JP6659838B2 - Painted metal plate - Google Patents

Painted metal plate Download PDF

Info

Publication number
JP6659838B2
JP6659838B2 JP2018521447A JP2018521447A JP6659838B2 JP 6659838 B2 JP6659838 B2 JP 6659838B2 JP 2018521447 A JP2018521447 A JP 2018521447A JP 2018521447 A JP2018521447 A JP 2018521447A JP 6659838 B2 JP6659838 B2 JP 6659838B2
Authority
JP
Japan
Prior art keywords
coating film
metal plate
coated metal
chemical conversion
whiteness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018521447A
Other languages
Japanese (ja)
Other versions
JPWO2018131681A1 (en
Inventor
史生 柴尾
史生 柴尾
雅義 永冨
雅義 永冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2018131681A1 publication Critical patent/JPWO2018131681A1/en
Application granted granted Critical
Publication of JP6659838B2 publication Critical patent/JP6659838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、塗装金属板に関し、特に、光沢度の低下を抑制しながら白色度を高めることができる塗装金属板に関する。本願は、2017年1月12日に、日本に出願された特願2017−003484号に基づき優先権を主張し、その内容をここに援用する。   The present invention relates to a coated metal plate, and more particularly to a coated metal plate capable of increasing whiteness while suppressing a decrease in glossiness. This application claims priority based on Japanese Patent Application No. 2017-003484 for which it applied to Japan on January 12, 2017, and uses the content here.

塗装金属板は、電気機械器具や建築材料に使用される。近年では、加工後に塗装されるポストコート鋼板に代えて、加工前に予め着色したプレコート鋼板が多く使用されている。一般的なプレコート鋼板では、亜鉛系めっき鋼板を原板として、この原板に、前処理(化成処理など)、下層塗料塗布、焼付、上層塗料塗布、焼付等の各工程を行うことにより、複数層の塗膜が形成される。   Painted metal sheets are used for electric machinery and building materials. In recent years, pre-coated steel sheets that have been colored before processing are often used instead of post-coated steel sheets that are painted after processing. In a general pre-coated steel sheet, a zinc-plated steel sheet is used as an original sheet, and the original sheet is subjected to various processes such as pretreatment (chemical conversion treatment, etc.), lower layer paint application, baking, upper layer paint application, baking, etc. A coating is formed.

従来、プレコート鋼板では、耐食性の向上のために、化成処理皮膜や下層塗膜にクロム化合物が添加されてきた。しかしながら、近年の環境規制を受け、クロム化合物を全く使用しないクロメートフリープレコート鋼板への切り替えが進んでいる。このクロメートフリープレコート鋼板では、クロム化合物を含有させることなく耐食性を向上させるために、複数層を有する塗膜のうちの下層塗膜に防錆顔料が添加される。この防錆剤として、無機系化合物を中心に有用な化合物の探索および実用化の検討が進められている。防錆剤の一例として、カルシウム修飾シリカ、リン酸アルミニウムおよびリン酸マグネシウム等が挙げられる。   Conventionally, in a precoated steel sheet, a chromium compound has been added to a chemical conversion treatment film or a lower layer coating film in order to improve corrosion resistance. However, due to recent environmental regulations, switching to a chromate-free precoated steel sheet that does not use a chromium compound at all is progressing. In this chromate-free precoated steel sheet, a rust-preventive pigment is added to the lower coating film of the coating film having a plurality of layers in order to improve corrosion resistance without containing a chromium compound. Searches for useful compounds, mainly inorganic compounds, as rust preventives, and studies on their practical use are underway. Examples of the rust preventive include calcium-modified silica, aluminum phosphate, and magnesium phosphate.

また、プレコート鋼板の化成処理皮膜や塗膜の各層には異なる性能が要求される。例えば、化成処理皮膜には密着性などが、下層塗膜には密着性や耐食性などが、上層塗膜には意匠性・耐キズ付性・耐汚染性・耐薬品性・耐溶剤性などがそれぞれ求められる。   Further, different performances are required for each layer of the chemical conversion coating and the coating film of the precoated steel sheet. For example, the chemical conversion coating has good adhesion, the lower coating has good adhesion and corrosion resistance, and the upper coating has good design, scratch resistance, stain resistance, chemical resistance, solvent resistance, etc. Required respectively.

また、プレコート鋼板は、一般に、めっき層を形成するプロセスとは異なり、上述のように、塗膜を形成するために多くの工程を経る、塗装プロセスで製造される。近年、プレコート鋼板では、製造コストや製造工程の削減の観点から、塗膜の薄膜化、塗膜の層数削減、または塗膜の1層化に関する検討も行われている。   In addition, a precoated steel sheet is generally manufactured by a painting process that involves many steps to form a coating film, as described above, unlike a process of forming a plating layer. In recent years, with regard to pre-coated steel sheets, studies have been made on thinning the coating film, reducing the number of coating layers, or reducing the number of coating layers to one layer from the viewpoint of reducing manufacturing costs and manufacturing steps.

例えば、特許文献1には、所定の複合メッキ皮膜層と、化成処理皮膜層と、樹脂被覆層とを有する、耐食性・加工性に優れた樹脂被覆金属板が開示されている。   For example, Patent Literature 1 discloses a resin-coated metal sheet having a predetermined composite plating film layer, a chemical conversion coating layer, and a resin coating layer and having excellent corrosion resistance and workability.

特許文献2には、鋼板の少なくとも片面に有機樹脂、酸化チタンおよびタンニンまたはタンニン酸を同時に含む下地処理層と、白色顔料としての酸化チタンを含む塗膜層とを有するプレコート鋼板が開示されている。   Patent Document 2 discloses a precoated steel sheet having a base treatment layer containing at least one surface of an organic resin, titanium oxide and tannin or tannic acid, and a coating layer containing titanium oxide as a white pigment on at least one surface of the steel sheet. .

特許文献3には、亜鉛系めっき層、化成処理皮膜および白色塗膜を有し、白色塗膜中に酸化チタンと防錆顔料としてのカルシウム修飾シリカとを含む、プレコート鋼板が開示されている。   Patent Literature 3 discloses a precoated steel sheet having a zinc-based plating layer, a chemical conversion coating, and a white coating film, wherein the white coating film contains titanium oxide and calcium-modified silica as a rust preventive pigment.

日本国特開平8−49084号公報JP-A-8-49084 日本国特開2000−212767号公報Japanese Patent Laid-Open No. 2000-212767 国際公開第2014/175420号International Publication No. 2014/175420

上記した特許文献1〜3に記載の塗装金属板は、いずれも塗膜が白色であることを前提として検討が行われている。酸化チタンに代表される白色顔料は、一般に入射光を乱反射させることにより、塗膜の白色度を高める。一方で、これら白色顔料は、入射光に対する正反射成分を小さくするため、塗膜の光沢度が低下しやすい。このように、白色度と光沢度とは、通常、トレードオフの関係にある。   The coated metal plates described in Patent Documents 1 to 3 described above have been studied on the assumption that the coating film is white. A white pigment represented by titanium oxide generally increases the whiteness of a coating film by irregularly reflecting incident light. On the other hand, these white pigments reduce the specular reflection component with respect to incident light, so that the glossiness of the coating film tends to decrease. Thus, whiteness and glossiness are usually in a trade-off relationship.

さらに、上述したように、プレコート鋼板の製造では、プロセスおよびコストの省略の観点から、プレコート鋼板上の塗膜の薄膜化や塗膜の層数削減が検討されている。しかし、塗膜の薄膜化や塗膜の層数削減を行うと、塗膜による下地色の隠蔽が困難となるため、プレコート鋼板としての白色度が低下する。特に、下地色が入射光を吸収しやすい色彩である場合、入射光に対する乱反射成分および正反射成分が共に小さくなるため、プレコート鋼板として白色度と光沢度とを同時に高めることが困難である。   Further, as described above, in the production of a precoated steel sheet, thinning of the coating film on the precoated steel sheet and reduction in the number of coating layers are being studied from the viewpoint of omitting processes and costs. However, when the thickness of the coating film is reduced or the number of layers of the coating film is reduced, it is difficult to conceal the underlying color by the coating film, so that the whiteness of the precoated steel sheet is reduced. In particular, when the base color is a color that easily absorbs incident light, both the irregular reflection component and the regular reflection component with respect to the incident light become small, so that it is difficult to simultaneously increase whiteness and glossiness as a precoated steel sheet.

また、白色塗膜ではなく着色塗膜を有するプレコート鋼板でも、調色を目的として塗膜の白みが増すように白色顔料を添加する場合がある。このような場合でも、塗膜に白色顔料を添加すると、上述の理由から、塗膜の光沢度が低下してしまう。   Further, even in the case of a precoated steel sheet having a colored coating film instead of a white coating film, a white pigment may be added for the purpose of toning, so as to increase the whiteness of the coating film. Even in such a case, when a white pigment is added to the coating film, the glossiness of the coating film is reduced for the above-described reason.

本発明は、上記問題に鑑みてなされたものであり、光沢度の低下を抑制しながら白色度を高めることができる塗装金属板を提供することを課題とする。   The present invention has been made in view of the above problems, and has as its object to provide a coated metal plate that can increase whiteness while suppressing a decrease in gloss.

本発明者らは、上記課題を解決すべく鋭意検討した結果、塗膜の表面に平坦部と複数の凹部を配置することにより、光沢度の低下を抑制しつつ塗膜の白色度を高めることができることを見出した。   The present inventors have conducted intensive studies to solve the above-described problems, and as a result, by arranging a flat portion and a plurality of concave portions on the surface of the coating film, to increase the whiteness of the coating film while suppressing a decrease in glossiness. I found that I can do it.

本発明の要旨は以下のとおりである。
(1)本発明の一態様にかかる塗装金属板は、金属板と、前記金属板の少なくとも一方の板面上に位置する塗膜と、を有し、前記塗膜が、最表面に配され、且つその表面に平坦部と複数の凹部とを有し、前記凹部の平均直径が、0.20〜4.0μmであり、前記凹部の平均深さが、20〜200nmであり、前記塗膜の前記表面に対する前記凹部の個数密度が、1×10 〜1×10 個/mm であり、前記平坦部の平均表面粗さRaが、20nm未満である。
)上記(1)記載の塗装金属板では、前記塗膜の前記表面に対する前記凹部の面積率が、1〜40%であってもよい。
)上記(1)〜()のいずれか1つに記載の塗装金属板では、前記塗膜の前記表面に対する前記凹部の面積率が、20〜40%であってもよい。
)上記(1)〜()のいずれか1つに記載の塗装金属板では、前記塗膜を板厚方向から見た場合に、前記凹部の輪郭長Lと、前記凹部の円相当直径から求められる円周長Lとが、1.0≦L/L≦3.0を満足する前記凹部が、個数%で95%以上であってもよい。
)上記(1)〜()のいずれか1つに記載の塗装金属板では、前記凹部が、その内表面上に凸部を有してもよい。
)上記()に記載の塗装金属板では、前記凸部の平均直径が、0.1〜1.5μmであり、前記凸部の平均高さが、5〜90nmであってもよい。
)上記(1)〜()のいずれか1つに記載の塗装金属板では、前記塗膜の前記表面に対する前記平坦部の面積率が、60〜99%であってもよい。
)上記()に記載の塗装金属板では、前記塗膜の前記表面に対する前記平坦部の面積率が、60〜80%であってもよい。
)上記(1)〜()のいずれか1つに記載の塗装金属板では、前記塗膜の厚さが、8.0〜30μmであってもよい。
10)上記(1)〜()のいずれか1つに記載の塗装金属板では、前記塗膜が白色顔料を有し、前記塗膜に対する前記白色顔料の含有量が40〜70質量%であってもよい。
11)上記(1)〜(10)のいずれか1つに記載の塗装金属板では、前記塗膜がリン酸系防錆顔料を有し、前記塗膜に対する前記リン酸系防錆顔料の含有量が1〜15質量%であってもよい。
12)上記(1)〜(11)のいずれか1つに記載の塗装金属板では、前記金属板と前記塗膜との間にさらに化成処理層を有してもよい。
The gist of the present invention is as follows.
(1) A coated metal plate according to one embodiment of the present invention includes a metal plate and a coating film located on at least one plate surface of the metal plate, wherein the coating film is disposed on an outermost surface. , and having a flat portion and a plurality of recesses on its surface, the average diameter of the recess is a 0.20~4.0Myuemu, average depth of the recess, Ri 20~200nm der, the coating the number density of the recesses relative to the surface of the membrane, a 1 × 10 4 ~1 × 10 6 cells / mm 2, the average surface roughness Ra of the flat portion, Ru der less than 20 nm.
( 2 ) In the coated metal plate according to the above (1) , an area ratio of the concave portion to the surface of the coating film may be 1 to 40%.
( 3 ) In the coated metal plate according to any one of (1) to ( 2 ), an area ratio of the concave portion to the surface of the coating film may be 20 to 40%.
(4) In the coated metal plate according to any one of the above (1) to (3), when viewed the coating film from a thickness direction, the contour length L 1 of the concave portion, the circle of the recess The number of the concave portions satisfying 1.0 ≦ L 1 / L 2 ≦ 3.0 with the circumferential length L 2 obtained from the equivalent diameter may be 95% or more in number%.
( 5 ) In the coated metal plate according to any one of (1) to ( 4 ), the concave portion may have a convex portion on an inner surface thereof.
( 6 ) In the coated metal plate according to the above ( 5 ), the average diameter of the projections may be 0.1 to 1.5 μm, and the average height of the projections may be 5 to 90 nm. .
The coated metal plate according to any one of (7) above (1) to (6), the flat portion area ratio of with respect to the surface of the coating film may be 60 to 99%.
( 8 ) In the coated metal plate according to the above ( 7 ), an area ratio of the flat portion to the surface of the coating film may be 60 to 80%.
( 9 ) In the coated metal plate according to any one of (1) to ( 8 ), the thickness of the coating film may be 8.0 to 30 μm.
( 10 ) In the coated metal plate according to any one of the above (1) to ( 9 ), the coating has a white pigment, and the content of the white pigment with respect to the coating is 40 to 70% by mass. It may be.
( 11 ) In the coated metal plate according to any one of the above (1) to ( 10 ), the coating film has a phosphoric acid-based rust-preventive pigment, and the phosphoric acid-based rust-proofing pigment with respect to the coating film. The content may be 1 to 15% by mass.
( 12 ) In the coated metal plate according to any one of the above (1) to ( 11 ), a chemical conversion treatment layer may be further provided between the metal plate and the coating film.

本発明の上記態様によれば、光沢度の低下を抑制しながら白色度を高めることができる塗装金属板を提供することができる。   According to the above aspect of the present invention, it is possible to provide a coated metal plate capable of increasing whiteness while suppressing a decrease in glossiness.

本発明の一実施形態に係る塗装金属板を示す断面模式図である。It is a cross section showing a painted metal plate concerning one embodiment of the present invention. 本実施形態に係る塗装金属板の平面模式図である。FIG. 2 is a schematic plan view of a coated metal plate according to the embodiment. 本実施形態に係る塗装金属板の変形例を示す断面模式図である。It is a cross section showing a modification of a painted metal plate concerning this embodiment. 本実施形態に係る塗装金属板の変形例を示す断面模式図である。It is a cross section showing a modification of a painted metal plate concerning this embodiment. 本実施形態に係る塗装金属板の製造方法に関する模式図であり、溶剤と塗料とを接触させて塗膜を形成する方法を示す模式図である。It is a mimetic diagram about a manufacturing method of a paint metal plate concerning this embodiment, and is a mimetic diagram showing a method of forming a coat by making a solvent and paint contact. 塗装金属板の白色塗膜の白色度と光沢度との関係を示すグラフである。It is a graph which shows the relationship between the whiteness and glossiness of the white coating film of a coating metal plate. 塗膜に凹部を有する塗装金属板の表面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface of the coating metal plate which has a concave part in a coating film. 塗膜に凹部を有する塗装金属板の表面の原子間力顕微鏡画像である。It is an atomic force microscope image of the surface of the coating metal plate which has a concave part in a coating film. 塗膜に凹部を有する塗装金属板の表面の原子間力顕微鏡画像である。It is an atomic force microscope image of the surface of the coating metal plate which has a concave part in a coating film. 塗膜に凹部を有さない塗装金属板の表面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the surface of the coating metal plate which does not have a recess in a coating film.

以下、本発明の好適な実施形態について詳しく説明する。ただ、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to only the configuration disclosed in the present embodiment, and various changes can be made without departing from the spirit of the present invention. Further, the numerical limit range described below includes a lower limit value and an upper limit value. Numerical values indicating “exceeding” or “less than” do not fall within the numerical range.

なお、図面では、実質的に同一の機能構成を有する構成要素について、同一の符号を付することにより重複説明を省略する。また、以下の説明で用いる図面は、本実施形態の特徴をわかりやすくするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。   In the drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted. Further, in the drawings used in the following description, for the sake of simplicity, in order to make the characteristics of the present embodiment easy to understand, a portion that is a main part may be enlarged and shown, and the dimensional ratio of each component may be different from the actual one. Not necessarily the same.

<1.塗装金属板>
まず、図1および図2を参照して、本実施形態に係る塗装金属板について説明する。図1は、本実施形態に係る塗装金属板の断面模式図であり、図2は、同塗装金属板の平面模式図である。
<1. Painted metal plate>
First, a painted metal plate according to the present embodiment will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view of a coated metal plate according to the present embodiment, and FIG. 2 is a schematic plan view of the coated metal plate.

図1は、板厚方向と切断方向とが平行となる切断面を示す。図1に示す塗装金属板1は、金属板11と、金属板11の一方の板面上に配置された化成処理層13と、化成処理層13上に配置された塗膜15とを有する。金属板11は、塗装金属板1の基板である。金属板11としては、鋼(鉄系合金)、アルミニウムおよびその合金、マグネシウムおよびその合金等の各種金属板が挙げられる。   FIG. 1 shows a cut surface in which the plate thickness direction and the cutting direction are parallel. The coated metal plate 1 shown in FIG. 1 includes a metal plate 11, a chemical conversion treatment layer 13 disposed on one surface of the metal plate 11, and a coating film 15 disposed on the chemical conversion treatment layer 13. The metal plate 11 is a substrate of the painted metal plate 1. Examples of the metal plate 11 include various metal plates such as steel (iron-based alloy), aluminum and its alloys, and magnesium and its alloys.

(金属板11)
金属板11に用いる鋼板としては、亜鉛系めっき鋼板、アルミニウム系めっき鋼板等の周知のめっき鋼板が挙げられる。めっき鋼板の母材鋼板は、普通鋼板(炭素鋼)であっても、クロム等の添加元素を含有する鋼板(合金鋼)であってもよい。ただし、プレス成形する場合、母材鋼板は、所望の成形加工追従性を備えるように、添加元素の種類と添加量、および金属組織を適正に制御した鋼板が好ましい。
(Metal plate 11)
Examples of the steel sheet used for the metal sheet 11 include well-known plated steel sheets such as a zinc-based plated steel sheet and an aluminum-based plated steel sheet. The base steel sheet of the plated steel sheet may be a normal steel sheet (carbon steel) or a steel sheet (alloy steel) containing an additional element such as chromium. However, in the case of press forming, the base material steel sheet is preferably a steel sheet in which the type and amount of the added element and the metal structure are appropriately controlled so as to have a desired formability.

亜鉛系めっき鋼板の亜鉛系めっき層としては、例えば、亜鉛からなるめっき層、亜鉛と、アルミニウム、コバルト、錫、ニッケル、鉄、クロム、チタン、マグネシウム、マンガン、ジルコニウムおよびバナジウムの少なくとも1種との複合めっき層、さらに他の金属元素または非金属元素を含む種々の亜鉛系合金めっき層(例えば、亜鉛、アルミニウム、マグネシウム、およびシリコンとの4元合金めっき層)などの公知のめっき層が挙げられる。ただし、亜鉛系めっき層として、亜鉛が最も多く含まれること以外、他の合金成分は特に限定されない。   Examples of the zinc-based plating layer of the zinc-based plated steel sheet include, for example, a plating layer made of zinc, zinc, and at least one of aluminum, cobalt, tin, nickel, iron, chromium, titanium, magnesium, manganese, zirconium, and vanadium. Known plating layers such as a composite plating layer and various zinc-based alloy plating layers containing other metal elements or nonmetal elements (for example, a quaternary alloy plating layer with zinc, aluminum, magnesium, and silicon) can be given. . However, other alloy components are not particularly limited, except that the zinc-based plating layer contains most zinc.

なお、これらの亜鉛系めっき層には、更に、少量の異種金属元素または不純物として、コバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素等を含んでもよいし、シリカ、アルミナ、チタニア等の無機物を含んでもよい。亜鉛系めっき層を電気めっき法により形成する場合は、そのめっき層を形成するためのめっき液に有機物添加剤(例えば、ジアリルアミン重合体やジアリルジアルキルアンモニウム等)を含んでもよく、形成されるめっき層中にこれら有機物添加剤に起因する炭素を含んでもよい。   In addition, these zinc-based plating layers further include, as a small amount of different metal elements or impurities, cobalt, molybdenum, tungsten, nickel, titanium, chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, It may contain copper, cadmium, arsenic, etc., or may contain inorganic substances such as silica, alumina, titania and the like. When the zinc-based plating layer is formed by an electroplating method, a plating solution for forming the plating layer may contain an organic additive (for example, diallylamine polymer or diallyldialkylammonium), and the formed plating layer It may contain carbon originating from these organic additives.

具体的には、金属板11に用いる亜鉛系めっき鋼板としては、例えば、溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、亜鉛−ニッケル合金めっき鋼板、合金化溶融亜鉛めっき鋼板等が挙げられる。   Specifically, examples of the galvanized steel sheet used for the metal sheet 11 include a galvanized steel sheet, an electrogalvanized steel sheet, a zinc-nickel alloy-coated steel sheet, and an alloyed hot-dip galvanized steel sheet.

アルミニウム系めっき鋼板のアルミニウム系めっき層としては、例えば、アルミニウムからなるめっき層、アルミニウムと、シリコン、亜鉛、マグネシウムの少なくとも1種との合金めっき層(例えば、アルミニウムとシリコンの合金めっき層、アルミニウムと亜鉛の合金めっき層、アルミニウム、シリコンおよびマグネシウムの3元合金めっき層)等の公知のめっき層が挙げられる。ただし、アルミニウム系めっき層として、アルミニウムが最も多く含まれること以外、他の合金成分は特に限定されない。   Examples of the aluminum-based plating layer of the aluminum-based plated steel sheet include a plating layer made of aluminum, an alloy plating layer of aluminum and at least one of silicon, zinc, and magnesium (for example, an alloy plating layer of aluminum and silicon, aluminum Known plating layers such as an alloy plating layer of zinc, and a ternary alloy plating layer of aluminum, silicon, and magnesium). However, other alloy components are not particularly limited except that the aluminum-based plating layer contains aluminum most.

また、金属板11に用いる亜鉛系めっき鋼板やアルミニウム系めっき鋼板は、他の種類のめっき層(例えば鉄めっき層、鉄とリンの合金めっき層、ニッケルめっき層、コバルトめっき層等)と組み合わせた複層めっき鋼板であってもよい。   In addition, the zinc-based steel sheet and the aluminum-based steel sheet used for the metal sheet 11 are combined with other types of plating layers (for example, an iron plating layer, an alloy plating layer of iron and phosphorus, a nickel plating layer, a cobalt plating layer, and the like). It may be a multi-layer plated steel sheet.

めっき鋼板のめっき層の形成方法は特に限定されない。例えば、めっき層の形成では、電気めっき、無電解めっき、溶融めっき、蒸着めっき、分散めっき等を利用することができる。めっき層の形成は、連続式、バッチ式のいずれによっても行うことができる。また、めっき層形成後に、外観均一処理であるゼロスパングル処理、めっき層の改質処理である焼鈍処理、表面状態または材質調整のための調質圧延等の処理を施してもよい。   The method for forming the plating layer of the plated steel sheet is not particularly limited. For example, in forming a plating layer, electroplating, electroless plating, hot-dip plating, vapor deposition plating, dispersion plating, or the like can be used. The formation of the plating layer can be performed by any of a continuous method and a batch method. Further, after the plating layer is formed, a process such as a zero spangle process which is a process for uniform appearance, an annealing process which is a process for modifying the plating layer, and a temper rolling for adjusting the surface state or the material may be performed.

(化成処理層13)
化成処理層13は、必要に応じて、金属板11と塗膜15との間に介在するように配置されてもよい。化成処理層13は、金属板11の表面(板面)に対し化成処理を行うことにより形成される皮膜である。化成処理層13は、金属板11と塗膜15との間に介在することにより、金属板11と塗膜15との間の密着性を向上させる。
(Chemical conversion treatment layer 13)
The chemical conversion treatment layer 13 may be disposed so as to be interposed between the metal plate 11 and the coating film 15 as necessary. The chemical conversion treatment layer 13 is a film formed by performing a chemical conversion treatment on the surface (plate surface) of the metal plate 11. The chemical conversion treatment layer 13 improves the adhesion between the metal plate 11 and the coating film 15 by being interposed between the metal plate 11 and the coating film 15.

このような化成処理層13としては、特に限定されないが、例えば、シリカ、シランカップリング剤、タンニン、タンニン酸、ジルコニウム化合物、およびチタニウム化合物からなる群から選択される1種以上と、ポリエステル樹脂、ウレタン樹脂、エポキシ樹脂、およびアクリル樹脂からなる群から選択される1種以上とを含む組成物(化成処理液)を用いて形成される皮膜が挙げられる。このような皮膜で構成される化成処理層13は、金属板11と塗膜15との間の密着性に特に優れている。   Such a chemical conversion treatment layer 13 is not particularly limited, for example, silica, a silane coupling agent, tannin, tannic acid, a zirconium compound, and at least one selected from the group consisting of a titanium compound, a polyester resin, A film formed using a composition (chemical conversion treatment solution) containing at least one selected from the group consisting of urethane resins, epoxy resins, and acrylic resins. The chemical conversion treatment layer 13 composed of such a film is particularly excellent in the adhesion between the metal plate 11 and the coating film 15.

化成処理層13の付着量は、特に限定されず、好ましくは、10〜800mg/mであり、より好ましくは100〜700mg/mである。化成処理層13の付着量が上記範囲内であると、耐食性や塗膜密着性を十分に優れたものとしつつ、化成処理層13の凝集破壊を防止することができる。また、化成処理層13の厚さは、特に限定されず、例えば、0.005〜0.7μmとすることができる。The attached amount of the chemical conversion treatment layer 13 is not particularly limited, and is preferably 10 to 800 mg / m 2 , and more preferably 100 to 700 mg / m 2 . When the adhesion amount of the chemical conversion treatment layer 13 is within the above range, it is possible to prevent the chemical conversion treatment layer 13 from cohesion failure while sufficiently improving the corrosion resistance and the coating film adhesion. Further, the thickness of the chemical conversion treatment layer 13 is not particularly limited, and may be, for example, 0.005 to 0.7 μm.

(塗膜15)
塗膜15は、金属板11の少なくとも一方の板面上に位置し、塗装金属板1の最表面を構成する皮膜である。図1および図2に示すように、塗膜15は、その表面(膜面)に平坦部151と、複数の凹部153とを有している。そして、図2に示すように、複数の凹部153は、不規則に塗膜15の表面上に形成されており、いわゆる略円形のディンプルを形成している。
(Coating film 15)
The coating film 15 is a film which is located on at least one plate surface of the metal plate 11 and forms the outermost surface of the coated metal plate 1. As shown in FIGS. 1 and 2, the coating film 15 has a flat portion 151 and a plurality of concave portions 153 on the surface (film surface). As shown in FIG. 2, the plurality of recesses 153 are irregularly formed on the surface of the coating film 15, forming so-called substantially circular dimples.

塗膜15は、光沢度に寄与する平坦部151に加えて、白色度に寄与する複数の凹部153を有することにより、光沢度の低下を抑制しながら白色度を高めることが可能となる。特に塗膜15が白色塗膜である場合、塗膜15の光沢度および白色度を十分に高いものとすることができる。   Since the coating film 15 has a plurality of concave portions 153 that contribute to whiteness in addition to the flat portion 151 that contributes to glossiness, it is possible to increase whiteness while suppressing a decrease in glossiness. In particular, when the coating film 15 is a white coating film, the glossiness and whiteness of the coating film 15 can be made sufficiently high.

塗膜15による上記効果が得られる理由は、現時点で詳細が不明であるが、以下のような作用が考えられる。   The reason why the above-described effect is obtained by the coating film 15 is unknown at present, but the following effects are considered.

まず、従来の塗膜について説明する。凹部を有さない平坦部からなる塗膜では、平坦部に起因して、入射光に対する正反射成分が大きいため、光沢度が高い値となる。しかし、それに伴って、乱反射成分が小さくなるため、白色度が低い値となる。一方、このような塗膜の白色度を高めるために、塗膜に白色顔料を添加すると、塗膜の表面(膜面)の全領域にて、入射光に対する乱反射成分が大きくなるので、白色度が高い値となる。しかし、それに伴って、膜面の全領域にて、正反射成分が小さくなるため、光沢度が低い値となる。このように、従来、白色度と光沢度とは、トレードオフの関係にあった。   First, a conventional coating film will be described. In a coating film having a flat portion without a concave portion, a specular component with respect to incident light is large due to the flat portion, and thus the glossiness is a high value. However, since the irregular reflection component is reduced accordingly, the whiteness becomes a low value. On the other hand, if a white pigment is added to the coating film in order to increase the whiteness of such a coating film, the diffuse reflection component with respect to the incident light increases over the entire surface (film surface) of the coating film. Has a high value. However, along with this, the specular reflection component becomes small in the entire region of the film surface, so that the glossiness becomes a low value. As described above, conventionally, whiteness and glossiness have a trade-off relationship.

次に、本実施形態に係る塗装金属板1の塗膜15について説明する。塗膜15は、平坦部151と、複数の凹部153とを有する。凹部153では、凹部153の幾何学的な作用によって入射光を乱反射させることができる。そのため、白色顔料による入射光を乱反射させる作用とは別途に、凹部153の存在により塗膜15の白色度を高めることが可能となる。加えて、本実施形態に係る塗装金属板1では、塗膜15の白色度を高めるために、白色顔料を過剰に添加する必要がないので、塗膜15の平坦部151では、入射光を正反射させる作用を維持できる。そのため、本実施形態に係る塗装金属板1では、凹部153の存在により塗膜15の白色度を高めると同時に、平坦部151の存在により塗膜15の光沢度を維持することが可能となる。この結果、塗膜15は、凹部153が存在しない従来の塗膜と比較して、白色度を高めつつ、かつ光沢度の低下が抑制された塗膜となる。   Next, the coating film 15 of the coated metal plate 1 according to the present embodiment will be described. The coating film 15 has a flat portion 151 and a plurality of concave portions 153. In the concave portion 153, incident light can be irregularly reflected by the geometrical action of the concave portion 153. Therefore, separately from the function of irregularly reflecting the incident light by the white pigment, the presence of the concave portion 153 can increase the whiteness of the coating film 15. In addition, in the coated metal plate 1 according to the present embodiment, it is not necessary to excessively add a white pigment in order to increase the whiteness of the coating film 15, so that the incident light is corrected in the flat portion 151 of the coating film 15. The effect of reflecting can be maintained. Therefore, in the coated metal plate 1 according to the present embodiment, the whiteness of the coating film 15 can be increased by the presence of the concave portion 153, and the glossiness of the coating film 15 can be maintained by the presence of the flat portion 151. As a result, the coating film 15 is a coating film in which the whiteness is increased and the decrease in gloss is suppressed, as compared with the conventional coating film in which the concave portions 153 are not present.

本実施形態に係る塗装金属板1では、塗膜15の色彩は特に限定されない。例えば、塗膜15が白色塗膜である場合には、塗膜15の白色度と光沢度とを同時に高めることが可能となる。一方、塗膜15が着色塗膜である場合には、白色顔料を過剰に添加することなしに、すなわち、塗膜15の光沢度の低下を避けながら、凹部153の存在により塗膜15に白みを与えることが可能となる。   In the coated metal plate 1 according to the present embodiment, the color of the coating film 15 is not particularly limited. For example, when the coating film 15 is a white coating film, the whiteness and glossiness of the coating film 15 can be simultaneously increased. On the other hand, when the coating film 15 is a colored coating film, the presence of the concave portions 153 makes the coating film 15 white without adding a white pigment excessively, that is, while avoiding a decrease in the glossiness of the coating film 15. Can be given.

凹部153の平均直径は、0.20〜4.0μmとする。凹部153の平均直径が0.20μm未満の場合、凹部153への光の入射量が少なくなる結果、十分に入射光を乱反射することができない。凹部153の平均直径の下限は、0.7μmであり、0.9μmであることが好ましい。一方で、凹部153の平均直径が4.0μmを超えると、凹部153の幾何学的な作用が小さくなるので、十分に入射光を乱反射することができない。凹部153の平均直径の上限は、3.0μmであり、2.5μmであることが好ましい。   The average diameter of the recess 153 is set to 0.20 to 4.0 μm. When the average diameter of the concave portion 153 is less than 0.20 μm, the amount of light incident on the concave portion 153 is reduced, so that the incident light cannot be sufficiently diffused. The lower limit of the average diameter of the concave portion 153 is 0.7 μm, and preferably 0.9 μm. On the other hand, when the average diameter of the concave portion 153 exceeds 4.0 μm, the geometrical effect of the concave portion 153 is reduced, so that the incident light cannot be sufficiently diffusely reflected. The upper limit of the average diameter of the recess 153 is 3.0 μm, and preferably 2.5 μm.

なお、凹部153は、以下のようにして特定することができる。まず、原子間力顕微鏡(AFM:Atomic Force Microscope)を用いて、凹部153の輪郭全体を含む10×10μmの試料面積における、表面凹凸の高さデータを横512点×縦512点(計262144点)測定し、記録する。高さデータの高い方から110点のデータを抽出し、上位10点(高いデータ10点)を除いた100点の算術平均値を基準高さとする。この基準高さから金属板11に向かう深さ距離が10nm以下である点と、10nm超である点に分類する。そして、この10nm超の点が99%以上で形成される集合領域を凹部153とする。なお、凹部153である集合領域には、異常点として、深さ距離が10nm以下である点が1%未満含まれてもよい。また、凹部153は、10nm超の点が少なくとも60点以上で構成される集合領域とする。   In addition, the concave portion 153 can be specified as follows. First, using an atomic force microscope (AFM), the height data of surface irregularities in a 10 × 10 μm sample area including the entire contour of the concave portion 153 is 512 points in a horizontal direction × 512 points in a vertical direction (a total of 262144 points). ) Measure and record. The data of 110 points is extracted from the highest of the height data, and the arithmetic mean value of 100 points excluding the top 10 points (10 points of high data) is set as the reference height. It is classified into a point where the depth distance from the reference height toward the metal plate 11 is 10 nm or less and a point where the depth distance exceeds 10 nm. Then, an aggregated region in which a point exceeding 10 nm is formed in 99% or more is defined as a concave portion 153. It is to be noted that the aggregation region that is the concave portion 153 may include less than 1% of points having a depth distance of 10 nm or less as abnormal points. In addition, the concave portion 153 is a collective region including at least 60 points having a size exceeding 10 nm.

上記のように特定した凹部153のうち、輪郭全体を含む凹部153の面積Sを画像処理によって求める。この面積Sは、塗膜15を板厚方向から見た場合の凹部153の面積である。この面積Sを用いて、凹部153を真円とみなしたときの、凹部153の直径D(円相当直径)を以下の式で求める。
D=2×(S/π)0.5 (π:円周率)
塗装金属板1の最エッジ(板幅方向の外縁)から100mmの範囲を除いた板面中央部にて、上述した10×10μmのAFM観察を少なくとも20箇所で行い、各観察面から得られる各凹部153の直径Dの算術平均値を凹部153の平均直径とする。
Among the recesses 153 specified as described above, the area S of the recess 153 including the entire contour is obtained by image processing. The area S is the area of the concave portion 153 when the coating film 15 is viewed from the thickness direction. Using the area S, the diameter D (circle equivalent diameter) of the concave portion 153 when the concave portion 153 is regarded as a perfect circle is obtained by the following equation.
D = 2 × (S / π) 0.5 (π: Pi)
The above-mentioned 10 × 10 μm AFM observation is performed at least 20 places at the center of the plate surface excluding a range of 100 mm from the outermost edge (outer edge in the plate width direction) of the coated metal plate 1, and each obtained from each observation surface The arithmetic average value of the diameter D of the concave portion 153 is defined as the average diameter of the concave portion 153.

凹部153の平均深さは、20〜200nmとする。凹部153の平均深さが20nm未満の場合、凹部153の幾何学的な作用が小さくなるので、十分に入射光を乱反射することができない。凹部153の平均深さの下限は、40nmであり、70nmであることが好ましい。一方で、凹部153の平均深さが200nmを超えると、凹部153の内部から外部への光の出射が形状的に制限されるので、十分に入射光を乱反射することができない。凹部153の平均深さの上限は、150nmであり、120nmであることが好ましい。   The average depth of the recess 153 is set to 20 to 200 nm. If the average depth of the concave portion 153 is less than 20 nm, the geometrical effect of the concave portion 153 will be small, so that the incident light cannot be sufficiently diffusely reflected. The lower limit of the average depth of the recess 153 is 40 nm, and preferably 70 nm. On the other hand, when the average depth of the concave portion 153 exceeds 200 nm, the emission of light from the inside of the concave portion 153 to the outside is restricted in shape, so that the incident light cannot be sufficiently diffusely reflected. The upper limit of the average depth of the recess 153 is 150 nm, and preferably 120 nm.

なお、各凹部153の深さは、上述の方法で特定した凹部153内の深さデータの深い方から110点のデータを抽出し、上位10点(深いデータ10点)を除いた100点の算術平均値と、上記の基準高さとの高低差により決定することができる。また、塗装金属板1の最エッジから100mmの範囲を除いた板面中央部にて、上述した10×10μmのAFM観察を少なくとも20箇所で行い、各観察面から得られる各凹部153の深さの算術平均値を凹部153の平均深さとする。   The depth of each recess 153 is calculated by extracting 110 data from the deepest of the depth data in the recess 153 specified by the above-described method, and excluding the top 10 points (10 deep data points). It can be determined by the height difference between the arithmetic average value and the reference height. In addition, the above-mentioned 10 × 10 μm AFM observation was performed at at least 20 places at the center of the plate surface excluding the range of 100 mm from the outermost edge of the coated metal plate 1, and the depth of each recess 153 obtained from each observation surface Is defined as the average depth of the concave portion 153.

また、図1に示すように、凹部153は、その内表面上に凸部155を有してもよい。凹部153が凸部155を有すると、凸部155の幾何学的な作用によって入射光を好ましく乱反射させることができる。そのため、白色顔料を過剰に添加することなしに、すなわち、塗膜15の光沢度の低下を避けながら、塗膜15に白みを好ましく与えることが可能となる。なお、図2では、図面を見やすくするために凸部155の図示を省略している。   Further, as shown in FIG. 1, the concave portion 153 may have a convex portion 155 on an inner surface thereof. When the concave portion 153 has the convex portion 155, incident light can be preferably diffusely reflected by the geometrical action of the convex portion 155. Therefore, it is possible to preferably impart whiteness to the coating film 15 without excessively adding the white pigment, that is, while avoiding a decrease in the glossiness of the coating film 15. In FIG. 2, illustration of the protrusion 155 is omitted to make the drawing easier to see.

凸部155の平均直径は、特に限定されない。例えば、凸部155の平均直径が0.1〜1.5μmであるとき、より好ましく、入射光を乱反射させることができる。凸部155の平均直径の下限は、0.2μmであり、0.3μmであることが好ましい。また、凸部155の平均直径の上限は、1.0μmであり、0.7μmであることが好ましい。   The average diameter of the protrusion 155 is not particularly limited. For example, when the average diameter of the protrusions 155 is 0.1 to 1.5 μm, it is more preferable that the incident light can be irregularly reflected. The lower limit of the average diameter of the protrusion 155 is 0.2 μm, and preferably 0.3 μm. In addition, the upper limit of the average diameter of the protrusion 155 is 1.0 μm, and preferably 0.7 μm.

また、凸部155の平均直径は、凹部153の平均直径に対し、1.5〜60%であることが好ましい。凹部153の平均直径に対する凸部155の平均直径の割合の下限は、10%であり、20%であることが好ましい。凹部153の平均直径に対する凸部155の平均直径の割合の上限は、50%であり、40%であることが好ましい。凹部153の平均直径に対する凸部155の平均直径の割合を制御することにより、凹部153の内表面と凸部155の突起面との配置が適切となり、より好ましく、入射光を乱反射させることができる。   Further, the average diameter of the convex portions 155 is preferably 1.5 to 60% of the average diameter of the concave portions 153. The lower limit of the ratio of the average diameter of the convex portions 155 to the average diameter of the concave portions 153 is 10%, and preferably 20%. The upper limit of the ratio of the average diameter of the convex portions 155 to the average diameter of the concave portions 153 is 50%, and preferably 40%. By controlling the ratio of the average diameter of the convex portion 155 to the average diameter of the concave portion 153, the arrangement of the inner surface of the concave portion 153 and the projection surface of the convex portion 155 becomes appropriate, and more preferably, the incident light can be diffusely reflected. .

凸部155の平均高さは、特に限定されない。例えば、凸部155の平均高さが5〜90nmであるとき、より好ましく、入射光を乱反射させることができる。凸部155の平均高さの下限は、15nmであり、25nmであることが好ましい。また、凸部155の平均高さの上限は、70nmであり、50nmであることが好ましい。   The average height of the protrusion 155 is not particularly limited. For example, when the average height of the protrusions 155 is 5 to 90 nm, more preferably, the incident light can be irregularly reflected. The lower limit of the average height of the projection 155 is 15 nm, and preferably 25 nm. In addition, the upper limit of the average height of the projection 155 is 70 nm, and preferably 50 nm.

なお、凸部155は、以下のようにして決定することができる。まず、上記の方法で特定された凹部153の形状に基づいて、塗膜15を板厚方向から見た場合の凹部153の重心(幾何中心)を求める。この重心を中心に18degreeずつ回転しながら、塗装金属板1の板厚方向と平行な切断面を10面求める。各切断面上に現れる凹部153・凸部155の2次元プロファイルを、凹部153の重心を基準として、左側および右側の2次元プロファイルに2分割する。この左側の2次元プロファイルに含まれる極小点から最も深さが深い(基準高さとの高低差が大きい)極小点を1点特定し、同様に、右側の2次元プロファイルに含まれる極小点から最も深さが深い(基準高さとの高低差が大きい)極小点を1点特定する。すなわち、1つの切断面に対して2点の極小点を特定する。10面の切断面のそれぞれで極小点2点を特定する。各切断面上で特定した極小点2点(計20データ)を2次元プロファイルの座標に基づいて回転方向に直線で結んでいくと、凸部155の輪郭を近似的に表わす20角形を求めることができる。この20角形によって囲まれる領域を凸部155とする。   Note that the protrusion 155 can be determined as follows. First, the center of gravity (geometric center) of the concave portion 153 when the coating film 15 is viewed from the plate thickness direction is obtained based on the shape of the concave portion 153 specified by the above method. While rotating about the center of gravity by 18 degrees, ten cut surfaces parallel to the thickness direction of the coated metal plate 1 are obtained. The two-dimensional profile of the concave portion 153 and the convex portion 155 appearing on each cut surface is divided into two-dimensional profiles on the left and right sides based on the center of gravity of the concave portion 153. From the minimum points included in the two-dimensional profile on the left side, one point having the deepest depth (a large difference in height from the reference height) is specified, and similarly, the minimum point from the minimum points included in the two-dimensional profile on the right side is specified. One minimum point having a large depth (a large difference in height from the reference height) is specified. That is, two minimum points are specified for one cut surface. Two minimum points are specified on each of the ten cut surfaces. By connecting two minimum points (a total of 20 data) specified on each cut surface with a straight line in the rotation direction based on the coordinates of the two-dimensional profile, obtaining a octagon that approximately represents the contour of the convex portion 155 Can be. The area surrounded by the octagon is referred to as a convex 155.

上記のように特定した凸部155(20角形)のうち、輪郭全体を含む凸部155の面積sを画像処理によって求める。この面積sは、塗膜15を板厚方向から見た場合の凸部155の面積である。この面積sを用いて、凸部155を真円とみなしたときの、凸部155の直径d(円相当直径)を以下の式で求める。
d=2×(s/π)0.5 (π:円周率)
塗装金属板1の最エッジから100mmの範囲を除いた板面中央部にて、上述した10×10μmのAFM観察を少なくとも20箇所で行い、各観察面から得られる各凸部155の直径dの算術平均値を凸部155の平均直径とする。
The area s of the convex portion 155 including the entire contour among the convex portions 155 (20-sided) specified as described above is obtained by image processing. The area s is the area of the projection 155 when the coating film 15 is viewed from the thickness direction. Using this area s, the diameter d (circle equivalent diameter) of the convex portion 155 when the convex portion 155 is regarded as a perfect circle is obtained by the following equation.
d = 2 × (s / π) 0.5 (π: Pi)
AFM observation of 10 × 10 μm described above was performed at at least 20 places at the center of the plate surface excluding the range of 100 mm from the outermost edge of the coated metal plate 1, and the diameter d of each convex portion 155 obtained from each observation surface was measured. The arithmetic average value is defined as the average diameter of the protrusion 155.

また、凸部155の高さは、上記の10面の切断面から求める。切断面上に現れる2次元プロファイルのうち、凸部155の領域に含まれる極大点から最も高さが高い(基準高さとの高低差が小さい)極大点1点を特定する。10面の切断面のそれぞれで極大点1点を特定する。各切断面上で特定した各極大点(計10データ)のうち、最も高い点を凸部155の頂部とする。一方、上記の方法で特定した各切断面上の極小点(計20データ)のうち、最も低い点を凸部155の最深部とする。この頂部と最深部との差(板厚方向に沿う距離)を凸部155の高さとする。塗装金属板1の最エッジから100mmの範囲を除いた板面中央部にて、上述した10×10μmのAFM観察を少なくとも20箇所で行い、各観察面から得られる各凸部155の高さの算術平均値を凸部155の平均高さとする。   Further, the height of the convex portion 155 is obtained from the above-mentioned ten cut surfaces. From the two-dimensional profiles appearing on the cut surface, one maximum point having the highest height (smallest difference from the reference height) is specified from the maximum points included in the area of the convex portion 155. One maximum point is specified on each of the ten cut surfaces. The highest point among the local maximum points (total 10 data) specified on each cut surface is defined as the top of the convex portion 155. On the other hand, among the minimum points (20 data in total) on each cut surface specified by the above method, the lowest point is defined as the deepest part of the convex portion 155. The difference (distance along the thickness direction) between the top and the deepest part is defined as the height of the convex part 155. In the central portion of the plate surface excluding the range of 100 mm from the outermost edge of the coated metal plate 1, the above-mentioned 10 × 10 μm AFM observation was performed at at least 20 places, and the height of each convex portion 155 obtained from each observation surface was measured. The arithmetic average value is defined as the average height of the convex portions 155.

なお、図1および図2では、凹部153が不規則に配置されているが、本実施形態に係る塗装金属板1では、塗膜15に形成される複数の凹部153が整列していてもよい。   Although the concave portions 153 are arranged irregularly in FIGS. 1 and 2, the plurality of concave portions 153 formed in the coating film 15 may be aligned in the coated metal plate 1 according to the present embodiment. .

凹部153の密度は、特に限定されない。例えば、塗膜15の表面に対する凹部153の個数密度が1×10〜1×10個/mmであるとき、より好ましく、光沢度の低下を抑制しながら白色度を高めることができる。凹部153の個数密度の下限は、3×10個/mmであり、9×10個/mmであることが好ましい。また、凹部153の個数密度の上限は、1.5×10個/mmであり、1.2×10個/mmであることが好ましい。The density of the recess 153 is not particularly limited. For example, when the number density of the concave portions 153 with respect to the surface of the coating film 15 is 1 × 10 4 to 1 × 10 6 / mm 2 , the whiteness can be increased while suppressing a decrease in glossiness. The lower limit of the number density of the concave portions 153 is 3 × 10 4 / mm 2 , and preferably 9 × 10 4 / mm 2 . The upper limit of the number density of the concave portions 153 is 1.5 × 10 5 / mm 2 , and preferably 1.2 × 10 5 / mm 2 .

なお、凹部153の密度は、塗膜15を板厚方向から見たときの塗膜15の表面に対する凹部153の個数密度である。上記の方法で特定した凹部153に基づいて個数密度を求める。塗装金属板1の最エッジから100mmの範囲を除いた板面中央部にて、観察視野が連続するように、上述した10×10μmのAFM観察を少なくとも20箇所で行い、観察面に対する凹部153の存在個数を求め、この存在個数を観察面積で割った値を凹部153の密度とする。   The density of the concave portions 153 is the number density of the concave portions 153 with respect to the surface of the coating film 15 when the coating film 15 is viewed from the thickness direction. The number density is obtained based on the concave portion 153 specified by the above method. At the central portion of the plate surface excluding the range of 100 mm from the outermost edge of the coated metal plate 1, the above-described 10 × 10 μm AFM observation was performed at at least 20 places so that the observation field of view was continuous. The number of existing portions is obtained, and the value obtained by dividing the existing number by the observation area is defined as the density of the concave portion 153.

凹部153の面積率は、特に限定されない。例えば、塗膜15の表面に対する凹部153の面積率が1〜40%であるとき、より好ましく、光沢度の低下を抑制しながら白色度を高めることができる。凹部153の面積率の下限は、5%、8%、または20%であることが好ましい。また、凹部153の面積率の上限は、35%であり、25%であることが好ましい。   The area ratio of the concave portion 153 is not particularly limited. For example, when the area ratio of the concave portion 153 to the surface of the coating film 15 is 1 to 40%, the whiteness can be increased while suppressing a decrease in glossiness. The lower limit of the area ratio of the concave portion 153 is preferably 5%, 8%, or 20%. The upper limit of the area ratio of the concave portion 153 is 35%, and preferably 25%.

なお、凹部153の面積率は、塗膜15を板厚方向から見たときの塗膜15の表面に対する凹部153の割合である。凹部153の面積率は、AFMを用いた表面凹凸の高さデータに基づいて画像処理によって求める。塗装金属板1の最エッジから100mmの範囲を除いた板面中央部にて、観察視野が連続するように、上述した10×10μmのAFM観察を少なくとも20箇所で行い、各観察面に対する凹部153の面積割合を求め、この算術平均値を凹部153の面積率とする。   The area ratio of the concave portion 153 is a ratio of the concave portion 153 to the surface of the coating film 15 when the coating film 15 is viewed from the thickness direction. The area ratio of the concave portion 153 is obtained by image processing based on height data of surface irregularities using AFM. The above-mentioned 10 × 10 μm AFM observation was performed at at least 20 places at the center of the plate surface excluding the range of 100 mm from the outermost edge of the coated metal plate 1 so that the observation field of view was continuous. And the arithmetic average value is defined as the area ratio of the concave portion 153.

凹部153は、輪郭が略円形であることが好ましい。具体的には、塗膜15を板厚方向から見た場合に、すべての凹部153に対して、凹部153の輪郭長Lと、凹部153の直径D(円相当直径)から求められる円周長Lとが、1.0≦L/L≦3.0を満足している凹部153が、個数%で95%以上(且つ100%以下)であることが好ましい。凹部153が上記条件を満足するとき、より好ましく、光沢度の低下を抑制しながら白色度を高めることができる。The recess 153 preferably has a substantially circular outline. Specifically, the circumference when viewed coating 15 from a thickness direction, to all of the recesses 153, the contour length L 1 of the recess 153 is determined from the diameter D of the recess 153 (circle equivalent diameter) the length L 2 is, 1.0 ≦ L 1 / L 2 ≦ 3.0 recesses 153 are satisfied it is preferably in number% 95% (and less than 100%). It is more preferable that the concave portion 153 satisfies the above condition, and it is possible to increase whiteness while suppressing a decrease in glossiness.

/Lの下限が1.0であるとき、凹部153が真円であることを意味する。しかし、凹部153を真円に制御することは工業的に困難なので、L/Lの下限が、1.2、1.4、または1.6であってもよい。一方、高白色度と高光沢度とを好ましく両立させるには、L/Lの上限が、2.8、2.6、2.4、または2.0であってもよい。When the lower limit of L 1 / L 2 is 1.0, it means that the concave portion 153 is a perfect circle. However, since it is industrially difficult to control the concave portion 153 to be a perfect circle, the lower limit of L 1 / L 2 may be 1.2, 1.4, or 1.6. On the other hand, in order to preferably achieve both high whiteness and high gloss, the upper limit of L 1 / L 2 may be 2.8, 2.6, 2.4, or 2.0.

なお、凹部153の輪郭長Lおよび円周長Lは、以下のように特定することができる。上記のように特定した凹部153に基づいて、凹部153の輪郭を特定し、凹部153の輪郭長Lを画像処理によって求める。この輪郭長Lは、塗膜15を板厚方向から見た場合の凹部153の輪郭の長さである。また、上記の凹部153の直径Dに基づいて、凹部153を真円とみなしたときの、凹部153の円周長Lを以下の式で求める。
=π×D (π:円周率)
塗装金属板1の最エッジから100mmの範囲を除いた板面中央部にて、上述した10×10μmのAFM観察を少なくとも20箇所で行い、輪郭全体を含む凹部153のうち、個数%で95%以上の凹部153が、1.0≦L/L≦3.0を満足することが好ましい。
Incidentally, the contour length L 1 and the circumferential length L 2 of the recessed portion 153 can be specified as follows. Based on the recess 153 identified as described above, to identify the contour of the recess 153, obtaining the contour length L 1 of the recessed portion 153 by the image processing. The contour length L 1 is the length of the contour of the recess 153 when viewed coating 15 from a thickness direction. Further, based on the diameter D of the recess 153, when regarded recesses 153 and perfect circle, the circumferential length L 2 of the recessed portion 153 obtained by the following equation.
L 2 = π × D (π: pi)
The above-mentioned 10 × 10 μm AFM observation was performed at at least 20 places in the center of the plate surface excluding the range of 100 mm from the outermost edge of the coated metal plate 1, and 95% in terms of the number% of the concave portions 153 including the entire contour. The recess 153 preferably satisfies 1.0 ≦ L 1 / L 2 ≦ 3.0.

また、塗膜15の表面の平坦部151は、光沢度に寄与する。入射光に対する正反射成分を好ましく高めるためには、平坦部151の平均表面粗さRaが20nm未満であることが好ましい。平坦部151の平均表面粗さRaの下限は、特に限定されなく、小さいほど好ましい。例えば、必要に応じて、平坦部151の平均表面粗さRaの下限は、1nmであってもよい。平坦部151の平均表面粗さRaの上限は、18nmであり、16nmであることが好ましい。   Further, the flat portion 151 on the surface of the coating film 15 contributes to the glossiness. In order to preferably increase the specular reflection component with respect to the incident light, the average surface roughness Ra of the flat portion 151 is preferably less than 20 nm. The lower limit of the average surface roughness Ra of the flat portion 151 is not particularly limited, and is preferably as small as possible. For example, if necessary, the lower limit of the average surface roughness Ra of the flat portion 151 may be 1 nm. The upper limit of the average surface roughness Ra of the flat portion 151 is 18 nm, preferably 16 nm.

なお、平坦部151は、上記のように特定した凹部153以外の塗膜15の表面上の領域とする。また、平坦部151の表面粗さRaは、塗装金属板1の板厚方向と平行な切断面上に現れる平坦部151の2次元プロファイルに基づいて求める。表面粗さRaは、少なくとも基準長さ3μm以上から求める。塗装金属板1の最エッジから100mmの範囲を除いた板面中央部にて、上述した10×10μmのAFM観察を少なくとも20箇所で行い、各観察面から得られる各平坦部151の表面粗さRaの算術平均値を平坦部151の平均表面粗さRaとする。   The flat portion 151 is a region on the surface of the coating film 15 other than the concave portion 153 specified as described above. The surface roughness Ra of the flat portion 151 is obtained based on a two-dimensional profile of the flat portion 151 appearing on a cut surface parallel to the thickness direction of the coated metal plate 1. The surface roughness Ra is determined from at least a reference length of 3 μm or more. The above-mentioned 10 × 10 μm AFM observation was performed in at least 20 places at the center of the plate surface excluding the range of 100 mm from the outermost edge of the coated metal plate 1, and the surface roughness of each flat portion 151 obtained from each observation surface The arithmetic average value of Ra is defined as the average surface roughness Ra of the flat portion 151.

平坦部151の面積率は、特に限定されない。例えば、塗膜15の表面に対する平坦部151の面積率が60〜99%であるとき、より好ましく、光沢度の低下を抑制しながら白色度を高めることができる。平坦部151の面積率の下限は、65%であり、75%であることが好ましい。また平坦部151の面積率の上限は、95%、92%、または80%であることが好ましい。   The area ratio of the flat portion 151 is not particularly limited. For example, when the area ratio of the flat portion 151 to the surface of the coating film 15 is 60% to 99%, the whiteness can be increased while suppressing a decrease in glossiness. The lower limit of the area ratio of the flat portion 151 is 65%, and preferably 75%. The upper limit of the area ratio of the flat portion 151 is preferably 95%, 92%, or 80%.

なお、平坦部151の面積率は、塗膜15を板厚方向から見たときの塗膜15の表面に対する平坦部151の割合である。平坦部151の面積率は、AFMを用いた表面凹凸の高さデータに基づいて画像処理によって求める。塗装金属板1の最エッジから100mmの範囲を除いた板面中央部にて、観察視野が連続するように、上述した10×10μmのAFM観察を少なくとも20箇所で行い、各観察面に対する平坦部151の面積割合を求め、この算術平均値を平坦部151の面積率とする。   Note that the area ratio of the flat portion 151 is a ratio of the flat portion 151 to the surface of the coating film 15 when the coating film 15 is viewed from the thickness direction. The area ratio of the flat portion 151 is obtained by image processing based on height data of surface irregularities using AFM. The above-mentioned 10 × 10 μm AFM observation was performed at at least 20 places so that the observation field of view was continuous at the center of the plate surface excluding the range of 100 mm from the outermost edge of the coated metal plate 1, and a flat portion was formed on each observation surface. The area ratio of the flat portion 151 is determined, and the arithmetic average value is set as the area ratio of the flat portion 151.

また、塗膜15の厚さ(膜厚)は、特に限定されない。例えば、塗膜15の厚さが8.0〜30μmであるとき、より好ましく、高白色度と高光沢度とを好ましく両立できる。下地色が入射光を吸収しやすい色彩である場合、入射光に対する乱反射成分および正反射成分が共に小さくなるため、白色度と光沢度とを同時に高めることが難しいが、塗膜15の厚さが8.0μm以上であるとき、下地色を好ましく隠蔽できる。塗膜15の厚さの下限は、10μmであり、13μmであることが好ましい。一方、工業的観点から、塗膜15の厚さの上限は、25μmであり、20μmであることが好ましい。   The thickness (film thickness) of the coating film 15 is not particularly limited. For example, when the thickness of the coating film 15 is 8.0 to 30 μm, it is more preferable, and both high whiteness and high gloss can be preferably achieved. When the base color is a color that easily absorbs incident light, the diffuse reflection component and the specular reflection component for the incident light are both small, so it is difficult to simultaneously increase whiteness and glossiness. When the thickness is 8.0 μm or more, the underlying color can be preferably hidden. The lower limit of the thickness of the coating film 15 is 10 μm, preferably 13 μm. On the other hand, from an industrial viewpoint, the upper limit of the thickness of the coating film 15 is 25 μm, and preferably 20 μm.

塗膜15の構成材料としては、上述した表面形状を形成できるものであれば、特に限定されない。塗膜15は、例えば、顔料と、樹脂とを含むことができる。   The constituent material of the coating film 15 is not particularly limited as long as it can form the above-described surface shape. The coating film 15 can include, for example, a pigment and a resin.

顔料としては、白色顔料、有色顔料および防錆顔料が挙げられる。中でも、塗膜15が白色顔料を比較的多量に含む場合、塗膜15は、白色塗膜となる。一般に白色塗膜を有する金属板では、高白色度が求められ、また用途および意匠性の観点から高光沢度が求められる。一方で、高白色度と高光沢度の両立は従来困難であった。しかしながら、本実施形態に係る塗装金属板1では、上述したように、塗膜15が平坦部151と複数の凹部153とを有することにより、高白色度と高光沢度の両立が可能である。   Examples of the pigment include a white pigment, a colored pigment, and an antirust pigment. In particular, when the coating film 15 contains a relatively large amount of a white pigment, the coating film 15 becomes a white coating film. Generally, in a metal plate having a white coating film, high whiteness is required, and high glossiness is required from the viewpoint of use and design. On the other hand, it has been conventionally difficult to achieve both high whiteness and high gloss. However, in the coated metal plate 1 according to the present embodiment, as described above, since the coating film 15 has the flat portion 151 and the plurality of concave portions 153, it is possible to achieve both high whiteness and high gloss.

白色顔料は、特に限定されない。例えば、白色顔料として、ルチル型もしくはアナターゼ型酸化チタン(TiO)、CaSO、MgSO、BaSO、Al、Sb、ZnO等が挙げられる。これらの白色顔料は、単独で使用されてもよいし2種以上混合されて使用されてもよい。また、白色顔料としては、表面をAl、Sb、ZnO等で被覆した酸化チタンも使用することができる。上述した中でも白色顔料としては、隠蔽性および高白色度の観点から、BaSO、Alおよび酸化チタンが好ましい。The white pigment is not particularly limited. For example, examples of the white pigment include rutile-type or anatase-type titanium oxide (TiO 2 ), CaSO 4 , MgSO 4 , BaSO 4 , Al 2 O 3 , Sb 2 O 3 , and ZnO. These white pigments may be used alone or in combination of two or more. Further, as the white pigment, titanium oxide whose surface is coated with Al 2 O 3 , Sb 2 O 3 , ZnO or the like can also be used. Among the above, as the white pigment, BaSO 4 , Al 2 O 3 and titanium oxide are preferable from the viewpoint of concealing properties and high whiteness.

塗膜15が白色塗膜である場合、塗膜15中における白色顔料の含有量は、特に限定されない。例えば、塗膜15が白色顔料を有し、塗膜15に対する白色顔料の含有量が40〜70質量%であることが好ましい。白色顔料の含有量の下限は、塗膜15の全質量に対し、40質量%、45質量%、または50質量%であることが好ましい。白色顔料の含有量の上限は、塗膜15の全質量に対し、70質量%、65質量%、または60質量%であることが好ましい。   When the coating film 15 is a white coating film, the content of the white pigment in the coating film 15 is not particularly limited. For example, the coating 15 preferably has a white pigment, and the content of the white pigment with respect to the coating 15 is preferably 40 to 70% by mass. The lower limit of the content of the white pigment is preferably 40% by mass, 45% by mass, or 50% by mass based on the total mass of the coating film 15. The upper limit of the content of the white pigment is preferably 70% by mass, 65% by mass, or 60% by mass based on the total mass of the coating film 15.

有色顔料は、特に限定されない。目的とされる塗膜15の色彩に合わせて公知の顔料を適宜選択することができる。例えば、有色顔料としては、べんがら、アルミ、マイカ、カーボンブラック、コバルトブルー等を挙げることができる。また有色顔料の塗膜15中における含有量も特に限定されず、目的とする塗膜15の色彩に合わせて適宜選択することができる。   The colored pigment is not particularly limited. Known pigments can be appropriately selected according to the color of the target coating film 15. For example, examples of the colored pigment include red iron, aluminum, mica, carbon black, and cobalt blue. Also, the content of the colored pigment in the coating film 15 is not particularly limited, and can be appropriately selected according to the intended color of the coating film 15.

また、塗膜15は、顔料として防錆顔料を含むことが好ましい。塗膜15が防錆顔料を含むことにより、塗装金属板1全体の耐食性を向上させることができる。   Further, the coating film 15 preferably contains a rust preventive pigment as a pigment. When the coating film 15 contains the rust-preventive pigment, the corrosion resistance of the entire coated metal plate 1 can be improved.

防錆顔料は、特に限定されない。例えば、防錆顔料として、リン酸系防錆顔料、シリカ系防錆顔料が挙げられる。特に、光沢度の低下を防止しつつ、塗装金属板1の耐食性を十分に向上させることができることから、リン酸系防錆顔料が好ましい。   The rust preventive pigment is not particularly limited. For example, examples of the rust preventive pigment include a phosphoric acid rust preventive pigment and a silica rust preventive pigment. In particular, a phosphoric acid-based rust-preventive pigment is preferable because the corrosion resistance of the coated metal plate 1 can be sufficiently improved while preventing a decrease in glossiness.

リン酸系防錆顔料としては、マグネシウム、アルミニウム等の金属のリン酸塩、オルトリン酸塩またはポリリン酸塩が挙げられる。マグネシウムを含むリン酸系防錆顔料としては、例えば、リン酸2水素マグネシウム(例えば、純正化学社製)が挙げられる。   Examples of the phosphoric acid-based rust preventive pigment include phosphates, orthophosphates, and polyphosphates of metals such as magnesium and aluminum. Examples of the phosphoric acid-based rust preventive pigment containing magnesium include magnesium dihydrogen phosphate (for example, manufactured by Junsei Chemical Co., Ltd.).

アルミニウムを含むリン酸系防錆顔料としては、例えば、トリポリリン酸2水素アルミニウムおよびこれのマグネシウム、カルシウムまたは亜鉛による表面処理物が挙げられる。例えば、テイカ社製のトリポリリン酸2水素アルミニウムである「K−WHITE」(商標)や、テイカ社製の「K−WHITE/#105」(亜鉛処理)、「K−WHITE/Ca650」(カルシウム処理)、「K−WHITE/K−G105」(マグネシウム処理)等が具体的に挙げられる。   Examples of the phosphoric acid-based rust preventive pigment containing aluminum include aluminum dihydrogen tripolyphosphate and a surface-treated product thereof with magnesium, calcium, or zinc. For example, “K-WHITE” (trademark), which is aluminum dihydrogen tripolyphosphate manufactured by Teica, “K-WHITE / # 105” (zinc-treated), and “K-WHITE / Ca650” (calcium-treated), manufactured by Teika ), “K-WHITE / K-G105” (magnesium treatment) and the like.

上述した中でもリン酸系防錆顔料、特にマグネシウムを含むリン酸系防錆顔料は、添加による光沢度の低下が少ないため、好ましい。   Among the above, phosphoric acid-based rust preventive pigments, particularly phosphoric acid-based rust preventive pigments containing magnesium, are preferable since the decrease in glossiness due to the addition is small.

塗膜15中におけるリン酸系防錆顔料の含有量は、特に限定されない。例えば、塗膜15がリン酸系防錆顔料を有し、塗膜15に対するリン酸系防錆顔料の含有量が1〜15質量%であることが好ましい。リン酸系防錆顔料の含有量の下限は、塗膜15の全質量に対し、1質量%、2質量%、または3質量%であることが好ましい。リン酸系防錆顔料の含有量の上限は、塗膜15の全質量に対し、15質量%、10質量%、または8質量%であることが好ましい。   The content of the phosphoric acid-based rust preventive pigment in the coating film 15 is not particularly limited. For example, it is preferable that the coating film 15 has a phosphoric acid-based rust-preventive pigment, and the content of the phosphoric acid-based rust-proof pigment is 1 to 15% by mass based on the coating film 15. The lower limit of the content of the phosphoric acid-based rust preventive pigment is preferably 1% by mass, 2% by mass, or 3% by mass based on the total mass of the coating film 15. The upper limit of the content of the phosphoric acid-based rust preventive pigment is preferably 15% by mass, 10% by mass, or 8% by mass based on the total mass of the coating film 15.

樹脂は、顔料等の各成分を結着するための結着剤として機能する。また、樹脂は、塗膜15の表面を構成する。樹脂は、特に限定されない。例えば、樹脂として、エポキシ樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素系樹脂、メラミン系樹脂等が挙げられる。また、メラミン樹脂としては、例えば、メチル化メラミン樹脂、ブチル化メラミン樹脂等のアルキル化メラミン樹脂等が挙げられる。これらの樹脂は、単独で使用されてもよいし2種以上混合されて使用されてもよい。上述した中でも、塗膜15の平滑化の観点から、樹脂は、アルキル化メラミン樹脂、特にメチル化メラミン樹脂を含むことが好ましい。   The resin functions as a binder for binding each component such as a pigment. The resin constitutes the surface of the coating film 15. The resin is not particularly limited. For example, examples of the resin include an epoxy resin, a polyester resin, an acrylic resin, a urethane resin, a vinyl chloride resin, a fluorine resin, and a melamine resin. Examples of the melamine resin include an alkylated melamine resin such as a methylated melamine resin and a butylated melamine resin. These resins may be used alone or in combination of two or more. Among the above, from the viewpoint of smoothing the coating film 15, the resin preferably contains an alkylated melamine resin, particularly a methylated melamine resin.

また、塗膜15が白色塗膜である場合、白色度、密着性、耐薬品性、および耐食性を優れたものとするために、主樹脂として、ポリエステル樹脂を用いることが好ましい。ポリエステル樹脂は、数平均分子量が3000〜30000であり、ガラス転移温度Tgが0〜80℃程度であることが好ましい。数平均分子量の下限は、5000であり、9000であることが好ましい。数平均分子量の上限は、25000であり、23000であることが好ましい。ガラス転移温度Tgの下限は、10℃であり、20℃であることが好ましい。ガラス転移温度Tgの上限は、70℃であり、60℃であることが好ましい。   When the coating film 15 is a white coating film, it is preferable to use a polyester resin as the main resin in order to improve whiteness, adhesion, chemical resistance, and corrosion resistance. The polyester resin preferably has a number average molecular weight of 3,000 to 30,000 and a glass transition temperature Tg of about 0 to 80 ° C. The lower limit of the number average molecular weight is 5000, preferably 9000. The upper limit of the number average molecular weight is 25,000, and preferably 23,000. The lower limit of the glass transition temperature Tg is 10 ° C, preferably 20 ° C. The upper limit of the glass transition temperature Tg is 70 ° C., preferably 60 ° C.

塗膜15中における樹脂の含有量は、特に限定されない。例えば、樹脂の含有量の下限は、塗膜15の全質量に対し、30質量%、35質量%、または40質量%であることが好ましい。樹脂の含有量の下限は、塗膜15の全質量に対し、60質量%、55質量%、または50質量%であることが好ましい。   The content of the resin in the coating film 15 is not particularly limited. For example, the lower limit of the resin content is preferably 30% by mass, 35% by mass, or 40% by mass with respect to the total mass of the coating film 15. The lower limit of the resin content is preferably 60% by mass, 55% by mass, or 50% by mass based on the total mass of the coating film 15.

なお、硬化剤としては、メラミン樹脂、特にメチル化メラミンが好ましい。硬化剤として、イソシアネートを用いることもできる。なお、主樹脂に対する硬化剤の割合は、質量比で、主樹脂:硬化剤=100:25〜100:70であることが好ましい。より好ましくは、主樹脂:硬化剤=100:30〜100:60とする。   In addition, as a hardening | curing agent, a melamine resin, especially a methylated melamine is preferable. Isocyanates can also be used as curing agents. The ratio of the curing agent to the main resin is preferably in a ratio by mass of main resin: curing agent = 100: 25 to 100: 70. More preferably, the ratio of the main resin to the curing agent is 100: 30 to 100: 60.

塗膜15は、潤滑剤をさらに含んでもよい。塗膜15が潤滑剤を含むことにより、塗膜表面の摩擦係数低減によるプレス加工性向上や取り扱いキズの低減などの効果が得られる。潤滑剤としては、ポリエチレン、ポリプロピレン、フッ素化合物等が挙げられる。これらは加工用途に応じて、単独または2種以上組み合わせて用いることができる。   The coating film 15 may further include a lubricant. When the coating film 15 contains a lubricant, effects such as improvement in press workability due to reduction in the friction coefficient of the coating film surface and reduction in handling scratches can be obtained. Examples of the lubricant include polyethylene, polypropylene, and fluorine compounds. These can be used alone or in combination of two or more, depending on the processing application.

潤滑剤の含有量は、塗膜15の全質量に対し、0.5〜20質量%であることが好ましく、1.0〜10質量%であることがより好ましい。潤滑剤の含有量を制御することにより、十分な潤滑性を得ることができるとともに、潤滑剤に起因した淀みや発泡等の塗料起因の不具合を防止することができる。   The content of the lubricant is preferably 0.5 to 20% by mass, more preferably 1.0 to 10% by mass, based on the total mass of the coating film 15. By controlling the content of the lubricant, it is possible to obtain sufficient lubricity and to prevent problems caused by the paint such as stagnation and foaming caused by the lubricant.

塗膜15は、さらに、カップリング剤を含んでもよい。塗膜15がカップリング剤を含むことにより、防錆顔料の添加による加工密着性の低下を防止することができる。このようなカップリング剤としては、例えば、Si系カップリング剤、Ti系カップリング剤が挙げられる。塗膜15中のSi系および/またはTi系のカップリング剤の添加量は特に限定されない。例えば、カップリング剤の添加量は、樹脂100質量部に対して、0.2〜5.0質量部であることができる。   The coating film 15 may further include a coupling agent. When the coating film 15 contains a coupling agent, it is possible to prevent a decrease in processing adhesion due to the addition of a rust preventive pigment. Examples of such a coupling agent include a Si-based coupling agent and a Ti-based coupling agent. The addition amount of the Si-based and / or Ti-based coupling agent in the coating film 15 is not particularly limited. For example, the addition amount of the coupling agent can be 0.2 to 5.0 parts by mass with respect to 100 parts by mass of the resin.

以上説明した本実施形態に係る塗装金属板1は、塗膜15の表面に平坦部151と複数の凹部153とを有することにより、光沢度の低下を抑制しながら白色度を高めることができる。このような塗装金属板1は、高白色度と高光沢度の両立が求められる塗装金属板として特に有用である。   Since the coated metal plate 1 according to the present embodiment described above has the flat portion 151 and the plurality of concave portions 153 on the surface of the coating film 15, the whiteness can be increased while suppressing the decrease in gloss. Such a coated metal plate 1 is particularly useful as a coated metal plate that requires both high whiteness and high gloss.

また、このように表面の光沢度を高いものとしつつ白みが増すように調色された塗装金属板1は、例えば、家庭用電気機械器具(家電)等の電気機械器具や、建築材料に使用することができる。したがって、塗装金属板1は、電気機械器具用塗装金属板、特に家庭用電気機械器具用塗装金属板や、建築材料用塗装金属板であることができる。言い換えると、電気機械器具が上述の塗装金属板1を有してもよく、建築材料が上述の塗装金属板1を有してもよい。   In addition, the coated metal plate 1 toned so as to increase the whiteness while increasing the glossiness of the surface as described above can be used, for example, in electric machine appliances such as household electric machine appliances (home appliances) and building materials. Can be used. Therefore, the painted metal plate 1 can be a painted metal plate for electric machine equipment, particularly a painted metal plate for household electric machine appliance, or a painted metal plate for building material. In other words, the electromechanical device may have the above-mentioned painted metal sheet 1 and the building material may have the above-mentioned painted metal sheet 1.

<2.変形例>
以上、本発明の好適な実施形態を詳しく説明した。以下では、上記実施形態の幾つかの変形例を説明する。なお、以下に説明する各変形例は、単独で上記実施形態に適用されてもよいし、組み合わせで上記実施形態に適用されてもよい。また、各変形例は、上記実施形態で説明した構成に代えて適用されてもよいし、上記実施形態で説明した構成に対して追加的に適用されてもよい。
<2. Modification>
The preferred embodiment of the present invention has been described above in detail. Hereinafter, some modified examples of the above embodiment will be described. In addition, each modification described below may be applied to the above-described embodiment by itself, or may be applied to the above-described embodiment in combination. Further, each modification may be applied instead of the configuration described in the above embodiment, or may be additionally applied to the configuration described in the above embodiment.

(第1の変形例)
図3は、上記実施形態の変形例に係る塗装金属板1Aの断面模式図である。上述した実施形態では、金属板11と塗膜15との間に化成処理層13が配置されていたが、化成処理層13は、図3に示すように省略されていてもよい。
(First Modification)
FIG. 3 is a schematic cross-sectional view of a coated metal plate 1A according to a modification of the above embodiment. In the above-described embodiment, the chemical conversion treatment layer 13 is disposed between the metal plate 11 and the coating film 15, but the chemical conversion treatment layer 13 may be omitted as shown in FIG.

(第2の変形例)
図4は、上記実施形態の変形例に係る塗装金属板1Bの断面模式図である。塗装金属板1Bは、化成処理層13と塗膜15との間にプライマー(下塗り塗膜)17を備えている。プライマー17は、化成処理層13と塗膜15との間の密着性を向上させるとともに、例えば、防錆顔料等を含むことにより塗装金属板1Bの耐食性を向上させる。
(Second Modification)
FIG. 4 is a schematic cross-sectional view of a coated metal plate 1B according to a modification of the above embodiment. The coated metal plate 1B includes a primer (undercoat film) 17 between the chemical conversion treatment layer 13 and the coating film 15. The primer 17 improves the adhesion between the chemical conversion treatment layer 13 and the coating film 15 and, for example, improves the corrosion resistance of the coated metal plate 1B by including a rust preventive pigment or the like.

また、プライマー17が防錆顔料を含む場合、塗膜15中の防錆顔料を省略するか低減させることもできる。この場合、塗膜15を調色等の意匠性を目的とした組成で構成し、プライマー17を耐食性の向上を目的とした組成で構成し、各層の機能を分離させることができる。   When the primer 17 contains a rust preventive pigment, the rust preventive pigment in the coating film 15 can be omitted or reduced. In this case, the coating film 15 is composed of a composition for the purpose of design such as toning, and the primer 17 is composed of a composition for the purpose of improving corrosion resistance, so that the function of each layer can be separated.

なお、プライマー17を構成する材料としては、特に限定されない。例えば、プライマー17として、塗膜15で例示した各種材料を用いることができる。   In addition, the material constituting the primer 17 is not particularly limited. For example, as the primer 17, various materials exemplified for the coating film 15 can be used.

(その他の変形例)
その他、例えば、塗装金属板は、塗膜が形成されていない側に化成処理層を有していてもよい。また、塗装金属板は、塗膜を両面に有していてもよい。
(Other modifications)
In addition, for example, the coated metal plate may have a chemical conversion treatment layer on the side where the coating film is not formed. Further, the coated metal plate may have a coating film on both sides.

<3.塗装金属板の製造方法>
次に、本実施形態に係る塗装金属板1の製造方法について詳細に説明する。
<3. Manufacturing method of painted metal sheet>
Next, a method for manufacturing the coated metal sheet 1 according to the present embodiment will be described in detail.

本実施形態に係る塗装金属板1の製造方法は、
金属板11上に樹脂および液性媒体を含む塗料を塗布する第1の工程(塗料塗布工程)と、
上記塗料から上記液性媒体の一部または全部を除去し、溶剤(液性媒体)を含む雰囲気を上記塗料に接触させながら塗膜を形成する第2の工程(塗膜形成工程)と、を有し、
上記樹脂の溶解度パラメータと、上記溶剤の溶解度パラメータとの差の絶対値が0.5以上2.0未満であり、
上記雰囲気中の上記溶剤の分圧が0.005〜0.2atmである。
The method for manufacturing the coated metal sheet 1 according to the present embodiment includes:
A first step of applying a paint containing a resin and a liquid medium on the metal plate 11 (paint application step);
A second step (coating film forming step) of forming a coating film while removing a part or the entirety of the liquid medium from the coating material and bringing an atmosphere containing a solvent (liquid medium) into contact with the coating material. Have
The absolute value of the difference between the solubility parameter of the resin and the solubility parameter of the solvent is 0.5 or more and less than 2.0,
The partial pressure of the solvent in the atmosphere is 0.005 to 0.2 atm.

また、本実施形態に係る塗装金属板1の製造方法は、上記第1の工程に先立ち、金属板11の少なくとも一方の面上に化成処理層13を形成する化成処理工程を有してもよい。以下、本実施形態に係る塗装金属板1の製造方法について、順を追って説明する。   In addition, the method for manufacturing the coated metal sheet 1 according to the present embodiment may include a chemical conversion treatment step of forming a chemical conversion treatment layer 13 on at least one surface of the metal plate 11 prior to the first step. . Hereinafter, a method for manufacturing the coated metal sheet 1 according to the present embodiment will be described step by step.

まず、金属板11を準備する。金属板11としては、上述したものを用いることができる。   First, the metal plate 11 is prepared. As the metal plate 11, those described above can be used.

次に金属板11の少なくとも一方の板面に対して化成処理を行い、化成処理層13を形成する。化成処理は、上述した化成処理層13の構成材料を含む組成物(化成処理液)を金属板11の面上に塗布し、加熱等により液性媒体を除去するとともに、化成処理層13を形成、固定することにより行うことができる。   Next, a chemical conversion treatment is performed on at least one plate surface of the metal plate 11 to form a chemical conversion treatment layer 13. In the chemical conversion treatment, a composition (chemical conversion treatment solution) containing the constituent material of the chemical conversion treatment layer 13 described above is applied on the surface of the metal plate 11, and the liquid medium is removed by heating or the like, and the chemical conversion treatment layer 13 is formed. Can be performed by fixing.

化成処理液としては、上記構成材料が液性媒体中に分散または溶解した液が挙げられる。例えば、化成処理液中の樹脂の含有量は、1.0〜100g/Lとすればよい。樹脂の含有量の下限は、2.0g/Lであり、5.0g/Lであることが好ましい。樹脂の含有量の上限は、80g/Lであり、60g/Lであることが好ましい。化成処理液中の、シリカ、シランカップリング剤、タンニン、タンニン酸、ジルコニウム化合物、およびチタニウム化合物からなる群から選択される1種以上の合計の含有量は、0.01〜100g/Lとすればよい。この含有量の下限は、0.1g/Lであり、0.5g/Lであることが好ましい。この含有量の上限は、80g/Lであり、60g/Lであることが好ましい。上記の化成処理液によって、化成処理層13の耐食性および塗膜密着性を十分に高いものとしつつ、化成処理液の安定性を十分に優れたものとすることができる。   Examples of the chemical conversion treatment liquid include a liquid in which the above constituent materials are dispersed or dissolved in a liquid medium. For example, the content of the resin in the chemical conversion treatment liquid may be 1.0 to 100 g / L. The lower limit of the resin content is 2.0 g / L, and preferably 5.0 g / L. The upper limit of the content of the resin is 80 g / L, and preferably 60 g / L. The total content of at least one selected from the group consisting of silica, a silane coupling agent, tannin, tannic acid, a zirconium compound, and a titanium compound in the chemical conversion treatment solution is 0.01 to 100 g / L. I just need. The lower limit of this content is 0.1 g / L, and preferably 0.5 g / L. The upper limit of this content is 80 g / L, preferably 60 g / L. The chemical conversion treatment liquid described above makes it possible to sufficiently enhance the corrosion resistance and the coating film adhesion of the chemical conversion treatment layer 13 and to sufficiently enhance the stability of the chemical conversion treatment liquid.

また、化成処理液の液性媒体は、特に限定されない。例えば、液性媒体として、各種公知の有機溶媒や、水を使用することができる。特に、化成処理液の液性媒体が水である場合、化成処理液の取り扱いが容易である。   Further, the liquid medium of the chemical conversion treatment liquid is not particularly limited. For example, various known organic solvents and water can be used as the liquid medium. In particular, when the liquid medium of the chemical conversion treatment liquid is water, handling of the chemical conversion treatment liquid is easy.

また、化成処理液の金属板11への塗布方法は、特に限定されない。例えば、塗布方法として、ロールコート、リンガーロールコート、エアースプレー、エアーレススプレー、浸漬法、カーテンコート等を採用することができる。   The method of applying the chemical conversion treatment liquid to the metal plate 11 is not particularly limited. For example, as a coating method, a roll coat, a ringer roll coat, an air spray, an airless spray, an immersion method, a curtain coat, and the like can be adopted.

また、化成処理液中の液性媒体の除去および化成処理層13の形成や固定は、特に限定されない。例えば、加熱により化成処理層13を形成することができる。加熱方式は特に限定されない。例えば、加熱方式として、熱風加熱方式、誘導加熱方式、近赤外線加熱方式等の公知の方式を用いることができる。加熱温度は、例えば、40〜200℃とすればよい。加熱温度の下限は50℃であることが好ましく、加熱温度の上限は180℃であることが好ましい。加熱時間は、例えば、0.5〜20秒とすればよい。加熱時間の下限は1秒であることが好ましく、加熱時間の上限は15秒であることが好ましい。   Further, the removal of the liquid medium in the chemical conversion treatment liquid and the formation and fixing of the chemical conversion treatment layer 13 are not particularly limited. For example, the chemical conversion treatment layer 13 can be formed by heating. The heating method is not particularly limited. For example, as the heating method, a known method such as a hot air heating method, an induction heating method, or a near infrared heating method can be used. The heating temperature may be, for example, 40 to 200 ° C. The lower limit of the heating temperature is preferably 50 ° C, and the upper limit of the heating temperature is preferably 180 ° C. The heating time may be, for example, 0.5 to 20 seconds. The lower limit of the heating time is preferably 1 second, and the upper limit of the heating time is preferably 15 seconds.

次に、化成処理層13を形成した金属板11上に、すなわち化成処理層13上に塗膜15を形成する。まず、金属板11上に樹脂および液性媒体を含む塗料を塗布する(第1の工程)。   Next, a coating film 15 is formed on the metal plate 11 on which the chemical conversion treatment layer 13 is formed, that is, on the chemical conversion treatment layer 13. First, a paint containing a resin and a liquid medium is applied on the metal plate 11 (first step).

塗料は、樹脂および液性媒体を含むものであればよく、上述した塗膜15の各構成成分を含むことが好ましい。塗料中の各成分の配合比率は、形成される塗膜15の構成および塗布に必要な粘度範囲等の物性に応じて、適宜選択、変更することができる。   The paint only needs to contain a resin and a liquid medium, and preferably contains each component of the coating film 15 described above. The mixing ratio of each component in the paint can be appropriately selected and changed according to the composition of the coating film 15 to be formed and physical properties such as a viscosity range necessary for coating.

塗料に含まれる液性媒体は、特に限定されない。例えば、液性媒体として、シクロヘキサノン、メチルエチルケトン等のケトン系溶媒、キシレン等の芳香族炭化水素系溶媒、ジオキサン等のエーテル系溶媒、n−ブタノール、エタノール等のアルコール系溶媒等の各種有機溶媒ならびに水が挙げられる。これらの液性媒体は、単独でまたは2種以上を組み合わせて、用いることができる。   The liquid medium contained in the paint is not particularly limited. For example, as the liquid medium, various organic solvents such as ketone solvents such as cyclohexanone and methyl ethyl ketone, aromatic hydrocarbon solvents such as xylene, ether solvents such as dioxane, alcohol solvents such as n-butanol and ethanol, and water. Is mentioned. These liquid media can be used alone or in combination of two or more.

また、本実施形態では、液性媒体の溶解度パラメータと、樹脂の溶解度パラメータとの差の絶対値が0.5以上2.0未満である。その結果、後述する第2の工程にて、所定の溶解度パラメータの差を有する有機溶媒を塗料に接触させることが可能となる。なお、上記した溶解度パラメータの差の絶対値の下限は、0.6であり、0.7であることが好ましい。上記した溶解度パラメータの差の絶対値の上限は、1.8未満であり、1.5未満であることが好ましい。   In this embodiment, the absolute value of the difference between the solubility parameter of the liquid medium and the solubility parameter of the resin is 0.5 or more and less than 2.0. As a result, an organic solvent having a predetermined difference in solubility parameter can be brought into contact with the paint in a second step described later. The lower limit of the absolute value of the difference between the solubility parameters is 0.6, and preferably 0.7. The upper limit of the absolute value of the difference between the solubility parameters is less than 1.8, and preferably less than 1.5.

なお、液性媒体(溶剤)の溶解度パラメータおよび樹脂の溶解度パラメータ(SP値:Solubility Parameter)は、実験的に以下のような濁点滴定法に基づき求めることができる。   The solubility parameter of the liquid medium (solvent) and the solubility parameter of the resin (SP value: Solvity Parameter) can be experimentally obtained based on the following turbidity titration method.

まず、試料溶液にSP値の高い貧溶媒とSP値の低い貧溶媒を滴下し、濁りが生じるまでに要した貧溶媒の量を求める。この際、2種のSP値の異なる貧溶媒を用い、上記の操作を行って、それぞれについて濁りが生じるまでに要した貧溶媒の量(体積)を求める。そして、得られた濁りが生じるまでに要した貧溶媒の体積と、貧溶媒のSP値とを以下の式1に代入することにより、溶液のSP値δを求めることができる。   First, a poor solvent having a high SP value and a poor solvent having a low SP value are dropped into a sample solution, and the amount of the poor solvent required until turbidity occurs is determined. At this time, the above operation is performed using two types of poor solvents having different SP values, and the amount (volume) of the poor solvent required until turbidity is generated for each of them. Then, by substituting the obtained volume of the poor solvent required until the turbidity occurs and the SP value of the poor solvent into the following equation 1, the SP value δ of the solution can be obtained.

δ=(VmL0.5δmL+Vmh0.5δmh)/(VmL0.5+Vmh0.5) ・・・(式1)
式中の記号は、以下のように定義される。
VmL:SP値の低い貧溶媒の体積
Vmh:SP値の高い貧溶媒の体積
δmL:SP値の低い貧溶媒のSP値
δmh:SP値の高い貧溶媒のSP値
なお、液性媒体のSP値を求める場合には、試料溶液として液性媒体を用い、樹脂のSP値を求める場合には、試料溶液として樹脂溶解液を用いる。
δ = (VmL 0.5 δ mL + Vmh 0.5 δ mh) / (VmL 0.5 + Vmh 0.5) ··· ( Equation 1)
The symbols in the formula are defined as follows.
VmL: volume of the poor solvent having a low SP value Vmh: volume of the poor solvent having a high SP value δ mL : SP value of the poor solvent having a low SP value δ mh : SP value of the poor solvent having a high SP value When the SP value is obtained, a liquid medium is used as the sample solution, and when the SP value of the resin is obtained, a resin solution is used as the sample solution.

また、塗料の金属板11への塗布方法は、特に限定されない。例えば、塗布方法として、ロールコート、リンガーロールコート、エアースプレー、エアーレススプレー、浸漬法、カーテンコート、静電塗装法等を採用することができる。   The method of applying the paint to the metal plate 11 is not particularly limited. For example, as a coating method, a roll coat, a ringer roll coat, an air spray, an airless spray, a dipping method, a curtain coat, an electrostatic coating method, or the like can be adopted.

次に、溶剤を塗料に接触させつつ、塗料から液性媒体の少なくとも一部を除去して塗膜15を形成する(第2の工程)。ここで、樹脂の溶解度パラメータと溶剤の溶解度パラメータとの差の絶対値は、0.5以上2.0未満である。溶解度パラメータを制御することにより、塗膜15の表面に平坦部151と複数の凹部153とが形成される。   Next, at least a part of the liquid medium is removed from the paint while the solvent is in contact with the paint to form the coating film 15 (second step). Here, the absolute value of the difference between the solubility parameter of the resin and the solubility parameter of the solvent is 0.5 or more and less than 2.0. By controlling the solubility parameter, a flat portion 151 and a plurality of concave portions 153 are formed on the surface of the coating film 15.

塗膜15の表面に複数の凹部153が形成される理由は、現時点で詳細が不明であるが、以下のように推測される。   The reason why the plurality of recesses 153 are formed on the surface of the coating film 15 is unknown at present, but is presumed as follows.

塗料に含まれる樹脂は、結着剤として塗膜15の表面形状の形成に大きく寄与する。そして、樹脂が溶解・分散している液性媒体が塗料から除去される際には、塗料の粘度は大きく上昇する。この際、樹脂に対し適度な溶解性を有する溶剤が塗料の表面に接触すると、樹脂を含む塗料は、接触面の一部で溶剤を弾きつつ、他の局所的な部分で溶剤と接触して溶解する。そして溶剤と接触して溶解した部分が凹部153となる。なお、本実施形態に係る塗装金属板1の製造方法では、凹部153の形成とともに、凹部153中に凸部155も同時に形成する。必要に応じて、凹部153から凸部155を機械的または化学的に除去してもよい。   The resin contained in the paint greatly contributes to the formation of the surface shape of the coating film 15 as a binder. Then, when the liquid medium in which the resin is dissolved and dispersed is removed from the paint, the viscosity of the paint greatly increases. At this time, when a solvent having appropriate solubility for the resin comes into contact with the surface of the paint, the paint containing the resin repels the solvent at a part of the contact surface, and comes into contact with the solvent at another local part. Dissolve. Then, the portion dissolved by contact with the solvent becomes the concave portion 153. In the method for manufacturing the coated metal sheet 1 according to the present embodiment, the projections 155 are also formed in the depressions 153 at the same time as the depressions 153 are formed. If necessary, the protrusion 155 may be mechanically or chemically removed from the recess 153.

なお、樹脂の溶解度パラメータと溶剤の溶解度パラメータとの差の絶対値が0.5未満であると、溶剤が塗料表面と均一に接触し、塗料を均一に溶解させるので、塗膜15の表面に凹部153が形成されない。一方で、樹脂の溶解度パラメータと溶剤の溶解度パラメータとの差の絶対値が2.0以上であると、塗料の表面が溶剤を弾きすぎて、溶剤が局所的な一部に集中しすぎるので、塗膜15の表面に粗大な凹部が形成されてしまう。   If the absolute value of the difference between the solubility parameter of the resin and the solubility parameter of the solvent is less than 0.5, the solvent uniformly contacts the paint surface and dissolves the paint uniformly. The recess 153 is not formed. On the other hand, when the absolute value of the difference between the solubility parameter of the resin and the solubility parameter of the solvent is 2.0 or more, the surface of the paint repels the solvent too much, and the solvent is too concentrated locally. Coarse concave portions are formed on the surface of the coating film 15.

上述したように、樹脂の溶解度パラメータと溶剤の溶解度パラメータとの差の絶対値は、0.5以上2.0未満であればよい。上記した溶解度パラメータの差の絶対値の下限は、0.6であり、0.7であることが好ましい。上記した溶解度パラメータの差の絶対値の上限は、1.8未満であり、1.5未満であることが好ましい。溶解度パラメータを制御することにより、塗膜15の表面の凹部153の形状を好ましいものとすることができる。なお、樹脂および溶剤の溶解度パラメータは、上記した濁点滴定法に基づき求めればよい。   As described above, the absolute value of the difference between the solubility parameter of the resin and the solubility parameter of the solvent may be 0.5 or more and less than 2.0. The lower limit of the absolute value of the difference between the solubility parameters is 0.6, and preferably 0.7. The upper limit of the absolute value of the difference between the solubility parameters is less than 1.8, and preferably less than 1.5. By controlling the solubility parameter, the shape of the concave portion 153 on the surface of the coating film 15 can be made preferable. The solubility parameters of the resin and the solvent may be determined based on the above-mentioned turbidity titration method.

塗料(樹脂)と溶剤との接触は、図5に示すような方法により行う。図5は、本実施形態に係る塗装金属板1の製造方法の第2の工程において塗料と溶剤との接触を行う方法を示す模式図である。   The contact between the paint (resin) and the solvent is performed by a method as shown in FIG. FIG. 5 is a schematic diagram showing a method of making contact between the paint and the solvent in the second step of the method for manufacturing the coated metal sheet 1 according to the present embodiment.

塗料15Aが塗布された金属板11は、熱風加熱方式、誘導加熱方式、近赤外線加熱方式等の任意の加熱方法で加熱された後、図5に示す焼付炉100に導入されて焼付処理が行われる。焼付炉100は、チャンバ101を有し、チャンバ101は、その内部に空間103を形成している。また、チャンバ101には、金属板11のための入口105および出口107、ならびに給気口109、排気口111が設けられている。   The metal plate 11 coated with the paint 15A is heated by an arbitrary heating method such as a hot air heating method, an induction heating method, a near-infrared heating method, and the like, and then introduced into a baking furnace 100 shown in FIG. Will be The baking furnace 100 has a chamber 101, and the chamber 101 forms a space 103 therein. Further, the chamber 101 is provided with an inlet 105 and an outlet 107 for the metal plate 11, an air supply port 109, and an exhaust port 111.

また、チャンバ101の空間103側上部には、加熱送風機113が配置されており、加熱送風機113には給気口109が連結されている。加熱送風機113は、給気口109から周囲の空気を吸引し、加熱するとともに図中矢印の方向に熱風を送る。これにより、金属板11に担持された塗料15Aが加熱され、塗料15Aから液性媒体の少なくとも一部が除去される。ここで、塗料15Aが塗布された金属板11を連続的に焼付炉に通過させると、空間103内に液性媒体の蒸気が滞留する。そして、液性媒体の蒸気が溶剤として塗料15Aに接触することにより、上述したような凹部153が形成された塗膜15が得られる。過剰に滞留した液性媒体の一部の蒸気は排気口111から外部へ放出される。   Further, a heating blower 113 is disposed in the upper portion of the chamber 101 on the space 103 side, and an air supply port 109 is connected to the heating blower 113. The heating blower 113 sucks ambient air from the air supply port 109, heats the air, and sends hot air in the direction of the arrow in the drawing. Thereby, the paint 15A carried on the metal plate 11 is heated, and at least a part of the liquid medium is removed from the paint 15A. Here, when the metal plate 11 coated with the paint 15A is continuously passed through the baking furnace, the vapor of the liquid medium stays in the space 103. Then, when the vapor of the liquid medium comes into contact with the paint 15A as a solvent, the coating film 15 in which the concave portions 153 are formed as described above is obtained. Part of the excessively retained liquid medium vapor is discharged from the exhaust port 111 to the outside.

特に、本実施形態に係る塗装金属板1の製造方法では、複数の凹部153を形成するために、塗膜15を形成する(硬化する)際、チャンバ101の空間103の溶剤分圧を制御する。従来の製造条件では、溶剤分圧が0.005atm未満であった。本実施形態に係る塗装金属板1の製造方法では、給気口109からの熱風の給気量、入口105からの外気の流入量、排気口111からの排気量、出口107からの漏出量、および加熱送風機113での加熱温度を、従来条件から変更することで、空間103(雰囲気)の溶剤の分圧を意図的に0.005〜0.2atmへ制御する。空間103(雰囲気)の溶剤分圧を制御することにより、塗料15A(樹脂)と溶剤とが好ましく接触して、凹部153が好ましく形成される。この際、平坦部151の平滑度も高まる。その結果、塗膜15の表面に平坦部151と複数の凹部153とが形成される。   In particular, in the method for manufacturing the coated metal sheet 1 according to the present embodiment, the solvent partial pressure in the space 103 of the chamber 101 is controlled when forming (curing) the coating film 15 in order to form the plurality of recesses 153. . Under conventional manufacturing conditions, the solvent partial pressure was less than 0.005 atm. In the method for manufacturing the coated metal sheet 1 according to the present embodiment, the amount of hot air supplied from the air supply port 109, the amount of outside air flowing in from the inlet 105, the amount of exhaust air from the exhaust port 111, the amount of leakage from the outlet 107, By changing the heating temperature of the heating blower 113 from the conventional condition, the partial pressure of the solvent in the space 103 (atmosphere) is intentionally controlled to 0.005 to 0.2 atm. By controlling the partial pressure of the solvent in the space 103 (atmosphere), the paint 15A (resin) and the solvent are preferably in contact with each other, so that the concave portion 153 is preferably formed. At this time, the smoothness of the flat portion 151 also increases. As a result, a flat portion 151 and a plurality of concave portions 153 are formed on the surface of the coating film 15.

空間103の溶剤分圧の下限は、0.008atm、0.010atm、または0.015atmであることが好ましい。空間103の溶剤分圧の上限は、0.15atm、0.12atm、または0.1atmであることが好ましい。なお、空間103の溶剤の分圧は、給気口109からの熱風の給気量、入口105からの外気の流入量、排気口111からの排気量、出口107からの漏出量、および加熱送風機113での加熱温度を変更することによって制御する。給気口109からの熱風の給気量、入口105からの外気の流入量、排気口111からの排気量、出口107からの漏出量、および加熱送風機113での加熱温度は、製造設備毎にそれらの値が変化するので、目的に応じた空間103の溶剤分圧となるように、各条件を適宜調整すればよい。   The lower limit of the partial pressure of the solvent in the space 103 is preferably 0.008 atm, 0.010 atm, or 0.015 atm. The upper limit of the partial pressure of the solvent in the space 103 is preferably 0.15 atm, 0.12 atm, or 0.1 atm. The partial pressure of the solvent in the space 103 is determined by the amount of hot air supplied from the air supply port 109, the amount of outside air flowing in from the inlet 105, the amount of exhaust air from the exhaust port 111, the amount of leakage from the outlet 107, Control is performed by changing the heating temperature at 113. The amount of hot air supplied from the air supply port 109, the amount of outside air flowing in from the inlet 105, the amount of exhaust air from the exhaust port 111, the amount of leakage from the outlet 107, and the heating temperature in the heating blower 113 are determined for each manufacturing facility. Since these values change, each condition may be appropriately adjusted so that the solvent partial pressure in the space 103 according to the purpose is obtained.

焼付炉100における空間103内の温度は、特に限定されない。例えば、空間103内の雰囲気温度として、金属板の到達温度が100〜300℃となればよい。金属板の到達温度の下限は、150℃であり、200℃であることが好ましい。金属板の到達温度の上限は、270℃であり、250℃であることが好ましい。金属板の到達温度を制御することにより、液性媒体を効率よく蒸気に変態させて溶剤とすることができる。   The temperature in space 103 in baking furnace 100 is not particularly limited. For example, the ultimate temperature of the metal plate may be 100 to 300 ° C. as the ambient temperature in the space 103. The lower limit of the temperature reached by the metal plate is 150 ° C, preferably 200 ° C. The upper limit of the temperature reached by the metal plate is 270 ° C., preferably 250 ° C. By controlling the ultimate temperature of the metal plate, the liquid medium can be efficiently transformed into vapor and used as a solvent.

また、塗料15Aを担持した金属板11の加熱時間(焼付炉内の通板時間)は、特に限定されない。例えば、金属板11の加熱時間は、10〜120秒とすればよい。金属板11の加熱時間の下限は、12秒であり、15秒であることが好ましい。金属板11の加熱時間の上限は、90秒であり、60秒であることが好ましい。金属板11の加熱時間を制御することにより、液性媒体の蒸気が溶剤として適度に塗料15Aに接触して凹部153を好ましく形成することができる。   In addition, the heating time of the metal plate 11 supporting the paint 15A (the time required for the metal plate 11 to pass through the baking furnace) is not particularly limited. For example, the heating time of the metal plate 11 may be set to 10 to 120 seconds. The lower limit of the heating time of the metal plate 11 is 12 seconds, and preferably 15 seconds. The upper limit of the heating time of the metal plate 11 is 90 seconds, and preferably 60 seconds. By controlling the heating time of the metal plate 11, the vapor of the liquid medium can appropriately contact the paint 15 </ b> A as a solvent to form the recess 153 preferably.

以上の工程により、塗膜15の表面に平坦部151と複数の凹部153とを有する塗装金属板1が得られる。なお、上記の各工程を連続的に行ってもよい。上記の工程に対応する装置を備えた連続塗装ライン、例えば、コイルコーティングラインやシートコーティングラインにて、上記の各工程を行うことができる。その結果、塗装金属板1の生産効率が向上する。   Through the above steps, the coated metal plate 1 having the flat portion 151 and the plurality of concave portions 153 on the surface of the coating film 15 is obtained. In addition, you may perform each said process continuously. Each of the above-described steps can be performed in a continuous coating line equipped with an apparatus corresponding to the above-described steps, for example, a coil coating line or a sheet coating line. As a result, the production efficiency of the coated metal plate 1 is improved.

なお、本実施形態に係る塗装金属板1の製造方法は、上述した方法に限定されるものではない。例えば、塗料と接触させる溶剤は、塗料に含まれる液性媒体由来でなくてもよい。例えば、塗料と接触させる溶剤を、別途供給して塗料と接触させることができる。また、塗料と接触させる溶剤は、蒸気状の溶剤に限定されず、例えば、液体状や固体状の溶剤を適宜使用することができる。さらに、液体状の溶剤を使用する場合、スプレー噴霧装置やインクジェット装置等の液滴塗布装置を用いて塗膜15(塗料15A)に対し溶剤を接触させることが可能である。   In addition, the manufacturing method of the coated metal sheet 1 according to the present embodiment is not limited to the above-described method. For example, the solvent to be brought into contact with the paint need not be derived from the liquid medium contained in the paint. For example, a solvent to be brought into contact with the paint can be separately supplied and brought into contact with the paint. In addition, the solvent to be brought into contact with the paint is not limited to a vapor solvent, and for example, a liquid or solid solvent can be appropriately used. Further, when a liquid solvent is used, the solvent can be brought into contact with the coating film 15 (paint 15A) using a droplet applying device such as a spray atomizer or an inkjet device.

次に、実施例により本発明の一態様の効果を更に具体的に詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に制限されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。   Next, the effects of one embodiment of the present invention will be described in more detail with reference to examples. The conditions in the examples are examples of one condition adopted to confirm the operability and effects of the present invention. Yes, the present invention is not limited to this one condition example. The present invention may employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(1.塗装金属板の製造)
(i) 金属板
塗装金属板の製造に用いる金属板としては、板厚0.5mmの電気亜鉛めっき鋼板(EG:Electro Galvanized Steel)を使用した。めっき付着量は片面20g/mであった。
(1. Production of painted metal plate)
(I) Metal plate As a metal plate used for manufacturing a coated metal plate, an electrogalvanized steel (EG: Electro Galvanized Steel) having a thickness of 0.5 mm was used. The plating adhesion amount was 20 g / m 2 on one side.

(ii)化成処理層の形成
上記の金属板の一方の板面に対し、化成処理層を以下の方法で形成した。まず、ロールコーターにて化成処理液を金属板の一方の板面に塗布した。その後、金属板の到達温度(PMT:Peak Metal Temperature)が60℃となるように加温した。塗布面の化成処理液の付着量は、乾燥皮膜全体の付着量が300mg/mとなるように塗装した。各化成処理皮膜の付着量は蛍光X線により測定した。化成処理液には日本パーカライジング社製のクロメートフリー化成処理液「CT−E300N」を用いた。
(Ii) Formation of chemical conversion treatment layer A chemical conversion treatment layer was formed on one plate surface of the above metal plate by the following method. First, a chemical conversion treatment liquid was applied to one plate surface of a metal plate using a roll coater. Thereafter, the metal plate was heated so that the ultimate temperature (PMT: Peak Metal Temperature) became 60 ° C. The applied amount of the chemical conversion treatment liquid on the application surface was applied such that the attached amount of the entire dried film was 300 mg / m 2 . The amount of each chemical conversion coating was measured by X-ray fluorescence. As the chemical conversion treatment solution, a chromate-free chemical conversion treatment solution “CT-E300N” manufactured by Nippon Parkerizing Co., Ltd. was used.

(iii)白色塗膜の形成
金属板の化成処理層上に白色塗膜を以下の方法で形成した。
まず、表1に示すような樹脂17質量%、液性媒体50質量%、防錆顔料3.0質量%、および白色顔料30質量%を含む白色塗料(塗料1〜18)を調製した。ここで、白色塗料中の固形分含有量は50質量%とした。また、白色顔料としては酸化チタンを用い、全固形分における酸化チタンの含有量は60質量%とした。なお、表1中、樹脂および液性媒体の欄に記載される配合割合は、それぞれ、樹脂中、液性媒体中における各成分の配合割合を示す。
(Iii) Formation of White Coating A white coating was formed on the chemical conversion treatment layer of the metal plate by the following method.
First, white paints (paints 1 to 18) each containing 17% by mass of a resin, 50% by mass of a liquid medium, 3.0% by mass of a rust preventive pigment, and 30% by mass of a white pigment as shown in Table 1 were prepared. Here, the solid content in the white paint was 50% by mass. Titanium oxide was used as the white pigment, and the content of titanium oxide in the total solid content was 60% by mass. In addition, in Table 1, the compounding ratio described in the column of the resin and the liquid medium indicates the compounding ratio of each component in the resin and the liquid medium, respectively.

また、表1中、「ポリエステル」は東洋紡株式会社製のポリエステル樹脂「GK−140」を、「メチル化メラミン」はサイテック株式会社製のメチル化メラミン樹脂「サイメル303」を、「ブチル化メラミン」はDIC株式会社製のブチル化メラミン樹脂「スーパーペッカミンJ−820−60」を、「リン酸マグネシウム」は純正化学株式会社製のリン酸2水素マグネシウムを、カルシウム修飾シリカはW.R.グレース社製の「シールデックスC303」をそれぞれ示す。また、「ソルベッソ100」はエクソンモービル社が販売する溶剤であり、「シクロヘキサノン」は三協化学社製の「アノン」であり、「ジオキサン」は三協化学社製の「1,4−ジオキサン」であり、「メチルエチルケトン」は三協化学社製の「MEK」であり、「o−キシレン」は三菱ガス化学社製の「オルソキシレン」であり、「エタノール」は三協化学社製の「エタノール」であり、「n−ブタノール」は三協化学社製の「ブタノール」である。   In Table 1, "Polyester" refers to a polyester resin "GK-140" manufactured by Toyobo Co., Ltd., "Methylated melamine" refers to a methylated melamine resin "Cymel 303" manufactured by Cytec Corporation, and "butylated melamine". Is a butylated melamine resin "Super Peckamine J-820-60" manufactured by DIC Corporation, "magnesium phosphate" is magnesium dihydrogen phosphate manufactured by Junsei Chemical Co., Ltd., and calcium-modified silica is W.M. R. "Sealdex C303" manufactured by Grace Co., Ltd. is shown. “Solvesso 100” is a solvent sold by ExxonMobil, “cyclohexanone” is “Anon” manufactured by Sankyo Chemical Co., and “Dioxane” is “1,4-dioxane” manufactured by Sankyo Chemical. Where “methyl ethyl ketone” is “MEK” manufactured by Sankyo Chemical Co., Ltd., “o-xylene” is “ortho xylene” manufactured by Mitsubishi Gas Chemical Company, and “ethanol” is “ethanol manufactured by Sankyo Chemical Co., Ltd.” And "n-butanol" is "butanol" manufactured by Sankyo Chemical Co., Ltd.

また、表1に示す樹脂または液性媒体のSP値(溶解度パラメータ)は、以下のようにして実験的に求めた。各試験温度は20℃とした。
<樹脂のSP値測定>
樹脂0.5gとシクロヘキサノン(関東化学社製)を10mLとなるように混合した。スターラーで攪拌し、混合物中の樹脂を溶解させて試料溶液を得た。次に、SP値の異なる貧溶媒を、試料溶液に濁りが生じるまで滴下した。
<液性媒体の場合>
各種液性媒体10mLを試料溶液とした。次に、SP値の異なる貧溶媒を、試料溶液に濁りが生じるまで滴下した。
The SP value (solubility parameter) of the resin or liquid medium shown in Table 1 was experimentally obtained as follows. Each test temperature was 20 ° C.
<SP value measurement of resin>
0.5 g of the resin and cyclohexanone (manufactured by Kanto Chemical Co., Ltd.) were mixed to make 10 mL. The mixture was stirred with a stirrer to dissolve the resin in the mixture to obtain a sample solution. Next, poor solvents having different SP values were added dropwise until the sample solution became turbid.
<In the case of liquid medium>
10 mL of various liquid media was used as a sample solution. Next, poor solvents having different SP values were added dropwise until the sample solution became turbid.

そして、得られた濁りが生じるまでに要した貧溶媒の体積と、貧溶媒のSP値とを、上述した式1に代入することより、試料溶液のSP値δを求めた。なお、SP値の低い貧溶媒としてはn−ヘキサン(関東化学社製)を、SP値の高い貧溶媒としては水(和光純薬工業社製)を用いた。これらn−ヘキサンおよび水のSP値としては文献(C.M.Hansen et.al:J.Paint Tech.,39[505],104−117(1967))に記載の値を用いた。   Then, the SP value δ of the sample solution was determined by substituting the obtained volume of the poor solvent required until the occurrence of turbidity and the SP value of the poor solvent into the above-described equation 1. In addition, n-hexane (manufactured by Kanto Chemical Co., Ltd.) was used as a poor solvent having a low SP value, and water (manufactured by Wako Pure Chemical Industries, Ltd.) was used as a poor solvent having a high SP value. As the SP values of n-hexane and water, the values described in the literature (CM Hansen et. Al: J. Paint Tech., 39 [505], 104-117 (1967)) were used.

次いで、各発明例および比較例について、化成処理皮膜を有する亜鉛系めっき鋼板の板面に、表1に示す塗料1〜18をスライドカーテンコーターにて所定の乾燥膜厚となる様に塗布した。その後、図5に示すような熱風加熱方式の焼付炉にてPMTが220℃となる様に焼付後、水冷処理を行い、エアブローで乾燥させて目的の白色塗膜を有するプレコート鋼板(塗装金属板)を得た。通板速度(LS:Line Speed)は毎分80m〜200mとし、焼付炉における加熱時間(焼付炉内の通板時間)は10〜30秒であった。   Next, for each of the invention examples and the comparative examples, paints 1 to 18 shown in Table 1 were applied to the surface of a zinc-based plated steel sheet having a chemical conversion coating by a slide curtain coater so as to have a predetermined dry film thickness. Then, after baking in a hot-air heating type baking furnace as shown in FIG. 5 so that the PMT becomes 220 ° C., water-cooling treatment is performed, and drying is performed by air blow to obtain a pre-coated steel sheet (coated metal sheet) having a target white coating film. ) Got. The passing speed (LS: Line Speed) was 80 m to 200 m per minute, and the heating time in the baking furnace (the passing time in the baking furnace) was 10 to 30 seconds.

なお、図5に示すような焼付炉を用いて焼付を行う際に、白色塗料中の液性媒体は揮発して溶剤となり焼付炉のチャンバの内部空間に滞留した。この際、チャンバの内部空間内の溶剤の分圧を制御するために、給気口からの熱風の給気量、金属板入口からの外気の流入量、排気口からの排気量、金属板出口からの漏出量、および加熱送風機での加熱温度を調整した。これにより、溶剤の白色塗膜への接触が可能であった。   When baking was performed using a baking furnace as shown in FIG. 5, the liquid medium in the white paint volatilized to become a solvent and stayed in the internal space of the baking furnace chamber. At this time, in order to control the partial pressure of the solvent in the internal space of the chamber, the amount of hot air supplied from the supply port, the amount of outside air flowing in from the metal plate inlet, the amount of exhaust air from the exhaust port, and the amount And the heating temperature of the heating blower were adjusted. This enabled the solvent to contact the white coating film.

(2.評価)
得られた塗装金属板の最表面の白色塗膜を観察した。凹部の特徴として、凹部の有無、平均直径、平均深さ、個数密度、面積率、および輪郭形状を測定した。また、凹部の内表面上の凸部の特徴として、平均高さおよび平均直径を測定した。また、平坦部の特徴として、面積率および平均表面粗さRaを測定した。また、白色塗膜の厚さ(膜厚)を測定した。
(2. Evaluation)
A white coating film on the outermost surface of the obtained coated metal plate was observed. As features of the recess, the presence or absence of the recess, the average diameter, the average depth, the number density, the area ratio, and the contour shape were measured. The average height and average diameter were measured as characteristics of the convex portion on the inner surface of the concave portion. Further, as features of the flat portion, the area ratio and the average surface roughness Ra were measured. Further, the thickness (film thickness) of the white coating film was measured.

具体的には、原子間力顕微鏡(NanoScope IIIa、デジタルインスツルメンツ社製)を用いて、塗装金属板の白色塗膜の表面をスキャンした。カンチレバーとしては、Si製SPM(Scanning Probe Microscope)センサーを用いた。測定範囲は10μm×10μmとし、必要に応じて2.5×2.5μmとした。そして、上述した方法で平坦部、凹部、および凸部を特定し、上記の特徴を評価した。   Specifically, the surface of the white coating film of the coated metal plate was scanned using an atomic force microscope (NanoScope IIIa, manufactured by Digital Instruments). As the cantilever, an SPM (Scanning Probe Microscope) sensor made of Si was used. The measurement range was 10 μm × 10 μm, and was 2.5 × 2.5 μm as needed. And the flat part, the concave part, and the convex part were specified by the above-mentioned method, and the above-mentioned feature was evaluated.

なお、凹部の輪郭形状として、各凹部に関して、凹部の輪郭長Lと、凹部の円相当直径から求められる円周長Lとから、L/Lを計算した。そして、観察したすべての凹部に対して、1.0≦L/L≦3.0を満足している凹部を、個数%として評価した。In addition, as the contour shape of the concave portion, L 1 / L 2 was calculated for each concave portion from the contour length L 1 of the concave portion and the circumferential length L 2 obtained from the equivalent circle diameter of the concave portion. Then, with respect to all the observed concave portions, the concave portions satisfying 1.0 ≦ L 1 / L 2 ≦ 3.0 were evaluated as number%.

また、得られた塗装金属板の白色塗膜を、塗膜剥離剤(「ネオリバーSP751」、三彩化工社製)を用いて剥離し、重量法により膜厚を算出した。   Further, the white coating film of the obtained coated metal plate was peeled off using a coating film release agent (“Neoriver SP751”, manufactured by Sansai Kako Co., Ltd.), and the film thickness was calculated by a gravimetric method.

さらに、得られた塗装金属板について、白色度および光沢度を測定した。白色度に関し、コニカミノルタ社製CR−400を用いてL値を測定した。また、光沢度に関し、コニカミノルタ社製Multi Gloss 268を用いて60°光沢を測定した。Further, whiteness and glossiness of the obtained coated metal plate were measured. Regarding whiteness, L * value was measured using CR-400 manufactured by Konica Minolta. The glossiness was measured at 60 ° gloss using Multi Gloss 268 manufactured by Konica Minolta.

白色塗膜の厚さが10μm未満の場合、白色度として、L値が87.0以上を合格と判断し、光沢度として、60°光沢が71以上を合格と判断した。白色塗膜の厚さが10μm以上の場合、白色度として、L値が89.5以上を合格と判断し、光沢度として、60°光沢が72以上を合格と判断した。製造した白色塗膜を有する塗装金属板の評価結果を表2に示す。なお、いずれの塗装金属板でも平坦部の平均表面粗さRaが20nm未満であった。When the thickness of the white coating film was less than 10 μm, the whiteness was judged to be acceptable when the L * value was 87.0 or more, and the gloss was judged to be acceptable when the 60 ° gloss was 71 or more. When the thickness of the white coating film was 10 µm or more, the whiteness was judged to be acceptable when the L * value was 89.5 or more, and the gloss was judged to be acceptable when the 60 ° gloss was 72 or more. Table 2 shows the evaluation results of the manufactured coated metal plates having the white coating films. In addition, the average surface roughness Ra of the flat part was less than 20 nm in any of the coated metal plates.

表2に示すように、発明例1〜13の塗装金属板は、白色度および光沢度を同時に満足した。一方で、比較例1〜11の塗装金属板は、白色度または光沢度の何れかが不十分であった。比較例1、2、5および6は、白色塗膜の表面に凹部が形成されなかったので、白色度が十分でなかった。比較例3および4は、凹部の平均深さが深くなりすぎ、白色度および光沢度が十分でなかった。比較例7は、凹部の平均直径が小さくなりすぎ、白色度が十分でなかった。比較例8は、凹部の平均深さが浅くなりすぎ、白色度が十分でなかった。比較例9および10は、チャンバ内の溶剤分圧が低かったので、白色度が十分でなかった。比較例11は、チャンバ内の溶剤分圧が高かったので、白色度および光沢度が十分でなかった。   As shown in Table 2, the coated metal plates of Invention Examples 1 to 13 simultaneously satisfied whiteness and glossiness. On the other hand, the coated metal plates of Comparative Examples 1 to 11 had insufficient whiteness or gloss. Comparative Examples 1, 2, 5, and 6 did not have sufficient whiteness because no concave portions were formed on the surface of the white coating film. In Comparative Examples 3 and 4, the average depth of the concave portions was too large, and the whiteness and glossiness were not sufficient. In Comparative Example 7, the average diameter of the concave portions was too small, and the whiteness was not sufficient. In Comparative Example 8, the average depth of the concave portions was too small, and the whiteness was not sufficient. In Comparative Examples 9 and 10, since the solvent partial pressure in the chamber was low, the whiteness was not sufficient. Comparative Example 11 had insufficient whiteness and glossiness because the solvent partial pressure in the chamber was high.

なお、一般に、白色塗膜を有する塗装金属板の白色度および光沢度は、白色塗膜の厚さにも大きく影響され、白色塗膜の厚さが薄くなると白色度および光沢度が低下する。ここで、白色塗膜の厚さが8.0μmである発明例12および比較例6を比較すると、発明例12は、比較例6と同等の光沢度を発現しつつ、より高い白色度を呈した。   In general, the whiteness and glossiness of a coated metal plate having a white coating film are greatly affected by the thickness of the white coating film, and the whiteness and glossiness decrease as the thickness of the white coating film decreases. Here, comparing Invention Example 12 and Comparative Example 6 in which the thickness of the white coating film is 8.0 μm, Invention Example 12 exhibits higher whiteness while exhibiting the same glossiness as Comparative Example 6. did.

また、図6は、白色塗膜の厚さが同一(16μm)の発明例および比較例に関して、白色度(L値)と光沢度(60°光沢)との関係を示すグラフである。図6に示すように、発明例は、比較例と比較して、光沢と白色度とを高い次元で両立していることが明らかである。FIG. 6 is a graph showing the relationship between whiteness (L * value) and glossiness (60 ° gloss) for the inventive examples and comparative examples in which the thickness of the white coating film is the same (16 μm). As shown in FIG. 6, it is clear that the invention example achieves both high gloss and whiteness in comparison with the comparative example.

また、図7に発明例1の白色塗膜の表面を観察した走査型電子顕微鏡(SEM:Scanning Electron Microscope)写真を示す。図8および図9に発明例1の白色塗膜の表面を観察した原子間力顕微鏡画像(斜め45°)を示す。また、図10に比較例1の白色塗膜の表面を観察した走査型電子顕微鏡(SEM)写真を示す。   FIG. 7 shows a scanning electron microscope (SEM) photograph of the surface of the white coating film of Inventive Example 1 observed. 8 and 9 show an atomic force microscope image (obliquely 45 °) of the surface of the white coating film of Inventive Example 1. FIG. 10 shows a scanning electron microscope (SEM) photograph in which the surface of the white coating film of Comparative Example 1 was observed.

図7および図8に示すように、発明例1の白色塗膜には、複数の凹部が形成されていた。また、図9に示すように、凹部の中央部付近には、凸部が観察された。一方で、図10に示すように、比較例1の白色塗膜には、凹部が観察されなかった。   As shown in FIGS. 7 and 8, a plurality of concave portions were formed in the white coating film of Inventive Example 1. Further, as shown in FIG. 9, a convex portion was observed near the center of the concave portion. On the other hand, as shown in FIG. 10, no concave portion was observed in the white coating film of Comparative Example 1.

(3.塗装金属板の製造)
(i) 金属板
塗装金属板の製造に用いる金属板としては、板厚0.5mmの電気亜鉛めっき鋼板(EG)を使用した。めっき付着量は片面20g/mとした。
(3. Production of painted metal plate)
(I) Metal plate As a metal plate used for manufacturing a coated metal plate, an electrogalvanized steel plate (EG) having a thickness of 0.5 mm was used. The coating weight was 20 g / m 2 on one side.

(ii) 化成処理層の形成
上記の金属板の一方の板面に対し、化成処理層を以下の方法で形成した。ロールコーターにて化成処理液を金属板の一方の板面に塗布した。その後、PMTが60℃となるように加温した。塗布面の化成処理液の付着量は、乾燥皮膜全体の付着量が300mg/mとなるように塗装した。各化成処理皮膜の付着量は蛍光X線により測定した。
(Ii) Formation of chemical conversion treatment layer A chemical conversion treatment layer was formed on one plate surface of the above metal plate by the following method. The chemical conversion solution was applied to one surface of the metal plate by a roll coater. Then, it heated so that PMT might be set to 60 ° C. The applied amount of the chemical conversion treatment liquid on the application surface was applied such that the attached amount of the entire dried film was 300 mg / m 2 . The amount of each chemical conversion coating was measured by X-ray fluorescence.

(iii) 着色塗膜の形成
金属板の化成処理層上に着色塗膜を以下の方法で形成した。
まず、表3に示すような樹脂32.3質量%、液性媒体65質量%、防錆顔料質量0.9%、および黒色顔料1.8質量%を含む着色塗料(塗料19〜27)を調製した。なお、各着色塗料中の固形分含有量は35質量%であった。また、黒色顔料としてはカーボンブラックを用い、全固形分におけるカーボンブラックの含有量は5質量%とした。なお、表3中の各成分の記載方法については、表1と同様である。また、表中SP値は、上述した方法により求めた。
(Iii) Formation of Colored Coating A colored coating was formed on the chemical conversion treatment layer of the metal plate by the following method.
First, a colored paint (paints 19 to 27) containing 32.3% by mass of a resin, 65% by mass of a liquid medium, 0.9% by mass of a rust preventive pigment, and 1.8% by mass of a black pigment as shown in Table 3 was prepared. Prepared. The solid content in each colored paint was 35% by mass. Carbon black was used as the black pigment, and the content of carbon black in the total solid content was 5% by mass. In addition, about the description method of each component in Table 3, it is the same as that of Table 1. The SP values in the table were obtained by the above-described method.

次いで、各発明例および比較例について、化成処理皮膜を有する亜鉛系めっき鋼板の板面に、表3に示す塗料19〜27をスライドカーテンコーターにて所定の乾燥膜厚となる様に塗布した。その後、図5に示すような熱風加熱方式の焼付炉にてPMTが220℃となる様に焼付後、水冷処理を行い、エアブローで乾燥させて目的の着色塗膜を有するプレコート鋼板(塗装金属板)を得た。通板速度は毎分120mとし、焼付炉における加熱時間は15秒であった。   Next, for each of the invention examples and the comparative examples, paints 19 to 27 shown in Table 3 were applied to the surface of a zinc-based plated steel sheet having a chemical conversion coating so as to have a predetermined dry film thickness using a slide curtain coater. Then, after baking in a hot-air heating type baking furnace as shown in FIG. 5 so that the PMT becomes 220 ° C., water-cooling treatment is performed, and drying is performed by air blow to obtain a pre-coated steel sheet having a desired colored coating film (a coated metal sheet). ) Got. The passing speed was 120 m / min, and the heating time in the baking furnace was 15 seconds.

なお、図5に示すような焼付炉を用いて焼付を行う際に、着色塗料中の液性媒体は揮発して溶剤となり焼付炉のチャンバの内部空間に滞留した。この際、チャンバの内部空間内の溶剤の分圧を制御するために、給気口からの熱風の給気量、金属板入口からの外気の流入量、排気口からの排気量、金属板出口からの漏出量、および加熱送風機での加熱温度を調整した。これにより、溶剤の着色塗膜への接触が可能であった。   In addition, when baking was performed using a baking furnace as shown in FIG. 5, the liquid medium in the colored paint volatilized to become a solvent and stayed in the internal space of the baking furnace chamber. At this time, in order to control the partial pressure of the solvent in the internal space of the chamber, the amount of hot air supplied from the air supply port, the amount of outside air flowing in from the metal plate inlet, the amount of exhaust air from the exhaust port, the metal plate outlet And the heating temperature of the heating blower were adjusted. This enabled the solvent to come into contact with the colored coating film.

(4.評価)
得られた塗装金属板の最表面の着色塗膜を観察した。上述と同様の方法で、平坦部、凹部、および凸部を特定し、各特徴を評価した。また、上述と同様の方法で、着色塗膜の膜厚を算出した。
(4. Evaluation)
The colored coating film on the outermost surface of the obtained coated metal plate was observed. The flat part, the concave part, and the convex part were specified by the same method as described above, and each characteristic was evaluated. Further, the thickness of the colored coating film was calculated in the same manner as described above.

さらに、得られた塗装金属板について、上述と同様の方法で白色度(L値)および光沢度(60°光沢)を測定した。白色度として、L値が27.0以上を合格と判断し、光沢度として、60°光沢が50以上を合格と判断した。製造した着色塗膜を有する塗装金属板の評価結果を表4に示す。なお、いずれの塗装金属板でも平坦部の平均表面粗さRaが20nm未満であった。Further, whiteness (L * value) and gloss (60 ° gloss) of the obtained coated metal plate were measured in the same manner as described above. As the whiteness, an L * value of 27.0 or more was judged as acceptable, and as the gloss, a 60 ° gloss of 50 or more was judged as acceptable. Table 4 shows the evaluation results of the coated metal sheets having the produced colored coating films. In addition, the average surface roughness Ra of the flat part was less than 20 nm in any of the coated metal plates.

表4に示すように、発明例14〜19の塗装金属板は、白みが付与されると同時に光沢度が高かった。一方で、比較例12〜17の塗装金属板は、白みが十分に付与されないか、または光沢度が著しく低下した。比較例12は、着色塗膜の表面に凹部が形成されなかったので、白色度が十分でなかった。比較例13および14は、凹部の平均深さが深くなりすぎ、光沢度が十分でなかった。比較例15および16は、チャンバ内の溶剤分圧が低かったので、白色度が十分でなかった。比較例17は、チャンバ内の溶剤分圧が高かったので、白色度および光沢度が十分でなかった。   As shown in Table 4, the coated metal plates of Invention Examples 14 to 19 were whitened and had high glossiness. On the other hand, in the coated metal plates of Comparative Examples 12 to 17, the whiteness was not sufficiently imparted, or the glossiness was significantly reduced. In Comparative Example 12, since no concave portion was formed on the surface of the colored coating film, the whiteness was not sufficient. In Comparative Examples 13 and 14, the average depth of the concave portions was too large, and the glossiness was not sufficient. In Comparative Examples 15 and 16, the whiteness was not sufficient because the solvent partial pressure in the chamber was low. In Comparative Example 17, since the solvent partial pressure in the chamber was high, the whiteness and glossiness were not sufficient.

本発明の上記態様によれば、光沢度の低下を抑制しながら白色度を高めることができる塗装金属板の提供が可能となるので、産業上の利用可能性が高い。   According to the above aspect of the present invention, it is possible to provide a coated metal plate that can increase whiteness while suppressing a decrease in glossiness, and thus has high industrial applicability.

1、1A、1B 塗装金属板
11 金属板
13 化成処理層
15 塗膜
15A 塗料
151 平坦部
153 凹部
155 凸部
17 プライマー
100 焼付炉
101 チャンバ
103 空間
105 入口
107 出口
109 給気口
111 排気口
113 加熱送風機
DESCRIPTION OF SYMBOLS 1, 1A, 1B Painted metal plate 11 Metal plate 13 Chemical conversion treatment layer 15 Coating 15A Paint 151 Flat part 153 Concave part 155 Convex part 17 Primer 100 Baking furnace 101 Chamber 103 Space 105 Inlet 107 Outlet 109 Air supply port 111 Exhaust port 113 Heating Blower

Claims (12)

金属板と、
前記金属板の少なくとも一方の板面上に位置する塗膜と、を有し、
前記塗膜が、最表面に配され、且つその表面に平坦部と複数の凹部とを有し、
前記凹部の平均直径が、0.20〜4.0μmであり、
前記凹部の平均深さが、20〜200nmであり、
前記塗膜の前記表面に対する前記凹部の個数密度が、1×10 〜1×10 個/mm であり、
前記平坦部の平均表面粗さRaが、20nm未満である
ことを特徴とする塗装金属板。
A metal plate,
Having a coating film located on at least one plate surface of the metal plate,
The coating film is disposed on the outermost surface, and has a flat portion and a plurality of concave portions on the surface,
The average diameter of the concave portion is 0.20 to 4.0 μm,
The average depth of the recess, Ri 20~200nm der,
The number density of the concave portions with respect to the surface of the coating film is 1 × 10 4 to 1 × 10 6 / mm 2 ,
The coated metal plate, wherein the flat portion has an average surface roughness Ra of less than 20 nm .
前記塗膜の前記表面に対する前記凹部の面積率が、1〜40%である
ことを特徴とする請求項1記載の塗装金属板。
The coated metal plate according to claim 1 , wherein an area ratio of the concave portion to the surface of the coating film is 1 to 40%.
前記塗膜の前記表面に対する前記凹部の面積率が、20〜40%である
ことを特徴とする請求項に記載の塗装金属板。
The coated metal plate according to claim 2 , wherein an area ratio of the concave portion to the surface of the coating film is 20 to 40%.
前記塗膜を板厚方向から見た場合に、前記凹部の輪郭長Lと、前記凹部の円相当直径から求められる円周長Lとが、1.0≦L/L≦3.0を満足する前記凹部が、個数%で95%以上である
ことを特徴とする請求項1〜のいずれか一項に記載の塗装金属板。
When viewed the coating film from a thickness direction, the contour length L 1 of the recess, the circumferential length L 2 which is obtained from the circle equivalent diameter of the recess, 1.0 ≦ L 1 / L 2 ≦ 3 4. The coated metal sheet according to any one of claims 1 to 3 , wherein the number of the concave portions satisfying 0.0 is 95% or more in number%.
前記凹部が、その内表面上に凸部を有する
ことを特徴とする請求項1〜のいずれか一項に記載の塗装金属板。
The said concave part has a convex part on the inner surface, The coating metal plate as described in any one of Claims 1-4 characterized by the above-mentioned.
前記凸部の平均直径が、0.1〜1.5μmであり、
前記凸部の平均高さが、5〜90nmである
ことを特徴とする請求項に記載の塗装金属板。
The average diameter of the protrusions is 0.1 to 1.5 μm,
The coated metal plate according to claim 5 , wherein an average height of the protrusions is 5 to 90 nm.
前記塗膜の前記表面に対する前記平坦部の面積率が、60〜99%である
ことを特徴とする請求項1〜のいずれか一項に記載の塗装金属板。
The coated metal plate according to any one of claims 1 to 6 , wherein an area ratio of the flat portion to the surface of the coating film is 60 to 99%.
前記塗膜の前記表面に対する前記平坦部の面積率が、60〜80%である
ことを特徴とする請求項に記載の塗装金属板。
The coated metal sheet according to claim 7 , wherein an area ratio of the flat portion to the surface of the coating film is 60 to 80%.
前記塗膜の厚さが、8.0〜30μmである
ことを特徴とする請求項1〜のいずれか一項に記載の塗装金属板。
The coated metal sheet according to any one of claims 1 to 8 , wherein the thickness of the coating film is 8.0 to 30 µm.
前記塗膜が白色顔料を有し、前記塗膜に対する前記白色顔料の含有量が40〜70質量%である
ことを特徴とする請求項1〜のいずれか一項に記載の塗装金属板。
The coated metal sheet according to any one of claims 1 to 9 , wherein the coating film has a white pigment, and the content of the white pigment with respect to the coating film is 40 to 70% by mass.
前記塗膜がリン酸系防錆顔料を有し、前記塗膜に対する前記リン酸系防錆顔料の含有量が1〜15質量%である
ことを特徴とする請求項1〜10のいずれか一項に記載の塗装金属板。
The said coating film has a phosphoric acid type rust preventive pigment, and content of the said phosphoric acid type rust preventive pigment with respect to the said coating film is 1-15 mass%, The any one of Claims 1-10 characterized by the above-mentioned. The painted metal sheet according to the item.
前記金属板と前記塗膜との間にさらに化成処理層を有する
ことを特徴とする請求項1〜11のいずれか一項に記載の塗装金属板。
The coated metal sheet according to any one of claims 1 to 11 , further comprising a chemical conversion treatment layer between the metal sheet and the coating film.
JP2018521447A 2017-01-12 2018-01-12 Painted metal plate Active JP6659838B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017003484 2017-01-12
JP2017003484 2017-01-12
PCT/JP2018/000650 WO2018131681A1 (en) 2017-01-12 2018-01-12 Coated metal plate

Publications (2)

Publication Number Publication Date
JPWO2018131681A1 JPWO2018131681A1 (en) 2019-01-24
JP6659838B2 true JP6659838B2 (en) 2020-03-04

Family

ID=62840467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018521447A Active JP6659838B2 (en) 2017-01-12 2018-01-12 Painted metal plate

Country Status (2)

Country Link
JP (1) JP6659838B2 (en)
WO (1) WO2018131681A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436746A (en) * 1990-06-01 1992-02-06 Asahi Chem Ind Co Ltd Surface-worked metallic luster thin film
JPH0825045B2 (en) * 1993-01-11 1996-03-13 大阪府 Iridescent color processing method
JP2001191021A (en) * 2000-01-14 2001-07-17 Fujikura Kasei Co Ltd Surface roughened coating film and forming method of surface roughened coating film
JP3409288B2 (en) * 2000-08-18 2003-05-26 株式会社神戸製鋼所 Colored coated metal plate with outstanding uneven pattern
JP4949072B2 (en) * 2007-02-23 2012-06-06 日本クラウンコルク株式会社 A coated metal plate having a non-glossy surface and a method for producing the same.
CN103547446B (en) * 2011-07-20 2015-03-11 新日铁住金株式会社 Panel

Also Published As

Publication number Publication date
WO2018131681A1 (en) 2018-07-19
JPWO2018131681A1 (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP5279952B2 (en) Chromate-free painted metal plate
JP5833871B2 (en) Manufacturing method of painted metal plate
JP4808717B2 (en) Pre-coated metal plate and manufacturing method thereof
WO2015064218A1 (en) Black coated metal plate
KR102323367B1 (en) Coated Metal Sheet, Method for Producing Same, and Exterior Building Material
JP2009228286A (en) Shutter slat
WO2014112544A1 (en) Organic-coated galvanized steel sheet and process for producing same
JP6473354B2 (en) Exterior building materials
JP6659838B2 (en) Painted metal plate
JP4818485B2 (en) Pre-coated metal plate and manufacturing method thereof
JP2012214676A (en) Coated metal plate and method of manufacturing the same
JP4873974B2 (en) Pre-coated metal plate and manufacturing method thereof
JP4874153B2 (en) Pre-coated metal plate, metal molded body obtained by molding the same, and method for producing pre-coated metal plate
JP5799770B2 (en) Chromate-free coated steel sheet
JP2010247396A (en) Coated metal plate and electronic instrument box using the same
JP2010247347A (en) Precoated cold-rolled steel sheet and method for manufacturing the same
KR102308881B1 (en) Coated Metal Sheet, Method for Producing Same, and Exterior Building Material
JP2011177621A (en) Method of manufacturing surface-treated coated steel sheet
TWI521096B (en) Precoated steel sheet and method for manufacturing the same
JP5486984B2 (en) Painted embossed steel sheet and manufacturing method thereof
JP5949707B2 (en) Steel plate for paper passing member
JP6682973B2 (en) Black coated zinc-based plated steel sheet and method for producing the same
JP4477847B2 (en) Clear painted metal plate
JP5900216B2 (en) panel
JP6473355B2 (en) Exterior building materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180425

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200206

R150 Certificate of patent or registration of utility model

Ref document number: 6659838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150