JP6655838B2 - Mg-based material forming material, Mg-based material forming method, and novel compound - Google Patents

Mg-based material forming material, Mg-based material forming method, and novel compound Download PDF

Info

Publication number
JP6655838B2
JP6655838B2 JP2015189559A JP2015189559A JP6655838B2 JP 6655838 B2 JP6655838 B2 JP 6655838B2 JP 2015189559 A JP2015189559 A JP 2015189559A JP 2015189559 A JP2015189559 A JP 2015189559A JP 6655838 B2 JP6655838 B2 JP 6655838B2
Authority
JP
Japan
Prior art keywords
film
magnesium
gas
bis
diisopropylpropionamidinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015189559A
Other languages
Japanese (ja)
Other versions
JP2017066043A (en
Inventor
町田 英明
英明 町田
真人 石川
真人 石川
須藤 弘
弘 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GAS-PHASE GROWTH LTD.
Original Assignee
GAS-PHASE GROWTH LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GAS-PHASE GROWTH LTD. filed Critical GAS-PHASE GROWTH LTD.
Priority to JP2015189559A priority Critical patent/JP6655838B2/en
Priority to KR1020160121343A priority patent/KR101947384B1/en
Priority to TW105131052A priority patent/TWI633061B/en
Publication of JP2017066043A publication Critical patent/JP2017066043A/en
Application granted granted Critical
Publication of JP6655838B2 publication Critical patent/JP6655838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/02Magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明はMg系材形成技術に関する。   The present invention relates to a technology for forming a Mg-based material.

金属マグネシウム、マグネシウム合金、酸化マグネシウム、窒化マグネシウム、ホウ化マグネシウム等の材(例えば、膜)は、各種の分野で求められている。前記分野は半導体の分野である。Mgは、例えば青色LED用の窒化ガリウムの活性層のドーピング材料として用いられている。前記分野は磁性材(例えば、磁気抵抗メモリ)の分野である。MgOは、例えば次世代メモリ(例えば、MRAM)の材料に不可欠である。前記分野は合金(例えば、機能性合金)の分野である。MgTi合金膜は調光ミラーとしての可能性が高い。前記分野はエネルギー貯蔵の分野である。前記分野は超伝導の分野である。   Materials (for example, films) such as magnesium metal, magnesium alloy, magnesium oxide, magnesium nitride, and magnesium boride are required in various fields. The field is the field of semiconductors. Mg is used, for example, as a doping material for an active layer of gallium nitride for a blue LED. The field is the field of magnetic materials (eg, magnetoresistive memories). MgO is indispensable, for example, as a material for a next-generation memory (for example, MRAM). The field is that of alloys (eg, functional alloys). The MgTi alloy film has a high possibility as a light control mirror. Said field is the field of energy storage. The field is the field of superconductivity.

化学気相成長方法(CVD法)又は原子層制御成長方法(ALD法)によって、Mg系膜(例えば、Mg膜、MgO膜、Mg膜、MgB膜など)が形成される。この場合、原料物質として、例えばβ−ジケトナートマグネシウム錯体、シクロペンタジエニル系マグネシウム錯体などが提案されている。 An Mg-based film (for example, a Mg film, a MgO film, a Mg 3 N 2 film, a MgB 2 film, etc.) is formed by a chemical vapor deposition method (CVD method) or an atomic layer controlled growth method (ALD method). In this case, as a raw material, for example, a β-diketonate magnesium complex, a cyclopentadienyl-based magnesium complex, and the like have been proposed.

原料化合物にO(酸素原子)を持つβ−ジケトナートマグネシウム錯体が用いられた場合、Oが形成された膜の内部に入り込んでいる。この為、膜がMgO膜の場合には、大きな問題が起きないと思われる。しかし、目的とする膜が、本来、酸素(O)を持たない膜である場合には、問題が懸念される。   When a β-diketonatomagnesium complex having O (oxygen atom) is used as a raw material compound, O has penetrated the inside of the film formed. For this reason, when the film is an MgO film, no major problem is expected to occur. However, when the target film is a film originally having no oxygen (O), there is a concern about a problem.

シクロペンタジエニル系マグネシウム錯体(例えば、ビス(シクロペンタジエニル)マグネシウム;MgCp)はO(酸素原子)を持たない。従って、前記錯体が用いられた場合、Oが、基本的には、膜の内部に入り込まないと思われる。しかしながら、シクロペンタジエニル系マグネシウム錯体は、分解温度が高い。従って、C(炭素原子)が膜の内部に入り込むことが懸念される。 A cyclopentadienyl-based magnesium complex (for example, bis (cyclopentadienyl) magnesium; MgCp 2 ) does not have O (oxygen atom). Therefore, when the complex is used, it seems that O basically does not enter the inside of the film. However, the cyclopentadienyl-based magnesium complex has a high decomposition temperature. Therefore, there is a concern that C (carbon atom) may enter the inside of the film.

O(酸素原子)を持たないMg錯体として、Mg(μ−NPr [(PrN)CNPr が提案(非特許文献1)されている。Mg(μ−NPr [(PrN)CNPr は固体(融点:120℃)である。従って、MgCpが用いられた場合と同様な問題が懸念される。 As O Mg complex without a (an oxygen atom), Mg 2 (μ-NPr i 2) 2 [(Pr i N) 2 CNPr i 2] 2 has been proposed (Non-Patent Document 1). Mg 2 (μ-NPr i 2 ) 2 [(Pr i N) 2 CNPr i 2] 2 solid (mp: 120 ° C.) is. Therefore, there is a concern about the same problem as when MgCp 2 is used.

前記非特許文献1はMg(PriNCEtNPri)2(thf)2=ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウム(thf)付加体を提案している。しかし、この錯体は、thf(テトラヒドロフラン)に起因して、O(酸素原子)を持つ。従って、β−ジケトナートマグネシウム錯体が用いられた場合と同様な問題が懸念される。前記化合物は固体(融点:290℃分解)である。従って、MgCpが用いられた場合と同様な問題が懸念される。 Non-Patent Document 1 proposes an adduct of Mg (Pr i NCEtNPr i ) 2 (thf) 2 = bis (N, N′-diisopropylpropionamidinate) magnesium (thf). However, this complex has O (oxygen atom) due to thf (tetrahydrofuran). Therefore, there is a concern about the same problem as when the β-diketonatomagnesium complex is used. The compound is a solid (melting point: decomposed at 290 ° C.). Therefore, there is a concern about the same problem as when MgCp 2 is used.

J.Chem.Soc.,Dalton Trans.,1997,pp957-963J. Chem. Soc., Dalton Trans., 1997, pp957-963.

高純度Mgは得られ難い。現在、高純度Mgを得ることが出来る蒸留可能な液体(25℃で1気圧の条件下)のマグネシウム化合物は提案されていない。このことから、蒸留が可能な液体のMg錯体が求められている。   High-purity Mg is difficult to obtain. At present, no magnesium compound as a distillable liquid (at 25 ° C. and 1 atm) capable of obtaining high-purity Mg has been proposed. For this reason, a liquid Mg complex that can be distilled has been demanded.

本発明が解決しようとする課題は、前記の問題点を解決することである。例えば、液体のMg錯体を提供することである。更には、高品質なMg系材(材は、例えば膜である。勿論、膜に限られない。)の形成が容易な技術を提供することである。   The problem to be solved by the present invention is to solve the above problems. For example, to provide a liquid Mg complex. Another object of the present invention is to provide a technique that can easily form a high-quality Mg-based material (the material is, for example, a film, but is not limited to a film).

前記の課題を解決する為の検討が、鋭意、推し進められて行った。
その結果、液体のビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウム{Mg[i−CNC(C)N−i−C}を原料とし、CVD法(又はALD法)によって、高品質なMg系材の形成が可能なことが見出されるに至った。
The study for solving the above-mentioned problem has been earnestly promoted.
As a result, liquid bis (N, N′-diisopropylpropionamidinate) magnesium {Mg [i-C 3 H 7 NC (C 2 H 5 ) Ni-C 3 H 7 ] 2 } was used as a raw material, It has been found that a high-quality Mg-based material can be formed by the CVD method (or the ALD method).

更に、前記化合物は、例えばN,N’−ジイソプロピルカルボジミドを原料として、安価に合成できることも判った。   Furthermore, it has been found that the compound can be synthesized at low cost using, for example, N, N'-diisopropylcarbodiimide as a raw material.

かつ、ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウム{Mg[i−CNC(C)N−i−C}は液体(25℃で1気圧の条件下)であった。前記Mg化合物は、簡単な蒸留操作によって、高純度品が得られた。このことは、前記化合物が用いられた場合、CVD法(又はALD法)によって、高品質な膜が得られることを理解できる。 And, bis (N, N'-diisopropyl propionamide amidinate) magnesium {Mg [i-C 3 H 7 NC (C 2 H 5) N-i-C 3 H 7] 2} 1 a liquid (25 ° C. Pressure conditions). The Mg compound was obtained in a high purity by a simple distillation operation. This means that when the compound is used, a high-quality film can be obtained by a CVD method (or an ALD method).

上記知見に基づいて本発明が達成された。   The present invention has been achieved based on the above findings.

本発明は、
ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムである
ことを特徴とする新規化合物を提案する。
The present invention
We propose a novel compound characterized by being bis (N, N'-diisopropylpropionamidinate) magnesium.

本発明は、
液体(25℃で1気圧の条件下)のビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムである
ことを特徴とする新規化合物を提案する。
The present invention
We propose a novel compound characterized by the fact that it is bis (N, N′-diisopropylpropionamidinate) magnesium liquid (under 25 ° C. and 1 atm).

本発明は、
Mg系材を形成する為の材料であって、
ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウム
を有する
ことを特徴とするMg系材形成材料を提案する。
The present invention
A material for forming a Mg-based material,
A Mg-based material forming material characterized by having bis (N, N′-diisopropylpropionamidinate) magnesium is proposed.

本発明は、
Mg系材を形成する為の材料であって、
液体(25℃で1気圧の条件下)のビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウム
を有する
ことを特徴とするMg系材形成材料を提案する。
The present invention
A material for forming a Mg-based material,
A Mg-based material forming material characterized by having bis (N, N′-diisopropylpropionamidinate) magnesium in liquid (25 ° C. and 1 atm) is proposed.

本発明は、前記Mg系材形成材料であって、好ましくは、更に溶媒を有する
ことを特徴とするMg系材形成材料を提案する。
The present invention proposes the Mg-based material forming material, preferably further comprising a solvent.

本発明は、前記Mg系材形成材料であって、前記溶媒が、好ましくは、炭化水素系化合物の群の中から選ばれる一種または二種以上であることを特徴とするMg系材形成材料を提案する。   The present invention provides the Mg-based material-forming material, wherein the solvent is preferably one or two or more selected from the group of hydrocarbon-based compounds. suggest.

本発明は、前記Mg系材形成材料であって、前記溶媒が、好ましくは、N,N’−ジイソプロピルプロピオンアミジンであることを特徴とするMg系材形成材料を提案する。   The present invention proposes the Mg-based material forming material, wherein the solvent is preferably N, N'-diisopropylpropionamidine.

本発明は、
前記Mg系材形成材料を室に輸送する工程と、
前記室に輸送されたビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムの分解により基板上にMg系材が設けられる工程
とを有することを特徴とするMg系材形成方法を提案する。
The present invention
Transporting the Mg-based material forming material to a chamber;
Providing a Mg-based material on a substrate by decomposing bis (N, N′-diisopropylpropionamidinate) magnesium transported to the chamber.

ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムは液体(25℃で1気圧の条件下)である。前記化合物はO(酸素原子)を持っていない。前記化合物は、N,N’−ジイソプロピルカルボジミドを原料として、簡単、かつ、低コストで得られた。しかも、簡単な蒸留操作で高純度品が得られた。   Bis (N, N'-diisopropylpropionamidinate) magnesium is a liquid (at 25 ° C. and 1 atmosphere). The compound has no O (oxygen atom). The compound was obtained simply and at low cost from N, N'-diisopropylcarbodiimide as a raw material. Moreover, a high-purity product was obtained by a simple distillation operation.

前記化合物は気化し易い。前記化合物のガスの輸送を安定して行うことが出来る。成膜効率が良い。従って、CVD法(又はALD法)等の手段によって、高品質な材(例えば、膜)が低廉なコストで得られた。例えば、高品質な金属Mg膜が形成された。或いは、高品質なMg合金膜が形成された。形成された膜にOが含まれているにしても、O含有量は極めて少なかった。   The compound is easy to vaporize. The gas of the compound can be stably transported. Good film formation efficiency. Therefore, a high-quality material (for example, a film) was obtained at low cost by means such as a CVD method (or an ALD method). For example, a high quality metal Mg film was formed. Alternatively, a high quality Mg alloy film was formed. Even if O was contained in the formed film, the O content was extremely small.

CVD装置の概略図Schematic diagram of CVD equipment CVD装置の概略図Schematic diagram of CVD equipment

第1の発明は新規化合物である。前記化合物はビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムである。前記化合物は液体(25℃で1気圧の条件下)である。   The first invention is a novel compound. The compound is bis (N, N'-diisopropylpropionamidinate) magnesium. The compound is liquid (under 25 ° C. and 1 atm).

第2の発明はMg系材形成材料である。前記Mg系材はMg系膜である。前記材は膜に限られない。例えば、膜の概念より厚いものであっても良い。前記Mg系膜は、例えば金属Mg膜である。前記Mg系膜は、例えばMg金属合金膜である。前記Mg系膜はMgX(Xは非金属元素(例えば、N,B等(特に、O以外の元素))又は半導体元素)膜である。前記Mg系材形成材料はビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムを有する。「有する」であるから、前記Mg系材形成材料は、ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムのみであっても良い。しかし、他の化合物を有する(含む)場合も有る。CVD法(又はALD法)の実施において、目的化合物の輸送に際して、溶媒が使用されることが多い。従って、前記Mg系材形成材料は、好ましくは、更に溶媒を有する(含む)。前記溶媒は、好ましくは、炭化水素系化合物(直鎖状、分岐鎖状、環状いずれのタイプのものでも良い。)の群の中から選ばれる一種または二種以上である。前記炭化水素系化合物は炭素数5〜40の炭化水素系化合物が好ましい。更に好ましくは炭素数5〜21の炭化水素系化合物である。例えば、ペンタン(C12)、ヘキサン(C14)、ヘプタン(C16)、オクタン(C18)、ノナン(C20)、デカン(C1022)、ウンデカン(C1124)、ドデカン(C1226)、トリデカン(C1328)、テトラデカン(C1430)、ペンタデカン(C1532)、ヘキサデカン(C1634)、ヘプタデカン(C1736)、オクタデカン(C1838)、ノナデカン(C1940)、イコサン(C2042)、ヘンイコサン(C2144)が挙げられる。中でも好ましいのは炭素数が5〜10の炭化水素である。それは、分解温度が高く、安定であるからによる。更には、安価である。前記溶媒は、好ましくは、N,N’−ジイソプロピルプロピオンアミジンである。 A second invention is an Mg-based material forming material. The Mg-based material is a Mg-based film. The material is not limited to a film. For example, it may be thicker than the concept of a film. The Mg-based film is, for example, a metal Mg film. The Mg-based film is, for example, a Mg metal alloy film. The Mg-based film is a MgX (X is a nonmetallic element (for example, N, B or the like (particularly, an element other than O)) or a semiconductor element) film. The Mg-based material has bis (N, N′-diisopropylpropionamidinate) magnesium. Since “has”, the Mg-based material forming material may be only bis (N, N′-diisopropylpropionamidinate) magnesium. However, it may have (comprise) other compounds. In carrying out the CVD method (or the ALD method), a solvent is often used for transporting a target compound. Therefore, the Mg-based material forming material preferably further contains (including) a solvent. The solvent is preferably one kind or two or more kinds selected from the group of hydrocarbon compounds (which may be any of linear, branched and cyclic types). The hydrocarbon compound is preferably a hydrocarbon compound having 5 to 40 carbon atoms. More preferred are hydrocarbon compounds having 5 to 21 carbon atoms. For example, pentane (C 5 H 12), hexane (C 6 H 14), heptane (C 7 H 16), octane (C 8 H 18), nonane (C 9 H 20), decane (C 10 H 22), Undecane (C 11 H 24 ), dodecane (C 12 H 26 ), tridecane (C 13 H 28 ), tetradecane (C 14 H 30 ), pentadecane (C 15 H 32 ), hexadecane (C 16 H 34 ), heptadecane ( C 17 H 36 ), octadecane (C 18 H 38 ), nonadecane (C 19 H 40 ), icosane (C 20 H 42 ), and henycosan (C 21 H 44 ). Among them, preferred are hydrocarbons having 5 to 10 carbon atoms. This is because the decomposition temperature is high and stable. Furthermore, it is inexpensive. The solvent is preferably N, N'-diisopropylpropionamidine.

第3の発明はMg系材形成方法である。例えば、CVD法(又はALD法)によってMg系材(Mg系膜)が形成される方法である。前記方法は、前記Mg系材形成材料を室に輸送する工程を有する。前記方法は、前記室に輸送されたビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムの分解により基板上にMg系材が設けられる工程を有する。前記方法は、前記Mg系材形成材料が室に輸送され、前記室に輸送されたビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムが分解することによって、基板上にMg系材が設けられる方法である。前記室は、例えば成膜室(分解室または反応室とも称される)である。   The third invention is a method of forming a Mg-based material. For example, this is a method in which a Mg-based material (Mg-based film) is formed by a CVD method (or an ALD method). The method includes a step of transporting the Mg-based material to a chamber. The method includes a step of providing an Mg-based material on a substrate by decomposition of bis (N, N'-diisopropylpropionamidinate) magnesium transported to the chamber. In the method, the Mg-based material is provided on a substrate by transporting the Mg-based material to a chamber and decomposing bis (N, N′-diisopropylpropionamidinate) magnesium transported to the chamber. It is a way to be. The chamber is, for example, a film formation chamber (also referred to as a decomposition chamber or a reaction chamber).

上記のようにして得られたMg系材(例えば、膜)は、不純物としてのO,C成分が極めて少ないものであった。O,C等の不純物成分はXPS(X線光電子分光法)では、検出できなかった。すなわち、純度が高かった。   The Mg-based material (for example, a film) obtained as described above had very few O and C components as impurities. Impurity components such as O and C could not be detected by XPS (X-ray photoelectron spectroscopy). That is, the purity was high.

更に、成膜過程における支障が起き難いものであった。例えば、前記原料(x(g))を気化・分解して成膜作業を行った。前期原料の0.7x(g)が消費された後、成膜作業を停止した。原料容器と成膜室とを連結する配管の内部を観察した。前記配管の内部の閉塞(前記原料の固化による閉塞)は認められなかった。   Further, troubles in the film formation process hardly occur. For example, the raw material (x (g)) was vaporized and decomposed to form a film. After 0.7 × (g) of the raw material was consumed, the film forming operation was stopped. The inside of a pipe connecting the raw material container and the film forming chamber was observed. No blockage inside the pipe (blockage due to solidification of the raw material) was observed.

前記非特許文献は本発明を開示していない。前記非特許文献はビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムを開示していない。前記非特許文献のScheme 2(958page)にもビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムの開示は無い。Mg[(PrN)CNPr (thf)の開示が有るに過ぎない。この化合物は固体(融点;144℃)である。ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムが液体であることは、前記非特許文献からは、到底に、想像も出来なかった。更に、前記非特許文献は成膜技術(例えば、CVD法やALD法)を開示していない。従って、本発明は前記非特許文献から容易に発明できなかったと本発明者は確信している。 The non-patent document does not disclose the present invention. The non-patent document does not disclose bis (N, N′-diisopropylpropionamidinate) magnesium. Bis (N, N′-diisopropylpropionamidinate) magnesium is not disclosed in Scheme 2 (958 page) of the non-patent document. Mg [(Pr i N) 2 CNPr i 2] disclosure of 2 (thf) is not only there. This compound is a solid (melting point: 144 ° C.). The fact that bis (N, N′-diisopropylpropionamidinate) magnesium is a liquid could hardly be imagined from the above-mentioned non-patent document. Furthermore, the non-patent document does not disclose a film forming technique (for example, a CVD method or an ALD method). Therefore, the present inventor is convinced that the present invention could not be easily invented from the non-patent document.

以下、具体的な実施例が挙げられる。但し、本発明は以下の実施例にのみ限定されない。本発明の特長が大きく損なわれない限り、各種の変形例や応用例も本発明に含まれる。   Hereinafter, specific examples will be given. However, the present invention is not limited only to the following examples. Various modifications and applications are also included in the present invention as long as the features of the present invention are not significantly impaired.

〔ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムの合成方法I〕
反応は不活性ガス雰囲気下で行われた。0.5molのN,N’−ジイソプロピルカルボジミドが1000mlのジエチルエーテルに溶解された。この溶液が−40℃に冷却された。0.5molのエチルリチウムを含有するベンゼン溶液が、前記溶液に、徐々に、滴下された。この後、室温で4時間の撹拌が行われた。この反応混合液が、0.25molの臭化マグネシウム(MgBr)が600mlのジエチルエーテルに懸濁した溶液に、徐々に、滴下された。この後、24時間の撹拌が行われた。溶媒留去後、1500mlのノルマルヘキサンが加えられた。不溶物が濾過された。溶媒留去後、減圧(0.1torr)蒸留が行われた。沸点は80℃であった。液体(25℃で1気圧の条件下)のビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムが収率78%で得られた。
得られたビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムの純度は高かった。金属不純物分析(ICP−AES)による分析値(単位はμg/g)は、次の通りであった。Si<10,Na<5,Fe<5,Zn<5,Ti<5,Cu<5,Cr<5,Cd<5,Mn<5,Co<5,Ni<5(全てが検出限界値未満)
[Synthesis method I of bis (N, N'-diisopropylpropionamidinate) magnesium]
The reaction was performed under an inert gas atmosphere. 0.5 mol of N, N'-diisopropylcarbodiimide was dissolved in 1000 ml of diethyl ether. The solution was cooled to -40C. A benzene solution containing 0.5 mol of ethyllithium was slowly dropped into the solution. Thereafter, stirring was performed at room temperature for 4 hours. This reaction mixture was gradually added dropwise to a solution of 0.25 mol of magnesium bromide (MgBr 2 ) suspended in 600 ml of diethyl ether. Thereafter, stirring was performed for 24 hours. After evaporation of the solvent, 1500 ml of normal hexane were added. Insolubles were filtered. After distilling off the solvent, distillation under reduced pressure (0.1 torr) was performed. The boiling point was 80 ° C. Bis (N, N′-diisopropylpropionamidinate) magnesium was obtained in a liquid state (at 25 ° C. and 1 atm) with a yield of 78%.
The purity of the obtained bis (N, N'-diisopropylpropionamidinate) magnesium was high. The analysis value (unit: μg / g) by metal impurity analysis (ICP-AES) was as follows. Si <10, Na <5, Fe <5, Zn <5, Ti <5, Cu <5, Cr <5, Cd <5, Mn <5, Co <5, Ni <5 (all below the detection limit )

〔Mg材の形成〕
[実施例1]
図1は成膜装置の概略図である。図1中、1は原料容器である。2は基板を保持して加熱する基板加熱器である。3は成膜チャンバー(分解反応炉)である。4は基板である。5は流量制御器である。6はシャワーヘッドである。7はキャリアガス(水素、又はAr,Nなど不活性ガス)である。10は成膜時に成膜チャンバー3内に導入する添加ガス(例えば、Ar,Nなどの不活性ガス、及びH,NHなどの還元性ガス)である。
図1の装置が用いられ、成膜作業が行われた。先ず、ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムが原料容器1内に入れられた。原料容器1に取り付けられたヒーター(図示せず)により90℃に加熱された。水素ガス(キャリアガス)が20ml/分の割合で供給され、バブリングが行われた。これにより、ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムが、水素ガスと共に、成膜チャンバー3内に導かれた。成膜チャンバー3の壁、シャワーヘッド6、及び原料容器1からシャワーヘッド6までの配管は110℃に加温されている。ポンプ(図示せず)により、成膜チャンバー3内は真空に排気された。成膜チャンバー3とポンプとの間に設けられた圧力調整弁(図示せず)により、成膜チャンバー3内は所望の圧力(例えば、1kPa)に調整されている。基板4は基板加熱器2により280℃に加熱されている。10分後に基板4上に膜(金属Mg薄膜)が形成された。
上記のようにして形成された膜は面内均一性に優れていた。前記膜がXPSで調べられた。その結果、膜中のC,O量は検出限界値未満であった。
[Formation of Mg material]
[Example 1]
FIG. 1 is a schematic diagram of a film forming apparatus. In FIG. 1, reference numeral 1 denotes a raw material container. A substrate heater 2 holds and heats the substrate. Reference numeral 3 denotes a film forming chamber (decomposition reaction furnace). 4 is a substrate. 5 is a flow controller. 6 is a shower head. Reference numeral 7 denotes a carrier gas (hydrogen or an inert gas such as Ar or N 2 ). Reference numeral 10 denotes an additive gas (for example, an inert gas such as Ar or N 2 or a reducing gas such as H 2 or NH 3 ) introduced into the film forming chamber 3 during film formation.
The apparatus shown in FIG. 1 was used to perform a film forming operation. First, bis (N, N′-diisopropylpropionamidinate) magnesium was placed in the raw material container 1. The raw material container 1 was heated to 90 ° C. by a heater (not shown). Hydrogen gas (carrier gas) was supplied at a rate of 20 ml / min, and bubbling was performed. Thereby, bis (N, N′-diisopropylpropionamidinate) magnesium was led into the film forming chamber 3 together with the hydrogen gas. The wall of the film forming chamber 3, the shower head 6, and the piping from the raw material container 1 to the shower head 6 are heated to 110 ° C. The inside of the film forming chamber 3 was evacuated by a pump (not shown). The inside of the film forming chamber 3 is adjusted to a desired pressure (for example, 1 kPa) by a pressure adjusting valve (not shown) provided between the film forming chamber 3 and the pump. The substrate 4 is heated to 280 ° C. by the substrate heater 2. After 10 minutes, a film (metallic Mg thin film) was formed on the substrate 4.
The film formed as described above had excellent in-plane uniformity. The film was examined by XPS. As a result, the amounts of C and O in the film were below the detection limit.

[実施例2]
前記実施例1と同じ条件(但し、作業時間は48時間)で作業が行われた。その結果、厚さが厚いMg材が得られた。
得られたMgの純度は高かった。金属不純物分析(ICP−AES)による分析値(単位はμg/g)は、次の通りであった。Si<10,Na<5,Fe<5,Zn<5,Ti<5,Cu<5,Cr<5,Cd<5,Mn<5,Co<5,Ni<5(全てが検出限界値未満)
[Example 2]
The operation was performed under the same conditions as in Example 1 (however, the operation time was 48 hours). As a result, a thick Mg material was obtained.
The purity of the obtained Mg was high. The analysis value (unit: μg / g) by metal impurity analysis (ICP-AES) was as follows. Si <10, Na <5, Fe <5, Zn <5, Ti <5, Cu <5, Cr <5, Cd <5, Mn <5, Co <5, Ni <5 (all below the detection limit )

[実施例3]
図1の装置が用いられた。キャリアガス7として10sccmのArガスが、成膜時添加ガス10として40sccmのArガスと20sccmのNHガスと80sccmのHガスとが用いられた以外は、実施例1と同様に行われた。成膜時間は30分間であった。
上記のようにして形成された膜は金属Mg膜であった。前記膜は面内均一性に優れていた。前記膜がXPSで調べられた。その結果、膜中のC,O量は検出限界値未満であった。
[Example 3]
The apparatus of FIG. 1 was used. The operation was performed in the same manner as in Example 1 except that 10 sccm of Ar gas was used as the carrier gas 7, and 40 sccm of Ar gas, 20 sccm of NH 3 gas, and 80 sccm of H 2 gas were used as the deposition gas 10. . The film formation time was 30 minutes.
The film formed as described above was a metal Mg film. The film was excellent in in-plane uniformity. The film was examined by XPS. As a result, the amounts of C and O in the film were below the detection limit.

[実施例4]
図1の装置が用いられた。キャリアガス7として25sccmのArガスが、成膜時添加ガス10として100sccmのArガスと500sccmのNHガスと50sccmのHガスとが用いられた以外は、実施例1と同様に行われた。成膜時間は20分間であった。
上記のようにして形成された膜は金属Mg膜であった。前記膜は面内均一性に優れていた。前記膜がXPSで調べられた。その結果、膜中のC,O量は検出限界値未満であった。
[Example 4]
The apparatus of FIG. 1 was used. The same operation as in Example 1 was performed, except that 25 sccm of Ar gas was used as the carrier gas 7, and 100 sccm of Ar gas, 500 sccm of NH 3 gas, and 50 sccm of H 2 gas were used as the additional gas 10 during film formation. . The film formation time was 20 minutes.
The film formed as described above was a metal Mg film. The film was excellent in in-plane uniformity. The film was examined by XPS. As a result, the amounts of C and O in the film were below the detection limit.

[実施例5]
図2は成膜装置の概略図である。図2中、1は原料容器である。2は基板加熱器である。3は成膜チャンバーである。4は基板である。6はシャワーヘッドである。8は気化器である。9は、原料容器1から気化器8へ原料を圧送する原料圧送用ガス(例えば、He,Arなどの不活性ガス)である。10は、成膜時に成膜チャンバー3内に導入される添加ガス(例えば、Ar,N等の不活性ガス、及びH,NH等の還元性ガス)である。11は原料圧送用ガス9の圧力制御器である。12は液体流量制御器である。液体流量制御器12は気化器8への原料液体の圧送流量を制御する。
図2の装置が用いられ、成膜作業が行われた。先ず、ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムのデカン溶液が原料容器1内に入れられた。原料圧送用ガス9としてNガスが用いられ、原料圧送用ガス圧力制御器11により0.1MPaに調整された。液体流量制御器12により、ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムのデカン溶液が0.1mg/minとなるように調整され、圧送された。これにより、ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムのデカン溶液が気化器8に送り込まれた。気化器8に送り込まれたビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムは、キャリアガスとして50sccmのArガスと共に、成膜チャンバー3内に導かれた。成膜時添加ガス10として、Arガス40sccm、NHガス20sccm、Hガス80sccmも成膜チャンバー3内に供給された。成膜チャンバー3の壁、シャワーヘッド6及び原料容器1からシャワーヘッド6までの配管は110℃に加温されている。ポンプ(図示せず)により、成膜チャンバー3内は真空に排気された。成膜チャンバー3とポンプとの間に設けられた圧力調整弁(図示せず)により、所望の圧力(例えば、1kPa)に調整されている。基板4は基板加熱器2により290℃に加熱されている。基板4上に膜(金属Mg薄膜)が形成された。
上記のようにして形成された膜は面内均一性に優れていた。前記膜がXPSで調べられた。その結果、膜中のC,O量は検出限界値未満であった。
[Example 5]
FIG. 2 is a schematic diagram of a film forming apparatus. In FIG. 2, reference numeral 1 denotes a raw material container. 2 is a substrate heater. Reference numeral 3 denotes a film forming chamber. 4 is a substrate. 6 is a shower head. 8 is a vaporizer. Reference numeral 9 denotes a raw material feed gas (for example, an inert gas such as He or Ar) for feeding the raw material from the raw material container 1 to the vaporizer 8. Reference numeral 10 denotes an additive gas (for example, an inert gas such as Ar or N 2 or a reducing gas such as H 2 or NH 3 ) introduced into the film forming chamber 3 during the film formation. Reference numeral 11 denotes a pressure controller for the raw material pressure gas 9. Reference numeral 12 denotes a liquid flow controller. The liquid flow controller 12 controls the flow rate of the raw material liquid under pressure to the vaporizer 8.
The film forming operation was performed using the apparatus of FIG. First, a decane solution of bis (N, N′-diisopropylpropionamidinate) magnesium was placed in the raw material container 1. N 2 gas was used as the raw material pumping gas 9, and the pressure was adjusted to 0.1 MPa by the raw material pumping gas pressure controller 11. The liquid flow controller 12 adjusted the decane solution of bis (N, N'-diisopropylpropionamidinate) magnesium to be 0.1 mg / min and pumped it. Thus, the decane solution of bis (N, N′-diisopropylpropionamidinate) magnesium was sent to the vaporizer 8. The bis (N, N′-diisopropylpropionamidinate) magnesium sent to the vaporizer 8 was led into the film forming chamber 3 together with Ar gas of 50 sccm as a carrier gas. Ar gas 40 sccm, NH 3 gas 20 sccm, and H 2 gas 80 sccm were also supplied into the film formation chamber 3 as the addition gas 10 during film formation. The wall of the film forming chamber 3, the shower head 6, and the piping from the raw material container 1 to the shower head 6 are heated to 110 ° C. The inside of the film forming chamber 3 was evacuated by a pump (not shown). The pressure is adjusted to a desired pressure (for example, 1 kPa) by a pressure adjusting valve (not shown) provided between the film forming chamber 3 and the pump. The substrate 4 is heated to 290 ° C. by the substrate heater 2. A film (metallic Mg thin film) was formed on the substrate 4.
The film formed as described above had excellent in-plane uniformity. The film was examined by XPS. As a result, the amounts of C and O in the film were below the detection limit.

[実施例6]
実施例5において、デカン(C1022)の代わりに、N,N’−ジイソプロピルプロピオンアミジンが用いられた以外は、同様に行われた。基板4上に膜(金属Mg薄膜)が形成された。
上記のようにして形成された膜は面内均一性に優れていた。前記膜がXPSで調べられた。その結果、膜中のC,O量は検出限界値未満であった。
[Example 6]
In Example 5, instead of decane (C 10 H 22), N , except that N'- diisopropyl propionamidine was used, was conducted in the same manner. A film (metallic Mg thin film) was formed on the substrate 4.
The film formed as described above had excellent in-plane uniformity. The film was examined by XPS. As a result, the amounts of C and O in the film were below the detection limit.

〔窒化Mg材の形成〕
[実施例7]
図1の装置が用いられ、成膜作業が行われた。先ず、ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムが原料容器1内に入れられた。原料容器1に取り付けられたヒーター(図示せず)により90℃に加熱された。窒素ガス(キャリアガス)が20ml/分の割合で供給され、バブリングが行われた。これにより、ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムが、窒素ガスと共に、成膜チャンバー3内に導かれた。成膜チャンバー3の壁、シャワーヘッド6、及び原料容器1からシャワーヘッド6までの配管は110℃に加温されている。成膜時添加ガス10として40sccmのNHガスが供給された。ポンプ(図示せず)により、成膜チャンバー3内は真空に排気された。成膜チャンバー3とポンプとの間に設けられた圧力調整弁(図示せず)により、成膜チャンバー3内は所望の圧力(例えば、1kPa)に調整されている。基板4は基板加熱器2により550℃に加熱されている。10分後に基板4上に膜(窒化Mg薄膜)が形成された。
上記のようにして形成された膜は面内均一性に優れていた。前記膜がXPSで調べられた。その結果、膜中のC,O量は検出限界値未満であった。
[Formation of Mg nitride material]
[Example 7]
The apparatus shown in FIG. 1 was used to perform a film forming operation. First, bis (N, N′-diisopropylpropionamidinate) magnesium was placed in the raw material container 1. The raw material container 1 was heated to 90 ° C. by a heater (not shown). Nitrogen gas (carrier gas) was supplied at a rate of 20 ml / min, and bubbling was performed. Thereby, bis (N, N′-diisopropylpropionamidinate) magnesium was led into the film forming chamber 3 together with the nitrogen gas. The wall of the film forming chamber 3, the shower head 6, and the piping from the raw material container 1 to the shower head 6 are heated to 110 ° C. An NH 3 gas of 40 sccm was supplied as the additional gas 10 during the film formation. The inside of the film forming chamber 3 was evacuated by a pump (not shown). The inside of the film forming chamber 3 is adjusted to a desired pressure (for example, 1 kPa) by a pressure adjusting valve (not shown) provided between the film forming chamber 3 and the pump. The substrate 4 is heated to 550 ° C. by the substrate heater 2. After 10 minutes, a film (Mg nitride thin film) was formed on the substrate 4.
The film formed as described above had excellent in-plane uniformity. The film was examined by XPS. As a result, the amounts of C and O in the film were below the detection limit.

1 原料容器
2 基板加熱器
3 成膜チャンバー
4 基板
5 流量制御器
6 シャワーヘッド
7 キャリアガス
8 気化器
9 原料圧送用ガス
10 成膜時添加ガス
11 原料圧送用ガス圧力制御器
12 液体流量制御器

DESCRIPTION OF SYMBOLS 1 Raw material container 2 Substrate heater 3 Film forming chamber 4 Substrate 5 Flow rate controller 6 Shower head 7 Carrier gas 8 Vaporizer 9 Raw material feed gas 10 Additive gas for film formation 11 Raw material pressure feed gas pressure controller 12 Liquid flow controller

Claims (6)

Mg系(Mg系とは、Mg金属、Mg金属合金、MgX(Xは非金属元素または半導体元素)の何れかである。)材を得る為の材料であって、
ビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムを有する
材料。
A material for obtaining a Mg-based material (Mg-based material is any of Mg metal, Mg metal alloy, and MgX (X is a nonmetallic element or a semiconductor element)) ;
A material having bis (N, N′-diisopropylpropionamidinate) magnesium.
更に溶媒を有する
請求項1の材料。
The material of claim 1 further comprising a solvent.
溶媒が炭化水素系化合物の群の中から選ばれる一種または二種以上である
請求項2の材料。
3. The material according to claim 2, wherein the solvent is one or more selected from the group of hydrocarbon compounds.
溶媒がN,N’−ジイソプロピルプロピオンアミジンである
請求項2の材料。
3. The material of claim 2 wherein the solvent is N, N'-diisopropylpropionamidine.
請求項1〜請求項4いずれかの材料を室に輸送する工程と、
前記室に輸送されたビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムの分解により基板上にMg系(Mg系とは、Mg金属、Mg金属合金、MgX(Xは非金属元素または半導体元素)の何れかである。)材が設けられる工程
とを有する方法。
Transporting the material according to any one of claims 1 to 4 to a chamber;
Decomposition of bis (N, N'-diisopropylpropionamidinate) magnesium transported to the chamber causes Mg-based (Mg-based is Mg metal, Mg metal alloy, MgX (X is a non-metal element or semiconductor) Element), wherein a material is provided.
25℃で液体のビス(N,N’−ジイソプロピルプロピオンアミジネート)マグネシウムである新規化合物。   A novel compound which is bis (N, N'-diisopropylpropionamidinate) magnesium which is liquid at 25C.
JP2015189559A 2015-09-28 2015-09-28 Mg-based material forming material, Mg-based material forming method, and novel compound Active JP6655838B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015189559A JP6655838B2 (en) 2015-09-28 2015-09-28 Mg-based material forming material, Mg-based material forming method, and novel compound
KR1020160121343A KR101947384B1 (en) 2015-09-28 2016-09-22 Mg BASED MATERIAL, A METHOD FOR FORMING Mg BASED MATERIAL AND NOVEL COMPOUND
TW105131052A TWI633061B (en) 2015-09-28 2016-09-26 Magnesium-based structural material, method for forming magnesium-based structural material, and novel compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015189559A JP6655838B2 (en) 2015-09-28 2015-09-28 Mg-based material forming material, Mg-based material forming method, and novel compound

Publications (2)

Publication Number Publication Date
JP2017066043A JP2017066043A (en) 2017-04-06
JP6655838B2 true JP6655838B2 (en) 2020-02-26

Family

ID=58493895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015189559A Active JP6655838B2 (en) 2015-09-28 2015-09-28 Mg-based material forming material, Mg-based material forming method, and novel compound

Country Status (3)

Country Link
JP (1) JP6655838B2 (en)
KR (1) KR101947384B1 (en)
TW (1) TWI633061B (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4009394A1 (en) * 1989-12-12 1991-06-13 Merck Patent Gmbh Heterocyclic organo-metal cpds. of aluminium, gallium or indium
GB9423614D0 (en) * 1994-11-23 1995-01-11 Ass Octel Organometallic complexes of aluminium, gallium and indium
KR20150067397A (en) * 2002-11-15 2015-06-17 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Atomic Layer Deposition Using Metal Amidinates
CN103874781B (en) * 2011-10-07 2016-02-10 气相成长株式会社 Cobalt-based film formation method

Also Published As

Publication number Publication date
TW201711963A (en) 2017-04-01
TWI633061B (en) 2018-08-21
KR20170037830A (en) 2017-04-05
KR101947384B1 (en) 2019-02-13
JP2017066043A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP5916744B2 (en) Cobalt film forming method
US9353437B2 (en) Diazadiene-based metal compound, method for preparing same and method for forming a thin film using same
US20190003050A1 (en) Deposition of Molybdenum Thin Films Using A Molybdenum Carbonyl Precursor
WO2012060428A1 (en) (amide amino alkane) metal compound, method of manufacturing metal-containing thin film using said metal compound
TWI607111B (en) Cobalt precursors for low temperature ald or cvd of cobalt-based thin films
US20120321817A1 (en) Bis-ketoiminate copper precursors for deposition of copper-containing films
US20240096631A1 (en) Haloalkynyl dicobalt hexacarbonyl precursors for chemical vapor deposition of cobalt
US11634441B2 (en) Group 5 metal compound for thin film deposition and method of forming group 5 metal-containing thin film using same
TW201827445A (en) Group 5 metal compound, preparing method thereof, precursor composition including the same for film deposition, and depositing method of film using the same
JP5860454B2 (en) Precursor for forming europium-containing thin film and method for forming europium-containing thin film
US20160314980A1 (en) Liquid precursor compositions, preparation methods thereof, and methods for forming layer using the composition
JP6452090B2 (en) Iron-based film forming material and iron-based film forming method
JP7161767B2 (en) FORMING MATERIAL, FORMING METHOD, AND NOVEL COMPOUND
JP6655838B2 (en) Mg-based material forming material, Mg-based material forming method, and novel compound
JP2019065377A (en) Storage method of ruthenium precursor
JP7332211B2 (en) Novel compound and manufacturing method
JP6587282B2 (en) Method for producing amidinate metal complex
JP5842687B2 (en) Cobalt film forming raw material and method for producing cobalt-containing thin film using the raw material
WO2024157934A1 (en) Production method, film formation method, and film-forming material
WO2016021385A1 (en) Alkoxide compound, thin film-forming starting material, thin film formation method and alcohol compound
JP2022068022A (en) Forming method, forming material, and novel compound
TW201026876A (en) Nickel-containing film-formation material, and nickel-containing film-fabrication method
JP2024104710A (en) Film-forming material and manufacturing method
KR20240125642A (en) Alkyl and aryl heteroleptic bismuth precursors for bismuth oxide containing thin films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200122

R150 Certificate of patent or registration of utility model

Ref document number: 6655838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250