JP6648801B1 - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP6648801B1
JP6648801B1 JP2018199410A JP2018199410A JP6648801B1 JP 6648801 B1 JP6648801 B1 JP 6648801B1 JP 2018199410 A JP2018199410 A JP 2018199410A JP 2018199410 A JP2018199410 A JP 2018199410A JP 6648801 B1 JP6648801 B1 JP 6648801B1
Authority
JP
Japan
Prior art keywords
groove
tire
lug
tread
lug groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018199410A
Other languages
Japanese (ja)
Other versions
JP2020066305A (en
Inventor
達也 増山
達也 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2018199410A priority Critical patent/JP6648801B1/en
Priority to DE112019004663.2T priority patent/DE112019004663B4/en
Priority to PCT/JP2019/024250 priority patent/WO2020084831A1/en
Application granted granted Critical
Publication of JP6648801B1 publication Critical patent/JP6648801B1/en
Publication of JP2020066305A publication Critical patent/JP2020066305A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0302Tread patterns directional pattern, i.e. with main rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/0311Patterns comprising tread lugs arranged parallel or oblique to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/032Patterns comprising isolated recesses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/11Tread patterns in which the raised area of the pattern consists only of isolated elements, e.g. blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1307Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls
    • B60C11/1323Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping with special features of the groove walls asymmetric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/13Tread patterns characterised by the groove cross-section, e.g. for buttressing or preventing stone-trapping
    • B60C11/1376Three dimensional block surfaces departing from the enveloping tread contour
    • B60C11/1392Three dimensional block surfaces departing from the enveloping tread contour with chamfered block edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0341Circumferential grooves
    • B60C2011/0346Circumferential grooves with zigzag shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/036Narrow grooves, i.e. having a width of less than 3 mm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0362Shallow grooves, i.e. having a depth of less than 50% of other grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C2011/0337Tread patterns characterised by particular design features of the pattern
    • B60C2011/0339Grooves
    • B60C2011/0358Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane
    • B60C2011/0372Lateral grooves, i.e. having an angle of 45 to 90 degees to the equatorial plane with particular inclination angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/06Tyres specially adapted for particular applications for heavy duty vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/14Tyres specially adapted for particular applications for off-road use

Abstract

【課題】未舗装路におけるトラクション性能および耐石噛み性能を改善しながら低騒音性能を改善することを可能にした空気入りタイヤを提供する。【解決手段】タイヤ赤道CLと交差してタイヤ幅方向に延在する第一溝部21,31と、第一溝部21,31の一端から延在する第二溝部22,32とからなるラグ溝20,30を交互に配列し、第一溝部21,31の他端をタイヤ周方向に隣り合うラグ溝30,20の第二溝部32,22に連通させ、ラグ溝20,30と周方向細溝40とがセンターブロック51およびショルダーブロック52を区画し、各ラグ溝20,30において、ラグ溝センター部20c,30cの延在方向の一部または全部に底上げ部25,35を配し、ラグ溝センター部20c,30cにおける踏込側および蹴出側の各々の溝壁に1つの角度変化点を有し、角度変化点Pよりも踏面側の溝壁角度αを角度変化点Pよりも溝底側の溝壁角度βよりも大きくする。【選択図】図2Provided is a pneumatic tire capable of improving low noise performance while improving traction performance and stone biting performance on an unpaved road. A lug groove (20) comprising first grooves (21, 31) extending in the tire width direction crossing a tire equator (CL) and second grooves (22, 32) extending from one end of the first grooves (21, 31). , 30 are alternately arranged, and the other ends of the first grooves 21, 31 communicate with the second grooves 32, 22 of the lug grooves 30, 20 adjacent in the tire circumferential direction, so that the lug grooves 20, 30 and the circumferential narrow groove are formed. 40 delimits a center block 51 and a shoulder block 52. In each of the lug grooves 20, 30, bottom raising portions 25, 35 are arranged in a part or all of the extending direction of the lug groove center portions 20c, 30c. There is one angle change point on each of the groove walls on the stepping side and the kicking side in the center portions 20c and 30c, and the groove wall angle α on the tread side with respect to the angle change point P is closer to the groove bottom than the angle change point P. Greater than the groove wall angle β. [Selection] Figure 2

Description

本発明は、重荷重用空気入りタイヤとして好適な空気入りタイヤに関し、更に詳しくは、未舗装路におけるトラクション性能および耐石噛み性能を改善しながら、低騒音性能を改善することを可能にした空気入りタイヤに関する。   The present invention relates to a pneumatic tire suitable as a heavy-duty pneumatic tire, and more particularly, to a pneumatic tire capable of improving low-noise performance while improving traction performance and stone-biting performance on unpaved roads. Regarding tires.

ダンプトラック等の建設車両に用いられる重荷重用空気入りタイヤは、主として、未舗装路におけるトラクション性能および耐石噛み性能に優れることが求められる。そのため、タイヤ幅方向に延在するラグ溝を多数備えたブロック基調のトレッドパターンが採用される(例えば、特許文献1参照)。   Heavy-load pneumatic tires used in construction vehicles such as dump trucks are required to be excellent in traction performance and stone-biting performance mainly on unpaved roads. Therefore, a block-based tread pattern having a large number of lug grooves extending in the tire width direction is adopted (for example, see Patent Document 1).

一方で、近年、各種タイヤに対する要求性能が高まっており、上記のようなタイヤにおいても、未舗装路におけるトラクション性能だけでなく、舗装路におけるタイヤ性能(例えば、低騒音性能)を改善することが求められている。そのため、未舗装路におけるトラクション性能および耐石噛み性能を改善しながら、低騒音性能を改善するための対策が求められている。   On the other hand, in recent years, performance requirements for various tires have been increasing, and even in the above-described tires, not only traction performance on unpaved roads but also tire performance (for example, low noise performance) on paved roads can be improved. It has been demanded. Therefore, there is a need for measures to improve low noise performance while improving traction performance and stone biting performance on unpaved roads.

特許第4676959号公報Japanese Patent No. 4676959

本発明の目的は、未舗装路におけるトラクション性能および耐石噛み性能を改善しながら、低騒音性能を改善することを可能にした空気入りタイヤを提供することにある。   An object of the present invention is to provide a pneumatic tire capable of improving low noise performance while improving traction performance and stone biting performance on unpaved roads.

上記目的を達成するための空気入りタイヤは、タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、回転方向が指定された空気入りタイヤにおいて、前記トレッド部の外表面に、タイヤ赤道に対して一方側のトレッド端からタイヤ幅方向内側に向かって延在してタイヤ赤道と交差するラグ溝と、タイヤ赤道に対して他方側のトレッド端からタイヤ幅方向内側に向かって延在してタイヤ赤道と交差するラグ溝とが、タイヤ周方向に交互に配列され、各ラグ溝は、タイヤ赤道と交差してタイヤ幅方向に沿って延在する第一溝部と、前記第一溝部の一端から前記第一溝部よりもタイヤ周方向に対して小さい角度で傾斜してトレッド端まで延在する第二溝部とからなり、前記第一溝部の他端はタイヤ周方向に隣り合うラグ溝の前記第二溝部に連通し、前記第一溝部は前記ラグ溝のトレッド端側の端部よりも踏込側に位置しており、タイヤ赤道に対して一方側または他方側でタイヤ周方向に隣り合う前記第二溝部どうしを連結する周方向細溝が形成され、前記ラグ溝と前記周方向細溝によって複数のブロックが区画され、これらブロックが前記周方向細溝よりもタイヤ赤道側に位置するセンターブロックと前記周方向細溝よりトレッド端側に位置するショルダーブロックとを含み、各ラグ溝において、タイヤ周方向に隣り合う前記センターブロックどうしで挟まれる部位をラグ溝センター部とし、タイヤ周方向に隣り合う前記ショルダーブロックどうしで挟まれる部位をラグ溝ショルダー部としたとき、前記ラグ溝センター部におけるタイヤ幅方向外側であって前記第二溝部に含まれる端部の溝幅が前記ラグ溝ショルダー部におけるタイヤ幅方向外側の端部の溝幅よりも狭く、前記ラグ溝センター部の延在方向の一部または全部に底上げ部が設けられ、前記ラグ溝センター部における踏込側および蹴出側の各々の溝壁が1つの角度変化点を有し、前記角度変化点よりも踏面側で前記ラグ溝センター部の溝壁と前記トレッド部の踏面に対する法線とがなす溝壁角度αが前記角度変化点よりも溝底側で前記ラグ溝センター部の溝壁と前記トレッド部の踏面に対する法線とがなす溝壁角度βよりも大きいことを特徴とするものである。 A pneumatic tire for achieving the above object has a tread portion that extends in the tire circumferential direction and forms an annular shape, a pair of sidewall portions disposed on both sides of the tread portion, and a tire diameter of these sidewall portions. A pair of bead portions disposed on the inside in the direction, and in the pneumatic tire in which the rotation direction is designated, on the outer surface of the tread portion, from the tread end on one side with respect to the tire equator, inward in the tire width direction. A lug groove that extends and intersects the tire equator and a lug groove that extends inward in the tire width direction from the tread end on the other side with respect to the tire equator and intersects the tire equator extend in the tire circumferential direction. Each lug groove is arranged alternately, the first groove portion intersecting with the tire equator and extending along the tire width direction, and is smaller than the first groove portion in the tire circumferential direction from one end of the first groove portion. A second groove extending at an angle to the tread end, and the other end of the first groove communicates with the second groove of the lug groove adjacent in the tire circumferential direction, and the first groove has the lug. A circumferential narrow groove that is located closer to the tread end than the tread end of the groove and that connects the second grooves adjacent to each other in the tire circumferential direction on one side or the other side with respect to the tire equator is formed. A plurality of blocks are defined by the lug groove and the circumferential narrow groove, and the blocks are located at a center block located closer to the tire equator than the circumferential narrow groove and a shoulder located at a tread end side relative to the circumferential narrow groove. In each lug groove, a portion sandwiched between the center blocks adjacent to each other in the tire circumferential direction is defined as a lug groove center portion, and the shoulder blocks adjacent to each other in the tire circumferential direction. When the site to be sandwiched between the tooth and the lug groove shoulder portion, the outer side in the tire width direction groove width of the end portion included in said second groove to a tire width direction outer side of the lug groove shoulder portion of the lug groove center portion A bottom raising portion is provided in a part or the whole of the extending direction of the lug groove center portion, and each of the groove walls on the stepping side and the ejection side in the lug groove center portion has a width of 1 mm. And the groove wall angle α formed by the groove wall of the lug groove center portion and the normal to the tread surface of the tread portion on the tread surface side of the angle change point is smaller than the groove change angle of the angle change point. The groove wall angle β is larger than the groove wall angle β formed between the groove wall of the lug groove center portion and the normal to the tread surface of the tread portion on the side.

本発明では、第一溝部と第二溝部とからなるラグ溝を設けているので、未舗装路におけるトラクション性能を向上しながら、低騒音性能を向上することができる。即ち、トラクション性能への寄与が大きいタイヤ赤道近傍にタイヤ幅方向に沿って延在する第一溝部が配され、この第一溝部が他のラグ溝(第二溝部)に連通しているので、効率的にトラクション性能を向上することができる。また、周方向細溝を有することで、周方向細溝を通じて騒音が分散されるので、低騒音性能を向上することができる。更に、周方向細溝によってタイヤ周方向の溝成分を追加することができるので、トラクション時にタイヤが横ずれすることを防止して安定性を向上することができる。これに加えて、ラグ溝センター部におけるタイヤ幅方向外側の端部の溝幅がラグ溝ショルダー部におけるタイヤ幅方向外側の端部の溝幅よりも狭く、ラグ溝センター部に底上げ部が配されているので、ラグ溝の体積が過度に大きくならず、トラクション性能を損なわずに低騒音性能を維持することができる。また、ラグ溝センター部において、角度変化点よりも踏面側の溝壁角度αを角度変化点よりも溝底側の溝壁角度βよりも大きくすることで、溝幅が相対的に狭まるラグ溝センター部において耐石噛み性を維持することができる。   In the present invention, since the lug groove including the first groove portion and the second groove portion is provided, low noise performance can be improved while improving traction performance on an unpaved road. That is, the first groove portion extending along the tire width direction is arranged near the tire equator which largely contributes to traction performance, and this first groove portion communicates with another lug groove (second groove portion). Traction performance can be efficiently improved. In addition, by having the circumferential narrow groove, noise is dispersed through the circumferential narrow groove, so that low noise performance can be improved. Furthermore, since a groove component in the tire circumferential direction can be added by the circumferential narrow groove, the tire can be prevented from being laterally displaced at the time of traction, and the stability can be improved. In addition, the groove width at the outer end in the tire width direction at the lug groove center portion is smaller than the groove width at the outer end portion in the tire width direction at the lug groove shoulder portion, and a raised bottom portion is provided at the lug groove center portion. Therefore, the volume of the lug groove does not become excessively large, and low noise performance can be maintained without impairing traction performance. Also, in the lug groove center portion, the groove width is relatively narrowed by making the groove wall angle α on the tread surface side from the angle change point larger than the groove wall angle β on the groove bottom side from the angle change point. Stone biting resistance can be maintained in the center portion.

本発明では、トレッド部の踏面から角度変化点までの深さはラグ溝の最大深さに対して35%〜60%の範囲であることが好ましい。これにより、耐石噛み性を効果的に改善することができる。   In the present invention, the depth from the tread surface of the tread portion to the angle change point is preferably in the range of 35% to 60% with respect to the maximum depth of the lug groove. Thereby, the stone bite resistance can be effectively improved.

本発明では、ラグ溝センター部における踏面側の溝壁角度αは5°〜30°であり、ラグ溝センター部における溝底側の溝壁角度βは3°以下であることが好ましい。これにより、低騒音性能を維持しながら、耐石噛み性を効果的に改善することができる。   In the present invention, the groove wall angle α on the tread side in the lug groove center portion is preferably 5 ° to 30 °, and the groove wall angle β on the groove bottom side in the lug groove center portion is preferably 3 ° or less. Thereby, the stone bite resistance can be effectively improved while maintaining low noise performance.

本発明では、ラグ溝センター部における踏面側の溝壁角度αにおける蹴出側の溝壁角度α1と踏込側の溝壁角度α2とは0°≦α1−α2≦8°の関係を満たすことが好ましい。これにより、耐石噛み性を効果的に改善することができる。   In the present invention, the groove wall angle α1 on the kick-out side and the groove wall angle α2 on the tread side at the groove wall angle α on the tread surface side at the lug groove center portion satisfy the relationship of 0 ° ≦ α1−α2 ≦ 8 °. preferable. Thereby, the stone bite resistance can be effectively improved.

本発明では、ラグ溝センター部におけるタイヤ幅方向外側であって第二溝部に含まれる端部の溝幅はラグ溝ショルダー部におけるタイヤ幅方向外側の端部の溝幅に対して38%〜60%の範囲であることが好ましい。これにより、低騒音性能を維持しながらトラクション性能を効果的に改善することができる。 In the present invention, the groove width at the end outside the tire width direction at the lug groove center portion and included in the second groove portion is 38% to 60% of the groove width at the end outside the tire width direction at the lug groove shoulder portion. % Is preferable. Thereby, traction performance can be effectively improved while maintaining low noise performance.

本発明では、ラグ溝センター部における底上げ部の深さはラグ溝の最大深さに対して65%〜85%の範囲であることが好ましい。これにより、低騒音性能を維持しながらトラクション性能を効果的に改善することができる。   In the present invention, it is preferable that the depth of the raised bottom in the lug groove center portion is in a range of 65% to 85% with respect to the maximum depth of the lug groove. Thereby, traction performance can be effectively improved while maintaining low noise performance.

本発明では、ラグ溝センター部における踏面側の溝壁角度αはタイヤ赤道から第二溝部に含まれるラグ溝センター部のタイヤ幅方向外側の端部に向かって漸増することが好ましい。例えば、ラグ溝センター部における踏面側の溝壁角度αはタイヤ赤道上において7°である一方で第二溝部に含まれるラグ溝センター部のタイヤ幅方向外側の端部において25°であることが好ましい。これにより、低騒音性能を維持しながらトラクション性能を効果的に改善することができる。 In the present invention, it is preferable that the groove wall angle α on the tread side in the lug groove center portion gradually increases from the tire equator toward the outer end in the tire width direction of the lug groove center portion included in the second groove portion . For example, the groove wall angle α on the tread side at the lug groove center portion is 7 ° on the tire equator, while 25 ° at the outer end in the tire width direction of the lug groove center portion included in the second groove portion. preferable. Thereby, traction performance can be effectively improved while maintaining low noise performance.

本発明では、ラグ溝の溝深さが15mm〜28mmであることが好ましい。本発明は、このような特徴を有する重荷重用空気入りタイヤにおいて、トラクション性能、耐石噛み性能および低騒音性能について、特に優れた性能を発揮することができる。   In the present invention, the lug groove preferably has a groove depth of 15 mm to 28 mm. The present invention can exhibit particularly excellent performance in traction performance, stone-biting performance, and low noise performance in a heavy-duty pneumatic tire having such characteristics.

本発明では、タイヤ赤道からトレッド端までの距離をWとし、タイヤ赤道からタイヤ幅方向に0.5W離間した位置とタイヤ赤道との間の領域を内側領域とし、タイヤ赤道からタイヤ幅方向に0.5W離間した位置とトレッド端との間の領域を外側領域としたとき、外側領域における第二溝部のタイヤ周方向に対する平均角度よりも内側領域における第二溝部のタイヤ周方向に対する平均角度が小さくなるように第二溝部は湾曲または屈曲しており、センターブロックのタイヤ幅方向の最大長さはトレッド展開幅の25%〜35%であることが好ましい。第二溝部が上述のように湾曲または屈曲することで溝長さを増大することができ、トラクション性能を向上すると共に、気柱共鳴音の発生を抑制することができる。また、センターブロックの最大幅を適度に確保することで、ブロック剛性を充分に確保して、良好なトラクション性能を発揮することができる。   In the present invention, the distance from the tire equator to the tread edge is W, the area between the tire equator and the position 0.5W apart from the tire equator in the tire width direction is the inner area, and 0 is the distance from the tire equator to the tire width direction. When the region between the position separated by 5 W and the tread edge is defined as the outer region, the average angle of the second groove in the inner region with respect to the tire circumferential direction is smaller than the average angle of the second groove in the outer region with respect to the tire circumferential direction. The second groove is curved or bent so that the maximum length of the center block in the tire width direction is preferably 25% to 35% of the tread development width. By bending or bending the second groove portion as described above, the groove length can be increased, traction performance can be improved, and generation of air column resonance can be suppressed. In addition, by securing the maximum width of the center block appropriately, it is possible to sufficiently secure the block rigidity and exhibit good traction performance.

本発明では、センターブロックとショルダーブロックの踏面に少なくとも1つの屈曲点を有する浅溝が形成されていることが好ましい。浅溝が屈曲点を有するので、タイヤ周方向の溝成分とタイヤ幅方向の溝成分とをバランスよく増加することができ、タイヤ周方向および幅方向の雪上トラクション性能を効率的に向上することができる。   In the present invention, it is preferable that a shallow groove having at least one bending point is formed on the treads of the center block and the shoulder block. Since the shallow groove has a bending point, the groove component in the tire circumferential direction and the groove component in the tire width direction can be increased in a well-balanced manner, and the traction performance on snow in the tire circumferential direction and the width direction can be efficiently improved. it can.

本発明では、センターブロックに形成された浅溝の一端が周方向細溝に連通し、他端が第二溝部に連通し、センターブロックに形成された浅溝をタイヤ赤道に向かって投影したときの浅溝の投影成分どうしが重複せず、ショルダーブロックに形成された浅溝は両端がブロック内で終端し、ショルダーブロックの踏面のタイヤ幅方向内側の頂点の位置よりも踏込側に配置されていることが好ましい。このようにトラクション性能への寄与が大きいタイヤ赤道近傍に位置するセンターブロックに適切な形状の浅溝を設けることで、効果的に雪上トラクション性能を向上することができる。また、上記のように浅溝が重複しないように配置することで、タイヤ全周に亘ってブロック剛性が過度に低下することを避けて、タイヤ周方向での雪上トラクション性能とオフロードトラクション性能とのバランスを良好にし、これら性能を高度に両立することができる。更に、ショルダーブロックの剛性低下を抑制しながら、踏込側にエッジ成分を増加することができ、雪上性能を効果的に向上することができる。その一方で、蹴出側については浅溝が無く、ブロック剛性とゴム量が確保されるので、偏摩耗(ヒールアンドトウ摩耗)を効果的に抑制することができる。   In the present invention, when one end of the shallow groove formed in the center block communicates with the circumferential narrow groove, the other end communicates with the second groove, and the shallow groove formed in the center block is projected toward the tire equator. The projection components of the shallow groove do not overlap each other, the shallow groove formed in the shoulder block is terminated at both ends in the block, and is disposed on the step side from the position of the apex on the inner side in the tire width direction of the tread surface of the shoulder block. Is preferred. By providing a suitably shaped shallow groove in the center block located near the tire equator, which greatly contributes to traction performance, traction performance on snow can be effectively improved. In addition, by arranging the shallow grooves so as not to overlap as described above, the block stiffness is prevented from excessively decreasing over the entire circumference of the tire, and the traction performance on snow and the off-road traction performance in the tire circumferential direction are improved. And the performance can be highly compatible. Further, the edge component can be increased toward the stepping side while suppressing the decrease in the rigidity of the shoulder block, and the performance on snow can be effectively improved. On the other hand, since there is no shallow groove on the kick-out side and the block rigidity and the amount of rubber are ensured, uneven wear (heel and toe wear) can be effectively suppressed.

本発明において、「トレッド端」とは、タイヤを正規リムにリム組みして、正規内圧を充填し、荷重を加えない状態(無負荷状態)で、タイヤのトレッド模様部分の両端である。本発明における「タイヤ赤道からトレッド端までのタイヤ幅方向の距離W」は、上述の状態でタイヤ幅方向に沿って測定されるトレッド端間の直線距離であるトレッド展開幅(JATMAで規定される「トレッド幅」)の1/2に相当する。「正規リム」とは、タイヤが基づいている規格を含む規格体系において、当該規格がタイヤ毎に定めるリムであり、例えば、JATMAであれば標準リム、TRAであれば“Design Rim”、或いはETRTOであれば“Measuring Rim”とする。「正規内圧」とは、タイヤが基づいている規格を含む規格体系において、各規格がタイヤ毎に定めている空気圧であり、JATMAであれば最高空気圧、TRAであれば表“TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES”に記載の最大値、ETRTOであれば“INFLATION PRESSURE”であるが、タイヤが乗用車用である場合には180kPaとする。   In the present invention, the “tread ends” are both ends of a tread pattern portion of a tire in a state where the tire is assembled to a regular rim, filled with a regular internal pressure, and no load is applied (no load state). The “distance W in the tire width direction from the tire equator to the tread edge” in the present invention is a tread development width (defined by JATMA) which is a linear distance between the tread edges measured along the tire width direction in the above-described state. "Tread width"). The “regular rim” is a rim defined for each tire in a standard system including a standard on which the tire is based. For example, a standard rim for JATMA, a “Design Rim” for TRA, or an ETRTO In this case, “Measuring Rim” is set. “Normal internal pressure” is the air pressure specified for each tire in a standard system including the standard on which the tire is based. For JATMA, the maximum air pressure is used, and for TRA, the table “TIRE LOAD LIMITS AT VARIOUS” is used. The maximum value described in "COLL INFLASION PRESSURES" is "INFLATION PRESSURE" for ETRTO, but is 180 kPa when the tire is for a passenger car.

本発明の実施形態からなる空気入りタイヤの子午線断面図である。1 is a meridional section of a pneumatic tire according to an embodiment of the present invention. 本発明の実施形態からなる空気入りタイヤのトレッド面を示す正面図である。1 is a front view showing a tread surface of a pneumatic tire according to an embodiment of the present invention. 図2のトレッド面に形成されたラグ溝を示す断面図である。FIG. 3 is a sectional view showing a lug groove formed on a tread surface of FIG. 2. 従来例の空気入りタイヤのトレッド面の一例を示す正面図である。It is a front view showing an example of the tread surface of the conventional pneumatic tire. (a)〜(c)はそれぞれトレッド面に形成されたラグ溝の他の例を示す断面図である。(A)-(c) is sectional drawing which shows the other example of the lug groove formed in the tread surface, respectively.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.

図1に示すように、本発明の空気入りタイヤは、トレッド部1と、このトレッド部1の両側に配置された一対のサイドウォール部2と、サイドウォール部2のタイヤ径方向内側に配置された一対のビード部3とを備えている。図1において、符号CLはタイヤ赤道を示し、符号Eはトレッド端を示す。図示の例では、トレッド端Eが、タイヤ幅方向最外側のブロックのタイヤ幅方向外側のエッジ(タイヤ幅方向最外側のブロックの踏面とタイヤ幅方向外側の側面とが成す縁部)と一致している。図1は子午線断面図であるため描写されないが、トレッド部1、サイドウォール部2、ビード部3は、それぞれタイヤ周方向に延在して環状を成しており、これにより空気入りタイヤのトロイダル状の基本構造が構成される。以下、図1を用いた説明は基本的に図示の子午線断面形状に基づくが、各タイヤ構成部材はいずれもタイヤ周方向に延在して環状を成すものである。   As shown in FIG. 1, the pneumatic tire of the present invention includes a tread portion 1, a pair of sidewall portions 2 disposed on both sides of the tread portion 1, and a tire radially inner side of the sidewall portion 2. And a pair of bead portions 3. In FIG. 1, reference numeral CL indicates a tire equator, and reference numeral E indicates a tread end. In the illustrated example, the tread end E coincides with the outer edge in the tire width direction of the outermost block in the tire width direction (the edge formed by the tread surface of the outermost block in the tire width direction and the outer side surface in the tire width direction). ing. Although FIG. 1 is a meridional cross-sectional view and is not drawn, the tread portion 1, the sidewall portion 2, and the bead portion 3 each extend in the tire circumferential direction to form an annular shape, thereby forming a toroidal pneumatic tire. A basic structure is formed. Hereinafter, the description using FIG. 1 is basically based on the illustrated meridian cross-sectional shape, but each tire constituent member extends in the tire circumferential direction and forms an annular shape.

左右一対のビード部3間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部3に配置されたビードコア5の廻りに車両内側から外側に折り返されている。また、ビードコア5の外周上にはビードフィラー6が配置され、このビードフィラー6がカーカス層4の本体部と折り返し部とにより包み込まれている。一方、トレッド部1におけるカーカス層4の外周側には複数層(図1では4層)のベルト層7が埋設されている。各ベルト層7は、タイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。これらベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°〜60°の範囲に設定されている。図1の空気入りタイヤでは採用されていないが、本発明では、ベルト層7の外周側に、更にベルト補強層(不図示)を設けることもできる。ベルト補強層を設ける場合、ベルト補強層は、例えばタイヤ周方向に配向する有機繊維コードを含み、この有機繊維コードはタイヤ周方向に対する角度が例えば0°〜5°に設定することができる。   A carcass layer 4 is mounted between the pair of left and right bead portions 3. The carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded from the inside to the outside of the vehicle around the bead cores 5 arranged in each bead portion 3. Further, a bead filler 6 is arranged on the outer periphery of the bead core 5, and the bead filler 6 is wrapped around the main body and the folded portion of the carcass layer 4. On the other hand, a plurality of (four in FIG. 1) belt layers 7 are embedded on the outer peripheral side of the carcass layer 4 in the tread portion 1. Each belt layer 7 includes a plurality of reinforcing cords inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to cross each other between the layers. In these belt layers 7, the inclination angle of the reinforcing cord with respect to the tire circumferential direction is set in a range of, for example, 10 ° to 60 °. Although not employed in the pneumatic tire of FIG. 1, in the present invention, a belt reinforcing layer (not shown) can be further provided on the outer peripheral side of the belt layer 7. When the belt reinforcing layer is provided, the belt reinforcing layer includes, for example, an organic fiber cord oriented in the tire circumferential direction, and the angle of the organic fiber cord with respect to the tire circumferential direction can be set to, for example, 0 ° to 5 °.

トレッド部1におけるカーカス層4およびベルト層7の外周側にはトレッドゴム層11が配される。サイドウォール部2におけるカーカス層4の外周側(タイヤ幅方向外側)にはサイドゴム層12が配される。ビード部3におけるカーカス層4の外周側(タイヤ幅方向外側)にはリムクッションゴム層13が配される。トレッドゴム層11は、物性の異なる2種類のゴム層(キャップトレッドゴム層およびアンダートレッドゴム層)がタイヤ径方向に積層した構造であってもよい。   A tread rubber layer 11 is arranged on the outer peripheral side of the carcass layer 4 and the belt layer 7 in the tread portion 1. A side rubber layer 12 is disposed on the outer peripheral side (outside in the tire width direction) of the carcass layer 4 in the sidewall portion 2. A rim cushion rubber layer 13 is disposed on the outer peripheral side (outside in the tire width direction) of the carcass layer 4 in the bead portion 3. The tread rubber layer 11 may have a structure in which two types of rubber layers (cap tread rubber layer and under tread rubber layer) having different physical properties are laminated in the tire radial direction.

本発明は、このような一般的な空気入りタイヤに適用されるが、その断面構造は上述の基本構造に限定されるものではない。   The present invention is applied to such a general pneumatic tire, but its cross-sectional structure is not limited to the basic structure described above.

本発明の空気入りタイヤのトレッド部1の表面には、図2に示すように、タイヤ赤道CLに対して一方側(図の右側)のトレッド端Eからタイヤ幅方向内側に向かって延在してタイヤ赤道CLと交差するラグ溝20(以降の説明では「一方側のラグ溝20」という場合がある)と、タイヤ赤道CLに対して他方側(図の左側)のトレッド端Eからタイヤ幅方向内側に向かって延在してタイヤ赤道CLと交差するラグ溝30(以降の説明では「他方側のラグ溝30」という場合がある)とが設けられる。一方側のラグ溝20と他方側のラグ溝30は、それぞれ複数本ずつ設けられる。   As shown in FIG. 2, the surface of the tread portion 1 of the pneumatic tire of the present invention extends inward in the tire width direction from a tread end E on one side (right side in the figure) with respect to the tire equator CL. The lug groove 20 intersecting with the tire equator CL (hereinafter sometimes referred to as “one lug groove 20”) and the tire width from the tread end E on the other side (left side in the figure) with respect to the tire equator CL. A lug groove 30 extending inward in the direction and intersecting with the tire equator CL (hereinafter, may be referred to as “the other lug groove 30”) is provided. The one lug groove 20 and the other lug groove 30 are respectively provided in plural numbers.

各ラグ溝20,30は、タイヤ赤道CLと交差してタイヤ幅方向に沿って延在する第一溝部21,31と、第一溝部21,31の一端から第一溝部21,31よりもタイヤ周方向に対して小さい角度で傾斜してトレッド端Eまで延在する第二溝部22,32とからなる。詳述すると、一方側のラグ溝20は、タイヤ赤道CLと交差してタイヤ幅方向に沿って延在する第一溝部21と、第一溝部21の一端(タイヤ赤道に対して一方側(図の右側)の端部)から第一溝部21よりもタイヤ周方向に対して小さい角度で傾斜してトレッド端Eまで延在する第二溝部22とからなる。同様に、他方側のラグ溝30は、タイヤ赤道CLと交差してタイヤ幅方向に沿って延在する第一溝部31と、第一溝部31の一端(タイヤ赤道に対して他方側(図の左側)の端部)から第一溝部31よりもタイヤ周方向に対して小さい角度で傾斜してトレッド端Eまで延在する第二溝部32とからなる。   Each lug groove 20, 30 is provided with first groove portions 21, 31 extending along the tire width direction crossing the tire equator CL, and one end of the first groove portions 21, 31 from the first groove portions 21, 31 to the tire. The second groove portions 22 and 32 are inclined at a small angle with respect to the circumferential direction and extend to the tread end E. More specifically, one lug groove 20 crosses the tire equator CL and extends along the tire width direction, and one end of the first groove portion 21 (one side with respect to the tire equator (FIG. And a second groove portion 22 extending from the end portion (right side) of the tire to the tread end E at an angle smaller than the first groove portion 21 with respect to the tire circumferential direction. Similarly, the lug groove 30 on the other side intersects the tire equator CL and extends along the tire width direction, and one end of the first groove 31 (the other side of the tire equator (the other side of the tire equator (in the figure)). The second groove 32 extends to the tread end E at an angle smaller than that of the first groove 31 with respect to the circumferential direction of the tire from the end (left side).

一方側のラグ溝20と他方側のラグ溝30とは1本ずつがタイヤ周方向に交互に配列される。但し、これらラグ溝20,30は、上述のように、基本的にタイヤ赤道CLから互いに逆方向に延在するので、タイヤ赤道CL上では一方側のラグ溝20の第一溝部21と他方側のラグ溝30の第一溝部31とがタイヤ周方向に交互に配置されるが、タイヤ赤道CLに対して一方側では、一方側のラグ溝20の第二溝部22がタイヤ周方向に間隔をおいて配列され、タイヤ赤道CLに対して他方側では、他方側のラグ溝30の第二溝部32がタイヤ周方向に間隔をおいて配列される。本発明では、タイヤ赤道CL上で第一溝部21,31どうしが交互に配列されて隣り合っていれば、特に断りがない限り、ラグ溝20,30が交互に配列されていると見做すものとする。   One lug groove 20 and the other lug groove 30 are alternately arranged one by one in the tire circumferential direction. However, since the lug grooves 20 and 30 basically extend in the opposite directions from the tire equator CL as described above, the first groove 21 of the one lug groove 20 and the other side on the tire equator CL. The first groove portions 31 of the lug grooves 30 are alternately arranged in the tire circumferential direction, but on one side with respect to the tire equator CL, the second groove portions 22 of the one lug groove 20 are spaced apart in the tire circumferential direction. On the other side with respect to the tire equator CL, the second groove portions 32 of the lug grooves 30 on the other side are arranged at intervals in the tire circumferential direction. In the present invention, if the first grooves 21 and 31 are alternately arranged and adjacent to each other on the tire equator CL, it is considered that the lug grooves 20 and 30 are alternately arranged unless otherwise specified. Shall be.

各ラグ溝20,30の第一溝部21,31の他端は、タイヤ周方向に隣り合う別のラグ溝30,20の第二溝部32,22に連通する。つまり、一方側のラグ溝20の第一溝部21はタイヤ周方向に隣り合う他方側のラグ溝30の第二溝部32に連通し、他方側のラグ溝30の第一溝部31はタイヤ周方向に隣り合う一方側のラグ溝20の第二溝部22に連通している。   The other ends of the first grooves 21, 31 of each lug groove 20, 30 communicate with the second grooves 32, 22 of another lug groove 30, 20 adjacent in the tire circumferential direction. That is, the first groove 21 of the one lug groove 20 communicates with the second groove 32 of the other lug groove 30 adjacent in the tire circumferential direction, and the first groove 31 of the other lug groove 30 is in the tire circumferential direction. Is connected to the second groove portion 22 of the one side lug groove 20 adjacent to the lug groove 20.

各ラグ溝20,30の第一溝部21,31は各ラグ溝20,30のトレッド端E側の端部よりも踏込側に位置している。即ち、本発明の空気入りタイヤは回転方向Rが指定されたタイヤであるが、各ラグ溝20,30は、溝全体として、タイヤ赤道CL側からタイヤ幅方向外側に向かって回転方向Rとは反対方向に傾斜した形状を有する。   The first groove portions 21 and 31 of the lug grooves 20 and 30 are located on the stepping side with respect to the end portions of the lug grooves 20 and 30 on the tread end E side. That is, the pneumatic tire of the present invention is a tire in which the rotation direction R is designated, but each lug groove 20, 30 is defined as a whole with the rotation direction R from the tire equator CL side toward the tire width direction outside. It has a shape inclined in the opposite direction.

このようなラグ溝20,30の他に、周方向細溝40が設けられる。周方向細溝40は、タイヤ赤道CLの片側でタイヤ周方向に隣り合う第二溝部どうし、即ち、タイヤ赤道CLに対して一方側でタイヤ周方向に隣り合う一方側のラグ溝20の第二溝部22どうし、或いは、タイヤ赤道Cに対して他方側でタイヤ周方向に隣り合う他方側のラグ溝30の第二溝部32どうしを連結するように、タイヤ周方向に沿って延在する。   In addition to such lug grooves 20, 30, a circumferential narrow groove 40 is provided. The circumferential narrow groove 40 is formed between the second grooves adjacent to each other in the tire circumferential direction on one side of the tire equator CL, that is, the second lug grooves 20 on the one side adjacent to the tire equator CL in the tire circumferential direction on one side. It extends along the tire circumferential direction so as to connect the groove portions 22 or the second groove portions 32 of the lug grooves 30 on the other side adjacent to the tire equator C on the other side in the tire circumferential direction.

周方向細溝40は、ラグ溝20,30よりも溝幅が小さい溝である。具体的には、ラグ溝20,30は、溝幅Gが例えば5mm〜30mm、溝深さが例えば8mm〜25mmである。特に、タイヤが重荷重用空気入りタイヤである場合は、溝深さを例えば15mm〜28mmにするとよい。これに対して、周方向細溝40は、溝幅が例えば7mm〜11mm、溝深さが例えば15mm〜20mmである。   The circumferential narrow groove 40 is a groove having a smaller groove width than the lug grooves 20 and 30. Specifically, the lug grooves 20 and 30 have a groove width G of, for example, 5 mm to 30 mm and a groove depth of, for example, 8 mm to 25 mm. In particular, when the tire is a heavy-duty pneumatic tire, the groove depth may be, for example, 15 mm to 28 mm. In contrast, the circumferential narrow groove 40 has a groove width of, for example, 7 mm to 11 mm and a groove depth of, for example, 15 mm to 20 mm.

これらラグ溝20,30と周方向細溝40とによって、複数のブロック50が区画される。これら複数のブロック50のうち、周方向細溝40よりもタイヤ赤道CL側に位置するものをセンターブロック51、周方向細溝40よりもトレッド端E側に位置するものをショルダーブロック52という。センターブロック51は、上述の溝形状によって、少なくとも一部がタイヤ赤道CL上に存在している。   A plurality of blocks 50 are defined by the lug grooves 20 and 30 and the circumferential narrow groove 40. Of the plurality of blocks 50, those located on the tire equator CL side with respect to the circumferential narrow groove 40 are referred to as a center block 51, and those located on the tread end E side with respect to the circumferential narrow groove 40 are referred to as a shoulder block 52. The center block 51 at least partially exists on the tire equator CL due to the above-described groove shape.

各ラグ溝20,30において、タイヤ周方向に隣り合うセンターブロック51どうしで挟まれる部位をラグ溝センター部20c,30cとし、タイヤ周方向に隣り合うショルダーブロック52どうしで挟まれる部位をラグ溝ショルダー部20s,30sとする。具体的には、図2に示すようにラグ溝センター部20c,30cは、タイヤ周方向に隣り合うセンターブロック51で近接する角部どうしを結んだ線と、センターブロック51の縁線とで囲まれた斜線部に相当し、ラグ溝ショルダー部20s,30sは、タイヤ周方向に隣り合うショルダーブロック52で近接する角部どうしを結んだ線と、ショルダーブロック52の縁線とで囲まれた斜線部に相当する。ラグ溝センター部20c,30cにおけるタイヤ幅方向外側の端部の溝幅Gcは、ラグ溝ショルダー部20s,30sにおけるタイヤ幅方向外側の端部の溝幅Gsよりも狭くなっている。なお、溝幅Gcおよび溝幅Gsはいずれもトレッド部1の踏面上で測定される幅である。具体的には、溝幅Gcはタイヤ周方向に隣り合うセンターブロック51の角部どうしを結んだ線の長さであり、溝幅Gsはタイヤ周方向に隣り合うショルダーブロック52の角部どうしを結んだ線の長さである。   In each lug groove 20, 30, a portion sandwiched between center blocks 51 adjacent in the tire circumferential direction is defined as lug groove center portions 20c, 30c, and a portion sandwiched between shoulder blocks 52 adjacent in the tire circumferential direction is defined as a lug groove shoulder. Parts 20s and 30s. Specifically, as shown in FIG. 2, the lug groove center portions 20c and 30c are surrounded by a line connecting corners adjacent to each other in the center block 51 adjacent in the tire circumferential direction and an edge line of the center block 51. The lug groove shoulders 20 s and 30 s correspond to slanted lines, and the slanted line is defined by a line connecting adjacent corners of the shoulder blocks 52 adjacent in the tire circumferential direction and an edge of the shoulder block 52. Part. The groove width Gc at the outer end in the tire width direction of the lug groove center portions 20c, 30c is smaller than the groove width Gs at the outer end in the tire width direction of the lug groove shoulders 20s, 30s. Both the groove width Gc and the groove width Gs are widths measured on the tread surface of the tread portion 1. Specifically, the groove width Gc is the length of a line connecting the corners of the center blocks 51 adjacent to each other in the tire circumferential direction, and the groove width Gs is the distance between the corners of the shoulder blocks 52 adjacent to each other in the tire circumferential direction. The length of the connected line.

図3に示すように、ラグ溝センター部20c,30cには、その延在方向の一部または全部に底上げ部25,35が設けられている。また、ラグ溝センター部20c,30cは、踏込側(図の左側)および蹴出側(図の右側)のそれぞれの溝壁に1つの角度変化点Pを有している。これら踏込側および蹴出側の角度変化点Pは、いずれもトレッド部1の踏面から同じ深さにある。角度変化点Pよりも踏面側でラグ溝センター部20c,30cの溝壁とトレッド部1の踏面に対する法線とがなす溝壁角度を溝壁角度αは、角度変化点Pよりも溝底側でラグ溝センター部20c,30cの溝壁とトレッド部1の踏面に対する法線とがなす溝壁角度を溝壁角度βよりも大きい。言い換えると、ラグ溝センター部20c,30cにおいて、少なくともタイヤ径方向外側の溝壁はトレッド部1の踏面に対する法線に対して傾斜しており、タイヤ径方向外側の溝壁の傾斜角度はタイヤ径方向内側の溝壁の傾斜角度よりも大きい。   As shown in FIG. 3, the lug groove center portions 20c, 30c are provided with raised bottom portions 25, 35 in a part or the whole in the extending direction. The lug groove center portions 20c and 30c have one angle change point P on each groove wall on the stepping side (left side in the figure) and on the kicking side (right side in the figure). Each of the angle change points P on the tread side and the kick side is at the same depth from the tread surface of the tread portion 1. The groove wall angle α is the groove wall angle between the groove walls of the lug groove center portions 20c and 30c and the normal to the tread surface of the tread portion 1 on the tread surface side from the angle change point P. The groove wall angle between the groove walls of the lug groove center portions 20c and 30c and the normal to the tread surface of the tread portion 1 is larger than the groove wall angle β. In other words, at the lug groove center portions 20c, 30c, at least the tire radially outer groove wall is inclined with respect to the normal to the tread surface of the tread portion 1, and the inclination angle of the tire radially outer groove wall is the tire diameter. It is larger than the inclination angle of the groove wall inside in the direction.

上述した空気入りタイヤでは、第一溝部21,31と第二溝部22,32とからなるラグ溝20,30を設けているので、未舗装路におけるトラクション性能を向上しながら、低騒音性能を向上することができる。即ち、トラクション性能への寄与が大きいタイヤ赤道近傍にタイヤ幅方向に沿って延在する第一溝部21,31が配され、この第一溝部21,31が他のラグ溝30,20の第二溝部32,22に連通しているので、効率的にトラクション性能を向上することができる。また、周方向細溝40を有することで、周方向細溝40を通じて騒音が分散されるので、低騒音性能を向上することができる。更に、周方向細溝40によってタイヤ周方向の溝成分を追加することができるので、トラクション時にタイヤが横ずれすることを防止して安定性を向上することができる。これに加えて、ラグ溝センター部20c,30cにおけるタイヤ幅方向外側の端部の溝幅Gcがラグ溝ショルダー部20s,30sにおけるタイヤ幅方向外側の端部の溝幅Gsよりも狭く、ラグ溝センター部20c,30cに底上げ部25,35が配されているので、ラグ溝20,30の体積が過度に大きくならず、トラクション性能を損なわずに低騒音性能を維持することができる。また、ラグ溝センター部20c,30cにおいて、角度変化点Pよりも踏面側の溝壁角度αを角度変化点Pよりも溝底側の溝壁角度βよりも大きくすることで、溝幅Gが相対的に狭まるラグ溝センター部20c,30cにおいて耐石噛み性を維持することができる。   In the above-described pneumatic tire, since the lug grooves 20 and 30 including the first grooves 21 and 31 and the second grooves 22 and 32 are provided, the low noise performance is improved while the traction performance on an unpaved road is improved. can do. That is, the first groove portions 21 and 31 extending along the tire width direction are arranged near the tire equator which greatly contributes to the traction performance, and the first groove portions 21 and 31 are the second groove portions of the other lug grooves 30 and 20. Since it communicates with the grooves 32 and 22, traction performance can be efficiently improved. In addition, by having the circumferential narrow groove 40, noise is dispersed through the circumferential narrow groove 40, so that low noise performance can be improved. Furthermore, since a circumferential groove component can be added by the circumferential narrow groove 40, the tire can be prevented from laterally shifting during traction and stability can be improved. In addition, the groove width Gc of the lug groove center portions 20c, 30c at the outer end in the tire width direction is smaller than the groove width Gs of the lug groove shoulder portions 20s, 30s at the outer end in the tire width direction, and Since the bottom raising portions 25 and 35 are provided in the center portions 20c and 30c, the volume of the lug grooves 20 and 30 does not become excessively large, and low noise performance can be maintained without impairing traction performance. In addition, in the lug groove center portions 20c and 30c, the groove width G is made larger by making the groove wall angle α on the tread surface side than the angle change point P larger than the groove wall angle β on the groove bottom side than the angle change point P. Stone bite resistance can be maintained in the lug groove center portions 20c and 30c that are relatively narrow.

ラグ溝センター部20c,30cの深さは、当該タイヤにおいて重視する性能によって適宜設定することができるが、トレッド部1の踏面から角度変化点Pまでの深さPDは、ラグ溝20,30の最大深さFDに対して35%〜60%の範囲であることが好ましい。このように角度変化点Pの深さPDをラグ溝20,30の最大深さFDに対して適度に設定することで、耐石噛み性を効果的に改善することができる。ここで、ラグ溝20,30の最大深さFDに対する角度変化点Pの深さPDの比率が35%を下回る或いは60%を超えると、耐石噛み性能の改善効果を十分に得ることができない。なお、角度変化点Pの深さPDは、後述する底上げ部25,35の深さRDの変化に伴い、ラグ溝20,30の最大深さFDに対する比率を維持することが好ましいが、実深さを維持することもできる。   The depth of the lug groove center portions 20c, 30c can be appropriately set depending on the performance to be emphasized in the tire, but the depth PD from the tread surface of the tread portion 1 to the angle change point P is the same as that of the lug grooves 20, 30. Preferably, it is in the range of 35% to 60% of the maximum depth FD. As described above, by appropriately setting the depth PD of the angle change point P with respect to the maximum depth FD of the lug grooves 20, 30, the stone biting resistance can be effectively improved. Here, if the ratio of the depth PD of the angle change point P to the maximum depth FD of the lug grooves 20, 30 is less than 35% or exceeds 60%, the effect of improving the stone-biting performance cannot be sufficiently obtained. . The depth PD of the angle change point P is preferably maintained at a ratio to the maximum depth FD of the lug grooves 20, 30 in accordance with a change in the depth RD of the raised bottom portions 25, 35, which will be described later. Can also be maintained.

また、ラグ溝センター部20c,30cにおける底上げ部25,35の深さRDは、ラグ溝20,30の最大深さFDに対して65%〜85%の範囲であることが好ましい。このように底上げ部25,35の深さRDをラグ溝20,30の最大深さFDに対して適度に設定することで、低騒音性能を維持しながらトラクション性能を効果的に改善することができる。ここで、ラグ溝20,30の最大深さFDに対する底上げ部25,35の深さRDの比率が65%を下回るとトラクション性能が低下し、逆に85%を超えると低騒音性能が低下する傾向がある。   Further, it is preferable that the depth RD of the raised bottom portions 25, 35 in the lug groove center portions 20c, 30c is in the range of 65% to 85% with respect to the maximum depth FD of the lug grooves 20, 30. By appropriately setting the depth RD of the raised portions 25, 35 with respect to the maximum depth FD of the lug grooves 20, 30, traction performance can be effectively improved while maintaining low noise performance. it can. Here, if the ratio of the depth RD of the raised bottom portions 25, 35 to the maximum depth FD of the lug grooves 20, 30 is less than 65%, the traction performance is reduced, and if it exceeds 85%, the low noise performance is reduced. Tend.

ラグ溝センター部20c,30cの溝壁角度は、当該タイヤにおいて重視する性能によって適宜設定することができるが、踏面側の溝壁角度αは5°〜30°であり、溝底側の溝壁角度βは3°以下であることが好ましい。このとき、ラグ溝センター部20c,30cにおいて角度変化点Pよりも溝底側の溝幅Gは4mm以上であるとよい。このように踏面側の溝壁角度αおよび溝底側の溝壁角度βを適度に設定することで、低騒音性能を維持しながら、耐石噛み性を効果的に改善することができる。ここで、踏面側の溝壁角度αが5°より小さくなると耐石噛み性能の改善効果を十分に得ることができず、踏面側の溝壁角度αが30°より大きくなるとラグ溝20,30の容積が過度に大きくなるため、低騒音性能を維持することが難しくなる。   The groove wall angles of the lug groove center portions 20c and 30c can be appropriately set depending on the performance to be emphasized in the tire, but the groove wall angle α on the tread side is 5 ° to 30 °, and the groove wall on the groove bottom side. Angle β is preferably 3 ° or less. At this time, the groove width G on the groove bottom side of the angle change point P in the lug groove center portions 20c, 30c is preferably 4 mm or more. By appropriately setting the groove wall angle α on the tread surface side and the groove wall angle β on the groove bottom side in this way, it is possible to effectively improve stone biting resistance while maintaining low noise performance. Here, if the groove wall angle α on the tread side is smaller than 5 °, the effect of improving the stone biting performance cannot be sufficiently obtained, and if the groove wall angle α on the tread side is larger than 30 °, the lug grooves 20 and 30 cannot be obtained. Is excessively large, it is difficult to maintain low noise performance.

更に、ラグ溝センター部20c,30cにおける踏面側の溝壁角度αにおける蹴出側の溝壁角度α1と踏込側の溝壁角度α2とは0°≦α1−α2≦8°の関係を満たすことが好ましい。より好ましくは、蹴出側の溝壁角度α1は踏込側の溝壁角度α2より大きく、0°<α1−α2≦8°の関係を満たすとよい。このように蹴出側の溝壁角度α1および踏込側の溝壁角度α2を適度に設定することで、耐石噛み性を効果的に改善することができる。ここで、溝壁角度α1と溝壁角度α2の角度差(α1−α2)が8°より大きくなると耐石噛み性能が悪化する傾向がある。   Further, the groove wall angle α1 on the kick-out side and the groove wall angle α2 on the tread side at the groove wall angle α on the tread side in the lug groove center portions 20c, 30c satisfy the relationship of 0 ° ≦ α1−α2 ≦ 8 °. Is preferred. More preferably, the groove wall angle α1 on the ejection side is greater than the groove wall angle α2 on the stepping side, and the relationship 0 ° <α1−α2 ≦ 8 ° may be satisfied. By appropriately setting the groove wall angle α1 on the ejection side and the groove wall angle α2 on the stepping side in this way, the stone biting resistance can be effectively improved. Here, when the angle difference (α1−α2) between the groove wall angle α1 and the groove wall angle α2 is larger than 8 °, the stone-biting performance tends to deteriorate.

上記空気入りタイヤにおいて、ラグ溝センター部20c,30cにおけるタイヤ幅方向外側の端部の溝幅Gcは、ラグ溝ショルダー部20s,30sにおけるタイヤ幅方向外側の端部の溝幅Gsに対して38%〜60%の範囲であるとよい。このように溝幅Gsに対する溝幅Gcの比率を適度に設定することで、低騒音性能を維持しながらトラクション性能を効果的に改善することができる。ここで、溝幅Gsに対する溝幅Gcの比率が38%を下回るとトラクション性能が低下し、逆に60%を超えると低騒音性能が低下する傾向がある。   In the pneumatic tire, the groove width Gc of the lug groove center portions 20c, 30c at the outer end in the tire width direction is 38 with respect to the groove width Gs of the lug groove shoulder portions 20s, 30s at the outer end in the tire width direction. % To 60%. By appropriately setting the ratio of the groove width Gc to the groove width Gs in this manner, traction performance can be effectively improved while maintaining low noise performance. Here, when the ratio of the groove width Gc to the groove width Gs is less than 38%, the traction performance tends to decrease, and when it exceeds 60%, the low noise performance tends to decrease.

また、ラグ溝センター部20c,30cにおける踏面側の溝壁角度αは、タイヤ赤道CLからタイヤ幅方向外側に向かって漸増することが好ましい。このような溝壁角度αの角度変化は、ラグ溝20,30の第一溝部21,31と第二溝部22,32との連結部を始点として、第二溝部22,32に含まれるラグ溝センター部20c,30cのタイヤ幅方向外側の端部を終点とする。このように踏面側の溝壁角度αがタイヤ赤道CLからタイヤ幅方向外側に向かって徐々に大きくなることで、低騒音性能を維持しながらトラクション性能を効果的に改善することができる。なお、上述した溝壁角度αの角度変化は、蹴出側(図3の右側)の溝壁角度α1と踏込側(図3の左側)の溝壁角度α2のいずれにも適用することができる。   Further, it is preferable that the groove wall angle α on the tread side in the lug groove center portions 20c, 30c gradually increases from the tire equator CL toward the tire width direction outside. Such a change in the angle of the groove wall angle α starts from the connection point between the first groove portions 21 and 31 of the lug grooves 20 and 30 and the second groove portions 22 and 32, and the lug grooves included in the second groove portions 22 and 32 The ends of the center portions 20c and 30c on the outer side in the tire width direction are defined as end points. Since the groove wall angle α on the tread side gradually increases from the tire equator CL outward in the tire width direction, traction performance can be effectively improved while maintaining low noise performance. The above-mentioned change in the angle of the groove wall angle α can be applied to both the groove wall angle α1 on the ejection side (right side in FIG. 3) and the groove wall angle α2 on the stepping side (left side in FIG. 3). .

特に、上述した踏面側の溝壁角度αは、タイヤ赤道CL上において7°である一方でタイヤ幅方向外側の端部において25°であるとよい。このようにタイヤ幅方向の特定の位置で踏面側の溝壁角度αを設定することで、低騒音性能を維持しながらトラクション性能を効果的に改善することができる。   In particular, the above-mentioned groove wall angle α on the tread side is preferably 7 ° on the tire equator CL and 25 ° at the outer end in the tire width direction. By setting the groove wall angle α on the tread side at a specific position in the tire width direction as described above, traction performance can be effectively improved while maintaining low noise performance.

図2において、各ラグ溝20,30は、タイヤ赤道CLからトレッド端Eまでのタイヤ幅方向の距離をWとし、タイヤ赤道CLからタイヤ幅方向に0.50W離間した位置とタイヤ赤道CLとの間の領域を内側領域Aとし、タイヤ赤道CLからタイヤ幅方向に0.50W離間した位置とトレッド端Eとの間の領域を外側領域Bとしたとき、外側領域Bにおける第二溝部22,32のタイヤ周方向に対する平均角度θbよりも内側領域Aにおける第二溝部22,32のタイヤ周方向に対する平均角度θaが小さくなるように第二溝部22,32は湾曲または屈曲している。言い換えると、ラグ溝20,30の第二溝部22,32は、トレッド端E側からタイヤ赤道CL側に向かってタイヤ周方向に対する傾斜角度が漸減するように滑らかに湾曲するか、少なくとも1つの屈曲点を有して屈曲している。また、センターブロック51は、タイヤ幅方向の最大長さLがトレッド展開幅TWの25%〜35%に設定されている。上述のように、第二溝部22,32が湾曲または屈曲することで溝長さを増大することができ、トラクション性能を向上すると共に、気柱共鳴音の発生を抑制することができる。また、センターブロック51の最大幅を適度に確保しているので、ブロック剛性を充分に確保して、良好なトラクション性能を発揮することができる。   In FIG. 2, each lug groove 20, 30 is defined as a distance W in the tire width direction from the tire equator CL to the tread end E, and a distance 0.50 W from the tire equator CL in the tire width direction and the tire equator CL. A region between the tread edge E and a position 0.50 W apart from the tire equator CL in the tire width direction is defined as an inner region A, and the second groove portions 22 and 32 in the outer region B are defined as an outer region B. The second grooves 22, 32 are curved or bent such that the average angle θa of the second grooves 22, 32 in the inner region A with respect to the tire circumferential direction is smaller than the average angle θb with respect to the tire circumferential direction. In other words, the second grooves 22, 32 of the lug grooves 20, 30 are smoothly curved or have at least one bend so that the inclination angle with respect to the tire circumferential direction gradually decreases from the tread end E toward the tire equator CL. It is bent with points. In the center block 51, the maximum length L in the tire width direction is set to 25% to 35% of the tread development width TW. As described above, the length of the groove can be increased by bending or bending the second groove portions 22 and 32, thereby improving traction performance and suppressing generation of air column resonance. Further, since the maximum width of the center block 51 is appropriately secured, it is possible to sufficiently secure the block rigidity and exhibit good traction performance.

なお、ラグ溝20,30の第二溝部22,32の平均角度は、各領域の境界位置におけるラグ溝20,30の溝幅方向の中点を結んだ直線がタイヤ周方向に対してなす角度として求めることができる。但し、タイヤ赤道CLとトレッド端Eでは、図示のように、タイヤ赤道CLまたはトレッド端Eに向かって引いた第二溝部22,32の延長線のタイヤ赤道CLまたはトレッド端Eにおける中点を用いるものとする。   The average angle of the second groove portions 22 and 32 of the lug grooves 20 and 30 is the angle formed by a straight line connecting the midpoints of the lug grooves 20 and 30 in the groove width direction at the boundary position of each region with respect to the tire circumferential direction. Can be obtained as However, at the tire equator CL and the tread end E, as shown in the figure, the middle point at the tire equator CL or the tread end E of the extension of the second grooves 22, 32 drawn toward the tire equator CL or the tread end E is used. Shall be.

第一溝部21,31は、上述のように、主としてトラクション性能への寄与が大きいタイヤ赤道CLの近傍においてタイヤ幅方向の溝成分を確保するために設けられる。そのため、第一溝部21,31は、タイヤ周方向に対して略垂直方向に延在することが好ましい。具体的には、第一溝部21,31のタイヤ周方向に対する角度θcを好ましくは80°〜100°にするとよい。これにより、第一溝部21,31によって効率的にトラクション性能を向上することができる。第一溝部21,31の角度θcが80°未満または100°超であると、第一溝部21,31のタイヤ幅方向に対する傾斜が大きくなって、タイヤ幅方向の溝成分を充分に確保することができず、トラクション性能を向上する効果が限定的になる。   As described above, the first groove portions 21 and 31 are provided in order to secure a groove component in the tire width direction mainly in the vicinity of the tire equator CL which largely contributes to traction performance. Therefore, it is preferable that the first groove portions 21 and 31 extend in a direction substantially perpendicular to the tire circumferential direction. Specifically, the angle θc of the first groove portions 21 and 31 with respect to the tire circumferential direction is preferably set to 80 ° to 100 °. Thereby, traction performance can be efficiently improved by the first grooves 21 and 31. When the angle θc of the first groove portions 21 and 31 is less than 80 ° or more than 100 °, the inclination of the first groove portions 21 and 31 with respect to the tire width direction increases, and the groove component in the tire width direction is sufficiently ensured. And the effect of improving traction performance is limited.

また、図2において、各ブロック50の踏面には少なくとも1つの屈曲点を有する浅溝60が形成される。浅溝60とは、ラグ溝20,30および周方向細溝40よりも溝深さが小さい溝であり、溝深さを好ましくは1mm〜3mm、溝幅を例えば1mm〜3mmに設定することができる。浅溝60の溝深さが1mm未満であると、浅溝60が浅すぎて浅溝60を設けることによる効果が得られず、浅溝60の溝深さが3mmを超えるとブロック剛性への影響が大きくなる。以降の説明では、センターブロック51に形成された浅溝60をセンター浅溝61、ショルダーブロック52に形成された浅溝60をショルダー浅溝62という。図示の例では、センター浅溝61およびショルダー浅溝62は共に屈曲点を1つ有している。各ブロック50に形成される浅溝60の本数は特に限定されないが、図示のように各ブロック50に1本ずつを設けることが好ましい。   In FIG. 2, a shallow groove 60 having at least one bending point is formed on the tread surface of each block 50. The shallow groove 60 is a groove having a smaller groove depth than the lug grooves 20, 30 and the circumferential narrow groove 40. The groove depth is preferably set to 1 mm to 3 mm, and the groove width is set to, for example, 1 mm to 3 mm. it can. If the depth of the shallow groove 60 is less than 1 mm, the effect of providing the shallow groove 60 is too small to obtain the effect of providing the shallow groove 60. If the depth of the shallow groove 60 exceeds 3 mm, the block rigidity is reduced. The effect is greater. In the following description, the shallow groove 60 formed in the center block 51 is referred to as a center shallow groove 61, and the shallow groove 60 formed in the shoulder block 52 is referred to as a shoulder shallow groove 62. In the illustrated example, both the center shallow groove 61 and the shoulder shallow groove 62 have one bending point. The number of shallow grooves 60 formed in each block 50 is not particularly limited, but it is preferable to provide one shallow groove 60 in each block 50 as shown.

本発明では、オフロードトラクション性能を確保するために上述のようにラグ溝20,30と周方向細溝40とによって複数のブロック50を区画したブロック基調のトレッドパターンを有するタイヤにおいて、各ブロック50の踏面に屈曲点を有する浅溝60を設けているので、タイヤ周方向の溝成分とタイヤ幅方向の溝成分とをバランスよく増加することができ、タイヤ周方向および幅方向の雪上トラクション性能を効率的に向上することができる。   In the present invention, in order to ensure off-road traction performance, in the tire having a block-based tread pattern in which a plurality of blocks 50 are partitioned by the lug grooves 20, 30 and the circumferential narrow grooves 40 as described above, each block 50 Since the shallow groove 60 having a bending point is provided on the tread surface of the tire, the groove component in the tire circumferential direction and the groove component in the tire width direction can be increased in a well-balanced manner, and the traction performance on snow in the tire circumferential direction and the width direction can be improved. It can be improved efficiently.

更に、センター浅溝61は、図示のように、一端が周方向細溝40に連通し、他端がラグ溝20,30の第二溝部22,32に連通しているとよい。また、センター浅溝61は、センターブロック51の踏込側または蹴出側の外縁に沿うように屈曲しているとよい。このとき、センター浅溝61はセンターブロック51のタイヤ周方向中心位置からタイヤ周方向に±5mmの範囲内に配置されるとよい。更に、センター浅溝61をタイヤ赤道CLに向かって投影したときのセンター浅溝61の投影成分どうしが重複しないことが好ましい。このようにトラクション性能への寄与が大きいタイヤ赤道CL近傍に位置するセンターブロック51に適切な形状のセンター浅溝61を設けることで、効果的に雪上トラクション性能を向上することができる。また、上記のようにセンター浅溝61が重複しないことで、タイヤ全周に亘ってブロック剛性が過度に低下することを避けて、タイヤ周方向での雪上トラクション性能とオフロードトラクション性能とのバランスを良好にし、これら性能を高度に両立することができる。   Further, the center shallow groove 61 preferably has one end communicating with the circumferential narrow groove 40 and the other end communicating with the second grooves 22, 32 of the lug grooves 20, 30, as shown in the figure. The center shallow groove 61 is preferably bent along the outer edge of the center block 51 on the stepping side or the kicking side. At this time, the center shallow groove 61 is preferably arranged within a range of ± 5 mm in the tire circumferential direction from the center position of the center block 51 in the tire circumferential direction. Further, it is preferable that projection components of the center shallow groove 61 when the center shallow groove 61 is projected toward the tire equator CL do not overlap. By providing the center block 51 located in the vicinity of the tire equator CL which greatly contributes to the traction performance with the appropriately shaped center shallow groove 61, the traction performance on snow can be effectively improved. Further, since the center shallow grooves 61 do not overlap as described above, the block rigidity is not excessively reduced over the entire circumference of the tire, and the balance between the snow traction performance and the off-road traction performance in the tire circumferential direction is reduced. And these performances can be highly compatible.

一方、ショルダー浅溝62は、図示のように、両端がショルダーブロック52内で終端しているとよい。また、ショルダー浅溝62は、ショルダーブロック52の踏込側の外縁に沿うように屈曲しているとよい。更に、ショルダー浅溝62は、ショルダーブロック52の踏面のタイヤ幅方向内側の頂点の位置よりも踏込側に配置されているとよい。このようにショルダー浅溝62を設けることで、ショルダーブロック52の剛性低下を抑制しながら、踏込側にエッジ成分を増加することができ、雪上性能を効果的に向上することができる。その一方で、蹴出側については浅溝が無く、ブロック剛性とゴム量が確保されるので、偏摩耗(ヒールアンドトウ摩耗)を効果的に抑制することができる。   On the other hand, both ends of the shoulder shallow groove 62 are preferably terminated in the shoulder block 52 as shown in the figure. Further, the shoulder shallow groove 62 may be bent along the outer edge of the shoulder block 52 on the stepping side. Furthermore, the shoulder shallow groove 62 may be arranged on the stepping side of the position of the apex of the tread surface of the shoulder block 52 on the inner side in the tire width direction. By providing the shoulder shallow groove 62 in this manner, it is possible to increase the edge component on the stepping side while suppressing a decrease in the rigidity of the shoulder block 52, and it is possible to effectively improve the performance on snow. On the other hand, since there is no shallow groove on the kick-out side and the block rigidity and the amount of rubber are ensured, uneven wear (heel and toe wear) can be effectively suppressed.

タイヤサイズが315/80R22.5であり、図1に例示する基本構造を有し、基調とするトレッドパターン、ラグ溝センター部における底上げの有無、ラグ溝センター部の断面形状、ラグ溝センター部の溝壁角度αと溝壁角度βの大小関係、ラグ溝の最大深さFDに対する角度変化点の深さPDの比率(PD/FD×100%)、ラグ溝センター部の蹴出側の溝壁角度α1、ラグ溝センター部の踏込側の溝壁角度α2、溝壁角度α1と溝壁角度α2の角度差(α1−α2)、ラグ溝ショルダー部の溝幅Gsに対するラグ溝センター部の溝幅Gcの比率(Gc/Gs×100%)、ラグ溝の最大深さFDに対する底上げ部の深さRDの比率(RD/FD×100%)、ラグ溝センター部における角度変化の有無をそれぞれ表1および表2のように設定した従来例、比較例1〜2、実施例1〜12の空気入りタイヤを作製した。   The tire size is 315 / 80R22.5, which has the basic structure illustrated in FIG. 1, and has a base tread pattern, presence or absence of raising at the lug groove center, cross-sectional shape of the lug groove center, and lug groove center. The relationship between the groove wall angle α and the groove wall angle β, the ratio of the depth PD of the angle change point to the maximum depth FD of the lug groove (PD / FD × 100%), and the groove wall on the ejection side of the lug groove center. The angle α1, the groove wall angle α2 on the stepping side of the lug groove center portion, the angle difference (α1−α2) between the groove wall angle α1 and the groove wall angle α2, the groove width of the lug groove center portion relative to the groove width Gs of the lug groove shoulder portion. Table 1 shows the ratio of Gc (Gc / Gs × 100%), the ratio of the depth RD of the raised bottom to the maximum depth FD of the lug groove (RD / FD × 100%), and the presence or absence of an angle change in the lug groove center. And as shown in Table 2. Pneumatic tires of the conventional examples, Comparative Examples 1 and 2, and Examples 1 to 12 were produced.

表1および表2の「トレッドパターン」について、対応する図面の番号を記載した。従来例の図4のパターンは、図2のパターンとは大きく異なるが、図中に記載したように各部の寸法等を図2と対応させて各項目の数値を求めた。表1および表2の「ラグ溝センター部における断面形状」について、対応する図面の番号を記載した。従来例の図5(a)は踏込側および蹴出側の溝壁が角度変化点を有しない断面形状であり、比較例1の図5(b)はセンターブロックのエッジ部に切り欠きが設けられた断面形状であり、比較例2の図5(c)は踏込側の溝壁が角度変化点を有しない断面形状である。また、比較例1は、第一溝部の他端がタイヤ周方向に隣り合うラグ溝の第二溝部に連通しないパターンであるが、便宜的に図2のパターンに対応するものとして各項目の数値等を表示した。   Regarding the “tread pattern” in Tables 1 and 2, the numbers of the corresponding drawings are described. The pattern of FIG. 4 of the conventional example is greatly different from the pattern of FIG. 2, but as shown in the figure, the numerical values of each item were obtained by associating the dimensions and the like of each part with FIG. Regarding the “cross-sectional shape at the lug groove center portion” in Tables 1 and 2, the numbers of the corresponding drawings are described. FIG. 5A of the conventional example has a cross-sectional shape in which the groove walls on the stepping side and the kicking side do not have an angle change point, and FIG. 5B of Comparative Example 1 has a notch provided at the edge of the center block. FIG. 5C of Comparative Example 2 is a cross-sectional shape in which the stepped-side groove wall has no angle change point. Comparative Example 1 is a pattern in which the other end of the first groove portion does not communicate with the second groove portion of the lug groove adjacent in the tire circumferential direction. For convenience, the numerical value of each item is assumed to correspond to the pattern of FIG. And so on.

表1および表2の「ラグ溝センター部における角度変化の有無」について、ラグ溝センター部における踏面側の溝壁角度αがタイヤ赤道からタイヤ幅方向外側に向かって漸増するか否かを示しており、「有り」の場合は漸増し、「無し」の場合は角度変化がないことを意味する。   Regarding “the presence or absence of an angle change in the lug groove center portion” in Tables 1 and 2, it is shown whether or not the groove wall angle α on the tread side in the lug groove center portion gradually increases from the tire equator outward in the tire width direction. In the case of “present”, the angle increases gradually, and in the case of “absent”, it means that there is no angle change.

これら空気入りタイヤについて、下記の評価方法により、トラクション性能、低騒音性能および耐石噛み性能を評価し、その結果を表1および表2に併せて示した。   With respect to these pneumatic tires, traction performance, low noise performance, and stone bite resistance were evaluated by the following evaluation methods, and the results are shown in Tables 1 and 2.

トラクション性能:
各試験タイヤをリムサイズ22.5×9.00のホイールに組み付けて、空気圧を850kPaとして、試験車両(車軸配列が6×4であるトラック)の駆動軸に装着し、未舗装路からなるテストコースでテストドライバーによる官能評価を行った。評価結果は、従来例の値を100とする指数にて示した。この指数値が大きいほどトラクション性能に優れることを意味する。
Traction performance:
A test course consisting of unpaved roads, each test tire being mounted on a wheel with a rim size of 22.5 × 9.00, with an air pressure of 850 kPa, mounted on the drive shaft of a test vehicle (truck having an axle arrangement of 6 × 4). Was used for sensory evaluation by a test driver. The evaluation results were indicated by an index with the value of the conventional example being 100. The larger the index value, the better the traction performance.

低騒音性能:
各試験タイヤをリムサイズ22.5×9.00のホイールに組み付けて、試験車両(車軸配列が6×4であるトラック)の駆動軸に装着し、ECE R117−02(ECE Regulation No.117 Revision 2)に定めるタイヤ騒音試験法に準拠して車外通過音を測定した。具体的には、試験車両を騒音測定区間の充分手前から走行させ、当該区間の直前でエンジンを停止し、惰行走行させた時の騒音測定区間における最大騒音値(dB)(周波数800〜1200Hzの範囲の騒音値)を、基準速度に対し±10km/時の速度範囲をほぼ等間隔に8以上に区切った複数の速度で測定し、その平均を車外通過騒音とした。最大騒音値dBは、騒音測定区間内の中間点において走行中心線から側方に7.5mかつ路面から1.2mの高さに設置した定置マイクロフォンを用いてA特性周波数補正回路を通して測定した音圧〔dB(A)〕である。評価結果は、測定値の逆数を用いて、従来例の値を100とする指数にて示した。この指数値が大きいほど車外通過騒音が小さく低騒音性能に優れることを意味する。
Low noise performance:
Each test tire was mounted on a wheel having a rim size of 22.5 × 9.00 and mounted on a drive shaft of a test vehicle (a truck having an axle arrangement of 6 × 4), and ECE R117-02 (ECE Regulation No. 117 Revision 2) )), The sound passing outside the vehicle was measured in accordance with the tire noise test method specified in (1). Specifically, the test vehicle is caused to travel sufficiently short of the noise measurement section, the engine is stopped immediately before the section, and the maximum noise value (dB) in the noise measurement section when the vehicle is coasted (at a frequency of 800 to 1200 Hz). (A noise value in the range) was measured at a plurality of speeds in which a speed range of ± 10 km / h with respect to the reference speed was divided into eight or more at substantially equal intervals, and the average was defined as outside vehicle passing noise. The maximum noise value dB is a sound measured through an A-characteristic frequency correction circuit using a fixed microphone installed at a height of 7.5 m laterally from the traveling center line and 1.2 m from the road surface at an intermediate point in the noise measurement section. Pressure [dB (A)]. The evaluation results were shown as indices using the reciprocal of the measured values and the value of the conventional example as 100. The larger the index value, the smaller the noise passing outside the vehicle and the better the low noise performance.

耐石噛み性能:
各試験タイヤをリムサイズ22.5×9.00のホイールに組み付けて、空気圧を850kPaとして、試験車両(車軸配列が6×4であるトラック)の駆動軸に装着し、未舗装路からなるテストコースを走行後、ラグ溝に噛んだ石の個数を測定した。評価結果は、測定値の逆数を用いて、従来例の値を100とする指数にて示した。この指数値が大きいほど耐石噛み性能に優れることを意味する。
Stone biting performance:
A test course consisting of unpaved roads, each test tire being mounted on a wheel with a rim size of 22.5 × 9.00, with an air pressure of 850 kPa, mounted on the drive shaft of a test vehicle (truck having an axle arrangement of 6 × 4). After running, the number of stones caught in the lug grooves was measured. The evaluation results were shown as indices using the reciprocal of the measured values and the value of the conventional example as 100. The larger the index value, the more excellent the stone biting performance.

Figure 0006648801
Figure 0006648801

Figure 0006648801
Figure 0006648801

表1および表2から明らかなように、実施例1〜12はいずれも、従来例と比較して、トラクション性、低騒音性能および耐石噛み性能が改善されていた。   As is clear from Tables 1 and 2, all of Examples 1 to 12 had improved traction, low noise performance and stone bite resistance as compared with the conventional example.

一方、比較例1は、第一溝部の他端はタイヤ周方向に隣り合うラグ溝の第二溝部に連通しておらず、ラグ溝の底上げ部を有していないため、オフロードトラクション性が向上することなく低騒音性能が悪化した。比較例2は、ラグ溝センター部における踏込側の溝壁に角度変化点がないため、耐石噛み性を維持しつつ十分なオフロードトラクション性能を得られない。   On the other hand, in Comparative Example 1, the other end of the first groove portion did not communicate with the second groove portion of the lug groove adjacent in the tire circumferential direction, and did not have a raised portion of the lug groove. Low noise performance deteriorated without improvement. In Comparative Example 2, since there is no angle change point in the groove wall on the stepping side in the lug groove center portion, sufficient off-road traction performance cannot be obtained while maintaining resistance to stone bite.

1 トレッド部
2 サイドウォール部
3 ビード部
4 カーカス層
5 ビードコア
6 ビードフィラー
7 ベルト層
20,30 ラグ溝
20c,30c ラグ溝センター部
20s,30s ラグ溝ショルダー部
21,31 第一溝部
22,32 第二溝部
25,35 底上げ部
40 周方向細溝
51 センターブロック
52 ショルダーブロック
CL タイヤ赤道
E トレッド端
P 角度変化点
REFERENCE SIGNS LIST 1 tread portion 2 side wall portion 3 bead portion 4 carcass layer 5 bead core 6 bead filler 7 belt layer 20, 30 lug groove 20c, 30c lug groove center portion 20s, 30s lug groove shoulder portion 21, 31 first groove portion 22, 32 Two grooves 25, 35 Raised bottom part 40 Circumferential narrow groove 51 Center block 52 Shoulder block CL Tire equator E Tread end P Angle change point

Claims (12)

タイヤ周方向に延在して環状をなすトレッド部と、該トレッド部の両側に配置された一対のサイドウォール部と、これらサイドウォール部のタイヤ径方向内側に配置された一対のビード部とを備え、回転方向が指定された空気入りタイヤにおいて、
前記トレッド部の外表面に、タイヤ赤道に対して一方側のトレッド端からタイヤ幅方向内側に向かって延在してタイヤ赤道と交差するラグ溝と、タイヤ赤道に対して他方側のトレッド端からタイヤ幅方向内側に向かって延在してタイヤ赤道と交差するラグ溝とが、タイヤ周方向に交互に配列され、
各ラグ溝は、タイヤ赤道と交差してタイヤ幅方向に沿って延在する第一溝部と、前記第一溝部の一端から前記第一溝部よりもタイヤ周方向に対して小さい角度で傾斜してトレッド端まで延在する第二溝部とからなり、前記第一溝部の他端はタイヤ周方向に隣り合うラグ溝の前記第二溝部に連通し、前記第一溝部は前記ラグ溝のトレッド端側の端部よりも踏込側に位置しており、
タイヤ赤道に対して一方側または他方側でタイヤ周方向に隣り合う前記第二溝部どうしを連結する周方向細溝が形成され、前記ラグ溝と前記周方向細溝によって複数のブロックが区画され、これらブロックが前記周方向細溝よりもタイヤ赤道側に位置するセンターブロックと前記周方向細溝よりトレッド端側に位置するショルダーブロックとを含み、
各ラグ溝において、タイヤ周方向に隣り合う前記センターブロックどうしで挟まれる部位をラグ溝センター部とし、タイヤ周方向に隣り合う前記ショルダーブロックどうしで挟まれる部位をラグ溝ショルダー部としたとき、前記ラグ溝センター部におけるタイヤ幅方向外側であって前記第二溝部に含まれる端部の溝幅が前記ラグ溝ショルダー部におけるタイヤ幅方向外側の端部の溝幅よりも狭く、前記ラグ溝センター部の延在方向の一部または全部に底上げ部が設けられ、前記ラグ溝センター部における踏込側および蹴出側の各々の溝壁が1つの角度変化点を有し、前記角度変化点よりも踏面側で前記ラグ溝センター部の溝壁と前記トレッド部の踏面に対する法線とがなす溝壁角度αが前記角度変化点よりも溝底側で前記ラグ溝センター部の溝壁と前記トレッド部の踏面に対する法線とがなす溝壁角度βよりも大きいことを特徴とする空気入りタイヤ。
A ring-shaped tread portion extending in the tire circumferential direction, a pair of sidewall portions disposed on both sides of the tread portion, and a pair of bead portions disposed inside the tire radial direction of these sidewall portions. In the pneumatic tire with the specified rotation direction,
On the outer surface of the tread portion, a lug groove extending inward in the tire width direction from the tread end on one side with respect to the tire equator and crossing the tire equator, and the tread end on the other side with respect to the tire equator. Lug grooves extending inward in the tire width direction and intersecting the tire equator are alternately arranged in the tire circumferential direction,
Each lug groove intersects the tire equator and extends along the tire width direction, and is inclined at a smaller angle to the tire circumferential direction than the first groove from one end of the first groove. A second groove extending to the tread end, the other end of the first groove communicates with the second groove of the lug groove adjacent in the tire circumferential direction, and the first groove is a tread end side of the lug groove. It is located on the stepping side from the end of
A circumferential narrow groove connecting the second grooves adjacent to each other in the tire circumferential direction on one side or the other side with respect to the tire equator is formed, and a plurality of blocks are defined by the lug grooves and the circumferential narrow grooves. These blocks include a center block located closer to the tire equator than the circumferential narrow groove and a shoulder block located closer to the tread end than the circumferential narrow groove,
In each lug groove, a portion sandwiched between the center blocks adjacent in the tire circumferential direction is defined as a lug groove center portion, and a portion sandwiched between the shoulder blocks adjacent in the tire circumferential direction is defined as a lug groove shoulder portion. The groove width of the end portion included in the second groove portion on the outer side in the tire width direction at the lug groove center portion is smaller than the groove width of the outer end portion in the tire width direction on the lug groove shoulder portion, and the lug groove center portion is provided. A bottom raising portion is provided in a part or the whole of the extending direction of each of the lug groove center portions, and each of the groove walls on the stepping side and the kicking side in the lug groove center portion has one angle change point, and the tread surface is higher than the angle change point. The groove wall angle α formed by the groove wall of the lug groove center portion and the normal to the tread surface of the tread portion on the side of the lug groove center portion is closer to the groove bottom than the angle change point. A pneumatic tire being larger than the groove wall angle β formed between the normal to the tread surface of the wall and the tread portion.
前記トレッド部の踏面から前記角度変化点までの深さが前記ラグ溝の最大深さに対して35%〜60%の範囲であることを特徴とする請求項1に記載の空気入りタイヤ。   The pneumatic tire according to claim 1, wherein a depth from a tread surface of the tread portion to the angle change point is in a range of 35% to 60% with respect to a maximum depth of the lug groove. 前記ラグ溝センター部における踏面側の溝壁角度αが5°〜30°であり、前記ラグ溝センター部における溝底側の溝壁角度βが3°以下であることを特徴とする請求項1又は2に記載の空気入りタイヤ。   The groove wall angle α on the tread surface side in the lug groove center portion is 5 ° to 30 °, and the groove wall angle β on the groove bottom side in the lug groove center portion is 3 ° or less. Or the pneumatic tire according to 2. 前記ラグ溝センター部における踏面側の溝壁角度αにおける蹴出側の溝壁角度α1と踏込側の溝壁角度α2とが0°≦α1−α2≦8°の関係を満たすことを特徴とする請求項1〜3のいずれかに記載の空気入りタイヤ。   The groove wall angle α1 on the kick-out side and the groove wall angle α2 on the tread side at the groove wall angle α on the tread surface side in the lug groove center portion satisfy a relationship of 0 ° ≦ α1−α2 ≦ 8 °. The pneumatic tire according to claim 1. 前記ラグ溝センター部におけるタイヤ幅方向外側であって前記第二溝部に含まれる端部の溝幅が前記ラグ溝ショルダー部におけるタイヤ幅方向外側の端部の溝幅に対して38%〜60%の範囲であることを特徴とする請求項1〜4のいずれかに記載の空気入りタイヤ。 The groove width of the end portion included in the second groove portion on the outer side in the tire width direction at the lug groove center portion is 38% to 60% with respect to the groove width of the outer end portion in the tire width direction on the lug groove shoulder portion. The pneumatic tire according to any one of claims 1 to 4, wherein: 前記ラグ溝センター部における底上げ部の深さが前記ラグ溝の最大深さに対して65%〜85%の範囲であることを特徴とする請求項1〜5のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 5, wherein a depth of a raised portion in the center portion of the lug groove is in a range of 65% to 85% with respect to a maximum depth of the lug groove. . 前記ラグ溝センター部における踏面側の溝壁角度αがタイヤ赤道から前記第二溝部に含まれる前記ラグ溝センター部のタイヤ幅方向外側の端部に向かって漸増することを特徴とする請求項1〜6のいずれかに記載の空気入りタイヤ。 The groove wall angle α on the tread surface side of the lug groove center portion gradually increases from the tire equator toward the end of the lug groove center portion included in the second groove portion on the outer side in the tire width direction. 7. The pneumatic tire according to any one of to 6. 前記ラグ溝センター部における踏面側の溝壁角度αがタイヤ赤道上において7°である一方で前記第二溝部に含まれる前記ラグ溝センター部のタイヤ幅方向外側の端部において25°であることを特徴とする請求項7に記載の空気入りタイヤ。 The groove wall angle α on the tread side at the lug groove center portion is 7 ° on the tire equator, while 25 ° at the outer end of the lug groove center portion included in the second groove portion in the tire width direction. The pneumatic tire according to claim 7, wherein: 前記ラグ溝の最大深さが15mm〜28mmであることを特徴とする請求項1〜8のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 8, wherein a maximum depth of the lug groove is 15 mm to 28 mm. タイヤ赤道からトレッド端までの距離をWとし、タイヤ赤道からタイヤ幅方向に0.5W離間した位置とタイヤ赤道との間の領域を内側領域とし、タイヤ赤道からタイヤ幅方向に0.5W離間した位置とトレッド端との間の領域を外側領域としたとき、前記外側領域における前記第二溝部のタイヤ周方向に対する平均角度よりも前記内側領域における前記第二溝部のタイヤ周方向に対する平均角度が小さくなるように前記第二溝部は湾曲または屈曲しており、
前記センターブロックのタイヤ幅方向の最大長さがトレッド展開幅の25%〜35%であることを特徴とする請求項1〜9のいずれかに記載の空気入りタイヤ。
The distance from the tire equator to the tread edge was W, the area between the tire equator and the position 0.5W apart from the tire equator in the tire width direction was the inner area, and the distance from the tire equator was 0.5W in the tire width direction. When the region between the position and the tread end is the outer region, the average angle of the second groove in the inner region with respect to the tire circumferential direction is smaller than the average angle of the second groove in the outer region with respect to the tire circumferential direction. The second groove is curved or bent so that
The pneumatic tire according to any one of claims 1 to 9, wherein a maximum length of the center block in the tire width direction is 25% to 35% of a tread development width.
前記センターブロックと前記ショルダーブロックの踏面に少なくとも1つの屈曲点を有する浅溝が形成されていることを特徴とする請求項1〜10のいずれかに記載の空気入りタイヤ。   The pneumatic tire according to any one of claims 1 to 10, wherein a shallow groove having at least one bending point is formed on the tread surfaces of the center block and the shoulder block. 前記センターブロックに形成された前記浅溝の一端が前記周方向細溝に連通し、他端が前記第二溝部に連通し、前記センターブロックに形成された前記浅溝をタイヤ赤道に向かって投影したときの前記浅溝の投影成分どうしが重複せず、
前記ショルダーブロックに形成された前記浅溝は両端がブロック内で終端し、前記ショルダーブロックの踏面のタイヤ幅方向内側の頂点の位置よりも踏込側に配置されていることを特徴とする請求項11に記載の空気入りタイヤ。
One end of the shallow groove formed in the center block communicates with the circumferential narrow groove, the other end communicates with the second groove, and projects the shallow groove formed in the center block toward the tire equator. When the projected components of the shallow groove do not overlap,
12. The shallow groove formed in the shoulder block, both ends of the shallow groove end in the block, and the shallow groove is disposed on a stepping side with respect to a position of a vertex inside a tread surface of the shoulder block in the tire width direction. 13. A pneumatic tire according to claim 1.
JP2018199410A 2018-10-23 2018-10-23 Pneumatic tire Active JP6648801B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018199410A JP6648801B1 (en) 2018-10-23 2018-10-23 Pneumatic tire
DE112019004663.2T DE112019004663B4 (en) 2018-10-23 2019-06-19 TIRE
PCT/JP2019/024250 WO2020084831A1 (en) 2018-10-23 2019-06-19 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018199410A JP6648801B1 (en) 2018-10-23 2018-10-23 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP6648801B1 true JP6648801B1 (en) 2020-02-14
JP2020066305A JP2020066305A (en) 2020-04-30

Family

ID=69568196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018199410A Active JP6648801B1 (en) 2018-10-23 2018-10-23 Pneumatic tire

Country Status (3)

Country Link
JP (1) JP6648801B1 (en)
DE (1) DE112019004663B4 (en)
WO (1) WO2020084831A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796246B2 (en) * 2001-08-08 2011-10-19 住友ゴム工業株式会社 Pneumatic tire
JP4420623B2 (en) * 2003-05-28 2010-02-24 株式会社ブリヂストン Pneumatic tire
US8056592B2 (en) 2007-10-31 2011-11-15 The Goodyear Tire + Rubber Company, Inc. Grip tire with added puncture protection
FR2935296B1 (en) * 2008-08-26 2011-07-29 Michelin Soc Tech TIRE TREAD WITH DIRECTIONAL SCULPTURE.
JP6420709B2 (en) * 2015-04-09 2018-11-07 住友ゴム工業株式会社 Pneumatic tire
DE102015224288A1 (en) 2015-12-04 2017-06-08 Continental Reifen Deutschland Gmbh Vehicle tires
JP6724379B2 (en) * 2016-01-20 2020-07-15 住友ゴム工業株式会社 Pneumatic tire
JP6365720B1 (en) * 2017-03-30 2018-08-01 横浜ゴム株式会社 Pneumatic tire
JP6658789B2 (en) 2018-04-17 2020-03-04 横浜ゴム株式会社 Pneumatic tire

Also Published As

Publication number Publication date
DE112019004663B4 (en) 2024-01-04
JP2020066305A (en) 2020-04-30
WO2020084831A1 (en) 2020-04-30
DE112019004663T5 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP5667614B2 (en) Pneumatic tire
JP5727965B2 (en) Pneumatic tire
JP6375851B2 (en) Pneumatic tire
JP6375850B2 (en) Pneumatic tire
JP5767659B2 (en) Motorcycle tires
JP6421652B2 (en) Pneumatic tire
JP5613273B2 (en) Pneumatic tire
JP6648801B1 (en) Pneumatic tire
JP6624231B2 (en) Pneumatic tire
JP6657707B2 (en) Pneumatic tire
JP6658789B2 (en) Pneumatic tire
JP7095374B2 (en) Pneumatic tires
JP6707318B2 (en) Pneumatic tire
JP6631730B1 (en) Pneumatic tire
JP2020097271A (en) Pneumatic tire
JP2020199836A (en) Pneumatic tire
JP7306135B2 (en) pneumatic tire
JP7119522B2 (en) pneumatic tire
JP7363453B2 (en) pneumatic tires
CN112368159B (en) Pneumatic tire
WO2022185801A1 (en) Pneumatic tire
JP6680329B2 (en) Pneumatic tire
JP2022177620A (en) pneumatic tire
JP2020138604A (en) Pneumatic tire for heavy load
JP2020128119A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191230

R150 Certificate of patent or registration of utility model

Ref document number: 6648801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250