電磁鋼板部)
23 電磁鋼板
24 端板
24a 第1端板
24b 第2端板
30 二次導体
31 導体バー
32 エンドリング
33 境界部
41 干渉抑制層
Reference Signs List 10 rotor 11 rotor shaft 21 rotor core 22 rotor slot 22a rotor slot (first end plate portion)
22b Rotor slot (second end plate)
22c Rotor slot (electromagnetic steel plate)
23 Electromagnetic steel plate 24 End plate 24a First end plate 24b Second end plate 30 Secondary conductor 31 Conductor bar 32 End ring 33 Boundary part 41 Interference suppression layer

Claims (10)

固定子と回転子を有し、前記回転子は、回転子シャフトと、電磁鋼板を積層した円筒状の回転子鉄心と、該回転子鉄心の外周面付近に周方向に間隔をおいて設置された複数の回転子スロットと、該回転子スロット内に埋め込まれた導体バーと、前記回転子鉄心の両端に設置され前記各導体バーを短絡接続してかご形の二次導体を構成するエンドリングとを備える回転電機であって、
前記二次導体が、溶融状態で充填された導電性材料によって形成されるものであり、
前記回転子鉄心の軸方向端部に前記電磁鋼板よりも線膨張係数が大きく、前記二次導体よりも線膨張係数が小さい材質の端板を備え、
前記電磁鋼板の径と前記端板の径が同じであり、
前記回転子スロットの軸方向端部付近の内面に干渉抑制層を備え、前記回転子スロットの軸方向中央部には前記干渉抑制層が存在しないことを特徴とする回転電機。
A rotor having a stator and a rotor, wherein the rotor is provided with a rotor shaft, a cylindrical rotor core formed by laminating electromagnetic steel plates, and a circumferential interval around an outer peripheral surface of the rotor core. A plurality of rotor slots, a conductor bar embedded in the rotor slot, and an end ring which is installed at both ends of the rotor core and short-circuits the conductor bars to form a cage-shaped secondary conductor. A rotating electric machine comprising:
The secondary conductor is formed of a conductive material filled in a molten state,
An axial end of the rotor core has a larger linear expansion coefficient than the electromagnetic steel sheet, and has an end plate made of a material having a smaller linear expansion coefficient than the secondary conductor,
Wherein Ri diameter equal der diameter and said end plate of electromagnetic steel sheets,
A rotating electric machine comprising: an interference suppression layer provided on an inner surface near an axial end of the rotor slot; and the interference suppression layer does not exist at an axial center of the rotor slot .
請求項1に記載の回転電機において、
前記回転子スロットのサイズが軸方向中央部に対して軸方向端部において大きく形成されており、
前記電磁鋼板のスロット形状に対して前記端板のスロット形状が端部に向うにつれ段階的に大きく形成されていることを特徴とする回転電機。
The rotating electric machine according to claim 1,
The size of the rotor slot is larger at the axial end than at the axial center,
A rotating electric machine, wherein the slot shape of the end plate is gradually increased toward the end with respect to the slot shape of the electromagnetic steel sheet.
請求項1又は請求項に記載の回転電機において、
前記干渉抑制層の材質が、酸化クロム又は不飽和ポリエステル樹脂であることを特徴とする回転電機。
In the rotating electric machine according to claim 1 or 2 ,
Rotating electric machine, wherein the material of the interference suppression layer is chromium oxide or unsaturated polyester resin.
請求項1乃至請求項の何れか一つに記載の回転電機において、
前記端板の材質が、オーステナイト系ステンレス鋼又はニッケル鋼であることを特徴とする回転電機。
In the rotating electric machine according to any one of claims 1 to 3 ,
A rotating electric machine wherein the material of the end plate is austenitic stainless steel or nickel steel.
請求項1乃至請求項の何れか一つに記載の回転電機が、−100℃から−200℃程度の低温で用いられることを特徴とする回転電機。 The rotating electric machine according to any one of claims 1 to 4 , wherein the rotating electric machine is used at a low temperature of about -100 ° C to -200 ° C. 請求項1乃至請求項の何れか一つに記載の回転電機が、低温ガス搬送ポンプ用の電動機であることを特徴とする回転電機。 The rotating electric machine according to any one of claims 1 to 5 , wherein the rotating electric machine is a motor for a low-temperature gas transfer pump. 電磁鋼板を積層した円筒状の回転子鉄心と、該回転子鉄心の外周面付近に周方向に間隔をおいて設置された複数の回転子スロットと、該回転子スロット内に埋め込まれた導体バーと、前記回転子鉄心の両端に設置され前記各導体バーを短絡接続してかご形の二次導体を構成するエンドリングと、回転子シャフトと、を備えた回転電機の回転子であって、
前記二次導体が、溶融状態で充填された導電性材料によって形成されるものであり、
前記回転子鉄心の軸方向端部に前記電磁鋼板よりも線膨張係数が大きく、前記二次導体よりも線膨張係数が小さい材質の端板を備え、
前記電磁鋼板の径と前記端板の径が同じであり、
前記回転子スロットの軸方向端部付近の内面に干渉抑制層を備え、前記回転子スロットの軸方向中央部には前記干渉抑制層が存在しないことを特徴とする回転電機の回転子。
A cylindrical rotor core in which electromagnetic steel sheets are laminated, a plurality of rotor slots installed in the vicinity of the outer peripheral surface of the rotor core at intervals in the circumferential direction, and a conductor bar embedded in the rotor slot And an end ring that is installed at both ends of the rotor core and short-circuits the respective conductor bars to form a cage-shaped secondary conductor, and a rotor shaft, and a rotor of a rotating electric machine, comprising:
The secondary conductor is formed of a conductive material filled in a molten state,
An axial end of the rotor core has a larger linear expansion coefficient than the electromagnetic steel sheet, and has an end plate made of a material having a smaller linear expansion coefficient than the secondary conductor,
Wherein Ri diameter equal der diameter and said end plate of electromagnetic steel sheets,
A rotor for a rotating electrical machine , comprising: an interference suppression layer provided on an inner surface near an axial end of the rotor slot; and the interference suppression layer does not exist at an axial center of the rotor slot .
請求項に記載の回転電機の回転子において、
前記回転子スロットのサイズが軸方向中央部に対して軸方向端部において大きく形成されており、
前記電磁鋼板のスロット形状に対して前記端板のスロット形状が端部に向うにつれ段階的に大きく形成されていることを特徴とする回転電機の回転子。
The rotor of the rotating electric machine according to claim 7 ,
The size of the rotor slot is larger at the axial end than at the axial center,
A rotor of a rotating electrical machine, wherein a slot shape of the end plate is gradually increased toward an end with respect to a slot shape of the electromagnetic steel sheet.
請求項7又は請求項に記載の回転電機の回転子において、
前記干渉抑制層の材質が、酸化クロム又は不飽和ポリエステル樹脂であることを特徴とする回転電機の回転子。
In the rotor of the rotating electric machine according to claim 7 or 8 ,
The rotor of a rotating electric machine material of the interference suppression layer, characterized in that chromium oxide or unsaturated polyester resin.
請求項乃至請求項の何れか一つに記載の回転電機の回転子において、
前記回転子鉄心の軸方向端部に用いる端板の材質が、オーステナイト系ステンレス鋼又はニッケル鋼であることを特徴とする回転電機の回転子。
The rotor according to any one of claims 7 to 9,
A rotor for a rotary electric machine, wherein a material of an end plate used for an axial end of the rotor core is austenitic stainless steel or nickel steel.
JP2015034380A 2015-02-24 2015-02-24 Rotating electric machine and its rotor Active JP6660667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015034380A JP6660667B2 (en) 2015-02-24 2015-02-24 Rotating electric machine and its rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015034380A JP6660667B2 (en) 2015-02-24 2015-02-24 Rotating electric machine and its rotor

Publications (2)

Publication Number Publication Date
JP2016158390A JP2016158390A (en) 2016-09-01
JP6660667B2 true JP6660667B2 (en) 2020-03-11

Family

ID=56826867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015034380A Active JP6660667B2 (en) 2015-02-24 2015-02-24 Rotating electric machine and its rotor

Country Status (1)

Country Link
JP (1) JP6660667B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114606A (en) * 1975-04-02 1976-10-08 Hitachi Ltd Almi-cast rotor
JPS58127876U (en) * 1982-02-22 1983-08-30 西芝電機株式会社 Rotor of low temperature liquid submerged motor
JPH0640728B2 (en) * 1988-02-29 1994-05-25 株式会社日立製作所 Armature of rotating electric machine and manufacturing method thereof
JP2004101384A (en) * 2002-09-10 2004-04-02 Yazaki Corp Current detector
US20070075603A1 (en) * 2005-09-30 2007-04-05 Whiddon Richard M Labyrinthine end disk rotor
JP5407195B2 (en) * 2008-06-27 2014-02-05 株式会社明電舎 Induction motor rotor and method of manufacturing the same
JP2010071374A (en) * 2008-09-17 2010-04-02 Nsk Ltd Rolling device
JP5155420B2 (en) * 2011-03-11 2013-03-06 ファナック株式会社 Cage rotor of induction motor for brazing end ring and bar and manufacturing method thereof
JP5326012B2 (en) * 2012-02-14 2013-10-30 ファナック株式会社 Rotor with cage-shaped conductor formed with reinforcing structure and method for manufacturing the same

Also Published As

Publication number Publication date
JP2016158390A (en) 2016-09-01

Similar Documents

Publication Publication Date Title
JP6129966B2 (en) Rotating electric machine and manufacturing method thereof
JP6773640B2 (en) Rotor and reluctance machine
JP6072395B1 (en) Rotating machine rotor member, rotating machine rotor and rotating machine
JP2017523759A (en) Rotor, reluctance machine, and method of manufacturing rotor
JP6366986B2 (en) Synchronous reluctance rotary electric machine
JP6279763B2 (en) Induction motor
JP5769883B2 (en) Rotating electric machine stator and method of manufacturing rotating electric machine stator
US10622853B2 (en) Synchronous reluctance type rotary electric machine
JP2012175878A (en) Squirrel-cage rotor of induction motor
JP2018207693A (en) Rotary electric machine
JP2015119547A (en) Permanent magnet type rotary electric machine
JP5066820B2 (en) Magnet structure
US20140300240A1 (en) Electric machine rotor
JP2013220030A (en) Permanent magnet type synchronous motor
JP6660667B2 (en) Rotating electric machine and its rotor
JP6178781B2 (en) Cage type induction motor and rotor for cage type induction motor
JPWO2014068695A1 (en) Rotating electric machine coil and rotating electric machine
JP2010200573A (en) Permanent magnet type synchronous motor
WO2021230056A1 (en) Rotor, motor, and electrical products
JP2010220421A (en) Rotary electric machine system
JP2015216715A (en) Axial gap type rotary electric machine
JP6601592B1 (en) Cage rotor and rotating electric machine
JP6436065B2 (en) Rotating electric machine
JP7548046B2 (en) Rotating Electric Rotor
JP6572860B2 (en) Rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180723

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181029

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181107

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20181130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200210

R150 Certificate of patent or registration of utility model

Ref document number: 6660667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150