JP6660569B2 - Manufacturing method of assembled battery - Google Patents

Manufacturing method of assembled battery Download PDF

Info

Publication number
JP6660569B2
JP6660569B2 JP2018105927A JP2018105927A JP6660569B2 JP 6660569 B2 JP6660569 B2 JP 6660569B2 JP 2018105927 A JP2018105927 A JP 2018105927A JP 2018105927 A JP2018105927 A JP 2018105927A JP 6660569 B2 JP6660569 B2 JP 6660569B2
Authority
JP
Japan
Prior art keywords
cells
thickness
assembled battery
positive electrode
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018105927A
Other languages
Japanese (ja)
Other versions
JP2018166103A (en
Inventor
圭一郎 小林
圭一郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018105927A priority Critical patent/JP6660569B2/en
Publication of JP2018166103A publication Critical patent/JP2018166103A/en
Application granted granted Critical
Publication of JP6660569B2 publication Critical patent/JP6660569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は複数の充放電可能な単電池(二次電池)が所定方向に配列され且つ該配列方向に荷重が加えられた状態で拘束された組電池の製造方法に関する。   The present invention relates to a method of manufacturing an assembled battery in which a plurality of chargeable / dischargeable cells (rechargeable batteries) are arranged in a predetermined direction and are restrained while a load is applied in the arrangement direction.

軽量で高エネルギー密度が得られるリチウムイオン二次電池、ニッケル水素電池その他の二次電池あるいはキャパシタ等の蓄電素子を単電池とし、該単電池を複数直列接続して成る組電池は高出力が得られる電源として、車両搭載用電源、或いはパソコンおよび携帯端末の電源として好ましく用いられている。例えば車両搭載用組電池の一例として特許文献1には、リチウムイオン二次電池から成る同形状の単電池を複数個配列すると共に各単電池に設けられた正極端子および負極端子をそれぞれ直列に接続することにより構成された組電池が開示されている。   A lithium ion secondary battery, nickel hydride battery, other secondary battery, or a storage element such as a capacitor, which is lightweight and has a high energy density, is a unit cell, and an assembled battery formed by connecting a plurality of the unit cells in series can provide high output. The power source is preferably used as a power source for a vehicle or a power source for a personal computer and a portable terminal. For example, Patent Literature 1 discloses an example of an assembled battery for a vehicle, in which a plurality of cells of the same shape including a lithium ion secondary battery are arranged, and a positive electrode terminal and a negative electrode terminal provided on each cell are connected in series. Thus, an assembled battery configured as described above is disclosed.

特開2014−137889号公報JP 2014-137889 A

ところで、自動車等の車両に搭載される組電池では、搭載スペースが制限されることに加えて振動が発生する状態での使用が前提となることから、例えば上記特許文献1にも記載されているように多数の単電池を配列し且つ拘束した状態(すなわち各単電池を相互に固定した状態)の組電池が構築される。かかる拘束時には組電池を構成する個々の単電池に相当な荷重が加えられることになる。   By the way, in a battery pack mounted on a vehicle such as an automobile, the mounting space is limited, and it is assumed that the battery is used in a state where vibration is generated. Thus, an assembled battery in which a large number of cells are arranged and restrained (that is, each cell is fixed to each other) is constructed. At the time of such restraint, a considerable load is applied to the individual cells constituting the assembled battery.

本発明者が得た知見によれば、組電池の製造に際して単電池を複数配列してその配列方向に荷重を加えて拘束した場合、該荷重により単電池の容器(すなわち内部に電極体を収容する外装体)に荷重方向への歪みや変形が生じる。そのため、所定の配列方向に荷重が加えられて拘束された状態における各単電池の配列方向の厚みは、容器内部の電極体の厚みに依存する。
しかしながら、一般に電極体の厚みには多少なりともばらつき(不揃い)がある。このように厚みにばらつきのある電極体を備えた多数の単電池を積層方向に配列して拘束すると、拘束状態の各単電池の配列方向の厚みにばらつきが生じ、それら単電池の厚みのばらつきが累積される結果、得られる組電池の配列方向の長さがばらついてしまう。このような組電池の配列方向長さ(外形サイズ)のばらつきは、該組電池を車両等に搭載する際に、予め用意された搭載スペースに組電池が収まらない、もしくは該搭載スペースに収めたときに余分な隙間が残る、等の不都合を生じ得る。あるいは外形サイズのばらつきを許容すべく組電池の外形寸法保証値の公差を大きくとる(すなわち組電池の周りに余分なスペースを設ける)といった設計上の不利益を発生させ得る。したがって、組電池の製造にあたっては配列方向長さのばらつきを低減することが望ましい。
According to the knowledge obtained by the present inventor, when a plurality of cells are arranged at the time of manufacturing an assembled battery and restrained by applying a load in the arrangement direction, the container of the cell (that is, the electrode body is housed inside) by the load. Distortion or deformation in the load direction occurs on the outer body that performs the load. Therefore, the thickness of each unit cell in the arrangement direction in a state where a load is applied in a predetermined arrangement direction and restrained depends on the thickness of the electrode body inside the container.
However, in general, the thickness of the electrode body has some variation (irregularity). When a large number of cells having the electrode bodies having a variation in thickness as described above are arranged and constrained in the stacking direction, the thickness of each cell in the constrained state varies in the arrangement direction, and the thickness of the cells varies. Is accumulated, the length of the obtained assembled battery in the arrangement direction varies. Such a variation in the length (outer size) of the battery pack in the arrangement direction is such that when the battery pack is mounted on a vehicle or the like, the battery pack cannot be accommodated in a prepared mounting space or is contained in the mounting space. In some cases, such a problem may occur that an extra gap remains. Alternatively, there may be a disadvantage in design such as increasing the tolerance of the external dimensions guarantee value of the assembled battery to allow variations in the external size (that is, providing an extra space around the assembled battery). Therefore, it is desirable to reduce the variation in the length in the arrangement direction when manufacturing the assembled battery.

本発明は、従来の組電池構築に関する上述した課題を解決すべく開発されたものであり、その目的とするところは、組電池を構成する各単電池内部に収容する電極体の形状の不揃いに起因して生じ得る組電池の配列方向の長さのばらつきを抑えて予め設定されているとおりの正確なサイズ(特に、組電池を構成する単電池の配列方向に対する該組電池の長さ寸法)を有する組電池を製造し得る方法を提供することである。   The present invention has been developed in order to solve the above-mentioned problems relating to the construction of a conventional battery pack. The purpose of the present invention is to reduce the unevenness of the shape of the electrode body housed inside each cell constituting the battery pack. Precise size as set in advance by suppressing variations in the length of the battery pack in the arrangement direction that may occur due to the cause (particularly, the length dimension of the battery pack in the arrangement direction of the cells constituting the battery pack) It is an object of the present invention to provide a method capable of manufacturing an assembled battery having the following.

本発明によると、所定数の単電池が所定方向に配列され且つ該配列方向に荷重が加えられた状態で拘束された組電池を製造する方法が提供される。その方法は、正極および負極を備える電極体と、該電極体を収容する容器とを備える単電池を複数用意する工程を含む。また、前記複数の単電池を、該単電池内に収容される前記電極体の前記配列方向の厚みに応じて複数の厚みランクに分類する工程を含む。また、前記単電池の所定数を前記配列方向に配列し且つ該配列方向に荷重が加えられた状態で拘束することによって組電池を構築する工程を含む。ここで、前記組電池の構築工程は、前記分類した複数の厚みランクのうち2つ以上の厚みランクから前記組電池の構築に用いる所定数の単電池を選択して組み合わせることによって、前記組電池の前記配列方向の長さが予め設定された規定長さに適合するように行われる。   According to the present invention, there is provided a method for manufacturing an assembled battery in which a predetermined number of cells are arranged in a predetermined direction and restrained in a state where a load is applied in the arrangement direction. The method includes a step of preparing a plurality of unit cells each including an electrode body including a positive electrode and a negative electrode, and a container accommodating the electrode body. In addition, the method includes a step of classifying the plurality of unit cells into a plurality of thickness ranks according to the thickness in the arrangement direction of the electrode bodies housed in the unit cells. In addition, the method includes a step of arranging a predetermined number of the cells in the arrangement direction and constraining the cells in a state where a load is applied in the arrangement direction to form an assembled battery. Here, the step of constructing the assembled battery is performed by selecting and combining a predetermined number of cells used for constructing the assembled battery from two or more thickness ranks among the plurality of classified thickness ranks. Is performed so that the length in the arrangement direction conforms to a predetermined length set in advance.

本明細書において「単電池」とは、組電池を構成するために相互に直列接続され得る個々の蓄電素子を指す用語であり、特に限定しない限り種々の組成の電池、キャパシタを包含する。また、「二次電池」とは、繰り返し充電可能な電池一般をいい、リチウムイオン二次電池、ニッケル水素電池等のいわゆる蓄電池を包含する。リチウムイオン二次電池を構成する蓄電素子は、ここでいう「単電池」に包含される典型例であり、そのような単電池を複数備えて成るリチウムイオン二次電池モジュールは、ここで開示される「組電池」の一つの典型例である。ここに開示される技術は、扁平形状の外形を有する単電池(例えばリチウムイオン二次電池)の所定数を、その扁平面が積み重なる方向(積層方向)に配列し、それらの単電池の電極端子を直列または並列に接続してなる組電池に特に好ましく適用され得る。   In the present specification, the term "unit cell" is a term indicating individual power storage elements that can be connected in series with each other to form a battery pack, and includes batteries and capacitors having various compositions unless otherwise limited. Further, the “secondary battery” generally refers to a battery that can be repeatedly charged, and includes a so-called storage battery such as a lithium ion secondary battery and a nickel hydride battery. The storage element constituting the lithium ion secondary battery is a typical example included in the “unit cell” here, and a lithium ion secondary battery module including a plurality of such unit cells is disclosed herein. This is one typical example of a "battery pack". According to the technology disclosed herein, a predetermined number of cells (for example, lithium ion secondary batteries) having a flat outer shape are arranged in a direction in which the flat surfaces are stacked (stacking direction), and electrode terminals of those cells are arranged. Can be particularly preferably applied to an assembled battery in which are connected in series or in parallel.

上記構成の組電池製造方法によれば、組電池の構築に用いる所定数の単電池は、各単電池内の電極体の厚みのばらつき(ひいては拘束状態の各単電池の厚みのばらつき)を相殺して組電池の配列方向の長さが規定長さに適合するように選択して組み合わされているので、正確なサイズ(特に、組電池を構成する単電池の配列方向に対する該組電池の長さ寸法)の組電池を製造することができる。したがって、本発明の製造方法によると、外形サイズ(配列方向長さ)がよく揃った、搭載性のよい車両搭載用その他用途の組電池を提供することができる。   According to the assembled battery manufacturing method having the above-described configuration, the predetermined number of cells used for constructing the assembled battery offset the variation in the thickness of the electrode body in each of the cells (and the variation in the thickness of each of the cells in the restrained state). Since the length of the battery pack in the arrangement direction is selected and combined so as to conform to the specified length, the correct size (particularly, the length of the battery pack relative to the arrangement direction of the cells constituting the battery pack) (Size). Therefore, according to the manufacturing method of the present invention, it is possible to provide an assembled battery for vehicle use and other uses with good external dimensions (length in the arrangement direction) and excellent mountability.

ここで開示される組電池製造方法の好ましい一態様では、前記電極体は、長尺な正極集電体上に正極活物質層を備える正極シートと、長尺な負極集電体上に負極活物質層を備える負極シートとが捲回されて成る扁平形状の捲回電極体である。
捲回電極体の厚みは、その捲回度合や状態により不揃いになりやすい。従って、かかる捲回電極体を備える単電池では、拘束時に該単電池の厚みが不均一になりやすいところ、上記構成の製造方法では組電池の配列方向の長さが基準長さに適合するように厚みランクが異なる単電池を選択して組み合わせることで、組電池の配列方向長さを上記規定値(規定長さ)に精度よく合致させた組電池を製造することができる。このため、本態様の製造方法によると、捲回電極体を構成要素とする複数の単電池を備え且つ搭載性に優れた組電池を製造することができる。
In a preferred embodiment of the battery pack manufacturing method disclosed herein, the electrode body includes a positive electrode sheet having a positive electrode active material layer on a long positive electrode current collector, and a negative electrode active on a long negative electrode current collector. It is a flat wound electrode body formed by winding a negative electrode sheet having a material layer.
The thickness of the wound electrode body tends to be uneven depending on the degree and state of winding. Therefore, in a unit cell including such a wound electrode body, the thickness of the unit cell is likely to be non-uniform at the time of restraint, but in the manufacturing method of the above configuration, the length in the arrangement direction of the assembled battery conforms to the reference length. By selecting and combining cells having different thickness ranks, it is possible to manufacture an assembled battery in which the length in the arrangement direction of the assembled battery accurately matches the specified value (specified length). For this reason, according to the manufacturing method of this aspect, it is possible to manufacture an assembled battery including a plurality of unit cells each including the wound electrode body as a component and having excellent mountability.

ここで開示される組電池製造方法の好ましい一態様では、前記単電池を複数用意する工程には、前記正極集電体上に単電池の複数個分に相当する長さの正極活物質層が長手方向に連続して形成された正極シート母材と、前記負極集電体上に単電池の複数個分に相当する長さの負極活物質層が長手方向に連続して形成された負極シート母材とを重ねて捲回しつつ、所定の長さ毎に切断することによって複数の捲回電極体を形成する処理が含まれる。かかる構成によれば、複数の捲回電極体を効率的に形成し得る一方で、得られた捲回電極体の形状は不揃いになりやすい。しかし、上記構成の製造方法によると、上記捲回電極体の形状の不揃いに起因して生じ得る組電池の配列方向の長さのばらつきを抑えて予め設定されているとおりの正確なサイズを有する組電池を製造することができる。このため、本態様の製造方法によると、外形サイズがよく揃った、搭載性のよい組電池を効率的に製造することができる。   In a preferred aspect of the assembled battery manufacturing method disclosed herein, in the step of preparing a plurality of cells, a positive electrode active material layer having a length corresponding to a plurality of cells is provided on the positive electrode current collector. A positive electrode sheet base material continuously formed in the longitudinal direction, and a negative electrode sheet in which a negative electrode active material layer having a length corresponding to a plurality of unit cells is continuously formed in the longitudinal direction on the negative electrode current collector. A process of forming a plurality of wound electrode bodies by cutting the base material at predetermined lengths while overlapping and winding the base material is included. According to such a configuration, while a plurality of wound electrode bodies can be efficiently formed, the shape of the obtained wound electrode body tends to be irregular. However, according to the manufacturing method of the above configuration, the wound electrode body has an exact size as set in advance by suppressing the variation in the length in the arrangement direction of the battery pack which may be caused due to the irregular shape of the wound electrode body. An assembled battery can be manufactured. For this reason, according to the manufacturing method of this aspect, an assembled battery having a good external size and good mountability can be efficiently manufactured.

ここで開示される組電池製造方法の好ましい一態様では、前記組電池を構成する単電池の数は30個以上(好ましくは50個以上)である。単電池の数が増えれば増えるほど組電池の高容量化に有利である一方で、電極体の形状の不揃いに起因して組電池の配列方向の長さにばらつきが生じやすい。しかし、上記構成の製造方法によると、多数の単電池内の電極体の厚みのばらつきにも拘わらず、各単電池内の電極体の厚みのばらつきを相殺して配列方向長さを上記規定値(規定長さ)に精度よく合致させた組電池を製造することができる。このため、本態様の製造方法によると、高容量で且つ搭載性のよい組電池を製造することができる。   In a preferred embodiment of the battery pack manufacturing method disclosed herein, the number of cells constituting the battery pack is 30 or more (preferably 50 or more). As the number of cells increases, it is more advantageous to increase the capacity of the assembled battery, but the unevenness of the shape of the electrode body tends to cause a variation in the length of the assembled battery in the arrangement direction. However, according to the manufacturing method of the above configuration, despite the variation in the thickness of the electrode bodies in a large number of cells, the variation in the thickness of the electrode bodies in each of the cells is offset to set the length in the arrangement direction to the specified value. It is possible to manufacture an assembled battery that precisely matches the (specified length). For this reason, according to the manufacturing method of this aspect, it is possible to manufacture an assembled battery having high capacity and good mountability.

一実施形態に係る組電池の構成を模式的に示す斜視図である。It is a perspective view showing typically the composition of the battery pack concerning one embodiment. 一実施形態に係る組電池の構成を模式的に示す側面図である。It is a side view showing typically composition of an assembled battery concerning one embodiment. 一実施形態に係る捲回電極体模式的に示す正面図である。It is a front view showing typically the wound electrode body concerning one embodiment. 一実施形態に係る単電池の容器内の状態を模式的に示す図である。It is a figure showing typically the state in the container of the unit cell concerning one embodiment. 一実施形態に係る捲回電極体の製造方法を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing method of the wound electrode body which concerns on one Embodiment. 一実施形態に係る捲回電極体の製造方法を模式的に示す説明図である。It is explanatory drawing which shows typically the manufacturing method of the wound electrode body which concerns on one Embodiment. 電極体の厚みと拘束状態の単電池の厚みとの関係を示すグラフである。4 is a graph showing the relationship between the thickness of an electrode body and the thickness of a unit cell in a constrained state.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項(例えば、組電池の構成要素たる単電池の構造)以外の事柄であって本発明の実施に必要な事柄(例えば、正極、負極およびセパレータの構成および製法、単電池の拘束方法、車両への組電池搭載方法)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
本発明に係る組電池は、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。従って、本発明は、かかる組電池を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。
Hereinafter, preferred embodiments of the present invention will be described. It should be noted that matters other than matters specifically mentioned in this specification (for example, the structure of a unit cell as a component of a battery pack) and matters necessary for carrying out the present invention (for example, the structure of a positive electrode, a negative electrode, and a separator) And the manufacturing method, the method of restraining the unit cells, and the method of mounting the assembled battery on the vehicle) can be grasped as design matters of those skilled in the art based on the conventional technology in the field. The present invention can be implemented based on the contents disclosed in this specification and common technical knowledge in the field.
The assembled battery according to the present invention can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Accordingly, the present invention provides a vehicle (typically, a vehicle, particularly a vehicle including an electric motor such as a hybrid vehicle, an electric vehicle, or a fuel cell vehicle) including the battery pack as a power supply.

ここに開示される技術を適用して製造される組電池は、単電池(典型的には、扁平形状の外形を有する単電池)を配列し該配列方向(積層方向)に拘束してなる組電池であればよく、各単電池の構成は特に制限されない。本発明の適用対象として好適な単電池の例として、ニッケル水素電池、電気二重層キャパシタ等の二次電池が挙げられる。なかでもリチウムイオン二次電池を単電池とする組電池の製造方法として本発明を好ましく採用することができる。リチウムイオン二次電池は高エネルギー密度で高出力を実現できる二次電池であるため、高性能な組電池、特に車両搭載用組電池(電池モジュール)を構築することができる。また本発明は、それら配列された複数個の単電池が直列または並列(典型的には直列)に接続された形態の組電池の製造方法として好適である。   A battery assembly manufactured by applying the technology disclosed herein is a battery assembly in which cells (typically cells having a flat outer shape) are arranged and constrained in the arrangement direction (stacking direction). A battery may be used, and the configuration of each cell is not particularly limited. Examples of single cells suitable for application of the present invention include secondary batteries such as nickel-metal hydride batteries and electric double layer capacitors. In particular, the present invention can be preferably employed as a method for manufacturing a battery pack using a lithium ion secondary battery as a unit cell. Since a lithium ion secondary battery is a secondary battery capable of realizing high output with high energy density, a high-performance assembled battery, particularly an assembled battery (battery module) for mounting on a vehicle can be constructed. Further, the present invention is suitable as a method of manufacturing a battery pack in which a plurality of the arranged cells are connected in series or in parallel (typically in series).

特に限定することを意図したものではないが、以下、扁平形状のリチウムイオン二次電池を単電池とし、該単電池の複数個を直列に接続してなる組電池を製造する場合を例として本発明を詳細に説明する。また、以下の図面において、同じ作用を奏する部材・部位には同じ符号を付し、重複する説明は省略または簡略化することがある。   Although not intended to limit the present invention in particular, the following description is made by way of example of a case where a flat lithium ion secondary battery is used as a unit cell and a plurality of the unit cells are connected in series to manufacture an assembled battery. The invention will be described in detail. Further, in the drawings below, members / parts having the same function are denoted by the same reference numerals, and redundant description may be omitted or simplified.

以下に示す実施形態で製造される組電池の構成要素として用いられる単電池は、従来の組電池に装備される単電池と同様、典型的には所定の電池構成材料(正負極それぞれの活物質、正負極それぞれの集電体、セパレータ等)を具備する電極体と、該電極体および適当な電解質を収容する容器とを備える。   A cell used as a constituent element of the battery pack manufactured in the embodiment described below is typically a predetermined battery constituent material (the active material of each of the positive and negative electrodes, similar to the cell provided in the conventional battery pack). , A current collector for each of the positive and negative electrodes, a separator, etc.), and a container for accommodating the electrode body and an appropriate electrolyte.

一例として図1および図2に示すように、ここで開示される組電池10は、複数(典型的には10個以上(例えば10〜100個)、好ましくは30個以上、より好ましくは50個以上、さらに好ましくは60個以上)の単電池12を備える。単電池12は、後述する扁平形状の捲回電極体を収容し得る形状(本実施形態では箱形)の容器14を備える。   As an example, as shown in FIGS. 1 and 2, a plurality of battery packs 10 disclosed herein (typically 10 or more (eg, 10 to 100), preferably 30 or more, more preferably 50 or more) (More preferably, 60 or more). The unit cell 12 includes a container 14 having a shape (a box shape in the present embodiment) capable of accommodating a flat wound electrode body described later.

容器14には、捲回電極体の正極と電気的に接続する正極端子15および該電極体の負極と電気的に接続する負極端子16が設けられている。図示するように、隣接する単電池12間において一方の正極端子15と他方の負極端子16とが接続具17によって電気的に接続される。このように各単電池12を直列に接続することにより、所望する電圧の組電池10が構築される。
なお、これら容器14には、容器内部で発生したガス抜きのための安全弁等が従来の単電池容器と同様に設けられ得る。かかる容器14の構成自体は本発明を特徴付けるものではないため、詳細な説明は省略する。
The container 14 is provided with a positive electrode terminal 15 electrically connected to the positive electrode of the wound electrode body and a negative electrode terminal 16 electrically connected to the negative electrode of the electrode body. As shown in the drawing, one positive electrode terminal 15 and the other negative electrode terminal 16 are electrically connected by a connector 17 between adjacent unit cells 12. By thus connecting the cells 12 in series, the assembled battery 10 having a desired voltage is constructed.
Note that a safety valve or the like for releasing gas generated inside the container may be provided in these containers 14 in the same manner as in a conventional cell container. Since the configuration of the container 14 itself does not characterize the present invention, a detailed description is omitted.

容器14の材質は、従来の単電池で使用されるものと同じであればよく特に制限はない。車両等への搭載に適するという観点から、本発明の実施に好適なものとしては、比較的軽量である材質が挙げられる。例えば、金属(例えばアルミニウム、スチール)製の容器、合成樹脂(例えばポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、あるいはポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリアミド系樹脂等の高融点樹脂)製の容器等を好ましく用いることができる。あるいは、電池の外装体として従来使用されている樹脂フィルム製容器、例えば高融点樹脂(例えばポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリアミド系樹脂等の高融点樹脂)から構成された外面(保護)層と、金属箔(例えばアルミニウム、スチール)から構成されたバリア層(すなわちガスや水分を遮断し得る層)と、熱融着性樹脂(比較的低融点である樹脂、例えばエチレンビニルアセテート、あるいはポリエチレン、ポリプロピレン等のポリオレフィン系樹脂)から構成された接着層との三層構造から成るラミネートフィルム製の容器であってもよい。本実施形態に係る容器14は例えばアルミニウム製である。   The material of the container 14 is not particularly limited as long as it is the same as that used in a conventional unit cell. From the viewpoint of being suitable for mounting on a vehicle or the like, a material that is relatively lightweight is preferable as the material for implementing the present invention. For example, a container made of a metal (for example, aluminum or steel), a container made of a synthetic resin (for example, a polyolefin resin such as polyethylene or polypropylene, or a high melting point resin such as polyethylene terephthalate, polytetrafluoroethylene, or a polyamide resin) is preferably used. Can be used. Alternatively, a container made of a resin film conventionally used as an outer package of a battery, for example, an outer (protective) layer composed of a high melting point resin (eg, a high melting point resin such as polyethylene terephthalate, polytetrafluoroethylene, or a polyamide resin); A barrier layer (that is, a layer capable of blocking gas and moisture) composed of a metal foil (for example, aluminum or steel) and a heat-fusible resin (a resin having a relatively low melting point, for example, ethylene vinyl acetate or polyethylene, A container made of a laminated film having a three-layer structure with an adhesive layer made of a polyolefin resin such as polypropylene) may be used. The container 14 according to the present embodiment is made of, for example, aluminum.

図1および図2に示すように、複数の単電池12は、それぞれの正極端子15および負極端子16が交互に一定の間隔で配置されるように一つずつ反転させつつ容器14の幅広な面14A(即ち容器14内に収容される後述する捲回電極体30の扁平面に対応する面)が対向する方向に配列される。さらに、当該配列する単電池12間ならびに単電池配列方向の両アウトサイドには、所定形状の冷却板11が容器14の幅広面14Aに密接した状態で配置されている。この冷却板11は、使用時に各単電池内で発生する熱を効率よく放散させるための放熱部材として機能するものであって、単電池12間に冷却用流体(典型的には空気)を導入可能なフレーム形状(例えば図示される櫛型のような側面からみて凹凸形状)を有する。熱伝導性の良い金属製もしくは軽量で硬質なポリプロピレンその他の合成樹脂製の冷却板11が好適である。   As shown in FIGS. 1 and 2, the plurality of single cells 12 are turned one by one so that the positive terminals 15 and the negative terminals 16 are alternately arranged at a constant interval, and the wide surface of the container 14 is turned over. 14A (that is, a surface corresponding to a flat surface of a later-described wound electrode body 30 accommodated in the container 14) are arranged in a direction facing each other. Further, between the unit cells 12 to be arranged and on both outsides in the unit cell arrangement direction, cooling plates 11 of a predetermined shape are arranged in close contact with the wide surface 14A of the container 14. The cooling plate 11 functions as a heat radiating member for efficiently dissipating heat generated in each unit cell during use, and introduces a cooling fluid (typically air) between the unit cells 12. It has a possible frame shape (e.g., an uneven shape as viewed from the side like a comb shown in the figure). A cooling plate 11 made of metal having good thermal conductivity or made of lightweight and hard polypropylene or other synthetic resin is preferable.

上記配列させた単電池12および冷却板11の両アウトサイドに配置された冷却板11のさらに外側には、一対のエンドプレート18、19が配置されている。そして、上記単電池群およびエンドプレート18、19の全体が、両エンドプレート18、19を架橋(連結)するように取り付けられた複数の締め付け用拘束バンド21によって、該被拘束体24の積層方向(配列方向)に荷重が加えられた状態で拘束されている。   A pair of end plates 18 and 19 are further arranged outside the cooling plates 11 arranged on both outsides of the unit cells 12 and the cooling plates 11 arranged as described above. Then, the entire unit cell group and the end plates 18 and 19 are stacked by a plurality of tightening restraint bands 21 attached so as to bridge (connect) the both end plates 18 and 19 in the stacking direction of the restrained body 24. It is restrained in a state where a load is applied in the (array direction).

そして、このように単電池12の積層方向に配列された単電池群、冷却板11およびエンドプレート18、19の全体(以下「被拘束体」ともいう。)が、両エンドプレート18、19を架橋するように取り付けられた締め付け用の拘束バンド21によって、該被拘束体の積層方向に規定の拘束圧Pで拘束されている。より詳しくは、図2に示すように、拘束バンド21の端部をビス22によりエンドプレート18に締め付け且つ固定することによって、上記被拘束体24がその配列方向に規定の拘束圧P(例えば容器14の壁面が受ける面圧が2×10〜5×10Pa程度)が加わるように拘束されている。かかる規定拘束圧Pで拘束された組電池10の配列方向の長さ(図1、2に示す例ではエンドプレート18、19の外側端の間の長さ)は、規定長さLTである。ここで本明細書において「規定長さLT」とは、組電池を構成する所定数の単電池の配列方向に沿う該組電池の長さをいい、典型的には公差を含めて許容される長さの範囲として把握され得る。例えば、規定長さLTがXcmという場合、公差±αを含むX±αの範囲として把握され得る。 Then, the entire unit cell group, the cooling plate 11 and the end plates 18 and 19 (hereinafter also referred to as a “constrained body”) arranged in the stacking direction of the unit cells 12 form both end plates 18 and 19. The constrained body is constrained by a prescribed constraining pressure P in the stacking direction of the constrained body by a tightening constraining band 21 attached so as to be cross-linked. More specifically, as shown in FIG. 2, by tightening and fixing the end of the restraining band 21 to the end plate 18 with a screw 22, the restrained body 24 is moved to a predetermined restraining pressure P (for example, a container). 14 is applied so that the surface pressure applied to the wall surface 14 is about 2 × 10 6 to 5 × 10 6 Pa). The length (in the example shown in FIGS. 1 and 2, the length between the outer ends of the end plates 18 and 19) of the battery pack 10 restrained by the specified restraint pressure P is the specified length LT. Here, in the present specification, the “specified length LT” refers to the length of the battery pack along a direction in which a predetermined number of cells constituting the battery pack are arranged, and is typically allowed including a tolerance. It can be understood as a range of length. For example, when the specified length LT is Xcm, it can be grasped as a range of X ± α including the tolerance ± α.

本例に係る製造方法では、以下のようにして、上記構成を有する組電池10を規定長さLTが安定して実現されるように効率よく製造する。以下、その製造方法につき図3〜図6に示す模式図を参照しつつ説明する。
まず、組電池10の構築に使用する単電池12を複数用意する工程につき述べる。この単電池12は、正極および負極を備える電極体30を備える。この実施形態では、電極体30は、長尺な正極集電体上に正極活物質層を備える正極シート32と、長尺な負極集電体上に負極活物質層を備える負極シート34とセパレータ36とが捲回されて成る扁平形状の捲回電極体30である。
In the manufacturing method according to the present example, the assembled battery 10 having the above configuration is efficiently manufactured so that the specified length LT is stably realized as follows. Hereinafter, the manufacturing method will be described with reference to the schematic diagrams shown in FIGS.
First, a process of preparing a plurality of cells 12 used for constructing the assembled battery 10 will be described. The cell 12 includes an electrode body 30 including a positive electrode and a negative electrode. In this embodiment, the electrode body 30 includes a positive electrode sheet 32 having a positive electrode active material layer on a long positive electrode current collector, a negative electrode sheet 34 having a negative electrode active material layer on a long negative electrode current collector, and a separator. 36 is a flat wound electrode body 30 formed by winding.

かかる捲回電極体30を構成する材料および部材自体は、従来のリチウムイオン電池の電極体と同様でよく、特に制限はない。例えば、正極シート32は長尺状の正極集電体の上にリチウムイオン電池用正極活物質層が付与されて形成され得る。正極集電体にはアルミニウム箔(本実施形態)その他の正極に適する金属箔が好適に使用される。正極活物質は従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、LiMn、LiCoO、LiNiO等のリチウム遷移金属酸化物が挙げられる。例えば、長さ2m〜4m(例えば2.7m)、幅8cm〜12cm(例えば10cm)、厚み5μm〜20μm(例えば15μm)程度のアルミニウム箔を集電体として使用し、その表面の所定領域に正極活物質層を形成することによって好適な正極シート32が得られる。 The materials and members constituting the wound electrode body 30 may be the same as those of a conventional lithium ion battery, and are not particularly limited. For example, the positive electrode sheet 32 can be formed by providing a positive electrode active material layer for a lithium ion battery on a long positive electrode current collector. As the positive electrode current collector, an aluminum foil (this embodiment) or another metal foil suitable for the positive electrode is preferably used. As the positive electrode active material, one kind or two or more kinds of substances conventionally used for lithium ion batteries can be used without particular limitation. Preferred examples include lithium transition metal oxides such as LiMn 2 O 4 , LiCoO 2 , and LiNiO 2 . For example, an aluminum foil having a length of about 2 m to 4 m (for example, 2.7 m), a width of about 8 cm to 12 cm (for example, 10 cm), and a thickness of about 5 μm to 20 μm (for example, 15 μm) is used as a current collector, and a positive electrode is formed in a predetermined region on the surface thereof. By forming the active material layer, a suitable positive electrode sheet 32 can be obtained.

一方、負極シート34は長尺状の負極集電体の上にリチウムイオン電池用負極活物質層が付与されて形成され得る。負極集電体には銅箔(本実施形態)その他の負極に適する金属箔が好適に使用される。負極活物質は従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム遷移金属酸化物や遷移金属窒化物等が挙げられる。例えば、長さ2m〜4m(例えば2.9m)、幅8cm〜12cm(例えば10cm)、厚み5μm〜20μm(例えば10μm)程度の銅箔を使用し、その表面の所定領域に負極活物質層を形成することによって好適な負極シート34が得られる。   On the other hand, the negative electrode sheet 34 can be formed by providing a negative electrode active material layer for a lithium ion battery on a long negative electrode current collector. As the negative electrode current collector, a copper foil (this embodiment) or another metal foil suitable for the negative electrode is preferably used. As the negative electrode active material, one or more types of materials conventionally used in lithium ion batteries can be used without any particular limitation. Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, and lithium transition metal oxides and transition metal nitrides. For example, a copper foil having a length of about 2 m to 4 m (for example, 2.9 m), a width of about 8 cm to 12 cm (for example, 10 cm), and a thickness of about 5 μm to 20 μm (for example, 10 μm) is used, and a negative electrode active material layer is formed in a predetermined region on the surface. By forming, a suitable negative electrode sheet 34 is obtained.

また、正負極シート32、34間に使用される好適なセパレータシート36としては多孔質ポリオレフィン系樹脂で構成されたものが例示される。例えば、長さ2m〜4m(例えば3.1m)、幅8cm〜12cm(例えば11cm)、厚み5μm〜30μm(例えば25μm)程度の合成樹脂製(例えばポリエチレン等のポリオレフィン製)の多孔質セパレータシートを好適に使用し得る。   Further, as a suitable separator sheet 36 used between the positive and negative electrode sheets 32 and 34, a sheet made of a porous polyolefin resin is exemplified. For example, a porous separator sheet made of synthetic resin (for example, made of polyolefin such as polyethylene) having a length of about 2 m to 4 m (for example, 3.1 m), a width of about 8 cm to 12 cm (for example, 11 cm), and a thickness of about 5 μm to 30 μm (for example, 25 μm) can be obtained. It can be suitably used.

捲回電極体30を構築するに際しては、通常のリチウムイオン二次電池の捲回電極体と同様、正極シート32と、1枚目のセパレータ36と、負極シート34と、二枚目のセパレータ36とをこの順で積層し、さらに当該正極シート32と負極シート34とをややずらしつつ、捲回する。そして、得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平形状の捲回電極体30を作製する。   When constructing the wound electrode body 30, similarly to the wound electrode body of a normal lithium ion secondary battery, the positive electrode sheet 32, the first separator 36, the negative electrode sheet 34, and the second separator 36 Are laminated in this order, and the positive electrode sheet 32 and the negative electrode sheet 34 are wound while being slightly shifted. Then, the flattened wound electrode body 30 is manufactured by crushing the obtained wound body from the side direction and crushing it.

好ましい一態様では、前記捲回電極体30を製造するに際しては、長尺な正極集電体の上に正極活物質層を形成して正極シートを作製する。例えば、図5に示すように、正極活物質を主成分とする正極活物質形成用材料を適当な分散媒に分散させた組成物を正極集電体の長手方向における一端部(塗布開始点)から他端部(塗布終了点)に塗布・乾燥し、これをローラ68に挟んでプレスすることにより、正極集電体上に単電池12の複数個(例えば100個〜500個)分に相当する長さの正極活物質層が長手方向に連続して形成された正極シート母材32aを作製する。
同様にして、負極活物質を主成分とする負極活物質形成用材料を適当な分散媒に分散させた組成物を負極集電体の長手方向における一端部(塗布開始点)から他端部(塗布終了点)に塗布・乾燥し、これをローラに挟んでプレスすることにより、長尺な負極集電体上に単電池12の複数個(例えば100個〜500個)分に相当する長さの負極活物質層が長手方向に連続して形成された負極シート母材34aを作製する。
In a preferred embodiment, when manufacturing the wound electrode body 30, a positive electrode sheet is manufactured by forming a positive electrode active material layer on a long positive electrode current collector. For example, as shown in FIG. 5, a composition obtained by dispersing a material for forming a positive electrode active material containing a positive electrode active material as a main component in an appropriate dispersion medium is applied to one end of the positive electrode current collector in the longitudinal direction (application start point). Is applied to the other end (application end point) and dried, and is pressed between rollers 68, so as to correspond to a plurality (for example, 100 to 500) of unit cells 12 on the positive electrode current collector. A positive electrode sheet base material 32a in which a positive electrode active material layer having a predetermined length is formed continuously in the longitudinal direction is produced.
Similarly, a composition obtained by dispersing a material for forming a negative electrode active material containing a negative electrode active material as a main component in an appropriate dispersion medium is applied from one end (application start point) to the other end (application start point) in the longitudinal direction of the negative electrode current collector. After coating and drying at the coating end point, and pressing it between rollers, a length corresponding to a plurality (for example, 100 to 500) of the unit cells 12 is formed on the long negative electrode current collector. The negative electrode active material layer is continuously formed in the longitudinal direction to produce a negative electrode sheet base material 34a.

そして、図6に示すように、正極シート母材32aをロール状に巻き取った正極ロール33と、負極シート母材34aをロール状に巻き取った負極ロール35と、セパレータロール(単電池12の複数個分に相当する長さのセパレータシート母材36aがロール状に巻かれたもの)37とを巻取装置にセットし、各ロール33、35、37から正極シート母材32a、負極シート母材34aおよび二枚のセパレータシート母材36aを引き出す。そして、正極シート母材32a、一枚目のセパレータシート母材36a、負極シート母材34a、二枚目のセパレータシート母材36aをこの順で積層して所定量巻き取り、それぞれ巻き取り終了時に所定の長さ(単電池1個分の長さ)となるように終端位置で切断し、終端位置で切断された巻き終わり部分を巻き取ることにより、捲回電極体30を作製する。この工程を繰り返すことにより、1本のロール33、35、37から複数(例えば100個〜500個)の捲回電極体30が連続的に形成され得る。   Then, as shown in FIG. 6, a positive electrode roll 33 obtained by winding the positive electrode sheet base material 32a into a roll, a negative electrode roll 35 obtained by winding the negative electrode sheet base material 34a into a roll, and a separator roll (of the unit cell 12) A separator sheet preform 36a having a length corresponding to a plurality of pieces is wound into a roll) 37), and the positive electrode sheet preform 32a, the negative electrode sheet preform 32a are taken from each of the rolls 33, 35, 37. The material 34a and the two separator sheet base materials 36a are pulled out. Then, a positive electrode sheet base material 32a, a first separator sheet base material 36a, a negative electrode sheet base material 34a, and a second separator sheet base material 36a are stacked in this order and wound up by a predetermined amount, and each is wound up at the end of winding up. The wound electrode body 30 is manufactured by cutting at a terminal position so as to have a predetermined length (length of one unit cell), and winding the wound end portion cut at the terminal position. By repeating this process, a plurality of (for example, 100 to 500) wound electrode bodies 30 can be continuously formed from one roll 33, 35, 37.

得られた扁平形状の捲回電極体30は、図3に示すように、かかる捲回電極体30の捲回方向に対する横方向において、ややずらしつつ捲回された結果として、正極シート32および負極シート34の端の一部がそれぞれ捲回コア部分31(すなわち正極シート32の正極活物質層形成部分と負極シート34の負極活物質層形成部分とセパレータシート36とが密に捲回された部分)から外方にはみ出ている。かかる正極側はみ出し部分(すなわち正極活物質層の非形成部分)32Aおよび負極側はみ出し部分(すなわち負極活物質層の非形成部分)34Aには、正極リード端子32Bおよび負極リード端子34Bが付設されており、それらのリード端子32B,34Bがそれぞれ上述の正極端子15および負極端子16と電気的に接続される。そして、かかる捲回電極体30を、図4に示すように捲回軸が横倒しになるようにして容器14内に収容するとともに、適当な支持塩(例えばLiPF等のリチウム塩)を適当量(例えば濃度1M) 含むジエチルカーボネートとエチレンカーボネートとの混合溶媒(例えば質量比1:1)のような非水電解質(電解液)を注入して封止することによって単電池12が構築される。その後、各単電池12に対して1回もしくは複数回の充放電を繰り返すことにより、組立後の単電池を活性化して実使用可能な状態にすることができる。 As shown in FIG. 3, the obtained flat wound electrode body 30 was wound with a slight shift in the lateral direction with respect to the winding direction of the wound electrode body 30, resulting in a positive electrode sheet 32 and a negative electrode sheet. Part of the ends of the sheet 34 are wound core portions 31 (that is, portions where the positive electrode active material layer forming portion of the positive electrode sheet 32, the negative electrode active material layer forming portion of the negative electrode sheet 34, and the separator sheet 36 are densely wound). ) Protrudes outward. A positive electrode lead terminal 32B and a negative electrode lead terminal 34B are attached to the positive electrode side protruding portion (that is, a portion where the positive electrode active material layer is not formed) 32A and the negative electrode side protruding portion (that is, a portion where the negative electrode active material layer is not formed) 34A. The lead terminals 32B and 34B are electrically connected to the above-described positive terminal 15 and negative terminal 16, respectively. Then, the wound electrode body 30 is accommodated in the container 14 with the wound axis turned sideways as shown in FIG. 4, and a suitable supporting salt (for example, a lithium salt such as LiPF 6 ) is put in an appropriate amount. The unit cell 12 is constructed by injecting and sealing a non-aqueous electrolyte (electrolyte solution) such as a mixed solvent (for example, a mass ratio of 1: 1) of diethyl carbonate and ethylene carbonate (for example, having a concentration of 1 M). Thereafter, by repeating charging or discharging of each unit cell 12 once or a plurality of times, the assembled unit cell can be activated and brought into a practically usable state.

ここで、本発明者が得た知見によれば、上述したように、組電池10の製造に際して単電池12を複数配列してその配列方向に拘束した場合、容器14は可撓性であるため、当該容器14に荷重方向への歪みや変形が生じ得る。そのため、所定の配列方向に荷重が加えられて拘束された状態における各単電池12の配列方向の厚みは、非拘束時の容器14の外形よりも容器14内部の電極体30の厚みに大きく依存する。
しかしながら、一般に電極体30の厚みには、製造時における条件変動等に起因するばらつき(不揃い)が多少なりとも存在する。
このように厚みにばらつきのある電極体30を備えた多数の単電池12を積層方向に配列して拘束すると、図7に示すように、電極体30の厚みのばらつきに起因して各単電池12の配列方向の厚みにばらつきが生じ、それら単電池12の厚みのばらつきが累積される結果、得られる組電池10の配列方向の長さがばらつくこととなる。図7は、電極体の厚みと該電極体を備える単電池の厚み(拘束時)との関係を示すグラフである
Here, according to the knowledge obtained by the present inventor, as described above, when a plurality of cells 12 are arranged in the manufacture of the assembled battery 10 and constrained in the arrangement direction, the container 14 is flexible. The container 14 may be distorted or deformed in the load direction. Therefore, the thickness of each of the cells 12 in the arrangement direction in a state where a load is applied in a predetermined arrangement direction and constrained is more dependent on the thickness of the electrode body 30 inside the container 14 than the outer shape of the container 14 when not constrained. I do.
However, in general, the thickness of the electrode body 30 has some variation (irregularity) due to a variation in conditions during manufacturing.
As described above, when a large number of cells 12 each having the electrode body 30 having a variation in thickness are arranged and constrained in the stacking direction, as shown in FIG. Variations occur in the thickness of the unit cells 12 in the arrangement direction, and as a result of accumulating the dispersion in the thicknesses of the unit cells 12, the length of the obtained assembled battery 10 in the arrangement direction varies. FIG. 7 is a graph showing a relationship between the thickness of the electrode body and the thickness (when restrained) of a cell including the electrode body.

ここに開示される製造方法においては、このような電極体30の形状の不揃いに起因して生じ得る組電池10の配列方向の長さのばらつきを収束するために、各単電池12内の電極体30の厚みのばらつきを相殺した複数の単電池12を組み合わせて組電池10を構築するようにしている。   In the manufacturing method disclosed herein, in order to converge the variation in the length in the arrangement direction of the assembled batteries 10 which may be caused due to the irregular shape of the electrode body 30, the electrode in each cell 12 is converged. The assembled battery 10 is constructed by combining a plurality of unit cells 12 in which variations in the thickness of the body 30 are offset.

すなわち、上述した単電池12を複数用意する工程には、各単電池12内に収容される電極体30の配列方向の厚みTを測定することが含まれる。
そして、電極体30の配列方向の厚み(測定値)Tに応じて、複数の単電池12のそれぞれを互いに厚み範囲(レンジ)の異なる複数の厚みランクに分類する(分類工程)。例えば、図7のグラフに基づくと、電極体30の配列方向の厚みTが目標電極体厚みA±0.2mmの範囲(A−0.2mm≦T≦A+0.2mm)にある電極体30は、「A」を代表値とする厚みランク2に、電極体30の配列方向の厚みTがA+0.2mm<T≦A+0.6mmの範囲にある電極体30は、「A+0.4mm」を代表値とする厚みランク1に、電極体30の配列方向の厚みTがA−0.6mm≦T<A−0.2mmの範囲にある電極体30は、「A−0.4mm」を代表値とする厚みランク3に分類する。そして、組電池10の構築に用いる所定数の単電池12を上記厚みランク1〜3のうちの2つ以上の厚みランクから、組電池10の配列方向の長さが予め設定された規定長さLTに適合するような組み合わせで選択する。
That is, the step of preparing a plurality of the cells 12 described above includes measuring the thickness T in the arrangement direction of the electrode bodies 30 housed in each of the cells 12.
Then, according to the thickness (measured value) T of the electrode body 30 in the arrangement direction, each of the plurality of unit cells 12 is classified into a plurality of thickness ranks having different thickness ranges (ranges) (classification step). For example, based on the graph of FIG. 7, the electrode body 30 in which the thickness T of the electrode body 30 in the arrangement direction is in the range of the target electrode body thickness A ± 0.2 mm (A−0.2 mm ≦ T ≦ A + 0.2 mm) , The thickness T of the electrode body 30 in the arrangement direction of the electrode body 30 in the range of A + 0.2 mm <T ≦ A + 0.6 mm in the thickness rank 2 whose representative value is “A” is represented by “A + 0.4 mm”. The thickness T of the electrode body 30 in the arrangement direction of the electrode body 30 in the range of A−0.6 mm ≦ T <A−0.2 mm is “A−0.4 mm” as a representative value. To the thickness rank 3. A predetermined number of the unit cells 12 used for constructing the assembled battery 10 are defined by a predetermined length in which the length in the arrangement direction of the assembled battery 10 is set in advance from two or more thickness ranks among the thickness ranks 1 to 3. Select a combination that matches LT.

好ましい一態様では、組電池10の構築に用いる所定数の単電池12を上記厚みランク1〜3から、各単電池の属する厚みランクの代表値の合計が規定電極体長さRTとなるような組み合わせで選択する。具体的には、厚みランク1の単電池をX個、厚みランク2の単電池をY個、厚みランク3の単電池をZ個、選択して組み合わせる場合、「A+0.4mm」×X+A×Y+「A−0.4mm」×Zの合計値が規定電極体長さRTと一致するような組み合わせで選択する。上記規定電極体長さRTは、典型的には「目標電極体厚みA×所定数」から算出され、該規定電極体長さRTと組電池を構成する他の構成部材との合計厚みを有する被拘束体24を規定の拘束圧Pで拘束することにより規定の配列方向長さLTの組電池が構成されるように設定されている。   In a preferred embodiment, a predetermined number of the cells 12 used in the construction of the assembled battery 10 are combined from the thickness ranks 1 to 3 such that the sum of the representative values of the thickness ranks to which the respective cells belong becomes the specified electrode body length RT. To select. Specifically, when selecting and combining X cells of thickness rank 1, Y cells of thickness rank 2, and Z cells of thickness rank 3, “A + 0.4 mm” × X + A × Y + The combination is selected such that the total value of “A−0.4 mm” × Z matches the specified electrode body length RT. The specified electrode body length RT is typically calculated from “target electrode body thickness A × predetermined number”, and is defined as a restricted electrode body having a total thickness of the specified electrode body length RT and other components constituting the assembled battery. It is set such that a battery pack having a specified length LT in the arrangement direction is configured by constraining the body 24 with a specified constraining pressure P.

上記で選択した所定数の単電池12を冷却板11と交互に配列し、さらに両端にエンドプレート18、19を配置して被拘束体を構築する。そして、図2に示すように、拘束バンド21の端部をビス22によりエンドプレート18、19に締め付け且つ固定することによって被拘束体24をその配列方向に規定の拘束圧Pが加わるように拘束して組電池10を構築する(組電池の構築工程)。   The predetermined number of the cells 12 selected above are alternately arranged with the cooling plates 11 and end plates 18 and 19 are arranged at both ends to construct a constrained body. Then, as shown in FIG. 2, the ends of the restraining band 21 are tightened and fixed to the end plates 18 and 19 with screws 22 so that the restrained body 24 is restrained so that a predetermined restraining pressure P is applied in the arrangement direction. To construct the assembled battery 10 (construction step of the assembled battery).

ここで、本実施形態の製造方法によれば、各単電池12内の電極体30の厚みのばらつきにも拘わらず、使用する所定数の単電池12は、各単電池12内の電極体30の厚みのばらつき(ひいては拘束状態での各単電池の厚みのばらつき)を相殺して組電池10の配列方向の長さが規定長さLTに適合するように、2つ以上の厚みランク1〜3から選択して組み合わされている。このことによって個々の電極体の厚みのばらつきを相殺し、配列方向長さが規定長さLTを満たす組電池10を製造することができる。
したがって、従来の組電池のように、各単電池内の電極体の形状の不揃いに起因して組電池の配列方向の長さにばらつきが生じたときのような、予め用意された搭載スペースに組電池が収まらない、もしくは該搭載スペースに収めたときに余分な隙間が残る、等の不都合を回避することができる。また、組電池の外形サイズのばらつきを許容すべく組電池の外形寸法保証値の公差を大きくとる(すなわち組電池の周りに余分なスペースを設ける)必要がないため、組電池10の搭載スペースを従来に比して小さく設計することができる。さらに、例えば厚みランク2に該当する単電池12のみを組電池10の製造に使用し、厚みランク1(厚め)または厚みランク3(薄め)に該当する単電池12については不良品として排除する方法に比べて、本実施形態に係る製造方法によると単電池12の不良率を減らして組電池10の製造コストを削減することができる。
Here, according to the manufacturing method of the present embodiment, the predetermined number of the cells 12 to be used are not changed by the electrode bodies 30 in each of the cells 12, regardless of the variation in the thickness of the electrode bodies 30 in each of the cells 12. Of two or more thickness ranks 1 to 3 so that the length in the arrangement direction of the battery pack 10 conforms to the specified length LT by offsetting the variation in the thickness of the battery pack (and the variation in the thickness of each cell in the constrained state). 3 are selected and combined. As a result, variations in the thickness of the individual electrode bodies are offset, and the assembled battery 10 having a length in the arrangement direction satisfying the specified length LT can be manufactured.
Therefore, as in the case of a conventional assembled battery, when the length in the arrangement direction of the assembled batteries is varied due to the irregular shape of the electrode body in each unit cell, the mounting space prepared in advance is used. It is possible to avoid inconveniences such as that the assembled battery cannot be accommodated or that an extra gap remains when the assembled battery is accommodated in the mounting space. In addition, since it is not necessary to increase the tolerance of the guaranteed outer dimensions of the assembled battery to allow variation in the outer size of the assembled battery (that is, to provide an extra space around the assembled battery), the mounting space of the assembled battery 10 is reduced. It can be designed smaller than before. Further, for example, a method of using only the unit cells 12 corresponding to the thickness rank 2 for manufacturing the assembled battery 10 and excluding the unit cells 12 corresponding to the thickness rank 1 (thick) or the thickness rank 3 (thin) as defective products. In contrast, according to the manufacturing method of the present embodiment, the defective rate of the unit cell 12 can be reduced, and the manufacturing cost of the assembled battery 10 can be reduced.

ここに開示される技術の好ましい適用対象として、前述した正極シート母材32aと負極シート母材34aとを用いて形成された捲回電極体30を具備する組電池が挙げられる。かかる捲回電極体30は効率的に形成し得る一方で、その形状は不揃いになりやすい。より詳細には、正極集電体上に単電池の複数個分に相当する長さの正極活物質層が連続して形成された正極シート母材32a(図5)においては、正極集電体の長手方向の一端部(塗布開始点)から他端部(塗布終了点)に向けて正極活物質層の厚みが徐々に減少する傾向がある。同様に、負極集電体上に単電池12の複数個分に相当する長さの負極活物質層が連続して形成された負極シート母材34aにおいては、負極集電体の長手方向の一端部(塗布開始点)から他端部(塗布終了点)に向けて負極活物質層の厚みが徐々に減少する傾向がある。そのため、図6に示すように、該正極シート母材32aおよび負極シート母材34aを用いて複数の捲回電極体30を連続的に形成すると、正極シート母材32aおよび負極シート母材34aが同傾向の厚みばらつきを有するため、両者の厚い部分(もしくは薄い部分)同士が組み合わされ、捲回電極体30の厚み差が大きくなりやすい。また、巻き取りの初期段階では比較的厚い捲回電極体30が固まり、巻き取りの後期段階では比較的薄い捲回電極体30が固まる傾向となる。
そして、このような形成順に固まった比較的厚い捲回電極体30(もしくは比較的薄い捲回電極体30)を具備する単電池同士を組み合わせて組電池を構築すると、組電池の配列方向の長さのばらつきが特に大きくなりやすい。
しかし、本態様によると、上記捲回電極体の形状の不揃いに起因して生じ得る組電池の配列方向の長さのばらつきを抑えて予め設定されているとおりの正確なサイズを有する組電池を製造することができる。このため、本態様の製造方法によると、外形サイズがよく揃った、搭載性のよい組電池を効率的に製造することができる。
A preferable application target of the technology disclosed herein is an assembled battery including a wound electrode body 30 formed using the above-described positive electrode sheet base material 32a and negative electrode sheet base material 34a. While such a wound electrode body 30 can be formed efficiently, its shape tends to be irregular. More specifically, in the positive electrode sheet base material 32a (FIG. 5) in which a positive electrode active material layer having a length corresponding to a plurality of unit cells is continuously formed on the positive electrode current collector, the positive electrode current collector The thickness of the positive electrode active material layer tends to gradually decrease from one end (application start point) to the other end (application end point) in the longitudinal direction. Similarly, in a negative electrode sheet base material 34a in which a negative electrode active material layer having a length corresponding to a plurality of unit cells 12 is continuously formed on the negative electrode current collector, one end in the longitudinal direction of the negative electrode current collector The thickness of the negative electrode active material layer tends to gradually decrease from the part (application start point) to the other end (application end point). Therefore, as shown in FIG. 6, when a plurality of wound electrode bodies 30 are continuously formed using the positive electrode sheet base material 32a and the negative electrode sheet base material 34a, the positive electrode sheet base material 32a and the negative electrode sheet base material 34a become Since there is the same thickness variation, both thick portions (or thin portions) are combined with each other, and the difference in thickness of the wound electrode body 30 tends to increase. In the initial stage of winding, the relatively thick wound electrode body 30 tends to solidify, and in the late stage of winding, the relatively thin wound electrode body 30 tends to solidify.
Then, when an assembled battery is constructed by combining the unit cells having the relatively thick wound electrode body 30 (or the relatively thin wound electrode body 30) solidified in such a forming order, the length of the assembled battery in the arrangement direction is increased. In particular, the variation in the length tends to be large.
However, according to this aspect, an assembled battery having an exact size as set in advance by suppressing variations in the length of the assembled battery in the arrangement direction, which can be caused by the irregular shape of the wound electrode body. Can be manufactured. For this reason, according to the manufacturing method of this aspect, an assembled battery having a good external size and good mountability can be efficiently manufactured.

上述した実施形態では、複数の単電池12を電極体30の厚みに応じて3つの厚みランク1〜3に分類する場合を例示したが、分類される厚みランクの数はこれに限定されない。例えば、厚みランクの数は、2つ以上であればよく、3つ以上でもよいし、5つ以上でもよい。厚みランクの数の上限は上述した効果が得られるのであれば、特に限定されないが、例えば10つ以下にしてもよい。   In the above-described embodiment, the case where the plurality of unit cells 12 are classified into three thickness ranks 1 to 3 according to the thickness of the electrode body 30 is illustrated, but the number of classified thickness ranks is not limited thereto. For example, the number of thickness ranks may be two or more, three or more, or five or more. The upper limit of the number of thickness ranks is not particularly limited as long as the above-described effects can be obtained, but may be, for example, 10 or less.

また、上述した実施形態では、電極体30の配列方向の厚みを測定し、その測定値に基づいて複数の厚みランクに分類したが、分類する基準は実測値に限定されない。例えば、電極体30の作製に用いる正極シート32および負極シート34のシート厚を測定し、該シート厚から電極体30の厚みを推定してもよい。電極体30の厚みは、正極シート32および負極シート34の厚みに依存するため、該シート厚から電極体30の厚みを推定し、その推定値に基づき複数の厚みランクに分類してもよい。ただし、上述した実施形態の如く、電極体30の厚みの実測値に基づいて複数の厚みランクに分類した方が、上記分類を正確に行うことができ、規定の配列方向長さLTに適合する組電池10を精度よく製造することができる。   In the above-described embodiment, the thickness of the electrode body 30 in the arrangement direction is measured, and the thickness is classified into a plurality of thickness ranks based on the measured value. However, the criterion for classification is not limited to the actually measured value. For example, the thickness of the positive electrode sheet 32 and the negative electrode sheet 34 used for manufacturing the electrode body 30 may be measured, and the thickness of the electrode body 30 may be estimated from the sheet thickness. Since the thickness of the electrode body 30 depends on the thicknesses of the positive electrode sheet 32 and the negative electrode sheet 34, the thickness of the electrode body 30 may be estimated from the sheet thickness, and may be classified into a plurality of thickness ranks based on the estimated value. However, as in the above-described embodiment, when the thickness is classified into a plurality of thickness ranks based on the actually measured values of the thickness of the electrode body 30, the above classification can be performed accurately, and the specified length LT in the arrangement direction is satisfied. The assembled battery 10 can be manufactured with high accuracy.

また、上述した実施形態では、単電池12を複数用意する工程において、個々の電極体30の厚みを全件(全数)測定する場合を例示したが、該厚みを測定する電極体30の個数はこれに限定されない。例えばロット毎のサンプリング抽出により個々の電極体30の厚みを把握してもよい。例えば、前述のように1つの正極シート母材32aおよび負極シート母材34aを用いて複数の捲回電極体30を連続的に形成する場合、捲回電極体30の厚みの分布は不規則(ランダム)にならず、捲回初期段階では比較的厚い捲回電極体30が固まり、捲回後期段階では比較的薄い捲回電極体30が固まる傾向がある。したがって、単電池12を複数用意する工程において、個々の電極体30の厚みを全数測定しなくても、形成順に固まった複数の捲回電極体のロット毎のサンプリング抽出により個々の電極体30のおおよその厚みを把握し得、該ロット毎に複数の厚みランクに分類することができる。ここに開示される組電池製造方法にはこのような態様も包含され得る。   Further, in the above-described embodiment, in the step of preparing a plurality of single cells 12, the case where all the thicknesses (the total number) of the individual electrode bodies 30 are measured is exemplified. However, the number of the electrode bodies 30 for measuring the thickness is as follows. It is not limited to this. For example, the thickness of each electrode body 30 may be grasped by sampling extraction for each lot. For example, when a plurality of wound electrode bodies 30 are continuously formed using one positive electrode sheet base material 32a and one negative electrode sheet base material 34a as described above, the distribution of the thickness of the wound electrode body 30 is irregular ( In other words, the relatively thick wound electrode body 30 tends to solidify in the early stage of winding, and the relatively thin wound electrode body 30 tends to solidify in the late winding stage. Therefore, in the step of preparing a plurality of single cells 12, even if the thickness of each of the individual electrode bodies 30 is not entirely measured, sampling and extraction of each of the plurality of wound electrode bodies in the order of formation can be performed by sampling each of the lots. The approximate thickness can be grasped, and the lot can be classified into a plurality of thickness ranks. Such an embodiment may be included in the battery pack manufacturing method disclosed herein.

以上、本発明の組電池製造方法の好ましい実施形態について詳細に説明したが、本発明をかかる具体的実施形態に限定する意図ではない。
例えば、上述の実施形態では捲回電極体30の捲回軸が単電池12の幅方向(図2における紙面厚み方向)となる向きで電極体30を容器14に収容しているが、上記捲回軸が単電池12の高さ方向(図2の上下方向)となるように該電極体30を配置してもよい。また、捲回タイプの電極体30に代えて、複数枚の正極シートと複数枚の負極シートをセパレータシートとともに交互に積層してなる積層タイプの電極体を用いてもよい。積層タイプの電極体においても、製造時における条件変動等に起因する厚みのばらつき(不揃い)が存在し得る。ここに開示される発明は、種々の構成を有する電極体を容器に収容してなる単電池(特に、捲回タイプまたは積層タイプの電極体を、該電極体を構成するシートが単電池の積層方向に重なる向きで容器に収容してなる単電池)の複数個を積層方向に配列してなる組電池に好ましく適用され得る。
As described above, the preferred embodiment of the battery pack manufacturing method of the present invention has been described in detail, but the present invention is not intended to be limited to the specific embodiment.
For example, in the above-described embodiment, the electrode body 30 is housed in the container 14 in a direction in which the winding axis of the wound electrode body 30 is in the width direction of the unit cell 12 (the thickness direction in FIG. 2). The electrode body 30 may be arranged so that the axis of rotation is in the height direction of the cell 12 (vertical direction in FIG. 2). Instead of the wound electrode body 30, a laminated electrode body formed by alternately laminating a plurality of positive electrode sheets and a plurality of negative electrode sheets together with a separator sheet may be used. Even in a laminated electrode body, there may be variations (unevenness) in thickness due to fluctuations in conditions during manufacturing and the like. The invention disclosed herein relates to a unit cell (particularly, a wound type or a stacked type electrode unit, in which the electrode unit having various configurations is accommodated in a container, This can be preferably applied to an assembled battery in which a plurality of cells (unit cells housed in a container overlapping in the direction) are arranged in the stacking direction.

また、組電池を構成する単電池の種類は上述したリチウムイオン二次電池に限られず、電極体構成材料や電解質が異なる種々の内容の電池、例えばリチウム金属やリチウム合金を負極とするリチウム二次電池、ニッケル水素電池、ニッケルカドミウム電池、或いは電気二重層キャパシタであってもよい。
また、図1に示す組電池10は本発明を説明するために敢えてシンプルな構成としてあるが、本発明の構成および効果を損なわない限りにおいて様々な変形や装備の追加が行われ得ることは当業者には明らかである。例えば、自動車等の車両に搭載する場合、組電池の主要部(単電池群等)を保護するための外装カバー、車両の所定部位に当該組電池を固定するための部品、複数の組電池(電池モジュール)を相互に連結するための部品等が装備され得るが、このような装備の有無は本発明の技術的範囲を左右するものではない。
In addition, the type of unit cell that constitutes the assembled battery is not limited to the above-described lithium ion secondary battery, and batteries of various contents having different electrode body constituent materials and electrolytes, for example, a lithium secondary battery using lithium metal or a lithium alloy as a negative electrode It may be a battery, a nickel hydride battery, a nickel cadmium battery, or an electric double layer capacitor.
Although the assembled battery 10 shown in FIG. 1 has a simple configuration for the purpose of explaining the present invention, various modifications and additions of equipment can be made as long as the configuration and effects of the present invention are not impaired. It is clear to the trader. For example, when the battery pack is mounted on a vehicle such as an automobile, an exterior cover for protecting a main part (a unit cell group or the like) of the battery pack, a component for fixing the battery pack to a predetermined portion of the vehicle, a plurality of battery packs ( Components for interconnecting the battery modules may be provided, but the presence or absence of such a device does not affect the technical scope of the present invention.

10 組電池
11 冷却板
12 単電池
14 容器
15 正極端子
16 負極端子
17 接続具
18、19 エンドプレート
21 拘束バンド
30 捲回電極体
32 正極シート
34 負極シート
36 セパレータ
Reference Signs List 10 Battery pack 11 Cooling plate 12 Single cell 14 Container 15 Positive electrode terminal 16 Negative terminal 17 Connector 18, 19 End plate 21 Restricted band 30 Wound electrode body 32 Positive sheet 34 Negative sheet 36 Separator

Claims (3)

所定数の単電池が所定方向に配列され且つ該配列方向に荷重が加えられた状態で拘束された組電池を製造する方法であって、
正極および負極を備える電極体と、該電極体を収容する容器であって前記荷重が加えられる方向に歪みまたは変形が生じ得る可撓性を有する容器とを備える単電池を複数用意する工程と、
前記複数の単電池を、該単電池内に収容される前記電極体の前記配列方向の厚みに応じて複数の厚みランクに分類する工程と、
前記単電池の所定数を前記配列方向に配列し且つ該配列方向に荷重が加えられた状態で拘束することにより組電池を構築する工程と、
を包含し、
前記組電池の構築工程は、前記分類した複数の厚みランクのうち2つ以上の厚みランクから前記組電池の構築に用いる所定数の単電池を選択して組み合わせることによって、前記組電池の前記配列方向の長さが予め設定された規定長さに適合するように行われる、組電池の製造方法。
A method for manufacturing an assembled battery in which a predetermined number of cells are arranged in a predetermined direction and restrained in a state where a load is applied in the arrangement direction,
An electrode body including a positive electrode and a negative electrode, and a step of preparing a plurality of single cells including a container that accommodates the electrode body and a flexible container that can be strained or deformed in a direction in which the load is applied ,
A step of classifying the plurality of cells into a plurality of thickness ranks according to the thickness in the arrangement direction of the electrode bodies housed in the cells;
Constructing a battery pack by arranging a predetermined number of the cells in the arrangement direction and restraining the cells in a state where a load is applied in the arrangement direction;
,
The step of constructing the assembled battery is performed by selecting and combining a predetermined number of cells used for constructing the assembled battery from two or more thickness ranks of the classified plurality of thickness ranks, thereby forming the arrangement of the assembled batteries. A method for manufacturing an assembled battery, wherein the length in the direction is adjusted to conform to a predetermined length set in advance.
前記電極体は、長尺な正極集電体上に正極活物質層を備える正極シートと、長尺な負極集電体上に負極活物質層を備える負極シートとが捲回されて成る扁平形状の捲回電極体である、請求項1に記載の製造方法。   The electrode body has a flat shape formed by winding a positive electrode sheet having a positive electrode active material layer on a long positive electrode current collector and a negative electrode sheet having a negative electrode active material layer on a long negative electrode current collector. The production method according to claim 1, wherein the electrode is a wound electrode body. 前記単電池を複数用意する工程には、前記正極集電体上に単電池の複数個分に相当する長さの正極活物質層が長手方向に連続して形成された正極シート母材と、前記負極集電体上に単電池の複数個分に相当する長さの負極活物質層が長手方向に連続して形成された負極シート母材とを重ねて捲回しつつ、所定の長さ毎に切断することによって、複数の捲回電極体を形成する処理が含まれる、請求項2に記載の製造方法。
In the step of preparing a plurality of the single cells, a positive electrode sheet base material in which a positive electrode active material layer having a length corresponding to a plurality of the single cells is continuously formed in the longitudinal direction on the positive electrode current collector, On the negative electrode current collector, a negative electrode active material layer having a length corresponding to a plurality of unit cells is superposed and wound on a negative electrode sheet base material formed continuously in the longitudinal direction. The method according to claim 2, further comprising a step of forming a plurality of wound electrode bodies by cutting into pieces.
JP2018105927A 2018-06-01 2018-06-01 Manufacturing method of assembled battery Active JP6660569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018105927A JP6660569B2 (en) 2018-06-01 2018-06-01 Manufacturing method of assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018105927A JP6660569B2 (en) 2018-06-01 2018-06-01 Manufacturing method of assembled battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015110150A Division JP6376406B2 (en) 2015-05-29 2015-05-29 Manufacturing method of battery pack

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020007395A Division JP2020061383A (en) 2020-01-21 2020-01-21 Battery pack

Publications (2)

Publication Number Publication Date
JP2018166103A JP2018166103A (en) 2018-10-25
JP6660569B2 true JP6660569B2 (en) 2020-03-11

Family

ID=63922153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018105927A Active JP6660569B2 (en) 2018-06-01 2018-06-01 Manufacturing method of assembled battery

Country Status (1)

Country Link
JP (1) JP6660569B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3614984B2 (en) * 1996-06-19 2005-01-26 株式会社東芝 Manufacturing method of sheet electrode and non-aqueous electrolyte battery using the same
JP2009026703A (en) * 2007-07-23 2009-02-05 Toyota Motor Corp Manufacturing method of battery pack
KR101536031B1 (en) * 2008-04-02 2015-07-10 파워지닉스 시스템즈, 인코포레이티드 Cylindrical nickel-zinc cell with negative can

Also Published As

Publication number Publication date
JP2018166103A (en) 2018-10-25

Similar Documents

Publication Publication Date Title
US11101494B2 (en) Battery assembly manufacturing method
JP6376406B2 (en) Manufacturing method of battery pack
JP4501080B2 (en) Battery pack and manufacturing method thereof
JP4630855B2 (en) Battery pack and manufacturing method thereof
KR101238060B1 (en) Assembled battery, and vehicle equipped with the assembled battery
US8309247B2 (en) Method for compressing individual cells in battery module
US20130017425A1 (en) Storage Battery Cell, Assembled Battery, Assembled Battery Setup Method, Electrode Group, and Production Method of Electrode Group
JP2008108651A (en) Battery pack, and its manufacturing method
JP2009048965A (en) Battery pack, and manufacturing method thereof
KR20130118764A (en) Electrode assembly, battery cell and device comprising the same
KR101994948B1 (en) Stack and folding-type electrode assembly and method for fabricating the same
JP6660569B2 (en) Manufacturing method of assembled battery
JP2020061383A (en) Battery pack
KR20240101194A (en) Electrode assembly and curved secondary battery including the same
KR20240097381A (en) Electrode assembly and curved secondary battery including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200122

R151 Written notification of patent or utility model registration

Ref document number: 6660569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151