JP6655820B2 - ヒストンh3k27の脱メチル化抑制を機序とする薬剤等 - Google Patents
ヒストンh3k27の脱メチル化抑制を機序とする薬剤等 Download PDFInfo
- Publication number
- JP6655820B2 JP6655820B2 JP2015238117A JP2015238117A JP6655820B2 JP 6655820 B2 JP6655820 B2 JP 6655820B2 JP 2015238117 A JP2015238117 A JP 2015238117A JP 2015238117 A JP2015238117 A JP 2015238117A JP 6655820 B2 JP6655820 B2 JP 6655820B2
- Authority
- JP
- Japan
- Prior art keywords
- anks1b
- kdm6b
- histone
- fop
- expression
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Description
ALK2は,骨誘導因子として知られるBMP(bone morphogenetic protein)の1回膜貫通型受容体として機能するリン酸化酵素である。通常,ALK2は,細胞外領域でBMPと結合することにより活性化され,細胞内に骨形成シグナルを伝達する。FOP患者では,このALK2の遺伝子に点変異が起こり,R206HやG356Dと呼ばれる変異型のALK2タンパクが生じる。これらの変異型ALK2は,細胞外領域におけるBMPと結合しなくても活性化されており,常に,骨形成シグナルを伝達してしまう。結果として,骨誘導が異常に促進され,軟部組織や筋肉等の骨化が進行してしまうことが明らかとなっている。
また,ANKS1B(Ankyrin Repeat And Sterile Alpha Motif Domain Containing 1B)は,複数のサブタイプが報告されており,腎臓癌やオリエール病などの関与が明らかとなっている(非特許文献1,非特許文献2)。
これらKDM6BとANKS1Bの関連性,およびこれら分子とFOPとの関連性については,これまで明らかとなっていなかった。
さらに検討を行ったところ,このメチル化低下は変異型ALK2により引き起こされるBMPのシグナル異常によって惹起されること,および,ALK2の下流分子としてKDM6BおよびANKS1Bが関与していることを発明者は明らかにした。
また,発明者は,KDM6BないしANKS1B,これら分子の発現を抑制することにより,ヒストンH3K27のメチル化低下が抑制され,FOPにおけるiPS細胞誘導異常が回復すること,ならびに,骨芽細胞への分化が抑制されることを確認した。
これらより発明者は,KDM6BないしANKS1Bが,FOP治療等におけるターゲット分子となることを明らかにしたものである。
これまで,ANKS1Bの発現異常と遺伝子変異が,腎臓癌や肺癌,白血病などの疾患で起こることが報告されていたが,その生理学的意義は不明であった。上記知見より,発明者は,ANKS1Bの発現異常や遺伝子変異を有する疾患において,下記の事象が起こっていることに着想したものである。
(1) ANKS1Bの過剰発現や機能獲得型変異(gain of function mutation)が生じる疾患では,ヒストンH3K27の脱メチル化が亢進している。
(2) 一方,ANKS1Bの発現低下や機能喪失型変異(loss of function mutation)が生じる疾患では,ヒストンH3K27の脱メチル化が抑制されており,結果として,ヒストンH3K27のメチル化が亢進している。
本発明の第一の構成は,ALK2の異常を有する細胞増殖性疾患において,KDM6B又はANKS1Bの発現を抑制することにより,細胞増殖を抑制し治療を行うことを特徴とする薬剤である。
本発明の第三の構成は,前記骨芽細胞の増殖性疾患において,異所性骨化を症状として有することを特徴とする第二の構成に記載の薬剤である。
本発明の第四の構成は,前記骨芽細胞の増殖性疾患が,進行性骨化性線維形成症,又は,黄色靱帯骨化症であることを特徴とする第二の構成に記載の薬剤である。
本発明の第六の構成は,前記癌細胞の増殖性疾患が,グリオーマであることを特徴とする第五の構成に記載の薬剤である。
(1) ALK2の異常を有する細胞増殖性疾患では,ヒストンH3K4ならびにK27のメチル化低下が起こっている。
(2) ヒストンH3K27のメチル化低下は,KDM6Bの過剰発現ないし異常活性化により,惹起される。また,KDM6Bの過剰発現を抑制等することにより,ヒストンH3K27のメチル化低下が抑制された結果,疾患における細胞の異常増殖も抑制される。
(3) KDM6Bの発現上昇等の現象は,ANKS1Bの過剰発現ないし異常活性化により,惹起される。また,ANKS1Bの過剰発現を抑制等することにより,KDM6Bの発現抑制等を介して,ヒストンH3K27のメチル化低下が抑制された結果,疾患における細胞の異常増殖も抑制される。
(4) ANKS1Bの過剰発現や機能獲得型変異(gain of function mutation)が生じる疾患では,ヒストンH3K27の脱メチル化が亢進している。一方,ANKS1Bの発現低下や機能喪失型変異(loss of function mutation)が生じる疾患では,ヒストンH3K27の脱メチル化が抑制されており,結果として,ヒストンH3K27のメチル化が亢進している。
(5) ヒストンH3K4ないしK27のメチル化低下を抑制することにより,FOP患者の皮膚線維芽細胞由来のiPS細胞の樹立が可能となる。
本発明についてはそれぞれ,薬剤が上記(1)から(3),診断方法が(4)に基づくものである。
骨芽細胞が増殖する疾患としては,異所性骨化を症状として有する疾患が挙げられ,具体的には,進行性骨化性線維形成症,又は,黄色靱帯骨化症などが挙げられる。
癌細胞が増殖する疾患としては,グリオーマ,ないし小児性グリオーマなどが挙げられる。
なお,本発明において,薬剤とは,KDM6B又はANKS1Bの発現抑制もしくは活性低下を効能・効果として発揮する,核酸や抗体,低分子などの化合物,もしくはこの化合物を有効成分として含む組成物として定義される。また,かかる化合物については,化合物分子そのものが有効成分として機能する場合に加え,投与後,生体内において分子形を変化させて有効成分として機能する,いわゆるDDS化された化合物も含まれるものとする。
ANKS1Bの異常発現を調べる方法として,典型的には,目的とする癌組織の病理切片を作製し,抗ANKS1B抗体にて免疫染色を行うなどすることができる。その他,RT-PCRを用いて核酸を定量的に測定する手法やANKS1Bそのもののアミノ酸配列を調べる手法などが挙げられる。
調べた結果,ANKS1Bの過剰発現や機能獲得型変異(gain of function mutation)が生じている疾患では,ヒストンH3K27の脱メチル化が亢進している。この場合,KDM6Bの阻害剤などの脱メチル化を薬理機序とする薬剤を選択すればよい。
一方,ANKS1Bの発現低下や機能喪失型変異(loss of function mutation)が生じる疾患では,ヒストンH3K27の脱メチル化が抑制されており,結果として,ヒストンH3K27のメチル化が亢進している。この場合,Ezh2の阻害剤などのメチル化を薬理機序とする薬剤を選択すればよい。
ヒストンH3K4ないしK27のメチル化低下を抑制する手法については特に限定する必要はなく,種々の手法を採用することができる。典型的には,iPS細胞誘導時に,ヒストンH3K4の脱メチル化酵素であるLSD1のshRNAや,ヒストンH3K27の脱メチル化酵素であるKDM6BのshRNA,このKDM6Bの下流分子であるANKS1BのshRNAなどを存在下,iPS細胞の誘導を行えばよい。
<1.皮膚由来の線維芽細胞の生成>
(1) 倫理委員会に承認されたプロトコールにより,インフォームドコンセントの下,FOP患者及び健常者の皮膚生検の外植片から線維芽細胞を作出した。
(2) 患者及び健常者からの皮膚試料を細かく刻み,10%ウシ胎児血清(FBS)を添加したDMEM培地で培養した。
(3) 線維芽細胞が出現したことを確認した後,初期化遺伝子を導入するために線維芽細胞を増殖させ,その後,10%DMSO+90%FBSからなる凍結溶液に入れ,凍結保存した。
(1) 20%のKNOCKOUT(商標)血清置換物(KSR,インビトロゲン),2mMのL-グルタミン,1×10-4Mの非必須アミノ酸(NEAA,シグマ),1×10-4Mの2-メルカプトエタノール(シグマ),0.5%のペニシリンとストレプトマイシン(日本,ナカライテスク),及び5ng/mLの基本線維芽細胞増殖因子(bFGF,和光,日本)を添加したDMEM/F12(シグマ)を含有するヒトiPS培地において,マイトマイシンC(MMC)処理したMEF支持細胞上でヒトiPS細胞を維持した。
(2) N. Fusaki, H. Ban, A. Nishiyama, K. Saeki, M. Hasegawa, Proc. Jpn. Acad. Ser., B. Phys. Biol. Eci., 85, 348 (2009)に記載される方法により,ヒト由来の線維芽細胞からiPS細胞を生成した。
(3) 感染1日前に,6穴プレートにおいてウエル当たり5×105個のヒト線維芽細胞を播種し,その後,感染多重度(multiplicity of infection ; MOI)3にて,下記センダイウイルス(SeV)ベクターを細胞に感染させた。すなわち,Oct3/4遺伝子,Sox2遺伝子,K1f4遺伝子及びc-Myc遺伝子を含むSeVベクターについて,N. Fusaki, H. Ban, A. Nishiyama, K. Saeki, M. Hasegawa, Proc. Jpn. Acad. Ser., B. Phys. Biol. Eci., 85, 348 (2009)に記載される方法に従い,作成を行った。
(4) 感染の7日後,トリプシンによって感染させた線維芽細胞を回収し,60mmのシャーレ当たり5.4×104個の細胞,或いは100mmのシャーレ当たり1〜2×105個の細胞をMMC処理したMEF支持細胞上に播種した。翌日,ヒトiPS細胞培地に置き換え,感染の30日後まで培養を継続し,コロニーを観察した。
(5) iPS細胞の生成に対する骨形成タンパク質(BMP-4,6,及び7)の影響は,感染8日目に置き換える上記ヒトiPS細胞培地に,それぞれ,BMP-4(10ng/mL),BMP-6(50ng/mL),及びBMP-7(10ng/mL)を添加した培地を用い,30日目まで培養することにより確認した。また,一部の実験では,ALK2キナーゼ阻害剤であるLDN-193189(STEMGENT;ステムジェント)を200nMの濃度で上記ヒトiPS培地に添加した。
(1) 免疫ブロットにおいては,細胞を溶解バッファー(62.5mM Tris-HCl,pH 7.4,2% SDS,0.05% 2ME,10% グリセロール,0.00125%臭素)にて溶解し,超音波を当て,4℃,15000rpm,条件下で10分間遠心分離を行った。
(2) 得られた上清をSDS-PAGEにより,目的タンパクをPVDFメンブレン上にて分離した。
(3) メンブレンを抗血清と共にインキュベートし,免疫反応バンドをEnhanced Chemiluminescence detection(PerkinElmer社)を用いて可視化した。バンドの濃さはImage J software(米国NIH)を用いて評価した。
(4) 免疫沈降は,Smadsを過剰発現させた293T細胞とKDM6B又はLSD1を,RIPAバッファー(50mM Tris-HCl pH 7.4,1 mM EDTA,150mM NaCl,1% NP-40,protease/phosphatase inhibitor cocktail)に溶解し,必要な抗体と共に,4℃下で回転台にて一晩インキュベートした。その後,プロテインG樹脂を加え,4℃下で回転台にて2時間インキュベートした。樹脂を3回PMSで洗浄し,ウェスタンブロット用のバッファーに溶解させた。
(1) 細胞を1%ホルムアルデヒドに作用させ,タンパク質のDNAへの固定化(クロスリンク)を行った。得られた溶解液を抗ヒストンメチル抗体と共にインキュベートした。精製したDNA断片はPCR増幅を行った。
(2) ChIP-ChIP解析においては,FOP由来線維芽細胞をRIPAバッファーにより溶解し,抗FLAGアフィニティゲル(シグマ社A2220)と共に4℃下で回転台にて一晩インキュベートした。得られたゲルを5回TBSで洗浄し,100ng/mLのFLAGペプチド(シグマ社F3290)を含むRIPAバッファーを加え,4℃下で回転台にて2時間インキュベートした。得られた混合物をTBSで3回洗浄し,500ng/mL の3 x FLAGペプチド(シグマ社F4799)を含むTBSバッファーを加え,4℃下で回転台にて2時間インキュベートした。この作業を3回繰り返した。
<1.FOP由来線維芽細胞におけるヒストンH3のメチル化の検討>
(1) FOP由来線維芽細胞のiPS細胞誘導を行い,ヒストンH3のメチル化の様子を調べた。比較対象として,正常線維芽細胞を用いた。
(2) 図1に結果を示す。正常線維芽細胞(N3)において,iPS細胞への誘導がすすむとともに,ヒストンH3のK4ならびにK27のバンドが濃くなっていった。
(3) 一方,FOP由来線維芽細胞(F1,F2)においては,ヒストンH3のK4ならびにK27のバンドの様子に変化はみられなかった。
(4) また,K9,K36,K79においては,正常線維芽細胞とFOP由来線維芽細胞の間でのバンドの違いはみられなかった。
(5) これらの結果から,FOP由来線維芽細胞のiPS細胞誘導の樹立が困難な理由として,ヒストンH3のK4ならびにK27のメチル化異常が原因の一つであることが示唆された。
(1) 各種遺伝子に対するshRNAを用いて,FOP由来線維芽細胞のiPS細胞誘導への影響を調べた。
(2) 図2に結果を示す。ALK2の変異型であるR206H,ヒストンH3K4の脱メチル化酵素であるLSD1と同様,KDM6Bにおいても,shRNAによる抑制により,iPS細胞誘導の低下が回復していた。
(3) また,LSD1とKDM6Bをともに抑制した場合は,iPS細胞誘導の低下が,ほぼ完全に回復していた。
(4) LSD1,KDM6B,これらの分子は,BMPシグナルが活性化している際,いずれの分子もSmadsとコンプレックスを形成する。そして,LSD1はヒストンH3K4,KDM6BはヒストンH3K27の脱メチル化酵素であり,ヒストンH3K4,ないしヒストンH3K27のメチル化を抑制する。これらの結果から,FOP由来線維芽細胞のiPS細胞誘導は,ヒストンH3K4およびヒストンH3K27,これらのメチル化低下を抑制することにより,十分回復しうることが示唆された。
(1) R206H,およびANKS1BのshRNAを用いて,これらを抑制した場合におけるFOP由来線維芽細胞のiPS細胞誘導への影響を調べた。
(2) 図3に結果を示す。FOP由来線維芽細胞のiPS細胞誘導異常は,ALK2の変異型であるR206Hの抑制により,回復することが分かった。また,R206Hと同様,ANKS1Bの抑制でも部分的に回復することが分かった。
(1) FOP由来線維芽細胞の骨芽細胞への分化に,各分子の抑制がどのような影響を与えるかについて,検討を行った。
(2) R206H,KDM6Bいずれの抑制によっても,骨芽細胞への分化が大きく抑制されていることが分かった(図4A)。
(3) また,ALK2,ANKS1Bいずれの抑制によっても,骨芽細胞への分化が抑制されていることが分かった(図4B)。
(4) これらの結果から,ANKS1Bが,FOPにおける骨芽細胞分化に関与していること,そして,FOPの病因として重要な因子であることが示唆された。
(1) Diffuse intrinsic pos glioma(小児脳幹グリオーマ,DIPG)において,ALK2の変異が生じることが報告されている。このALK2変異型(R206H)を発現させたグリオーマ細胞株(U87-ALK2/R206H)を用いて,KDM6B又はANKS1B,これらのshRNAによる発現抑制を行い,グリオーマ細胞株の増殖にどのような変化がみられるかを調べた。
(2) KDM6BならびにANKS1Bの抑制により,グリオーマ細胞株の細胞増殖が抑制されることが分かった(図5)。
(1) R206H,ならびにANKS1BのshRNAを用いて,グリオーマ細胞株における各種タンパクの発現変化について調べた。
(2) 図6に結果を示す。BMP4又はBMP6により,Smadのリン酸化が促進されることが確認された。
(3) このSmadのリン酸化は,R206Hの発現抑制により,リン酸化が部分的に抑制されることが分かった。一方,ANKS1Bの抑制では,Smadのリン酸化が大きく抑制されることが分かった。
(4) このことから,ANKS1BはSmadのリン酸化を安定化させており,ANKS1Bの発現抑制が,BMPのシグナル伝達を低下させることが示唆された。
(1) DIPGグリオーマにおいて,ヒストンH3.3に変異が生じることが報告されている。このH3.3K27M変異を持つグリオーマ細胞株において,ANKS1Bの発現抑制により,各種タンパクの発現がどのように変化するかを調べた。
(2) ANKS1Bの抑制により,KDM6Bの発現が低下していることが分かった(図7,上)。
(3) さらに,ANKS1Bの抑制により,ヒストンH3K27のメチル化が上昇していることが分かった(図7,下)。
(1) KDM6BやANKS1Bなどの阻害剤が,FOPにおいて治療効果を示すかどうかについて,FOP由来線維芽細胞ならびにFOPモデル動物を用いて調べた。
(2) 図8に結果を示す。KDM6Bの阻害剤であるGSK-J4の添加により,FOP由来線維芽細胞の骨芽細胞への分化が,濃度依存的に抑制されていることが分かった(図8A)。
FOPモデル動物では,ALK2の阻害剤であるLDN-193189の存在下,ヒトFOP患者由来線維芽細胞から樹立したFOP由来線維芽細胞を用いた。作製されたFOPモデル動物では,FOP由来線維芽細胞により,免疫不全マウスへの移植後56日で,テラトーマが形成される。加えて,FOPモデル動物では,ヒト健常者由来線維芽細胞の移植と比較して,より効率的に異所性骨化を示す。
(4) 2週間かけてFOP由来線維芽細胞の移植を行った後,LDN-193189ならびにGSK-J4,これらをそれぞれ腹腔内投与した結果を示す(図8B)。
LDN-193189ならびにGSK-J4,いずれにおいても,投与を行っていない個体(Mock)と比較して,異所性骨化が抑制されており,骨容量についても少ないことが分かった(図8B)。
(5) 同様に,変異型ALK2(R206H)ないしANKS1BのsiRNAを腹腔内投与したところ,いずれにおいても,コントロールsiRNAを投与した個体と比較して,異所性骨化が抑制されており,骨容量についても少ないことが分かった(図8C)。
Claims (5)
- ALK2の異常を有する骨芽細胞の増殖性疾患において,KDM6B又はANKS1Bの発現抑制もしくは活性低下により,疾患における細胞の異常増殖を抑制し治療を行う薬剤であって,
前記薬剤が,
KDM6Bにおいて,KDM6Bに対する核酸,KDM6Bに対する抗体,GSK-J4のいずれかから,
ANKS1Bにおいては,ANKS1Bに対する核酸,ANKS1Bに対する抗体,LDN-193189のいずれかから,
選択されることを特徴とする薬剤。 - 前記骨芽細胞の増殖性疾患において,異所性骨化を症状として有する請求項1に記載の薬剤。
- 前記骨芽細胞の増殖性疾患が,進行性骨化性線維形成症,又は,黄色靱帯骨化症である請求項1に記載の薬剤。
- ALK2の異常を有する癌細胞の増殖性疾患において,ANKS1Bの発現抑制もしくは活性低下により,疾患における細胞の異常増殖を抑制し治療を行う薬剤であって,
前記薬剤が,ANKS1Bに対する核酸又はANKS1Bに対する抗体のいずれかから選択されることを特徴とする薬剤。 - 前記癌細胞の増殖性疾患が,グリオーマである請求項4に記載の薬剤。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015238117A JP6655820B2 (ja) | 2015-12-06 | 2015-12-06 | ヒストンh3k27の脱メチル化抑制を機序とする薬剤等 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015238117A JP6655820B2 (ja) | 2015-12-06 | 2015-12-06 | ヒストンh3k27の脱メチル化抑制を機序とする薬剤等 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017101011A JP2017101011A (ja) | 2017-06-08 |
JP6655820B2 true JP6655820B2 (ja) | 2020-02-26 |
Family
ID=59015450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015238117A Active JP6655820B2 (ja) | 2015-12-06 | 2015-12-06 | ヒストンh3k27の脱メチル化抑制を機序とする薬剤等 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6655820B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4149512A4 (en) * | 2020-05-12 | 2024-06-05 | Board of Regents, The University of Texas System | METHODS OF TREATMENT OF GLIOBLASTOMA |
-
2015
- 2015-12-06 JP JP2015238117A patent/JP6655820B2/ja active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4149512A4 (en) * | 2020-05-12 | 2024-06-05 | Board of Regents, The University of Texas System | METHODS OF TREATMENT OF GLIOBLASTOMA |
Also Published As
Publication number | Publication date |
---|---|
JP2017101011A (ja) | 2017-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Perugorria et al. | Histone methyltransferase ASH1 orchestrates fibrogenic gene transcription during myofibroblast transdifferentiation | |
Zhao et al. | High-efficiency reprogramming of fibroblasts into cardiomyocytes requires suppression of pro-fibrotic signalling | |
Owens et al. | Divergent neuroinflammatory regulation of microglial TREM expression and involvement of NF-κB | |
Ma et al. | A Wnt/β‐catenin negative feedback loop inhibits interleukin‐1–induced matrix metalloproteinase expression in human articular chondrocytes | |
Dou et al. | Smooth muscle SIRT1 reprograms endothelial cells to suppress angiogenesis after ischemia | |
Small et al. | Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction | |
Yang et al. | Id proteins are critical downstream effectors of BMP signaling in human pulmonary arterial smooth muscle cells | |
Warner et al. | Transcription factor p63 regulates key genes and wound repair in human airway epithelial basal cells | |
Hong et al. | VEGF suppresses epithelial-mesenchymal transition by inhibiting the expression of Smad3 and miR‑192, a Smad3-dependent microRNA | |
EP3064222A1 (en) | Therapeutic drug for diseases related to endoplasmic reticulum cell death in corneal endothelium | |
Shi et al. | miR‑486‑5p is upregulated in osteoarthritis and inhibits chondrocyte proliferation and migration by suppressing SMAD2 | |
Lv et al. | The cell cycle inhibitor P21 promotes the development of pulmonary fibrosis by suppressing lung alveolar regeneration | |
Zhu et al. | Crosstalk between Smad2/3 and specific isoforms of ERK in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes | |
Zhu et al. | Down‐regulation of Rac GTPase‐activating protein OCRL1 causes aberrant activation of Rac1 in osteoarthritis development | |
Zhou et al. | Targeting RPTPσ with lentiviral shRNA promotes neurites outgrowth of cortical neurons and improves functional recovery in a rat spinal cord contusion model | |
He et al. | Epigenetic regulation of Thy‐1 gene expression by histone modification is involved in lipopolysaccharide‐induced lung fibroblast proliferation | |
Wang et al. | Chitinase-like protein Ym2 (Chil4) regulates regeneration of the olfactory epithelium via interaction with inflammation | |
Zhao et al. | Overexpression of Pitx1 attenuates the senescence of chondrocytes from osteoarthritis degeneration cartilage–A self-controlled model for studying the etiology and treatment of osteoarthritis | |
Zhang et al. | SUMO protease SENP1 acts as a ceRNA for TGFBR2 and thus activates TGFBR2/Smad signaling responsible for LPS-induced sepsis | |
JP6655820B2 (ja) | ヒストンh3k27の脱メチル化抑制を機序とする薬剤等 | |
Wang et al. | Neutralization of Hv1/HVCN1 with antibody enhances microglia/macrophages myelin clearance by promoting their migration in the brain | |
WO2014113406A1 (en) | Compositions and methods for treating pancreatic cancer | |
Yao et al. | The transcription factor T-box 3 regulates colony-stimulating factor 1-dependent Jun dimerization protein 2 expression and plays an important role in osteoclastogenesis | |
US20210161872A1 (en) | Therapeutic drug for ectopic ossification having mechanism to inhibit par1 | |
WO2022137964A1 (ja) | 軟骨・骨・関節疾患の予防または治療用医薬組成物および軟骨・骨・関節疾患の予防または治療用薬剤のスクリーニング方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20181205 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191029 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20191101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191114 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6655820 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |