JP6647857B2 - Pipe joining method - Google Patents

Pipe joining method Download PDF

Info

Publication number
JP6647857B2
JP6647857B2 JP2015250409A JP2015250409A JP6647857B2 JP 6647857 B2 JP6647857 B2 JP 6647857B2 JP 2015250409 A JP2015250409 A JP 2015250409A JP 2015250409 A JP2015250409 A JP 2015250409A JP 6647857 B2 JP6647857 B2 JP 6647857B2
Authority
JP
Japan
Prior art keywords
grout
pipe
foundation pile
grout material
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015250409A
Other languages
Japanese (ja)
Other versions
JP2017115374A (en
Inventor
吉田 健治
健治 吉田
孝行 青野
孝行 青野
展浩 高島
展浩 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumagai Gumi Co Ltd
Fatech Co Ltd
Original Assignee
Kumagai Gumi Co Ltd
Fatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumagai Gumi Co Ltd, Fatech Co Ltd filed Critical Kumagai Gumi Co Ltd
Priority to JP2015250409A priority Critical patent/JP6647857B2/en
Publication of JP2017115374A publication Critical patent/JP2017115374A/en
Application granted granted Critical
Publication of JP6647857B2 publication Critical patent/JP6647857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B17/0004Nodal points
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines

Description

本発明は、洋上風力発電設備の風車を支持するためのタワーの下端側と海底に打設された管状の基礎杭の上端側とを接続するための接合管の下端開口側の管内に基礎杭の上端側が挿入されて、互いに向かい合う基礎杭の外周面と接合管の内周面との間にグラウト材を充填することによって、接合管の下端側と基礎杭の上端側とを接合する管接合方法に関する。   The present invention relates to a foundation pile in a lower end opening side of a joint pipe for connecting a lower end side of a tower for supporting a windmill of an offshore wind power generation facility and an upper end side of a tubular foundation pile cast on the sea floor. The upper end side of the pipe is inserted and the grout material is filled between the outer peripheral surface of the foundation pile and the inner peripheral surface of the joint pipe facing each other, thereby joining the lower end side of the joint pipe and the upper end side of the foundation pile. About the method.

洋上風力発電所の風力発電設備において、風車を支持するためのタワーの下端側と海底に打設された管状のモノパイル(大口径鋼管杭)と呼ばれる基礎杭の上端側とが、トランジションピースと呼ばれる接合管(鋼管)及びグラウトにより接合されたグラウト接合構造が知られている。
当該グラウト接合構造は、接合管の下端開口側の管内に基礎杭の上端側が挿入されて、互いに向かい合う基礎杭の外周面と接合管の内周面との間に水中不分離性モルタル等のグラウト材が充填された構造である(例えば、特許文献1参照)。
そして、基礎杭の外周面と接合管の内周面との間に充填されたグラウト材が凝結した後、例えば風車を支持するためのタワーの下端側に設けられたブラケットと接合管の上部側に設けられたブラケットとをボルト等で接合することによって、基礎杭とタワーとを接合するようにしている。
基礎杭は必ずしも垂直に立設することができないので、基礎杭が垂直に立設されていない場合でも、当該接合管の中心線が垂直となるように接合管を基礎杭の上端側に接合することによって、タワーを垂直に立設することができるようになる。
また、互いに向かい合う基礎杭の外周面と接合管の内周面との間にグラウト材が充填されていることによって、タワーの揺れを防止できる。
また、タワーの下方への移動は、グラウト材が充填される接合管の内周面及び基礎杭の外周面の少なくとも一方に設けられたシアキー(せん断力伝達部材)(例えば、特許文献2参照)や、接合管の内側に設けられて基礎杭の上端に支持されるブラケットによって、抑制されるように構成されている。
In a wind power generation facility of an offshore wind farm, the lower end of a tower for supporting a wind turbine and the upper end of a foundation pile called a tubular monopile (large-diameter steel pipe pile) cast on the sea floor are called transition pieces. BACKGROUND ART A grout joining structure joined by a joining pipe (steel pipe) and grout is known.
The grout joining structure is characterized in that the upper end side of the foundation pile is inserted into the pipe at the lower end opening side of the joining pipe, and grout such as underwater non-separable mortar is provided between the outer peripheral surface of the foundation pile and the inner peripheral surface of the joining pipe facing each other. It is a structure filled with a material (for example, see Patent Document 1).
Then, after the grout material filled between the outer peripheral surface of the foundation pile and the inner peripheral surface of the joining pipe has condensed, for example, a bracket provided on the lower end side of the tower for supporting the windmill and the upper side of the joining pipe The foundation pile and the tower are joined by joining the bracket provided on the base with bolts or the like.
Since the foundation pile cannot always be erected vertically, even if the foundation pile is not erected vertically, join the joint pipe to the upper end side of the foundation pile so that the center line of the joint pipe is vertical This allows the tower to be erected vertically.
In addition, since the grout material is filled between the outer peripheral surface of the foundation pile facing each other and the inner peripheral surface of the joint pipe, the tower can be prevented from swinging.
The downward movement of the tower is achieved by a shear key (shear force transmitting member) provided on at least one of the inner peripheral surface of the joint pipe filled with the grout material and the outer peripheral surface of the foundation pile (for example, see Patent Document 2). Also, it is configured to be suppressed by a bracket provided inside the joint pipe and supported at the upper end of the foundation pile.

特開2011−149182号公報JP 2011-149182 A 特開2013−53425号公報JP 2013-53425 A

洋上風力発電設備における基礎杭の外周面と接合管の内周面との間のグラウト材充填部は、少なくとも下端部が海水面下に位置される。従って、特許文献1に開示された接合管の下端側と基礎杭の上端側とを接合する管接合方法では、水中であるグラウト材充填部に充填するグラウト材として水中不分離性モルタルを用いている。しかしながら、水中不分離性モルタルは、増粘剤等の添加により水中不分離性能を有する一方、圧縮強度、引張強度及び曲げ強度等の強度特性を大きくすることが困難である。
従って、特許文献1のように水中不分離性モルタルを用いて、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を実現するためには、グラウト接合構造の接合長(グラウト材充填部に充填されるグラウト材の上下方向の長さ)を長くする必要があるため、コストの増大及び施工期間が長くなるといった問題点があった。
本発明は、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を、安価かつ短期間で実現可能な管接合方法を提供する。
In the offshore wind turbine, at least the lower end of the grout filling portion between the outer peripheral surface of the foundation pile and the inner peripheral surface of the joining pipe is located below the sea level. Therefore, in the pipe joining method for joining the lower end side of the joining pipe and the upper end side of the foundation pile disclosed in Patent Literature 1, an underwater non-separable mortar is used as the grout material to be filled in the grout material filling portion in water. I have. However, while water-inseparable mortar has water-inseparable performance by adding a thickener or the like, it is difficult to increase strength characteristics such as compressive strength, tensile strength, and bending strength.
Accordingly, in order to realize a grouted joint structure having desired compressive strength, tensile strength, bending strength, and other strength characteristics using a water-inseparable mortar as in Patent Document 1, the joining length of the grouted joint structure is required. Since it is necessary to lengthen (the length of the grout material filled in the grout material filling portion in the vertical direction), there has been a problem that the cost increases and the construction period becomes longer.
The present invention provides a pipe joining method capable of realizing a grout joining structure having desired strength characteristics such as compressive strength, tensile strength and bending strength at a low cost in a short period of time.

本発明に係る管接合方法は、洋上風力発電設備の風車を支持するためのタワーの下端側と海底に打設された管状の基礎杭の上端側とを接続するための接合管の下端開口側の管内に基礎杭の上端側が挿入されて、互いに向かい合う基礎杭の外周面と接合管の内周面との間にグラウト材を充填することによって、接合管の下端側と基礎杭の上端側とを接合する管接合方法において、基礎杭の外周面と接合管の内周面との間の水中に位置される下端部に水中不分離性グラウト材を充填して形成したグラウト下層の水中不分離性グラウト材が凝結した後に、当該グラウト下層の上方の水分を基礎杭の外周面と接合管の内周面との間から外部に排水し、その後、当該排水されたグラウト下層の上方の基礎杭の外周面と接合管の内周面との間に、グラウト下層を形成する水中不分離性グラウト材よりも高強度の気中打設型グラウト材を充填してグラウト上層を形成したので、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を、安価かつ短期間で実現できる。
また、基礎杭に、基礎杭の管の内面と外面とに貫通して孔の下端位置がグラウト下層を形成する水中不分離性グラウト材の充填終了予定位置と一致するように形成された排水手段としての排水孔を設け、グラウト下層の上方の水分を当該排水孔を介して基礎杭の管の内側に流下させることによって、グラウト下層の上方の水分を基礎杭の外周面と接合管の内周面との間から外部に排水したことにより、ポンプ等の排水手段を用いることなく、グラウト下層の上方の水分を排水孔を介して簡単かつ容易に外部に排水することができるとともに、グラウト下層の上方の水分がすべて排水されたことの確認が容易となり、グラウト接合構造の接合長を短くできて、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を簡単かつ確実に実現できるようになり、さらには、作業者は、グラウト下層を形成するグラウト材が排水孔を介して基礎杭の管の内側に流下し始めたことを確認することで、グラウト下層を形成するグラウト材の充填作業終了時期を正確に知ることができるようになるため、作業性が向上する。
また、排水孔を、基礎杭の管の周方向に所定の間隔を隔てて複数個設けた。
さらに、グラウト下層を形成する水中不分離性グラウト材として、短繊維を混入した水中不分離性グラウト材を使用したので、基礎杭の外周面と接合管の内周面との間に充填されたグラウト材の脱落抑制効果を向上させることができる。
短繊維を混入した水中不分離性グラウト材は、径寸法0.2mm以下でかつ全長15mm以下のビニロンの短繊維が1.0体積%以上1.5体積%以下混入されて形成されたものを用いたので、ビニロンの短繊維を用いることで、コスト、混入作業を容易にでき、かつ、短繊維水中不分離性モルタルの流動性の低下を少なくできて、施工性が向上する。
The pipe joining method according to the present invention includes a joining pipe for joining a lower end side of a tower for supporting a wind turbine of an offshore wind power generation facility and an upper end side of a tubular foundation pile cast on the sea floor. By inserting the grout material between the outer peripheral surface of the foundation pile facing each other and the inner peripheral surface of the joint pipe, the upper end side of the foundation pile is inserted into the pipe of In a pipe joining method for joining pipes, the lower end located between the outer peripheral surface of the foundation pile and the inner peripheral surface of the joining pipe is filled with a non-separable underwater grout material at the lower end thereof. After the conductive grout material has condensed, the water above the lower grout is drained to the outside from between the outer peripheral surface of the foundation pile and the inner peripheral surface of the joint pipe, and then the foundation pile above the drained lower grout is drained. between the outer peripheral surface and the inner peripheral surface of the joint pipe, grout Since than water nondisjunction grout material to form a layer by filling the aerial droplet設型 grout of high strength forming a grout layer had the desired compressive strength, the strength properties of tensile strength and flexural strength and the like The grout joining structure can be realized at low cost and in a short period of time.
In addition, a drainage means formed in the foundation pile so that the lower end position of the hole penetrates the inner surface and the outer surface of the pipe of the foundation pile and the filling end position of the underwater non-separable grout material forming the grout lower layer is coincident with the expected end position The drainage hole is provided as above, and the water above the grout lower layer flows down to the inside of the pipe of the foundation pile through the drainage hole. By draining water from the surface to the outside, water above the grout lower layer can be easily and easily drained to the outside through the drain hole without using a drainage means such as a pump, and the grout lower layer It is easy to confirm that all the upper moisture has been drained, and the joint length of the grout joint structure can be shortened, simplifying the grout joint structure having desired strength characteristics such as compressive strength, tensile strength and bending strength. And it will be able to reliably realized, and further, the operator, by confirming that the grout to form a grout lower layer began to flow down the inner tube of foundation piles through the drain hole, a grout lower Since the end time of the filling operation of the formed grout material can be accurately known, the workability is improved.
Also, a plurality of drain holes were provided at predetermined intervals in the circumferential direction of the pipe of the foundation pile.
Furthermore, as the underwater non-separable grout material forming the grout lower layer was used, the underwater non-separable grout material mixed with short fibers was used to fill the space between the outer peripheral surface of the foundation pile and the inner peripheral surface of the joint pipe. The effect of suppressing the falling of the grout material can be improved.
The non-separable grout material mixed with short fibers is formed by mixing vinylon short fibers having a diameter of 0.2 mm or less and a total length of 15 mm or less with a volume of 1.0% by volume or more and 1.5% by volume or less. Since the vinyl fiber is used, the cost and the mixing operation can be facilitated by using the vinylon short fiber, and the decrease in the fluidity of the non-separable mortar in the short fiber water can be reduced, thereby improving the workability.

風力発電設備を示す正面図。The front view which shows a wind power generation facility. グラウト接合構造を示す断面図。Sectional drawing which shows a grout joining structure. 排水方法を示す断面図。Sectional drawing which shows the drainage method.

実施形態1
実施形態1によるグラウト接合構造を採用した洋上風力発電所の風力発電設備は、図1に示すように、風車1と、風車1を支持するためのタワー2と、海底に打設された管状のモノパイルと呼ばれる基礎杭3と、基礎杭3の上端側とタワー2の下端側とを接続するためのトランジションピースと呼ばれる接合管4とを備え、接合管4の下端側と基礎杭3の上端側とがグラウト接合構造によって接合されるとともに、接続管の上端側とタワー2の下端側とが図外のブラケット等の連結部材によって接続されて構成されている。
Embodiment 1
As shown in FIG. 1, a wind power generation facility of an offshore wind farm employing a grout joint structure according to Embodiment 1 includes a wind turbine 1, a tower 2 for supporting the wind turbine 1, and a tubular It comprises a foundation pile 3 called a monopile, and a joining pipe 4 called a transition piece for connecting the upper end side of the foundation pile 3 and the lower end side of the tower 2. The lower end side of the joining pipe 4 and the upper end side of the foundation pile 3 are provided. Are joined by a grout joining structure, and the upper end side of the connection pipe and the lower end side of the tower 2 are connected by a connecting member such as a bracket (not shown).

グラウト接合構造は、図2に示すように、接合管4の下端開口側の管内に基礎杭3の上端側が挿入されて、互いに向かい合う基礎杭3の外周面3Aと接合管4の内周面4Aとの間(以下、「グラウト材充填部5」という)にグラウト材が充填された構造である。言い換えれば、2つの異なる径の管である基礎杭3と接合管4とを内側と外側とに重ね合わせ、互いに向かい合う基礎杭3の外周面と接合管4の内周面との間にグラウト材を充填し、グラウト材と管との付着強度とグラウト材のせん断強度とで接合する構造的結合である。
当該グラウト接合構造を採用することによって、基礎杭3が垂直に立設されていない場合でも、当該接合管4の中心線が垂直となるように接合管4を基礎杭3の上端側に接合することによって、タワー2を垂直に立設することができる。
尚、基礎杭3が垂直に立設されている場合においては、基礎杭3の上端部と接合管4の下端部とが同心(同軸)となるように設置されて、グラウト材充填部5にグラウト材を充填することにより、グラウト接合構造が構成される。即ち、基礎杭3の中心線と接合管4の中心線とが一致するように、接合管4の下端側となる一端開口側の管内に基礎杭3の管の上端側が挿入されて、グラウト材充填部5にグラウト材が充填されることによって、グラウト接合構造が構成される。
As shown in FIG. 2, the grout joint structure is such that the upper end side of the foundation pile 3 is inserted into the lower end opening side of the joint pipe 4, and the outer peripheral surface 3A of the foundation pile 3 and the inner peripheral surface 4A of the joint pipe 4 facing each other. (Hereinafter, referred to as “grout material filling section 5”). In other words, the foundation pile 3 and the joining pipe 4, which are two pipes of different diameters, are overlapped on the inside and the outside, and the grout material is provided between the outer peripheral surface of the foundation pile 3 and the inner periphery of the joining pipe 4 facing each other. Is a structural connection in which the joint is filled with the adhesive strength between the grout material and the pipe and the shear strength of the grout material.
By adopting the grout joining structure, even when the foundation pile 3 is not erected vertically, the joining pipe 4 is joined to the upper end side of the foundation pile 3 so that the center line of the joining pipe 4 is vertical. Thus, the tower 2 can be erected vertically.
In the case where the foundation pile 3 is erected vertically, the upper end of the foundation pile 3 and the lower end of the joining pipe 4 are installed so as to be concentric (coaxial), and By filling the grout material, a grout bonding structure is formed. That is, the upper end side of the pipe of the foundation pile 3 is inserted into the pipe at the one end opening side which is the lower end side of the joining pipe 4 so that the center line of the foundation pile 3 and the center line of the joining pipe 4 coincide with each other. By filling the filling portion 5 with the grout material, a grout bonding structure is formed.

グラウト材充填部5にグラウト材を充填することによって、接合管4の下端側と基礎杭3の上端側とを接合する管接合方法は、グラウト材充填部5に充填されたグラウト材が当該グラウト材充填部5の環状の下端開口から漏れ出さないように当該グラウト材充填部5の環状の下端開口を図外の弾性を有した環状体や型枠等の栓塞手段で塞いだ状態でグラウト材充填部5の環状の上端開口から、まず、グラウト材充填部5の下端部に、短繊維を混入した水中不分離性グラウト材(以下、「短繊維混入水中不分離性グラウト材」という)として短繊維を混入した水中不分離性モルタル(以下、「短繊維混入水中不分離性モルタル6」という)を充填してグラウト下層6Aを形成する。例えば、グラウト材充填部5の下端位置と当該下端位置から上方に50cm程度離れた上位置との間の領域であるグラウト材充填部5の下端部に、短繊維混入水中不分離性モルタル6を充填してグラウト下層6Aを形成する。尚、短繊維混入水中不分離性モルタル6を充填するグラウト材充填部5の下端部の領域、即ち、グラウト材充填部5の下端位置から上位置までの上下方向の長さは、風力発電設備の大きさに応じて適宜決めればよい。短繊維混入水中不分離性モルタル6の充填作業は、接合管4の上端に図外の作業台を設置し、当該作業台上に図外のモルタル充填装置を設置し、図外のグラウトホース等を用いて充填する。
尚、グラウト材充填部5の下端位置は、海水面10よりも下方に位置するように設定され、当該グラウト材充填部5の下端部に充填されるグラウト材は海水中、又は、海水を水に置換した水中に充填されることになるため、水中不分離性能に優れた水中不分離性モルタルを用いる。
水中不分離性モルタルは、水中で打設した場合に材料が分離し難くなるように粘性が高くなっており、流動性が悪い。従って、通常、水中不分離性モルタルにさらに流動性を悪くすると考えられる短繊維を混入しようとは考えない。
しかしながら、本発明者は、グラウト材充填部5に充填されたグラウト材、特に、グラウト材充填部5の下端部に充填されたグラウト材には、接合管4を介して海洋波による繰り返し荷重が作用して大きな荷重が加わり、グラウト材が疲労破壊により粉砕化してグラウト材充填部5から脱落する恐れがあることを考慮し、グラウト材充填部5の下端部に充填されたグラウト材の耐久性を向上させることを優先して、グラウト材充填部5の下端部に充填するグラウト材として、短繊維混入水中不分離性モルタル6を充填するようにした。
The pipe joining method for joining the lower end side of the joining pipe 4 and the upper end side of the foundation pile 3 by filling the grout material filling portion 5 with the grout material is as follows: the grout material filled in the grout material filling portion 5 is filled with the grout material. The grout material is filled in such a manner that the annular lower end opening of the grout material filling portion 5 is closed by a plugging means such as an annular body or a formwork having elasticity (not shown) so as not to leak from the annular lower end opening of the material filling portion 5. From the annular upper end opening of the filling section 5, first, as the underwater non-separable grout material mixed with short fibers (hereinafter referred to as “short fiber mixed underwater non-separable grout material”) at the lower end portion of the grout material filling section 5. A grout lower layer 6A is formed by filling a non-separable mortar mixed with short fibers in water (hereinafter referred to as “non-separable mortar 6 mixed with short fibers in water”). For example, in the lower end portion of the grout material filling portion 5 which is a region between the lower end position of the grout material filling portion 5 and an upper position separated by about 50 cm upward from the lower end position, a non-separable mortar 6 mixed with short fibers in water is provided. Fill to form the grout lower layer 6A. Note that the area of the lower end of the grout filling section 5 for filling the non-separable mortar 6 mixed with short fibers in water, that is, the length in the vertical direction from the lower end position to the upper position of the grout filling section 5 is determined by the wind power generation equipment. May be determined as appropriate according to the size of. The work of filling the inseparable mortar 6 mixed with short fibers in water is performed by installing a work table (not shown) at the upper end of the joining pipe 4, installing a mortar filling device (not shown) on the work table, grout hose (not shown), or the like. Fill with.
In addition, the lower end position of the grout material filling unit 5 is set so as to be located below the sea surface 10, and the grout material to be filled in the lower end portion of the grout material filling unit 5 is seawater or seawater. In order to fill the mortar with water, non-separable mortar having excellent water non-separation performance is used.
The mortar that is not separable in water has a high viscosity so that the material is difficult to separate when poured in water, and has poor fluidity. Therefore, it is not usually considered to mix short fibers which are considered to further deteriorate the fluidity into the inseparable mortar in water.
However, the present inventor has found that the grout material filled in the grout material filling portion 5, particularly the grout material filled in the lower end portion of the grout material filling portion 5, is subjected to repeated loads due to ocean waves via the joint pipe 4. In consideration of the possibility that a large load is applied and the grout material may be pulverized due to fatigue fracture and fall off from the grout material filling portion 5, the durability of the grout material filled at the lower end portion of the grout material filling portion 5 is considered. Priority is given to improvement of the mortar 6, and as a grout material to be filled into the lower end portion of the grout material filling portion 5, non-separable mortar 6 mixed with short fibers in water is used.

そして、グラウト材充填部5の水中に位置される下端部に充填されてグラウト下層6Aを形成する短繊維混入水中不分離性モルタル6が充分に凝結した後、当該グラウト下層6Aの上方の水分をポンプ等の排水手段を用いてグラウト材充填部5から外部に排水した後に、当該排水されたグラウト下層6Aの上方のグラウト材充填部5であるグラウト材充填空間、即ち、大気中にグラウト下層6Aを形成するグラウト材よりも高強度の気中打設型グラウト材7を充填してグラウト上層7Aを形成する。当該高強度の気中打設型グラウト材としては、100MPa〜150MPaの強度を有したグラウト材を用いることが好ましい。排水作業は、接合管4の上端に図外の作業台を設置し、当該作業台上にポンプ等の排水手段を設置し、吸引ホース等を用いて当該グラウト下層6Aの上方の水分を吸引する。
従って、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を構成する場合において、グラウト材充填部5に短繊維混入水中不分離性モルタル6のみを充填してグラウト接合構造を構成する場合と比べて、グラウト接合構造の接合長(グラウト材充填部5に充填されるグラウト材の上下方向の長さ)を短くでき、グラウト材の量を少なくできてグラウト材の充填作業を短縮化できるので、コストを低減できるとともに施工期間を短縮できる。即ち、実施形態の管接合方法によれば、所望の圧縮強度、引張強度及び曲げ強度等の強度特性と耐久性とを有したグラウト接合構造を、安価かつ短期間で実現可能となる。
また、グラウト材充填部5に短繊維混入水中不分離性モルタル6のみを充填した場合に所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を実現することが困難である場合でも、実施形態1のように、大気中にグラウト下層6Aを形成する短繊維混入水中不分離性モルタル6よりも高強度の気中打設型グラウト材7を充填してグラウト上層7Aを形成することによって、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を実現することが可能となる。
特に、風力発電設備の風車1及びタワー2が大型化するとタワー2を支持する基礎杭3も大型化するため、グラウト材充填部5に短繊維混入水中不分離性モルタル6のみを充填して、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を実現するためには、グラウト接合構造の接合長が長くなってしまったり、グラウト材充填部5に短繊維混入水中不分離性モルタル6のみを充填して、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を実現することが困難となる傾向があった。しかしながら、実施形態1のように、グラウト材充填部5の水中に位置される下端部に充填されてグラウト下層6Aを形成する短繊維混入水中不分離性モルタル6が凝結した後、グラウト下層6Aの上方のグラウト材充填部5内の水分をグラウト材充填部5から外部に排水した後に、当該排水されたグラウト下層6Aの上方のグラウト材充填部5、即ち、大気中にグラウト下層6Aを形成する短繊維混入水中不分離性モルタル6よりも高強度の気中打設型グラウト材7を充填してグラウト上層7Aを形成することにより、風力発電設備の風車1及びタワー2の大型化に対応可能な、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を実現できるようになる。
Then, after the short-fiber-mixed water-inseparable mortar 6 filled in the lower end portion of the grout material filling section 5 located in the water to form the grout lower layer 6A is sufficiently set, the water above the grout lower layer 6A is removed. After draining the grout material filling section 5 to the outside using a drain means such as a pump, the grout material filling space which is the grout material filling section 5 above the drained grout lower layer 6A, that is, the grout lower layer 6A is exposed to the atmosphere. The grout upper layer 7A is formed by filling the air casting grout material 7 having a higher strength than the grout material forming the above. It is preferable to use a grout having a strength of 100 MPa to 150 MPa as the high-strength air casting type grout. In the drainage operation, a work table (not shown) is installed at the upper end of the joining pipe 4, a drain means such as a pump is installed on the work table, and water above the grout lower layer 6A is sucked using a suction hose or the like. .
Therefore, when constructing a grout-bonded structure having desired strength characteristics such as compressive strength, tensile strength and bending strength, the grout-filled portion 5 is filled with only short fiber-mixed water-inseparable mortar 6 to grout-bond. Compared with the case of constructing the structure, the joining length of the grout joining structure (the length in the vertical direction of the grout material filled in the grout material filling portion 5) can be shortened, and the amount of the grout material can be reduced, thereby filling the grout material. Since the work can be shortened, the cost can be reduced and the construction period can be shortened. That is, according to the pipe joining method of the embodiment, a grout joining structure having desired strength characteristics such as compressive strength, tensile strength and bending strength and durability can be realized at low cost and in a short period of time.
Further, when the grout material filling section 5 is filled with only the short fiber-mixed inseparable mortar 6 containing short fibers, it is difficult to realize a grout joint structure having desired strength properties such as compressive strength, tensile strength and bending strength. Even in some cases, as in the first embodiment, the grout upper layer 7A is filled with the in-floor grout material 7 having a higher strength than the short-fiber-mixed underwater non-separable mortar 6 that forms the grout lower layer 6A in the atmosphere. By forming, a grout bonding structure having desired strength characteristics such as compressive strength, tensile strength and bending strength can be realized.
In particular, when the wind turbine 1 and the tower 2 of the wind power generation equipment increase in size, the foundation pile 3 supporting the tower 2 also increases in size. Therefore, the grout material filling section 5 is filled with only the short fiber-mixed underwater non-separable mortar 6, In order to realize a grout-bonded structure having desired strength properties such as compressive strength, tensile strength and bending strength, the bond length of the grout-bonded structure becomes long, or the grout material-filled portion 5 contains short fiber mixed water. There was a tendency that it was difficult to fill only the non-separable mortar 6 to realize a grout-bonded structure having desired strength characteristics such as compressive strength, tensile strength and bending strength. However, as in the first embodiment, after the short-fiber-mixed water-inseparable mortar 6 that fills the lower end portion of the grout material filling portion 5 located in the water and forms the grout lower layer 6A condenses, the grout lower layer 6A After draining the water in the upper grout filling section 5 to the outside from the grout filling section 5, the grout filling section 5 above the drained grout lower layer 6A, that is, the grout lower layer 6A is formed in the atmosphere. By filling the in-place grout material 7 having a higher strength than the short-fiber-mixed underwater non-separable mortar 6 and forming the grout upper layer 7A, it is possible to cope with the enlargement of the wind turbine 1 and the tower 2 of the wind power generation equipment It is possible to realize a grout-bonded structure having desired strength characteristics such as compressive strength, tensile strength and bending strength.

そして、グラウト材充填部5に充填されたグラウト材7を養生により充分に凝結させた後、例えば風車1を支持するためのタワー2の下端側に設けられた図外のブラケットと接合管4の上部側に設けられた図外のブラケットとをボルト等で接合することによって、基礎杭3とタワー2とを接合する。   After the grout material 7 filled in the grout material filling portion 5 is sufficiently set by curing, for example, a bracket (not shown) provided on the lower end side of the tower 2 for supporting the windmill 1 and the joining pipe 4 The foundation pile 3 and the tower 2 are joined by joining a bracket (not shown) provided on the upper side with bolts or the like.

尚、水中不分離性モルタルとは、水中不分離性能に優れたモルタルであり、例えば、株式会社ファテック社製、商品名「マックスAZ」、太平洋マテリアル株式会社製 商品名「太平洋プレユーロックスLC-MIX」、住友大阪セメント株式会社製 商品名「フィルコン300W」等を用いればよい。
また、水中不分離性モルタルの配合例としては、例えば「マックスAZ」の場合、セメント960kg/m、珪砂747kg/m、膨張剤20kg/m、減水剤1.5kg/m、増粘剤4kg/mである。当該増粘剤としては、例えばカチオン性界面活性剤から選ばれる水溶性低分子化合物とアニオン性芳香族化合物から選ばれる水溶性低分子化合物とが混合された液体又は粉末が用いられる。
The water-inseparable mortar is a mortar excellent in water-inseparable performance. For example, “Max AZ” (trade name, manufactured by Fatec Co., Ltd., “Pacific Pre-Eurox LC-”, manufactured by Taiheiyo Materials Co., Ltd.) MIX "and" Fircon 300W "manufactured by Sumitomo Osaka Cement Co., Ltd. may be used.
As the compounding examples of the water nondisjunction mortar, for example, when the "Max AZ", cement 960 kg / m 3, silica sand 747kg / m 3, the expansion agent 20 kg / m 3, water reducing agent 1.5 kg / m 3, increasing it is a Nebazai 4kg / m 3. As the thickener, for example, a liquid or powder in which a water-soluble low-molecular compound selected from cationic surfactants and a water-soluble low-molecular compound selected from anionic aromatic compounds are mixed is used.

尚、発明者は、全長12mm、径0.1mmのビニロン(ポリビニルアルコール(PVA)繊維)により形成された短繊維を1.0体積%混入して形成した水中不分離性モルタルの供試体1、当該短繊維を1.5体積%混入して形成した水中不分離性モルタルの供試体2、当該短繊維を混入しないで形成した水中不分離性モルタルの供試体3を作成し、各供試体1,2,3に対してJIS R5201に基づく曲げ強度試験を行った。そして、曲げ強度試験の結果、当該短繊維の混入量が多くなるほど、曲げ強度が大きくなることを確認した。特に、供試体1及び供試体2は、破断後も応力が持続し、なだらかに応力が低下すること、即ち、靱性(粘り強さ、亀裂による強度低下に対する抵抗の程度)が向上することを確認した。   In addition, the inventor of the present invention prepared a sample 1 of water-inseparable mortar formed by mixing 1.0% by volume of short fibers formed of vinylon (polyvinyl alcohol (PVA) fiber) having a total length of 12 mm and a diameter of 0.1 mm. A sample 2 of non-separable mortar in water formed by mixing 1.5% by volume of the short fibers and a sample 3 of non-separable mortar in water formed without mixing the short fibers were prepared. , 2, and 3 were subjected to a bending strength test based on JIS R5201. As a result of the bending strength test, it was confirmed that the bending strength increased as the amount of the short fibers mixed increased. In particular, it was confirmed that the specimen 1 and the specimen 2 maintain the stress even after the fracture, and that the stress gradually decreases, that is, the toughness (the tenacity, the degree of resistance to the strength reduction due to the crack) is improved. .

また、全長12mm、径0.1mmのビニロン(ポリビニルアルコール(PVA)繊維)により形成された短繊維を1.0体積%混入して形成した水中不分離性モルタルの供試体、及び、当該短繊維を混入しないで形成した水中不分離性モルタルの供試体を、それぞれ複数個作成し、(社)日本道路協会の「舗装・試験方法便覧」に記載されたコンクリートの曲げ疲労試験方法(B070T)」を参考にして、曲げ疲労試験を行った。具体的には、供試体に0.47MPaに相当する最小軸力を与えて繰り返し周波数20Hzで200万回を超える繰り返し載荷を実施した。当該曲げ疲労試験の結果、短繊維を1.0体積%混入して形成した水中不分離性モルタルの供試体に対する200万回繰り返し載荷における疲労限強度の増加は、応力比レベルで0.1程度、短繊維を混入しないで形成した水中不分離性モルタルの供試体と比較して向上することを確認した。   In addition, a sample of water-inseparable mortar formed by mixing 1.0% by volume of short fibers formed of vinylon (polyvinyl alcohol (PVA) fiber) having a total length of 12 mm and a diameter of 0.1 mm, and the short fibers A plurality of specimens of water-inseparable mortar formed without mixing with water were prepared, and the concrete bending fatigue test method (B070T) described in the “Handbook of Paving and Testing Methods” of the Japan Road Association. , A bending fatigue test was performed. Specifically, the specimen was given a minimum axial force equivalent to 0.47 MPa, and repeatedly loaded more than 2 million times at a repetition frequency of 20 Hz. As a result of the bending fatigue test, an increase in fatigue limit strength of the test piece of non-separable mortar in water formed by mixing 1.0% by volume of short fibers after repeated loading of 2,000,000 times was about 0.1 at a stress ratio level. It was confirmed that the mortar improved in comparison with a non-separable mortar specimen formed without mixing short fibers.

尚、曲げ強度試験においては、材齢7日、及び、材齢28日の4×4×16cmの角柱供試体を用い、曲げ疲労試験においては、材齢28日標準養生後、保管期間を温度20±1℃、湿度60±5%の恒温湿室内で4週間以上保管した4×4×16cmの角柱供試体を用いた。また、水中不分離性モルタルは、株式会社ファテック社製、商品名「マックスAZ」を用いた。   In the bending strength test, a 4 × 4 × 16 cm prismatic specimen of 7 days of age and 28 days of age was used. In the bending fatigue test, after 28 days of standard curing, the storage period was changed to temperature. A 4 × 4 × 16 cm prismatic specimen stored in a constant temperature and humidity room at 20 ± 1 ° C. and a humidity of 60 ± 5% for 4 weeks or more was used. The water-insoluble mortar used was “Max AZ” manufactured by Fatec Co., Ltd.

従って、実施形態1では、短繊維を混入しないで形成した水中不分離性モルタルと比べて、靱性、及び、疲労限強度が向上する短繊維混入水中不分離性モルタル6をグラウト材充填部5の少なくとも下端部に充填したので、グラウト材充填部5の下端部に充填されたグラウト材の脱落抑制効果を向上させたグラウト接合構造を実現できるようになる。
即ち、グラウト材充填部5の少なくとも下端部に充填された短繊維混入水中不分離性モルタル6に、接合管4を介して海洋波による繰り返し荷重が作用したとしても、当該短繊維混入水中不分離性モルタル6が破断し難く、当該短繊維混入水中不分離性モルタル6が破断したとしても、当該短繊維混入水中不分離性モルタル6がグラウト材充填部5の下端部から脱落し難くなるグラウト接合構造を構成できる。
Accordingly, in the first embodiment, the toughness and fatigue limit strength of the short fiber-mixed water-inseparable mortar 6 that improves the toughness and the fatigue limit strength of the grout-filled portion 5 are improved. Since at least the lower end is filled, a grout joining structure in which the effect of suppressing the falling of the grout filled in the lower end of the grout filling portion 5 can be realized.
That is, even if a repetitive load caused by ocean waves is applied to the mortar 6 filled with short fibers filled in at least the lower end portion of the grout material filling portion 5 by the ocean wave through the joint pipe 4, the mortar 6 is not separated. Bonding in which the non-separable mortar 6 containing short fibers mixed in water is hardly broken and the non-separable mortar 6 mixed in short fibers mixed in water is hard to fall off from the lower end of the grout material filling portion 5. Structure can be configured.

実施形態2
実施形態1では、グラウト下層6Aの上方の水分をポンプ等の排水手段を用いてグラウト材充填部5から外部に排水する例を示したが、図3に示すように、基礎杭3に、基礎杭3の管の内面と外面とに貫通する排水手段としての排水孔8を設け、グラウト下層6Aの上方の水分を当該排水孔8を介して基礎杭3の管の内側に流下させることによって、グラウト下層6Aの上方の水分をグラウト材充填部5内から外部に排水するようにすれば、ポンプ等の排水手段を用いることなく、グラウト材充填部5内の水分を外部に排水することができる。
尚、排水孔8は、孔の下端位置がグラウト下層6Aの上面となる位置、即ち、グラウト下層6Aを形成する短繊維混入水中不分離性モルタル6の充填終了予定位置と一致するように、基礎杭3の管の周方向に所定の間隔を隔てて複数個設ける。例えば、基礎杭3の中心線を中心とした円周上において周方向に10°間隔で36個設ける。
図3に示すように、グラウト下層6Aの上面6Tが海水面10よりも上方に位置されるように短繊維混入水中不分離性モルタル6をグラウト材充填部5の下端部に充填する場合、短繊維混入水中不分離性モルタル6をグラウト材充填部5の下端部に充填していくのに伴って、グラウト材充填部5内の水面の位置が上昇するので、当該グラウト材充填部5内の水面の位置が排水孔8の位置に到達すると、当該グラウト材充填部5内の水分が排水孔8を介して矢示のように基礎杭3の管の内側に流下する。
そして、当該グラウト材充填部5内の水中に位置される下端部に充填された短繊維混入水中不分離性モルタル6がすべての排水孔8を介して矢示のように基礎杭3の管の内側に流下し始めたならば、当該グラウト材充填部5内の水分がすべて排水されたこと、及び、グラウト下層6Aを形成する短繊維混入水中不分離性モルタル6が充填終了予定位置まで充填されたことを意味するので、作業者は、短繊維混入水中不分離性モルタル6がすべての排水孔8を介して基礎杭3の管の内側に流下し始めたことを確認することで、グラウト下層6Aを形成する短繊維混入水中不分離性モルタル6の充填作業を終了して、グラウト上層7Aを形成するグラウト材をグラウト下層6Aの上方のグラウト材充填部5の大気中に充填することが可能となる。
従って、グラウト接合構造の接合長を短くできて、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を構成できるようになる。
Embodiment 2
In the first embodiment, an example is shown in which the water above the grout lower layer 6A is drained to the outside from the grout material filling part 5 using a drainage means such as a pump. However, as shown in FIG. By providing a drainage hole 8 as a drainage means penetrating through the inner surface and the outer surface of the pipe of the pile 3, by allowing the water above the grout lower layer 6 </ b> A to flow inside the pipe of the foundation pile 3 through the drainage hole 8, If the water above the grout lower layer 6A is drained from the grout material filling portion 5 to the outside, the water in the grout material filling portion 5 can be drained to the outside without using a drainage means such as a pump. .
The drainage hole 8 is positioned so that the lower end position of the hole becomes the upper surface of the grout lower layer 6A, that is, the filling end position of the short-fiber-mixed water-immiscible mortar 6 forming the grout lower layer 6A. A plurality of piles 3 are provided at predetermined intervals in the circumferential direction of the pipe. For example, 36 pieces are provided at intervals of 10 ° in the circumferential direction on a circumference centered on the center line of the foundation pile 3.
As shown in FIG. 3, when filling the lower end of the grout material filling portion 5 with short fiber non-separable mortar 6 containing short fibers so that the upper surface 6T of the grout lower layer 6A is positioned above the sea surface 10, As the non-separable mortar 6 mixed with fiber is filled into the lower end portion of the grout filling portion 5, the position of the water surface in the grout filling portion 5 rises. When the position of the water surface reaches the position of the drainage hole 8, the water in the grout material filling portion 5 flows down through the drainage hole 8 to the inside of the pipe of the foundation pile 3 as indicated by an arrow.
Then, the short fiber-mixed underwater non-separable mortar 6 filled in the lower end located in the water in the grout material filling section 5 is connected to the pipe of the foundation pile 3 through all the drain holes 8 as shown by arrows. When the grout material starts flowing down, all the water in the grout material filling section 5 is drained, and the short fiber-mixed inseparable mortar 6 forming the grout lower layer 6A is filled to the filling completion expected position. Therefore, the worker confirms that the mortar 6 with short fibers mixed in water has started flowing down to the inside of the pipe of the foundation pile 3 through all the drain holes 8, so that the grout lower layer is formed. The filling operation of the non-separable mortar 6 containing short fibers mixed in water that forms 6A can be completed, and the grout material forming the grout upper layer 7A can be filled into the atmosphere of the grout material filling section 5 above the grout lower layer 6A. Becomes
Therefore, the joining length of the grout joining structure can be shortened, and a grout joining structure having desired strength characteristics such as compressive strength, tensile strength and bending strength can be configured.

実施形態2の排水方法によれば、ポンプ等の排水手段を用いることなく、グラウト下層6Aの上方の水分を排水孔8を介して簡単かつ容易に外部に排水することができるとともに、グラウト下層6Aの上方の水分がすべて排水されたことの確認が容易となり、グラウト接合構造の接合長を短くできて、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を簡単かつ確実に実現できるようになる。
また、排水孔8は、孔の下端位置がグラウト下層6Aの上面となる位置、即ち、グラウト下層6Aを形成する短繊維混入水中不分離性モルタル6の充填終了予定位置と一致するように設けたので、作業者は、短繊維混入水中不分離性モルタル6がすべての排水孔8を介して基礎杭3の管の内側に流下し始めたことを確認することで、グラウト下層6Aを形成する短繊維混入水中不分離性モルタル6の充填作業終了時期を正確に知ることができるようになるため、作業性が向上する。
According to the drainage method of the second embodiment, the water above the grout lower layer 6A can be easily and easily drained to the outside through the drain holes 8 without using drainage means such as a pump, and the grout lower layer 6A It is easy to confirm that all the water above is drained, the joining length of the grout joining structure can be shortened, and the grout joining structure having the desired strength characteristics such as compressive strength, tensile strength and bending strength can be easily and simply formed. It can be realized reliably.
The drain hole 8 is provided such that the lower end position of the hole is the upper surface of the grout lower layer 6A, that is, the filling end position of the short fiber-mixed inseparable mortar 6 forming the grout lower layer 6A is expected to end. Therefore, the worker confirms that the short fiber-mixed inseparable mortar 6 has begun to flow down into the pipe of the foundation pile 3 through all the drain holes 8, thereby forming the short grout lower layer 6 </ b> A. Since the end time of the filling operation of the fiber-mixed inseparable mortar 6 can be accurately known, the workability is improved.

実施形態3
予め基礎杭3の内側の水をポンプ等の排水手段で排水して基礎杭3の内側の水面の位置を下げておけば、実施形態2で説明した排水孔8の位置、即ち、グラウト下層6Aを形成するグラウト材の充填終了予定位置を接合管4の下端に近い位置にでき、グラウト下層6Aの上下方向の長さを短くできるので、グラウト下層6Aを形成するグラウト材の量を少なくできてグラウト材の充填作業を短縮化できるため、コストを低減できるとともに施工期間を短縮できる。
Embodiment 3
If the water inside the foundation pile 3 is drained in advance by drainage means such as a pump to lower the position of the water surface inside the foundation pile 3, the position of the drain hole 8 described in the second embodiment, that is, the grout lower layer 6A Can be located near the lower end of the joining pipe 4 and the length of the grout lower layer 6A in the vertical direction can be reduced, so that the amount of grout material forming the grout lower layer 6A can be reduced. Since the work of filling the grout material can be shortened, the cost can be reduced and the construction period can be shortened.

尚、短繊維水中不分離性モルタルは、径寸法0.2mm以下でかつ全長15mm以下のビニロンの短繊維が1.5体積%以下混入されて形成されたもの、より好ましくは、上述したように、径寸法0.1mm、全長12mmのビニロンの短繊維が1.0体積%混入されて形成されたものを用いればよい。
このように、ビニロンの短繊維を用いることで、コスト、混入作業を容易にできて好ましい。また、径寸法0.1mm、全長12mmのビニロンの短繊維が1.0体積%混入されて形成された短繊維水中不分離性モルタルを用いることで、短繊維水中不分離性モルタルの流動性の低下を少なくできて、施工性が向上する。
The non-separable mortar in short fiber water is formed by mixing 1.5% by volume or less of vinylon short fibers having a diameter of 0.2 mm or less and a total length of 15 mm or less, more preferably as described above. What is necessary is to use what was formed by mixing 1.0 volume% of vinylon short fibers having a diameter of 0.1 mm and a total length of 12 mm.
As described above, the use of vinylon short fibers is preferable because the cost and the mixing operation can be easily performed. In addition, by using a non-separable mortar in short fiber water formed by mixing 1.0% by volume of short fibers of vinylon having a diameter of 0.1 mm and a total length of 12 mm, the fluidity of the non-separable mortar in short fiber water is improved. The decrease can be reduced, and the workability is improved.

尚、本発明では、グラウト下層6Aを形成する水中不分離性グラウト材として、短繊維を混入しないで形成した水中不分離性グラウト材を使用しても良く、この場合でも、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を、安価かつ短期間で実現可能となる。   In the present invention, as the underwater non-separable grout material for forming the grout lower layer 6A, an underwater non-separable grout material formed without mixing short fibers may be used. A grout bonding structure having strength characteristics such as tensile strength and bending strength can be realized at low cost and in a short period of time.

また、本発明では、グラウト上層7Aを形成するグラウト材として、グラウト下層6Aを形成する水中不分離性グラウト材と同じ水中不分離性グラウト材を用いるようにしてもよい。この場合でも、本発明では、グラウト下層6Aを形成する水中不分離性グラウト材が充分に凝結した後、当該グラウト下層6Aの上方の水分をポンプ等の排水手段を用いてグラウト材充填部5から外部に排水してから、当該排水されたグラウト下層6Aの上方のグラウト材充填部5であるグラウト材充填空間、即ち、大気中にグラウト上層7Aを形成する水中不分離性グラウト材を打設することになるので、所望の圧縮強度、引張強度及び曲げ強度等の強度特性を有したグラウト接合構造を構成する場合において、特許文献1のように、水中であるグラウト材充填部に水中不分離性モルタルを一度に充填する場合と比べて、グラウト接合構造の接合長を短くでき、グラウト材の量を少なくできてグラウト材の充填作業を短縮化できるので、コストを低減できるとともに施工期間を短縮できる。   Further, in the present invention, as the grout material forming the grout upper layer 7A, the same water-immiscible grout material as the water-immiscible grout material forming the grout lower layer 6A may be used. Even in this case, in the present invention, after the underwater inseparable grout material forming the grout lower layer 6A is sufficiently condensed, the water above the grout lower layer 6A is drained from the grout material filling section 5 by using a drainage means such as a pump. After draining to the outside, a grout material filling space, which is the grout material filling portion 5 above the drained grout lower layer 6A, that is, an underwater non-separable grout material that forms the grout upper layer 7A in the atmosphere. Therefore, when a grout joint structure having strength characteristics such as desired compressive strength, tensile strength, and bending strength is configured, as described in Patent Document 1, the grout material-filled portion that is in water is inseparable from water. Compared to filling with mortar at one time, the joint length of the grout joint structure can be shortened, the amount of grout material can be reduced, and the grout material filling operation can be shortened. Door can shorten the construction period can be reduced and at the same.

また、グラウト材は、接合管4の下端位置から基礎杭3の上端位置までの間における任意の領域に充填されていればよい。例えば、図2に示すように、グラウト材を充填して形成されるグラウト層の下端位置が接合管4の下端位置と一致してかつ上端位置が基礎杭3の上端位置と一致するグラウト層を形成してもよいし、あるいは、グラウト材を充填して形成されるグラウト層の上端位置が基礎杭3の上端位置よりも下方に位置されるグラウト層を形成してもよいし、あるいは、グラウト材を充填して形成されるグラウト層の下端位置が接合管4の下端位置よりも上方に位置されるグラウト層を形成してもよい。   Further, the grout material may be filled in an arbitrary region between the lower end position of the joining pipe 4 and the upper end position of the foundation pile 3. For example, as shown in FIG. 2, a grout layer formed by filling a grout material is formed such that a lower end position of the grout layer coincides with a lower end position of the joining pipe 4 and an upper end position of the grout layer coincides with an upper end position of the foundation pile 3. It may be formed, or a grout layer may be formed in which the upper end position of the grout layer formed by filling the grout material is positioned lower than the upper end position of the foundation pile 3. A grout layer may be formed in which the lower end position of the grout layer formed by filling the material is positioned above the lower end position of the joining pipe 4.

1 風車、2 タワー、3 基礎杭、3A 基礎杭の外周面、4 接合管、
4A 接合管の内周面、
5 グラウト材充填部(互いに向かい合う基礎杭の外周面と接合管の内周面との間)、
6 短繊維混入水中不分離性モルタル(短繊維を混入した水中不分離性グラウト材)、
6A グラウト下層、
7 グラウト材(グラウト下層を形成するグラウト材よりも高強度のグラウト材)、
7A グラウト上層、8 排水孔。
1 Wind turbine, 2 towers, 3 foundation piles, 3A foundation pile outer surface, 4 joint pipes,
4A inner peripheral surface of the joint pipe,
5 grout material filling part (between the outer peripheral surface of the foundation pile facing each other and the inner peripheral surface of the joint pipe),
6 Non-separable mortar mixed with short fibers in water (non-separable grout material mixed with short fibers),
6A grout lower layer,
7 grout material (grout material having higher strength than grout material forming the grout lower layer),
7A Upper grout, 8 drainage holes.

Claims (5)

洋上風力発電設備の風車を支持するためのタワーの下端側と海底に打設された管状の基礎杭の上端側とを接続するための接合管の下端開口側の管内に基礎杭の上端側が挿入されて、互いに向かい合う基礎杭の外周面と接合管の内周面との間にグラウト材を充填することによって、接合管の下端側と基礎杭の上端側とを接合する管接合方法において、
基礎杭の外周面と接合管の内周面との間の水中に位置される下端部に水中不分離性グラウト材を充填して形成したグラウト下層の水中不分離性グラウト材が凝結した後に、当該グラウト下層の上方の水分を基礎杭の外周面と接合管の内周面との間から外部に排水し、その後、当該排水されたグラウト下層の上方の基礎杭の外周面と接合管の内周面との間に、グラウト下層を形成する水中不分離性グラウト材よりも高強度の気中打設型グラウト材を充填してグラウト上層を形成したことを特徴とする管接合方法。
The upper end of the foundation pile is inserted into the pipe at the lower end opening side of the joint pipe for connecting the lower end of the tower for supporting the wind turbine of the offshore wind power generation facility and the upper end of the tubular foundation pile cast on the sea floor Being, by filling the grout material between the outer peripheral surface of the foundation pile and the inner peripheral surface of the joining pipe facing each other, in a pipe joining method for joining the lower end side of the joining pipe and the upper end side of the foundation pile,
After the underwater inseparable grout material of the grout lower layer formed by filling the underwater inseparable grout material at the lower end located in the water between the outer peripheral surface of the foundation pile and the inner peripheral surface of the joint pipe, The water above the grout lower layer is drained to the outside from between the outer peripheral surface of the foundation pile and the inner peripheral surface of the joint pipe, and then the outer peripheral surface of the foundation pile above the drained grout lower layer and the inner pipe of the joint pipe are drained. A pipe joining method, wherein a grout upper layer is formed by filling an in- place grout material having a higher strength than an underwater non-separable grout material that forms a grout lower layer between a peripheral surface and the grout upper layer.
基礎杭に、基礎杭の管の内面と外面とに貫通して孔の下端位置がグラウト下層を形成する水中不分離性グラウト材の充填終了予定位置と一致するように形成された排水手段としての排水孔を設け、グラウト下層の上方の水分を当該排水孔を介して基礎杭の管の内側に流下させることによって、グラウト下層の上方の水分を基礎杭の外周面と接合管の内周面との間から外部に排水したことを特徴とする請求項1に記載の管接合方法。 The drainage means is formed in the foundation pile so that the lower end position of the hole penetrates the inner surface and the outer surface of the pipe of the foundation pile so that the filling end position of the underwater inseparable grout material forming the grout lower layer coincides with the expected end position. A drain hole is provided, and the water above the grout lower layer is caused to flow down to the inside of the pipe of the foundation pile through the drain hole, so that the water above the grout lower layer is removed from the outer peripheral surface of the foundation pile and the inner peripheral surface of the joining pipe. The pipe joining method according to claim 1, wherein the pipe is drained to the outside from between the pipes. 排水孔を、基礎杭の管の周方向に所定の間隔を隔てて複数個設けたことを特徴とする請求項に記載の管接合方法。 The pipe joining method according to claim 2 , wherein a plurality of drain holes are provided at predetermined intervals in a circumferential direction of the pipe of the foundation pile . ラウト下層を形成する水中不分離性グラウト材として、短繊維を混入した水中不分離性グラウト材を使用したことを特徴とする請求項1乃至請求項のいずれか一項に記載の管接合方法。 As water nondisjunction grout material forming the grout lower tube junction according to any one of claims 1 to 3, characterized in that using the short fibers in water nondisjunction of grout obtained by mixing Method. 短繊維を混入した水中不分離性グラウト材は、径寸法0.2mm以下でかつ全長15mm以下のビニロンの短繊維が1.0体積%以上1.5体積%以下混入されて形成されたものを用いたことを特徴とする請求項に記載の管接合方法。 The non-separable grout material mixed with short fibers is formed by mixing vinylon short fibers having a diameter of 0.2 mm or less and a total length of 15 mm or less with a volume of 1.0% by volume or more and 1.5% by volume or less. The pipe joining method according to claim 4 , wherein the pipe joining method is used.
JP2015250409A 2015-12-22 2015-12-22 Pipe joining method Active JP6647857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015250409A JP6647857B2 (en) 2015-12-22 2015-12-22 Pipe joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015250409A JP6647857B2 (en) 2015-12-22 2015-12-22 Pipe joining method

Publications (2)

Publication Number Publication Date
JP2017115374A JP2017115374A (en) 2017-06-29
JP6647857B2 true JP6647857B2 (en) 2020-02-14

Family

ID=59231676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015250409A Active JP6647857B2 (en) 2015-12-22 2015-12-22 Pipe joining method

Country Status (1)

Country Link
JP (1) JP6647857B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021219986A1 (en) * 2020-04-30 2021-11-04 Aubin Limited Corrosion protection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102441971B1 (en) * 2020-08-06 2022-09-08 주식회사케이베츠 Method for constructing offshore support structure having wings for control vertical

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219329A (en) * 1984-04-16 1985-11-02 Sumitomo Metal Ind Ltd Method of intercoupling underwater foundation bed plate and foundation pile
JP2004060250A (en) * 2002-07-29 2004-02-26 Jfe Steel Kk Joining structure for pipe pile and superstructure
JP5780698B2 (en) * 2009-12-09 2015-09-16 電気化学工業株式会社 Fiber reinforced mortar composition
JP5311584B2 (en) * 2009-12-16 2013-10-09 独立行政法人港湾空港技術研究所 Concrete pavement backfill grout material
JP5460349B2 (en) * 2010-01-20 2014-04-02 株式会社熊谷組 Pile foundation construction method
JP5383568B2 (en) * 2010-03-18 2014-01-08 五洋建設株式会社 Grout injection construction method, pier construction method using this construction method, and foundation pile fixing structure applicable to this construction method
JP2012171855A (en) * 2011-02-24 2012-09-10 Yoshiji Hirota Curing composition using no cement
EP2495370A1 (en) * 2011-03-04 2012-09-05 Leenars, Cees Eugen Jochem In-line piling method for offshore wind turbine foundation applications
JP2013014966A (en) * 2011-07-05 2013-01-24 Hiroyasu Minayoshi Reinforcement method of hollow column
JP6226177B2 (en) * 2013-09-10 2017-11-08 清水建設株式会社 Steel pipe joint structure
JP6328936B2 (en) * 2014-01-07 2018-05-23 鹿島建設株式会社 Concrete construction method
JP6647856B2 (en) * 2015-12-22 2020-02-14 株式会社熊谷組 Grout joint structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021219986A1 (en) * 2020-04-30 2021-11-04 Aubin Limited Corrosion protection

Also Published As

Publication number Publication date
JP2017115374A (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6647856B2 (en) Grout joint structure
JP6542035B2 (en) SC pile
US10138615B2 (en) Base body of electric transmission tower using micropile
JP6647857B2 (en) Pipe joining method
RU2556588C1 (en) Pile foundation for arrangement of supports of overhead power transmission line
JP2013040447A (en) Combined footing pile and structuring method for combined footing pile
US20160340858A1 (en) Method for installing overhead transmission line supports on permafrost soils
JP2008303608A (en) Steel pipe-soil cement composite pile
KR101011583B1 (en) Micro pile improved lateral load resistance and construction method of the same
JP5334379B2 (en) Hollow steel pipe reinforcement method for power transmission tower
JP4054896B2 (en) Foundation pile construction method and foundation pile structure
JP6703466B2 (en) Jig for preventing leakage of filler and method for manufacturing composite pile using the jig
JP2007146546A (en) Concrete structure reinforcing structure and concrete structure reinforcing method
JP2006083642A (en) Foundation structure of steel tower
CN103911986A (en) Method for constructing composite repeatedly driven steel pipe piles
CN212056166U (en) Connecting device for basement outer wall outlet pipeline
KR101452185B1 (en) Concrete Composite Steel Pile and Its Manufacturing Apparatus and Method
JP2017133199A (en) Method of joining leg part and steel pipe pile in on-water structure, and leg part for supporting on-water structure
CN104314072A (en) Construction method of special-shaped cast-in-situ concrete pile
AU2014242367C1 (en) Pile axial capacity enhancer
CN111005364A (en) Concrete pipe pile
CN113152535B (en) Rear-inserted unbonded steel strand pressure-bearing type uplift pile construction method and assembly used in same
CN202007407U (en) Deep foundation pit supporting system
CN219280687U (en) Device for repairing broken damage of pile foundation of wharf and pile foundation structure of high-pile wharf
KR20100110224A (en) Precast pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200115

R150 Certificate of patent or registration of utility model

Ref document number: 6647857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350