JP6657558B2 - Processed parts excellent in corrosion resistance and method of manufacturing the same - Google Patents

Processed parts excellent in corrosion resistance and method of manufacturing the same Download PDF

Info

Publication number
JP6657558B2
JP6657558B2 JP2014205168A JP2014205168A JP6657558B2 JP 6657558 B2 JP6657558 B2 JP 6657558B2 JP 2014205168 A JP2014205168 A JP 2014205168A JP 2014205168 A JP2014205168 A JP 2014205168A JP 6657558 B2 JP6657558 B2 JP 6657558B2
Authority
JP
Japan
Prior art keywords
hole
laser
face
machined
reflecting mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014205168A
Other languages
Japanese (ja)
Other versions
JP2016073989A (en
Inventor
雄二郎 巽
雄二郎 巽
健志 安井
健志 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014205168A priority Critical patent/JP6657558B2/en
Publication of JP2016073989A publication Critical patent/JP2016073989A/en
Application granted granted Critical
Publication of JP6657558B2 publication Critical patent/JP6657558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、薄鋼板の加工穴の端面の耐食性を向上させる、丸みの帯びた穴端面形状を有する加工部品に関するものである。   The present invention relates to a machined part having a rounded hole end face shape, which improves the corrosion resistance of the end face of a machined hole of a thin steel plate.

鋼板は、現在、自動車、家電などで広く使用されており、ほとんどの鋼板は、切断、穴あけ、曲げ加工などの機械加工が施される。これらの鋼板から形成された部品には、一般に表面処理(防錆処理)が施されている。この場合、例えば、亜鉛メッキ鋼板のような、予め片面又は両面に表面処理が施されている鋼板を材料として、これに機械加工して、所定形状の部品とする場合と、片面又は両面に表面処理がされていない鋼板を材料として、これに機械加工して、所定形状の部品にしてから、塗装などの表面処理を施す場合がある。   At present, steel sheets are widely used in automobiles, home appliances, and the like, and most steel sheets are subjected to machining such as cutting, drilling, and bending. Parts formed from these steel plates are generally subjected to a surface treatment (rust prevention treatment). In this case, for example, a steel sheet, such as a galvanized steel sheet, which has been subjected to surface treatment on one or both sides in advance, is machined into a material having a predetermined shape. In some cases, untreated steel sheet is used as a material, machined into a part having a predetermined shape, and then subjected to surface treatment such as painting.

予め表面処理が施されている鋼板を材料として、これに機械加工をした場合、加工端面は、下地鋼板が露出されるため、加工端面において、耐食性が不足する問題がある。特許文献1には、不純物成分をはじめとする鋼板成分の含有量を制限して、加工端面における錆の発生起点を極力低減させ、屋内環境下での加工端面の耐食性を向上させる技術が開示されている。   When a steel sheet which has been subjected to a surface treatment is used as a material and machined, the base steel sheet is exposed on the processed end face, so that there is a problem that the processed end face has insufficient corrosion resistance. Patent Literature 1 discloses a technology for limiting the content of steel plate components including impurity components, reducing the starting point of rust on a processed end surface as much as possible, and improving the corrosion resistance of the processed end surface in an indoor environment. ing.

一方、所定形状の部品にしてから、表面処理を施す場合、機械加工された端面にも塗装が施されるため、前述の場合より、加工端面において、耐食性が優れる部品が得られる。しかし、打ち抜きやドリルによる穴あけ加工を施した部品に、表面処理を施しても、穴の周辺に、早期に、赤錆が発生する問題がある。   On the other hand, when a surface treatment is performed after forming a part having a predetermined shape, the machined end face is also coated, so that a part having excellent corrosion resistance on the processed end face can be obtained as compared with the case described above. However, even if surface treatment is applied to a part that has been subjected to punching or drilling, there is a problem that red rust is generated early around the hole.

これは、部品の加工部分に、バリが形成され、鋭角なバリ部分には、塗装膜が形成され難く、この部分の塗装膜厚が他の部分よりも薄くなり易いため、塗装膜による耐食性が十分発揮されず、穴の周辺が腐食し易くなるためである。   This is because burrs are formed in the processed part of the part, and the coating film is not easily formed on the sharp burr part, and the coating thickness of this part is easily thinner than other parts, so the corrosion resistance by the coating film is low. This is because they are not sufficiently exhibited and the periphery of the hole is easily corroded.

従来から、穴あけ加工部分に形成されるバリを低減するために、適正クリアランスや、対向打ち抜き、切れ刃の仕上げ面粗さの向上、刃の材質の選択、鋼板部材の強度(降伏応力)又は伸び特性の選択、打ち抜き速度又は潤滑剤の選択などが検討されている。しかし、これらは、いずれも適用する上での制限や、経済性の悪化などの問題がある。   Conventionally, in order to reduce burrs formed in drilled parts, appropriate clearance, counter punching, improvement of finished surface roughness of cutting edge, selection of blade material, strength (yield stress) or elongation of steel plate member Selection of characteristics, punching speed, selection of lubricant, and the like are being studied. However, these have problems such as limitations in applying any of them and deterioration of economic efficiency.

そこで、穴あけ加工部分に形成されるバリ部分の防錆対策として、特許文献1に記載の技術を適用することが考えられる。しかし、この技術は、不純物成分をはじめとする鋼板成分の含有量を制限するため、所定の成分組成の鋼板に対しては有効であるが、その成分組成を有さない鋼板に対しては適用できず、汎用性に乏しい。   Therefore, it is conceivable to apply the technology described in Patent Literature 1 as a rust preventive measure for a burr portion formed in a drilled portion. However, this technology is effective for steel sheets with a specified composition, because it limits the content of steel sheet components including impurity components, but is applicable to steel sheets without that composition. Cannot be used, and lacks versatility.

また、穴あけ加工部分の防錆対策として、エッジ部を外部に出さない設計や、塗料の開発、バリ取り加工が行われているが、エッジ部を外部に出さない設計や塗料の開発は、所望の効果が得られるに至っていない。   In addition, as measures to prevent rust in the drilled part, designs that do not expose the edge, paint development, and deburring are being performed. However, design and development of paint that do not expose the edge are desirable. Effect has not yet been obtained.

バリ取り加工としては、一般に、研削、研磨が採用されている。しかしながら、穴あけ加工部分に対して、研削、研磨を行う際、加工穴内に、研削、研磨用の工具が入り難いため、バリ取り作業性が悪く、相当の作業時間を費やさなければならなくなる。さらに、バリ取り加工後の部分に研磨痕が残り、滑らかな面とならない問題がある。   Grinding and polishing are generally employed as deburring processing. However, when performing the grinding and polishing on the drilled portion, it is difficult to insert a grinding and polishing tool into the processed hole, so that the deburring workability is poor and considerable work time must be spent. Further, there is a problem that polishing marks remain on the portion after the deburring process, and the surface is not smooth.

一方、そのような問題を解決したバリ取り加工の一つとして、バリにレーザを照射して取り除く方法がある(例えば、特許文献2、参照)。この方法では、バリを取ることができ、レーザを照射して表面層を溶融凝固させるため、表面粗さが小さい滑らかな面になる。しかし、バリ取り加工された部分の周辺に、段差部分が生じることがあり、段差部分における塗装膜厚が他の部分よりも薄くなる。そのため、塗装膜により耐食性が十分発揮されず、バリ取り加工された部分周辺が腐食しやすい。   On the other hand, as one of the deburring processes that solves such a problem, there is a method of irradiating burrs with a laser (see, for example, Patent Document 2). In this method, burrs can be removed, and the surface layer is melted and solidified by irradiating a laser, so that a smooth surface with small surface roughness is obtained. However, there may be a stepped portion around the deburred portion, and the coating film thickness at the stepped portion is smaller than other portions. Therefore, the corrosion resistance is not sufficiently exhibited by the coating film, and the periphery of the deburred portion is likely to corrode.

特開2004−217960号公報JP 2004-217960 A 特開2000−317660号公報JP 2000-317660 A

本発明は、このような実情に鑑み、所定形状の部品にしてから、塗装などの表面処理を施す加工部品において、穴あけ加工端面における塗装膜厚の均一化を図り、加工部品の穴加工端面の耐食性が優れる、加工部品を提供することを課題とする。   The present invention has been made in view of such circumstances, and in a machined part to be subjected to surface treatment such as painting after forming a part having a predetermined shape, the coating film thickness on the boring face is made uniform, and the boring face of the machined part is formed. An object of the present invention is to provide a processed part having excellent corrosion resistance.

本発明者らは、上記課題を解決する方法について鋭意検討した。その結果、穴あけ加工端面をバリの無い丸みの帯びた端面形状とすることで、塗装膜の形成の際、端面上における塗装環境(温度や原料の供給量など)が、均一となり、端面上への塗装膜の付着量が一定、すなわち、均一な塗装膜厚となり、塗装性が改善された加工部品となることを見出した。   The present inventors have diligently studied a method for solving the above problem. As a result, by forming the drilling end face into a rounded end face shape without burrs, the coating environment (temperature, raw material supply amount, etc.) on the end face becomes uniform when forming the coating film, and It was found that the coating amount of the coating film was constant, that is, a uniform coating film thickness was obtained, and the processed part had improved paintability.

本発明の要旨は、以下の通りである。
(1)貫通穴を有する板厚1〜10mmの鋼部材の貫通穴の内面を含む表面に塗装膜を有する加工部品であって、前記貫通穴の貫通方向に平行な断面において、前記鋼部材の一方の表面の穴移行端部と他方の表面の穴移行端部との間が曲線で接続され、前記曲線が貫通穴の中心軸に向かって凸状であり、穴の端面が丸みを帯びた端面形状であることを特徴とする加工部品。
(2)貫通穴を有する板厚1〜10mmの鋼部材の貫通穴の内面を含む表面に塗装膜を有する加工部品の製造方法であって、機械加工ままの穴の端面に対してレーザを垂直に照射して、端面を溶融凝固させ、前記貫通穴の貫通方向に平行な断面において、前記鋼部材の一方の表面の穴移行端部と他方の表面の穴移行端部との間が曲線で接続され、前記曲線が貫通穴の中心軸に向かって凸状であり、穴の端面が丸みを帯びた端面形状である前記貫通穴を形成した後、鋼部材の表面に塗装を施すことを特徴とする加工部品の製造方法。
(3)前記機械加工ままの穴の内部に反射鏡を配置し、レーザを前記反射鏡に照射して、レーザを前記機械加工ままの穴の端面に対して垂直に照射することを特徴とする前記(2)に記載の加工部品の製造方法。
(4)前記反射鏡が円錐状であること特徴とする前記(3)に記載の加工部品の製造方法。
(5)前記反射鏡の面上を円周状にレーザを走査すること特徴とする前記(3)又は(4)のいずれかに記載の加工部品の製造方法。
(6)前記機械加工ままの穴の中心軸と平行な軸線を回転軸として、前記反射鏡を回転させることを特徴とする前記(3)又は(4)のいずれかに記載の加工部品の製造方法。
The gist of the present invention is as follows.
(1) A machined part having a coating film on a surface including an inner surface of a through-hole of a steel member having a plate thickness of 1 to 10 mm and having a through-hole, wherein the steel member has a cross-section parallel to a penetration direction of the through-hole. between the bore transition end portion of one surface hole transition end portion and the other surface of the are connected by a curve, Ri convex der the curve toward the central axis of the through hole, the end surface of the hole is rounded end face shape der workpiece, characterized in Rukoto.
(2) A method for producing a machined part having a coating film on a surface including an inner surface of a through-hole of a steel member having a thickness of 1 to 10 mm and having a through-hole, wherein a laser beam is perpendicular to an end face of the as-machined hole. To melt and solidify the end face, and in a cross section parallel to the penetration direction of the through hole, a curved line is formed between the hole transition end on one surface and the hole transition end on the other surface of the steel member. Connected, the curve is convex toward the central axis of the through-hole, and after forming the through-hole having a rounded end surface, the surface of the steel member is painted. Method of manufacturing processed parts.
(3) A reflecting mirror is arranged inside the hole as machined, a laser is irradiated to the reflecting mirror, and a laser is irradiated perpendicularly to an end face of the hole as machined. The method for manufacturing a processed part according to the above (2).
(4) The method according to (3), wherein the reflecting mirror has a conical shape.
(5) The method for manufacturing a machined part according to any one of (3) and (4), wherein the laser is scanned circumferentially on the surface of the reflecting mirror.
(6) The manufacturing of the machined part according to any one of (3) and (4), wherein the reflecting mirror is rotated around an axis parallel to a central axis of the machined hole as a rotation axis. Method.

本発明によれば、貫通穴の端面の塗装後の耐食性が優れる加工部品を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the processed part which is excellent in the corrosion resistance after the coating of the end surface of a through-hole can be provided.

穴を有する鋼部材の加工部品の概略を示す図である。(a)は、加工部品の斜視図であり、(b)は穴加工ままの加工穴を有する加工部品のX―X断面であり、(c)は穴端面が丸みの帯びた貫通穴を有する加工部品のX―X断面である。It is a figure showing the outline of the processed part of the steel member which has a hole. (A) is a perspective view of a machined component, (b) is an XX cross section of a machined component having a machined hole as it is, and (c) has a through hole with a rounded hole end surface. It is XX cross section of a processed part. 耐食性試験後の試験片の拡大鏡による写真画像を(ロ)に、耐食性試験前の試験片の走査型電子顕微鏡写真画像を模した図を(イ)と(ハ)に示す。(a)は試験片a、(b)は試験片bの外観を示す画像及び図である。(B) shows a photographic image of the test piece after the corrosion resistance test with a magnifying glass, and (A) and (C) show scanning electron microscope photographic images of the test piece before the corrosion resistance test. (A) is an image and a figure which show the external appearance of test piece a, (b) and test piece b. レーザを穴端面に対して垂直に照射する装置の概略を示す図である。It is a figure which shows the outline of the apparatus which irradiates a laser perpendicularly with respect to a hole end surface. レーザを穴端面に対して垂直に照射するための手段を示す。(a)は、円錐状の反射鏡で、レーザの焦点を固定する例であり、(b)は、レーザの軸に対して傾斜した反射鏡で、レーザの焦点を固定する例である。4 shows a means for irradiating a laser perpendicular to a hole end face. (A) is an example in which the focal point of the laser is fixed by a conical reflecting mirror, and (b) is an example in which the focal point of the laser is fixed by a reflecting mirror inclined with respect to the axis of the laser. 試験片A〜Eの塗装後の穴端面の走査型電子顕微鏡写真画像を模した図を示す。(a)は穴端面全体の図であり、(b)はバリ部分の拡大図である。The figure which imitated the scanning electron microscope photograph image of the hole end surface after the coating of test pieces AE is shown. (A) is a view of the entire hole end face, and (b) is an enlarged view of a burr portion. 試験片A〜Eの耐食性試験後の貫通穴周辺の拡大鏡による写真画像を示す。The photograph image by the magnifying glass around the through-hole after the corrosion resistance test of the test pieces AE is shown.

以下、本発明の加工部品ついて説明する。   Hereinafter, the processed part of the present invention will be described.

まず、機械加工ままの穴を有する加工部品について説明する。図1は、穴を有する鋼部材の加工部品の概略を示す図である。(a)は、加工部品の斜視図であり、(b)は穴加工まま加工部品のX―X断面である。加工部品1は、曲げ加工、切断加工などの加工が施されたものであって、(a)に示すように、打ち抜きやドリルなどの穴加工により得られる加工穴2を有するものである。なお、打ち抜きやドリルなどの穴加工により形成され、塗装膜を形成する前の機械加工ままの穴を、便宜上、以下「加工穴」という。   First, a machined part having a hole as machined will be described. 1: is a figure which shows the outline of the processed part of the steel member which has a hole. (A) is a perspective view of a machined component, and (b) is an XX cross section of the machined component as it is. The machined part 1 has been machined by bending, cutting, or the like, and has a machined hole 2 obtained by punching or drilling as shown in FIG. A hole formed by punching, drilling, or the like and being machined before forming a coating film is hereinafter referred to as a “machined hole” for convenience.

本発明において、加工穴2の形状は、円形状、楕円形状などの連続した曲面を有する環状であり、直径は5〜30mmである。また、加工部品1は、板厚1〜10mmの鋼部材で形成され、鋼部材の鋼種や成分組成は、特に限定されない。   In the present invention, the shape of the processing hole 2 is an annular shape having a continuous curved surface such as a circular shape and an elliptical shape, and the diameter is 5 to 30 mm. The processed part 1 is formed of a steel member having a plate thickness of 1 to 10 mm, and the steel type and composition of the steel member are not particularly limited.

そして、図1(b)に示すように、加工穴2は、鋼部材の一方の表面3と鋼部材の他方の表面4を貫通するように形成され、鋼部材の表面3、4は、各表面から加工穴2へ移行する端部である穴移行端部5、6を有する。図1(a)に示す穴移行端部5、6は円形状である。また、図1(b)に示すように、穴の貫通方向に平行な断面において、一方の表面の穴移行端部5と他方の表面の穴移行端部6との間は、ほぼ直線で接続されている。そして、穴移行端部5、6のいずれかの周辺にバリ部分(図示省略)を有している。   Then, as shown in FIG. 1 (b), the machined hole 2 is formed so as to penetrate one surface 3 of the steel member and the other surface 4 of the steel member. It has hole transition ends 5 and 6 which are ends that transition from the surface to the machining hole 2. The hole transition ends 5, 6 shown in FIG. 1 (a) are circular. In addition, as shown in FIG. 1B, in a cross section parallel to the through direction of the hole, the hole transition end 5 on one surface and the hole transition end 6 on the other surface are connected in a substantially straight line. Have been. A burr portion (not shown) is provided around one of the hole transition ends 5 and 6.

本発明は、このような加工部品において、鋼部材の両表面の穴移行端部5、6に至るまでの穴端面の形状を限定することにより、加工部品の表面の塗装膜厚が均一となり、塗装性が改善された加工部品とするようにしたものである。   The present invention restricts the shape of the hole end surface up to the hole transition ends 5 and 6 on both surfaces of the steel member in such a processed part, so that the coating film thickness on the surface of the processed part becomes uniform, This is to provide a machined part with improved paintability.

一般に、バリ部分を含む穴あけ加工端面(以下、「穴端面」という)は、研削、研磨により処理する方法が採用されている。これらの処理方法では、バリは無くなるが、バリ取り加工後の部分に研磨痕が残る。その上、穴内部の端面は、処理が施されないため、図1(b)に示すような、一方の表面の穴移行端部5と他方の表面の穴移行端部6との間が、ほぼ直線で接続されたままとなる。そのため、バリ取り加工後の部分と、穴内部の端面との境に、角度が変化する部分が存在している。   In general, a method of processing a drilled end surface including a burr portion (hereinafter, referred to as “hole end surface”) by grinding and polishing is adopted. In these treatment methods, burrs are eliminated, but polishing marks remain on the portion after the deburring process. In addition, since the end face inside the hole is not subjected to the treatment, as shown in FIG. 1B, the gap between the hole transition end 5 on one surface and the hole transition end 6 on the other surface is almost equal. It remains connected in a straight line. Therefore, there is a portion where the angle changes at the boundary between the portion after the deburring and the end surface inside the hole.

本発明者らは、開放された鋼部材の表面と異なり、穴端面に、バリや、研磨痕、角度が変化する部分などの凹凸があると、塗装膜の形成の際、端面上における塗装環境が不均一となり、均一な塗装膜厚が得られず、穴の周辺が腐食し易くなると考えた。   The present inventors have found that, unlike the surface of an open steel member, when the hole end surface has irregularities such as burrs, polishing marks, and portions where the angle changes, the coating environment on the end surface during the formation of the coating film. Was considered to be non-uniform, a uniform coating film thickness could not be obtained, and the periphery of the hole was likely to corrode.

そこで、穴の斜め上方から穴端面に向けてレーザを照射して、バリ部分を含む穴端面を溶融処理して、凹凸のない穴端面の形成を試みた。この処理によって、穴端面に、バリは無くなり、滑らかな穴端面となったが、溶融金属が溶け落ち、被加工部品の裏面側に寄って、段差のある端面となった。そのため、この加工部品に塗装を施したが、段差部分において、塗装膜厚が薄くなり、塗装膜厚の均一化が図れなかった。   Therefore, a laser was irradiated from obliquely above the hole toward the hole end face, and the hole end face including the burr portion was subjected to a melting treatment to form a hole end face without irregularities. By this processing, burrs were eliminated on the hole end face, and a smooth hole end face was obtained. However, the molten metal melted off, and a stepped end face was formed toward the back side of the workpiece. For this reason, the coated part was coated, but the thickness of the coating was reduced at the step, and the coating thickness could not be made uniform.

これらより、本発明者らは、穴端面を、上述の凹凸及び段差のない丸みの帯びた形状とすることで、塗装膜厚の均一化が図れると考え、穴端面の形状を調整して検討した。   From these, the present inventors consider that by making the hole end face round and round without the above-mentioned unevenness and steps, the coating film thickness can be made uniform, and the shape of the hole end face is adjusted and studied. did.

まず、図1(a)及び(b)に示すような加工部品として、板厚2.3mm、440MPa級の熱延鋼板に、打ち抜き穴(パンチ径φ20mm)を形成したものを作成した。そして、一方の加工部品は、加工穴ままとする試験片aとし、他方の加工部品は、溶融凝固処理により、穴端面を丸みの帯びた端面形状を有する貫通穴9とする試験片bとした。なお、塗装膜を形成する前の穴端面を丸みの帯びた形状にした穴を、便宜上、以下「貫通穴」といい、「加工穴」と区別する。   First, a machined part as shown in FIGS. 1A and 1B was prepared by forming a punched hole (punch diameter φ20 mm) in a hot-rolled steel sheet of 2.3 mm in thickness and 440 MPa class. One of the processed parts is a test piece a that is to remain a processed hole, and the other processed part is a test piece b that has a through-hole 9 having a rounded end face shape by melt-solidification. . A hole having a round end shape before forming a coating film is hereinafter referred to as a “through hole” for convenience and is distinguished from a “machined hole”.

そして、試験片a及び試験片bに塗装を施して、耐食性試験を実施し、穴端面7の形状が及ぼす耐食性への影響について検討した。耐食性試験は、自動車用材料腐食試験方法(JASOM609−91)に基づき、1サイクルあたり8時間の処理を30サイクル繰り返し行い、実施した。1サイクルは、塩水噴霧試験(2時間、5%NaCl、35℃)、乾燥(4時間、30%RH、60℃)、湿潤試験(2時間、95%RH、50℃)からなる。   Then, the test piece a and the test piece b were coated, a corrosion resistance test was performed, and the influence of the shape of the hole end face 7 on the corrosion resistance was examined. The corrosion resistance test was carried out by repeating a treatment of 8 hours per cycle for 30 cycles based on a method for testing corrosion of automotive materials (JASOM609-91). One cycle consists of a salt spray test (2 hours, 5% NaCl, 35 ° C.), drying (4 hours, 30% RH, 60 ° C.), and wet test (2 hours, 95% RH, 50 ° C.).

図2(ロ)は、耐食性試験後の試験片を写した写真であり、(イ)と(ハ)は耐食性試験前の試験片を示す図である。(a)は試験片a、(b)は試験片bの外観である。図2は、列方向に試験片aと試験片bの外観を示してあり、(イ)の段の図は、穴の貫通方向の断面における穴中心線8の左半分(図1(b)又は(c)の穴中心線8の左側に相当)を示したもので、(ロ)の段の図は、試験片の平面図であり、(ハ)の段の図は、(イ)の段の図中に示した枠の部分の拡大図である。(イ)は、穴の中心を通る線に沿って鋼板を切断し、該切断面を研磨した後、走査型電子光学顕微鏡で倍率100倍で撮影した写真を模した図を縮小したものである。(ハ)は、倍率2000倍で撮影した走査型電子顕微鏡写真を模した図を縮小したものである。   FIG. 2B is a photograph of a test piece after the corrosion resistance test, and FIGS. 2A and 2C are views showing the test piece before the corrosion resistance test. (A) shows the appearance of test piece a, and (b) shows the appearance of test piece b. FIG. 2 shows the appearance of the test piece a and the test piece b in the row direction. The figure in the stage (a) shows the left half of the center line 8 of the hole in the cross section in the through direction of the hole (FIG. 1 (b)). Or (c) corresponds to the left side of the center line 8 of the hole), wherein the figure of (b) is a plan view of the test piece, and the figure of (c) is a figure of (a). It is an enlarged view of the part of the frame shown in the figure of the column. (A) is a scaled down view of a photograph taken at 100 × magnification with a scanning electron optical microscope after cutting a steel plate along a line passing through the center of the hole and polishing the cut surface. . (C) is a reduced view of a scanning electron microscope photograph taken at a magnification of 2000 times.

試験片aは、(イ)及び(ハ)の段の図に示されるように、加工部品1の穴移行端部に高いバリが形成されており、バリ部分において塗装膜10の膜厚(左上から右下に向かう斜線部分)が薄くなっている。そして、(ロ)の段の図に示されるように、薄い灰色で表示される加工穴周辺に、黒色の線で表示される赤錆11が発生している。   In the test piece a, as shown in the figures of (a) and (c), a high burr is formed at the hole transition end of the processed part 1, and the thickness of the coating film 10 (the upper left corner) is formed at the burr portion. From the lower right to the lower right) is thinner. Then, as shown in the figure in the row (b), red rust 11 indicated by a black line is generated around the processing hole indicated by light gray.

一方、試験片bは、(イ)の段の図に示されるように、穴端面7が丸みの帯びた形状となっており、(ハ)の段の図に示されるように、穴の上端部付近にバリはなく、塗装膜厚(左上から右下に向かう斜線部分)が均一になっている。そして、中段図(ロ)において、貫通穴周辺に赤錆11がほとんど発生していない。図1(c)は、穴端面が丸みの帯びた貫通穴を有する加工部品のX―X断面であり、試験片bの穴端面7を示している。   On the other hand, in the test piece b, the hole end face 7 has a rounded shape as shown in the figure of the step (a), and the upper end of the hole as shown in the figure of the step (c). There are no burrs near the part, and the coating film thickness (shaded area from upper left to lower right) is uniform. In the middle diagram (b), almost no red rust 11 is generated around the through hole. FIG. 1C is an XX cross section of a machined part having a through hole with a rounded hole end surface, and shows a hole end surface 7 of a test piece b.

以上、検討結果をまとめると、以下の通りである。
加工部品1に、穴の貫通方向に平行な断面において、一方の表面の穴移行端部5と鋼部材の他方の表面4の穴移行端部6との間を全長にわたって曲線で接続され、この曲線を穴中心軸8に向かって凸状となるように構成された貫通穴9を設ける。このような穴端面7を有する加工部品1とすることで、図2に示すように、塗装を施した際に、塗装の膜厚が均一となり、耐食性に優れたものとなる。
The results of the study are summarized below.
In the cross section parallel to the direction of penetration of the hole, the work piece 1 is connected in a curved manner over the entire length between the hole transition end 5 on one surface and the hole transition end 6 on the other surface 4 of the steel member. A through-hole (9) is provided so that the curve is convex toward the hole center axis (8). By forming the machined component 1 having such a hole end surface 7, as shown in FIG. 2, when the coating is applied, the thickness of the coating becomes uniform, and the coating becomes excellent in corrosion resistance.

本発明は、以上のような検討過程を経て上記(1)に記載の発明に至ったものであり、そのような本発明について、さらに、必要な要件や好ましい要件について順次説明する。   The present invention has been made to the invention described in the above (1) through the above-described examination process, and the necessary and preferable requirements of the present invention will be further described sequentially.

穴の貫通方向に平行な断面において、一方の表面の穴移行端部5と鋼部材の他方の表面4の穴移行端部6との間を接続する曲線の凸状であるとは、穴中心軸8と逆方向に凸状である部分、すなわち、凹状である部分を含まないことを意味する。このような穴中心軸8と逆方向に凸状である部分を含むと、その部分で塗装膜厚が薄くなる。ただし、この凹みには、3μm以下の微細な凹みは含まれない。また、穴移行端部から穴中心に向かう方向を高さとした場合、穴移行端部から、最大凸までの高さは、穴として使用できる範囲であれば、限定されないが、1mm以下が好ましい。   In a cross section parallel to the direction of penetration of the hole, the convex shape of the curve connecting between the hole transition end 5 on one surface and the hole transition end 6 on the other surface 4 of the steel member is defined as the hole center. This means that a portion that is convex in the direction opposite to the axis 8, that is, a portion that is concave is not included. When a portion that is convex in the direction opposite to the hole center axis 8 is included, the coating film thickness is reduced at that portion. However, this recess does not include a fine recess of 3 μm or less. When the direction from the hole transition end to the hole center is defined as the height, the height from the hole transition end to the maximum protrusion is not limited as long as it can be used as a hole, but is preferably 1 mm or less.

また、加工部品が有する塗装膜とは、鋼部材の貫通穴9の内面を含む表面に対して形成されるものである。この表面に対して施される塗装であれば、いかなる塗装によって形成されてもよい。膜厚は5〜50μmが好ましい。5μm未満であると、均一な膜が得られない場合がある。一方、50μmを超えると、耐食性の効果が飽和するので、50μm以下が好ましい。   Further, the coating film included in the processed component is formed on the surface including the inner surface of the through hole 9 of the steel member. Any coating may be applied as long as it is applied to the surface. The thickness is preferably 5 to 50 μm. If it is less than 5 μm, a uniform film may not be obtained. On the other hand, if it exceeds 50 μm, the effect of corrosion resistance is saturated.

次に、本発明の加工部品の製造方法について説明する。
本発明の加工部品は、加工穴を有する加工部品の穴端面に対して、レーザを照射した後、鋼部材の表面に塗装を施して製造する。そして、レーザ照射の際、レーザ出力を調整して、溶融した金属(鋼)がたれ落ちない量に調整する。このように、穴端面にレーザを照射すると、表面層が溶融し、溶けた金属が表面張力の作用によって、断面凸状に保持される。このとき、材料は除去されるのではなく、再配置される。
Next, a method for manufacturing a machined part according to the present invention will be described.
The machined component of the present invention is manufactured by irradiating a laser to the hole end surface of the machined component having a machined hole, and then painting the surface of the steel member. Then, at the time of laser irradiation, the laser output is adjusted so that the molten metal (steel) does not drip. Thus, when the laser is applied to the hole end surface, the surface layer is melted, and the melted metal is held in a convex shape in cross section by the action of surface tension. At this time, the material is rearranged, not removed.

貫通穴9を、レーザを照射して形成すると、穴端面が溶融し、表面張力により穴端面を丸みの帯びた形状となるので、端面上における塗装条件が均一となり、塗装膜厚が均一になるので好ましい。また、材料と初期粗さにもよるが、穴端面の凹凸の高さは3μm以下となる。   When the through hole 9 is formed by irradiating a laser, the hole end surface is melted and the hole end surface becomes rounded due to surface tension, so that the coating conditions on the end surface become uniform and the coating film thickness becomes uniform. It is preferred. Also, depending on the material and the initial roughness, the height of the unevenness on the hole end face is 3 μm or less.

それに対して、貫通穴9を、研削や研磨により形成すると、穴端面に研磨痕が残り、研磨痕の部分で膜が薄くなることがある。溶融して形成された穴端面は、研磨痕がないため、表面粗さの測定により、研削や研磨により形成された穴と区別できる。または、穴端面は、深さ20〜300μm程度、レーザにより溶融されるので、穴中心を通る線に沿って、鋼板を切断し、切断面を研磨し、エッチングして組織を現出した後、光学顕微鏡で組織の変化を観察することで、研削や研磨により形成された穴と区別できる。   On the other hand, if the through holes 9 are formed by grinding or polishing, polishing marks remain on the end faces of the holes, and the film may become thinner at the polishing marks. Since the hole end surface formed by melting has no polishing marks, it can be distinguished from the hole formed by grinding or polishing by measuring the surface roughness. Alternatively, since the hole end surface is melted by a laser at a depth of about 20 to 300 μm, a steel sheet is cut along a line passing through the center of the hole, and the cut surface is polished and etched to reveal a structure. By observing the change in the structure with an optical microscope, it can be distinguished from holes formed by grinding or polishing.

(レーザの照射について)
加工部品1の穴端面7を丸みの帯びた形状とするためには、レーザを穴端面7に対して垂直に照射する。レーザを穴端面7に垂直に照射とは、穴端面7に対して85〜95°の角度で照射すること意味する。ただし、照射角度は90°が好ましい。図3に、レーザを穴端面に対して垂直に照射する装置の概略図を示す。このように、レーザ照射装置12からレーザ13を、反射鏡14を介して穴端面7に照射する。このように、レーザを穴端面に照射すると、穴端面が均一に加熱されるので、部分的に穴端面が加熱され溶融した金属が溶け落ちることがなくなる。
(About laser irradiation)
In order to make the hole end face 7 of the workpiece 1 round, the laser is irradiated perpendicularly to the hole end face 7. Irradiating the laser perpendicular to the hole end face 7 means irradiating the laser at an angle of 85 to 95 ° with respect to the hole end face 7. However, the irradiation angle is preferably 90 °. FIG. 3 is a schematic view of an apparatus for irradiating a laser beam perpendicularly to a hole end face. As described above, the laser 13 is irradiated from the laser irradiation device 12 to the hole end face 7 via the reflecting mirror 14. In this way, when the laser is applied to the end face of the hole, the end face of the hole is uniformly heated, so that the end face of the hole is partially heated and the molten metal does not melt off.

レーザ照射装置12は、高出力のレーザ13を得ることができる発振器を有していれば、特に限定されない。そのような発振器として、ファイバレーザ、YAGレーザ、ディスクレーザ、半導体レーザ、炭酸ガスレーザなどが例示される。レーザ13の出力やビーム径は、加工部品の材質によって、選択すればよく、出力は0.1〜10kW、ビーム径は0.5〜3.0mmが好ましい。ただし、レーザ13のビーム径は、穴の厚さより大きいと、穴端面7にレーザが照射されず、加工部品の表面や反射鏡14の治具に照射され、表面品質の低下や治具損傷が生じるため、穴の厚さより小さくする。   The laser irradiation device 12 is not particularly limited as long as it has an oscillator that can obtain a high-output laser 13. Examples of such an oscillator include a fiber laser, a YAG laser, a disk laser, a semiconductor laser, and a carbon dioxide laser. The output and beam diameter of the laser 13 may be selected according to the material of the processed part, and the output is preferably 0.1 to 10 kW and the beam diameter is preferably 0.5 to 3.0 mm. However, if the beam diameter of the laser 13 is larger than the thickness of the hole, the hole end face 7 is not irradiated with the laser, but is irradiated on the surface of the machined component or the jig of the reflecting mirror 14, so that the surface quality is deteriorated and the jig is damaged. Therefore, the thickness should be smaller than the thickness of the hole.

レーザ13は、加工穴の内部に配置された反射鏡14において、穴端面7に垂直に照射されるように反射させ、穴端面7の全周方向に照射させることで、穴端面7が丸みの帯びた形状とすることができる。図3では、反射鏡14を円錐状とし、反射鏡14の面上を円周方向にレーザ13を走査することで、レーザ13を穴端面7の全周方向に照射している。反射鏡の材料は、耐熱性を有する材料であれば、限定されないが、銅又は銅合金などの金属が好ましい。また、反射鏡は、支持体に反射膜を形成したものであってもよい。   The laser 13 is reflected by the reflecting mirror 14 arranged inside the processing hole so as to be radiated perpendicularly to the hole end face 7 and is radiated in the entire circumferential direction of the hole end face 7, so that the hole end face 7 has a round shape. It can have a tinged shape. In FIG. 3, the reflecting mirror 14 is formed in a conical shape, and the laser 13 is irradiated on the entire surface of the hole end face 7 by scanning the surface of the reflecting mirror 14 with the laser 13 in the circumferential direction. The material of the reflector is not limited as long as it has heat resistance, but a metal such as copper or a copper alloy is preferable. Further, the reflecting mirror may be one in which a reflecting film is formed on a support.

レーザ13の反射鏡14への照射位置は、加工部品の穴の厚さ方向の中心における水平面と反射鏡14が交差する位置とする。これにより、穴端面の中心にレーザが照射され、穴端面の全体を溶融凝固しやすい。そして、局部加熱にならないように、穴端面上のレーザ13のビーム径を絞りすぎないようにする。また、レーザ13の反射鏡への照射位置とレーザ13の穴端面の照射位置との距離は、1〜5mmとするのが好ましい。   The irradiation position of the laser 13 onto the reflecting mirror 14 is a position where the horizontal plane at the center in the thickness direction of the hole of the processed part intersects the reflecting mirror 14. Thereby, the center of the hole end face is irradiated with the laser, and the entire hole end face is easily melted and solidified. Then, the beam diameter of the laser 13 on the end face of the hole is not excessively reduced so as not to cause local heating. Further, the distance between the irradiation position of the laser 13 on the reflecting mirror and the irradiation position of the laser 13 on the end face of the hole is preferably 1 to 5 mm.

レーザ13の移動は、ミラースキャンにより反射鏡14の面上を円周方向に沿ってレーザ13を走査させるリモートレーザ法を利用することが好ましい。これによると、穴端面7へのレーザ13の照射が瞬時に行え、時間の短縮化を図ることができ、円周状の走査も容易で効率的な加工ができる。反射鏡14の面上の走査は、円周方向に20〜70cm/minで実施するのが好ましい。走査の周回は、1回でもよく、2回以上実施してもよい。   The laser 13 is preferably moved using a remote laser method in which the laser 13 is scanned along the circumferential direction on the surface of the reflecting mirror 14 by mirror scanning. According to this, the irradiation of the laser 13 to the hole end face 7 can be performed instantaneously, the time can be reduced, and the circumferential scanning can be easily and efficiently performed. Scanning on the surface of the reflecting mirror 14 is preferably performed at 20 to 70 cm / min in the circumferential direction. Scanning may be performed once or two or more times.

図3では、反射鏡14を円錐状として、反射鏡14の面上を円周方向にレーザを走査することで、レーザ13を穴端面7の全周方向に照射したが、これに限定するものでなく、レーザ13を穴端面7の全周方向に照射することができれば、穴形状に応じて、レーザの焦点や、反射鏡13の形状を変更することができる。次に、レーザを穴端面に対して垂直方向から照射するための手段の他の例を説明する。   In FIG. 3, the laser 13 is irradiated in the entire circumferential direction of the hole end face 7 by making the reflecting mirror 14 conical and scanning the laser in the circumferential direction on the surface of the reflecting mirror 14, but is not limited thereto. Instead, if the laser 13 can be irradiated in the entire circumferential direction of the hole end face 7, the focal point of the laser and the shape of the reflecting mirror 13 can be changed according to the hole shape. Next, another example of a means for irradiating a laser beam with respect to a hole end face in a vertical direction will be described.

図4には、レーザを穴端面に対して垂直に照射するための手段を示す。(a)は、円錐状の反射鏡で、レーザの焦点を固定する例であり、(b)は、レーザの軸に対して傾斜した反射鏡で、レーザの焦点を固定する例である。   FIG. 4 shows a means for irradiating the laser perpendicular to the hole end face. (A) is an example in which the focal point of the laser is fixed by a conical reflecting mirror, and (b) is an example in which the focal point of the laser is fixed by a reflecting mirror inclined with respect to the axis of the laser.

図4(a)に示す反射鏡14と図3に示す反射鏡14の形状は同じであるが、図4(a)に示す手段は、円錐状の反射鏡14の中心軸、レーザ13のビーム径の中心軸、及び、穴中心線8が一致するように、反射鏡14、加工部品1及びレーザ照射装置12を調整している。そして、レーザ13を、反射鏡14に照射し、円周方向の全方位に渡って同時に、かつ穴端面7に垂直となるように反射させるものである。   Although the shape of the reflecting mirror 14 shown in FIG. 4A and the shape of the reflecting mirror 14 shown in FIG. 3 are the same, the means shown in FIG. The reflecting mirror 14, the workpiece 1, and the laser irradiation device 12 are adjusted so that the center axis of the diameter and the center line 8 of the hole coincide with each other. Then, the laser 13 is irradiated to the reflecting mirror 14 and is reflected simultaneously in all directions in the circumferential direction so as to be perpendicular to the hole end face 7.

図4(b)に示す反射鏡13は、レーザの軸に対して傾斜した面を有する反射鏡14である。この反射面は、直方体を長軸に対して傾斜するように切断して得られる矩形状の面であっても、円柱を高さ方向に対して傾斜するように切断して得られる楕円状の断面であってもよい。図4(b)に示す手段は、レーザ13の焦点を固定して、レーザ13を、反射鏡14に照射し、穴中心線8を回転軸として反射鏡13を回転させて、穴端面7の円周方向の全方位に渡って垂直に反射させるものである。   The reflecting mirror 13 shown in FIG. 4B is a reflecting mirror 14 having a surface inclined with respect to the axis of the laser. This reflecting surface is a rectangular surface obtained by cutting a rectangular parallelepiped so as to be inclined with respect to the long axis, or an elliptical shape obtained by cutting a cylinder so as to be inclined with respect to the height direction. It may be a cross section. The means shown in FIG. 4B fixes the focal point of the laser 13, irradiates the laser 13 to the reflecting mirror 14, rotates the reflecting mirror 13 around the hole center line 8 as a rotation axis, and The light is reflected vertically in all directions in the circumferential direction.

(塗装について)
加工部品の塗装は、いかなる塗装方法を採用してもよいが、耐食性の向上のために実施される自動車部品の下地塗装に対する電着塗装が好ましい。
(About painting)
Although any coating method may be adopted for the coating of the processed part, electrodeposition coating is preferably applied to the base coating of the automobile part, which is performed for improving corrosion resistance.

電着塗装は、被塗物を電着塗料中に電極として浸漬させて、電圧を印加することにより、被塗装物上に電着塗膜が形成されるものである。そして、電着塗装される加工部品が、自動車車体などのように高い防食性が求められるものである場合は、電着塗装の前に、種々の表面処理が行われる。このような表面処理として、例えば、アルカリ脱脂後、リン酸亜鉛系化成剤などの化成剤を用いて無機被膜を形成する化成処理を行う。   In the electrodeposition coating, an object to be coated is immersed as an electrode in the electrodeposition paint, and a voltage is applied to form an electrodeposition coating film on the object. When the workpiece to be electrodeposited is required to have high corrosion resistance, such as an automobile body, various surface treatments are performed before the electrodeposition coating. As such a surface treatment, for example, after alkali degreasing, a chemical conversion treatment of forming an inorganic film using a chemical conversion agent such as a zinc phosphate chemical conversion agent is performed.

塗料としては、カチオン電着塗料及びアニオン電着塗料のいずれでも使用できるが、耐食性などの観点からカチオン電着塗料が採用される。膜厚は、5〜50μmである。5μm以上であると、均一なカチオン電着塗膜が得られる。50μm以下であると、経済的に有利である。塗装条件は、特に限定されず、一般的な条件を採用することができ、例えば、焼き付け条件は、100〜220℃、10〜30分を採用することができる。   As the paint, either a cationic electrodeposition paint or an anion electrodeposition paint can be used, but a cationic electrodeposition paint is employed from the viewpoint of corrosion resistance and the like. The film thickness is 5 to 50 μm. When it is 5 μm or more, a uniform cationic electrodeposition coating film can be obtained. When it is 50 μm or less, it is economically advantageous. The coating conditions are not particularly limited, and general conditions can be adopted. For example, baking conditions can be 100 to 220 ° C. for 10 to 30 minutes.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, an example of the present invention will be described. The conditions in the example are one condition example adopted to confirm the operability and effects of the present invention, and the present invention is based on this one condition example. It is not limited. The present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

試験片として、板厚2.3mm、440MPa級の熱延鋼板に、打ち抜き穴(パンチ径φ20mm)を形成したものを作成した。その際、打ち抜き部のバリ高さの異なる試験片を、金型クリアランスの調整により形成した。クリアランスは、4%、22%、48%とした。なお、クリアランスは、パンチの側面とダイの側面との間で形成される間隙をhとして、試験片の板厚をtとすると、(h/t)×100%で表されるものである。   A test piece was prepared by forming a punched hole (punch diameter φ20 mm) in a hot-rolled steel sheet having a thickness of 2.3 mm and a class of 440 MPa. At that time, test pieces having different burrs at the punched portions were formed by adjusting the mold clearance. The clearances were 4%, 22% and 48%. The clearance is represented by (h / t) × 100%, where h is the gap formed between the side surface of the punch and the side surface of the die, and t is the plate thickness of the test piece.

そして、試験片Aに対して、バリを研削除去する処理を実施し、試験片B〜Dは、打ち抜きままとし、試験片Eに対して、レーザ溶融処理を実施した。試験片A〜Dは比較例であり、試験片Eは発明例である。   Then, the test piece A was subjected to a process of grinding and removing burrs, the test pieces B to D were left punched, and the test piece E was subjected to a laser melting process. Test pieces A to D are comparative examples, and test piece E is an invention example.

試験片Eに対するレーザ溶融処理は、図3に示す装置を用いて、以下の条件で行った。
レーザ発振器:半導体励起YAGレーザ
レーザ出力:1kW
レーザ走査速度:50cm/min、円周上に1回転走査
レーザスポット径:φ1.0mm
反射鏡:穴中心軸からの傾斜角度が45度の円錐状の銅製
The laser melting treatment for the test piece E was performed using the apparatus shown in FIG. 3 under the following conditions.
Laser oscillator: Semiconductor-pumped YAG laser Laser output: 1 kW
Laser scanning speed: 50 cm / min, one rotation scan on the circumference Laser spot diameter: φ1.0 mm
Reflecting mirror: Conical copper made with a 45 degree angle of inclination from the hole center axis

表1に、試験片A〜Eのクリアランスとバリ高さを示す。   Table 1 shows the clearances and burr heights of the test pieces A to E.

次に、試験片A〜Eに塗装を施した。まず、試験片に対して、アルカリ脱脂、りん酸亜鉛化成処理を施し、その後、目標膜厚20μmとなるように、Pbフリーカチオン電着塗料を用いて、塗装を実施した。図5に、試験片A〜Eの塗装後の穴端面の走査型電子顕微鏡による写真を模した図を示す。(a)は穴端面全体の画像であり、(b)はバリ部分の拡大画像である。   Next, the test pieces A to E were coated. First, the test piece was subjected to alkali degreasing and zinc phosphate conversion treatment, and thereafter, painting was performed using a Pb-free cationic electrodeposition paint so as to have a target film thickness of 20 μm. FIG. 5 is a diagram simulating a photograph taken by a scanning electron microscope of the end faces of the test pieces A to E after coating. (A) is an image of the entire hole end face, and (b) is an enlarged image of a burr portion.

試験片Aと試験片Bは、クリアランスがともに4%であるが、試験片Aはバリの研削処理をしたので、バリ高さ0μmであり、バリを確認できない。そして、試験片B〜Dは、クリアランスを変化させたものであり、クリアランスを48%にするとバリ高さも大きくなり、高いバリを確認した。一方、試験片Eは、レーザ溶融処理をして穴内端面を丸みの帯びた貫通穴としたので、試験片Cとクリアランスが同じであるが、バリが確認されなかった。そして、試験片Eは、穴内端面が穴中心軸に向かって凸状となっている。   The clearance between the test piece A and the test piece B is 4%, but since the test piece A has been subjected to a burr grinding process, the burr height is 0 μm, and no burr can be confirmed. And the test pieces BD changed the clearance, and when the clearance was set to 48%, the burr height became large, and high burr was confirmed. On the other hand, the test piece E was subjected to laser melting treatment to form a rounded through hole on the inner end face, so that the clearance was the same as the test piece C, but no burrs were observed. The test piece E has an inner end surface that is convex toward the center axis of the hole.

図5(b)から、試験片Aでは、研削処理をしたバリ部分と、他の直線部分とで、塗装膜厚が異なることが確認できる。また、試験片B〜Dでは、バリ部分の塗装膜厚が薄くなっていることが確認できる。一方、試験片Eは、均一な塗装膜厚となっている。   From FIG. 5 (b), it can be confirmed that in the test piece A, the coating film thickness is different between the burr portion subjected to the grinding process and another straight portion. In addition, in the test pieces B to D, it can be confirmed that the coating thickness of the burr portion is thin. On the other hand, the test piece E has a uniform coating film thickness.

次に、塗装後の試験片A〜Eに対して、耐食性試験を実施した。耐食性試験は、自動車用材料腐食試験方法(JASOM609−91)に基づき、上述同様に、1サイクルあたり8時間の処理を30サイクル繰り返し行い、実施した。   Next, a corrosion resistance test was performed on the coated test pieces A to E. The corrosion resistance test was carried out by repeating the process of 8 hours per cycle for 30 cycles, as described above, based on the automotive material corrosion test method (JASOM609-91).

図6には、試験片A〜Eの耐食性試験後の穴周辺の拡大鏡による写真を示す。また、クリアランスも併せて示す。また、この図において、薄い灰色で表示される穴周辺に黒色の線で表示されるのが赤錆であり、穴の円周に対する赤錆の割合を赤錆発生率とする。そして、赤錆発生率30%以下をA、赤錆発生率31〜70%をB、赤錆発生率71〜100%をCと区分して、表2に示す。   FIG. 6 shows a photograph of the test pieces A to E taken with a magnifying glass around the hole after the corrosion resistance test. The clearance is also shown. Further, in this figure, red rust is indicated by a black line around the hole displayed in light gray, and the ratio of red rust to the circumference of the hole is defined as the red rust occurrence rate. Table 2 shows the red rust occurrence rate of 30% or less as A, the red rust occurrence rate of 31 to 70% as B, and the red rust occurrence rate of 71 to 100% as C.

試験片A〜Dは、赤錆が発生している。一方、試験片Eは、貫通穴周辺に赤錆がほとんど発生していない。試験片Aと試験片Bは、クリアランスがともに4%であるが、試験片Aはバリの研削処理をしたので、赤錆の発生が少なく、赤錆発生区分がである。しかしながら、赤錆が発生しているのは、塗装膜厚が均一でないためである。試験片B〜Dでは、打ち抜きままであり、バリが高いため、赤錆の発生が顕著であり、赤錆発生区分はである。
Test pieces A to D have red rust. On the other hand, the test piece E has almost no red rust around the through hole. The clearance between the test piece A and the test piece B is 4%, but since the test piece A has been subjected to the burr grinding treatment, the generation of red rust is small, and the red rust generation category is B. However, red rust is generated because the coating film thickness is not uniform. In specimens B to D, remains punching, since burr is high, occurrence of red rust is remarkable, red rust classification is C.

一方、試験片Eは、レーザ溶融処理をして穴内端面を丸みの帯びた貫通穴としたので、試験片A〜Dと比較して、赤錆の発生が減少し、赤錆発生区分はAである。そして、クリアランスが同じ試験片と試験片Cとの比較から、穴端面を丸みの帯びた貫通穴とすることで、耐食性が著しく向上する。
On the other hand, since the test piece E was subjected to laser melting treatment to form a rounded through hole at the inner end face, the occurrence of red rust was reduced as compared with the test pieces A to D, and the red rust occurrence category was A. . From the comparison between the test piece E and the test piece C having the same clearance, the corrosion resistance is remarkably improved by forming the end face of the hole as a rounded through hole.

本発明によれば、貫通穴の端面の塗装後の耐食性が優れる加工部品を提供することができる。よって、本発明は、産業上の利用可能性が高いものである。   ADVANTAGE OF THE INVENTION According to this invention, the processed part which is excellent in the corrosion resistance after the coating of the end surface of a through-hole can be provided. Therefore, the present invention has high industrial applicability.

1 加工部品
2 加工穴
3 鋼部材の一方の表面
4 鋼部材の他方の表面
5 一方の表面の穴移行端部
6 他方の表面の穴移行端部
7 穴端面
8 穴中心線
9 貫通穴
10 塗装膜
11 赤錆
12 レーザ照射装置
13 レーザ
14 反射鏡
REFERENCE SIGNS LIST 1 processed part 2 processed hole 3 one surface of steel member 4 other surface of steel member 5 hole transfer end of one surface 6 hole transfer end of other surface 7 hole end face 8 hole center line 9 through hole 10 painting Film 11 Red rust 12 Laser irradiation device 13 Laser 14 Reflector

Claims (6)

貫通穴を有する板厚1〜10mmの鋼部材の貫通穴の内面を含む表面に塗装膜を有する加工部品であって、
前記貫通穴の貫通方向に平行な断面において、前記鋼部材の一方の表面の穴移行端部と他方の表面の穴移行端部との間が曲線で接続され、前記曲線が貫通穴の中心軸に向かって凸状であり、穴の端面が丸みを帯びた端面形状であることを特徴とする加工部品。
A processed part having a coating film on a surface including an inner surface of a through hole of a steel member having a thickness of 1 to 10 mm having a through hole,
In a cross section parallel to the penetration direction of the through hole, a hole transition end on one surface of the steel member and a hole transition end on the other surface are connected by a curve, and the curve is a central axis of the through hole. convex der towards is, workpiece end face of the hole and wherein the end face shape der Rukoto rounded.
貫通穴を有する板厚1〜10mmの鋼部材の貫通穴の内面を含む表面に塗装膜を有する加工部品の製造方法であって、
機械加工ままの穴の端面に対してレーザを垂直に照射して、端面を溶融凝固させ、前記貫通穴の貫通方向に平行な断面において、前記鋼部材の一方の表面の穴移行端部と他方の表面の穴移行端部との間が曲線で接続され、前記曲線が貫通穴の中心軸に向かって凸状であり、穴の端面が丸みを帯びた端面形状である前記貫通穴を形成した後、鋼部材の表面に塗装を施すことを特徴とする加工部品の製造方法。
A method for producing a processed part having a coating film on a surface including an inner surface of a through hole of a steel member having a thickness of 1 to 10 mm having a through hole,
A laser is irradiated perpendicularly to the end face of the hole as machined to melt and solidify the end face, and in a cross section parallel to the penetration direction of the through hole, the hole transition end of one surface of the steel member and the other. The surface is connected with a hole transition end portion by a curve, the curve is convex toward the central axis of the through hole, and the end surface of the hole forms the through hole having a rounded end surface shape . After that, a method for manufacturing a machined part, wherein a surface of a steel member is coated.
前記機械加工ままの穴の内部に反射鏡を配置し、レーザを前記反射鏡に照射して、レーザを前記機械加工ままの穴の端面に対して垂直に照射することを特徴とする請求項2に記載の加工部品の製造方法。   3. The method according to claim 2, further comprising: arranging a reflecting mirror inside the as-machined hole, irradiating a laser to the reflecting mirror, and irradiating the laser perpendicularly to an end face of the as-machined hole. A method for producing a machined part according to item 1. 前記反射鏡が円錐状であること特徴とする請求項3に記載の加工部品の製造方法。   4. The method according to claim 3, wherein the reflecting mirror has a conical shape. 前記反射鏡の面上を円周状にレーザを走査すること特徴とする請求項3又は4に記載の加工部品の製造方法。   The method according to claim 3, wherein the laser is scanned circumferentially on the surface of the reflecting mirror. 前記機械加工ままの穴の中心軸と平行な軸線を回転軸として、前記反射鏡を回転させることを特徴とする請求項3又は4に記載の加工部品の製造方法。   The method according to claim 3, wherein the reflecting mirror is rotated around an axis parallel to a central axis of the machined hole as a rotation axis.
JP2014205168A 2014-10-03 2014-10-03 Processed parts excellent in corrosion resistance and method of manufacturing the same Active JP6657558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014205168A JP6657558B2 (en) 2014-10-03 2014-10-03 Processed parts excellent in corrosion resistance and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014205168A JP6657558B2 (en) 2014-10-03 2014-10-03 Processed parts excellent in corrosion resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016073989A JP2016073989A (en) 2016-05-12
JP6657558B2 true JP6657558B2 (en) 2020-03-04

Family

ID=55950689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014205168A Active JP6657558B2 (en) 2014-10-03 2014-10-03 Processed parts excellent in corrosion resistance and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6657558B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6627223B2 (en) * 2015-02-05 2020-01-08 日本製鉄株式会社 Manufacturing method of machined parts having excellent corrosion resistance and apparatus for executing the same
JP7423178B2 (en) 2018-04-20 2024-01-29 住友重機械工業株式会社 processing system
EP3812082A4 (en) 2018-06-22 2021-12-22 Nippon Steel Corporation Steel plate, tailored blank, hot press-formed product, steel pipe, hollow quenched formed product, and method for manufacturing steel plate
CN112658968B (en) * 2020-12-19 2022-04-05 华中科技大学 Wafer grinding device based on laser in-situ assistance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236482A (en) * 1984-05-09 1985-11-25 三菱電機株式会社 Laser heater
JPH06262384A (en) * 1993-01-14 1994-09-20 Toshiba Corp Laser beam machine
JPH07132374A (en) * 1993-11-09 1995-05-23 Kawasaki Heavy Ind Ltd Method for machining curved surface of end part of metal plate and device therefor
JPH08108287A (en) * 1994-10-07 1996-04-30 Seiji Ishibe Chamfering method
JPH11320223A (en) * 1998-05-08 1999-11-24 Kurimoto Ltd Method for boring plate and boring work machine therefor
DE102007032744A1 (en) * 2007-07-13 2009-01-15 Robert Bosch Gmbh Laser beam welding device and laser beam welding process

Also Published As

Publication number Publication date
JP2016073989A (en) 2016-05-12

Similar Documents

Publication Publication Date Title
JP6829312B2 (en) Steel welded parts with aluminum or aluminum alloy coating and how to prepare them
US11559857B2 (en) Laser cutting and machining method for plated steel plate, laser cut-and-machined product, thermal cutting and machining method, thermal cut-and-machined product, surface-treated steel plate, laser cutting method, and laser machining head
JP6657558B2 (en) Processed parts excellent in corrosion resistance and method of manufacturing the same
CN106312317B (en) Intermediate gauge almag welding method
RU2700436C1 (en) Method for production of sheet metal with preliminary applied coating at removal of coating using inclined laser beam, and corresponding sheet metal
JP2017209733A (en) Method of forming weld notch in sheet metal piece
KR102404043B1 (en) Method for producing a welded metal blank and thus a welded metal blank obtained
dos Santos Solheid et al. Laser surface modification and polishing of additive manufactured metallic parts
JP7120576B2 (en) Method for controlling wettability of metal surface
Ahmed et al. Micro-channels by Nd: YAG laser beam machining: fabrication, microstructures, and micro-hardness profiles
JP2011062719A (en) Die and machining method of die surface
JP2007520357A (en) Method of deforming cross section of coated metal plate by laser beam and painted metal plate having this kind of cross section deformation
JP2016016432A (en) Surface modification method and surface modification metal member
GB2560242A (en) Method of preparing sheet metal for coating
Chow et al. Experimental statistical analysis of laser micropolishing process
JP2008119735A (en) Method of working high-hardness material
Oh et al. Excess deposition for suppressing interfacial defects induced on parts repaired using direct energy deposition
CN106271047B (en) A method of titanium-aluminum dissimilar metal is welded using femtosecond laser
JP6627223B2 (en) Manufacturing method of machined parts having excellent corrosion resistance and apparatus for executing the same
JP2017148826A (en) Laser built-up method
JP6561481B2 (en) Method of joining steel materials
JP6255656B2 (en) Mold repair method and mold repaired by the mold repair method
JP2021159993A (en) Building-up method for metallic member, and metallic member
Liu et al. A New Tribo-Characteristic Improvement Technique by Ultra-Short Pulsed Laser Irradiation in PAO Oil
JP2022154377A (en) Metal plate bending method, bending device for metal plate, and bent component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191023

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200120

R151 Written notification of patent or utility model registration

Ref document number: 6657558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151