JP6645555B2 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP6645555B2
JP6645555B2 JP2018198181A JP2018198181A JP6645555B2 JP 6645555 B2 JP6645555 B2 JP 6645555B2 JP 2018198181 A JP2018198181 A JP 2018198181A JP 2018198181 A JP2018198181 A JP 2018198181A JP 6645555 B2 JP6645555 B2 JP 6645555B2
Authority
JP
Japan
Prior art keywords
metal layer
semiconductor element
electrode
semiconductor device
microbump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018198181A
Other languages
English (en)
Other versions
JP2019033278A (ja
Inventor
直樹 城
直樹 城
完 清水
完 清水
悟 脇山
悟 脇山
卓矢 中村
卓矢 中村
利彦 林
利彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Publication of JP2019033278A publication Critical patent/JP2019033278A/ja
Application granted granted Critical
Publication of JP6645555B2 publication Critical patent/JP6645555B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods

Landscapes

  • Wire Bonding (AREA)

Description

本開示は、半導体装置製造方法に関し、特に、積層する半導体素子の電極どうしをSn系はんだにより電気的に接続するようにした半導体装置製造方法に関する。
従来、半導体素子を積層して構成する半導体装置の製造工程において、積層する半導体素子の電極どうしを接続する場合には、Sn系はんだ(SnAgなど)のマイクロバンプを形成する手法が用いられている。
図1は、半導体素子どうしを積層するに際して従来用いられているSn系はんだから成るマイクロバンプを形成する手法の概要を示している。
同図に示されるように、一方の第1半導体素子1側には、Al PAD2の位置が開口され、そこにバリアメタル3としてNiなどが形成される。他方の第2半導体素子4側には、Sn系はんだから成るマイクロバンプ6が形成され、ギ酸還元によってバリアメタル3とSn系はんだ6が拡散接続される。
図2は、Snとバリアメタルとされ得る各種のメタルとの時間に対する理論拡散距離(200℃の場合)を示している。同図から明らかなように、上述したギ酸還元による拡散接続を実行する場合、Sn系はんだとの拡散性を考慮すると、バリアメタル3の厚みをum(マイクロメートル)オーダで、具体的には3um以上で形成する必要が生じる。
ただし、半導体装置の製造工程におけるウエハプロセスでは、バリアメタル3をumオーダで流動させることは困難である。
なお、特許文献1には、ダイボンド技術として、Sn系はんだのバリアメタルとしてTiを採用し、スッパタ技法を用いることによりウエハプロセスにて流動させることができる200nm(ナノメートル)程度のTiを形成することが記載されている。
特開2006−108604号公報
しかしながら、特許文献1に記載の方法は、ダイボンド技術として半導体素子を物理的に接続しているに過ぎず、本出願人側で高温放置試験を実施した結果、Sn系はんだとTiとの境界には合金成長や酸化などによる高抵抗化が生じてしまうことが分かった。よって、特許文献1の方法では、積層する半導体素子それぞれの電極どうしを物理的に接続できるものの電気的には接続できないことが分かっている。
本開示はこのような状況に鑑みてなされたものであり、積層する半導体素子の電極どうしを電気的に接続できるようにするものである。
本開示の第1の側面によれば、第1電極、前記第1電極に積層された第1金属層、及び、パシベーション層が設けられた第1半導体素子と、第2の電極が設けられた第2半導体素子と、前記第1半導体素子と前記第2半導体素子との間に設けられたマイクロバンプとを有し、前記第1金属層の前記第1電極と平面視で重なる部分の表面のうち、前記第1電極から前記第1電極の膜厚方向に最も離れた表面は、前記パシベーション層の前記第1電極と平面視で重なる部分の表面のうち、前記第1電極から前記第1電極の膜厚方向に最も離れた表面よりも、前記第1電極に近い。
前記第1半導体素子には、前記第1金属層に積層された第2金属層が設けることができる。
前記第2金属層の前記第1電極と平面視で重なる部分の表面のうち、前記第1電極から前記第1電極の膜厚方向に最も離れた表面を、前記パシベーション層の前記第1電極と平面視で重なる部分の表面のうち、前記第1電極から前記第1電極の膜厚方向に最も離れた表面よりも、前記第1電極に近くにすることができる。
前記第2金属層を、バナジウム族に属する金属とすることができる。
前記第1金属層を、前記第2金属層に採用されたバナジウム族に属する前記金属の窒化膜とすることができる。
前記第2金属層をTaとし、前記第1金属層をTaNとすることができる。
前記第2金属層の平均厚みは30nm以上とすることができる。
前記第1半導体素子の前記第1電極に、前記マイクロバンプに対向する凹形状のバンプパッドを形成し、前記バンプパッドの表面を、前記第1金属層および前記第2金属層により覆うことができる。
前記第1半導体素子上には、径が異なる複数の前記バンプパッドを設けることができる。
前記バンプパッドの径を、接続する前記第1電極の用途に応じて異ならせることができる。
前記第2半導体素子の前記マイクロバンプの径を、対応する前記第1半導体素子の前記バンプパッドの径に対応させることができる。
前記パシベーション層に、前記第1電極の少なくとも一部を被覆させることができる。
前記第1金属層の平均厚みを10nm以上にすることができる。
前記マイクロバンプに、Snを含ませることができる。
前記マイクロバンプを、前記パシベーション層の側面に接するようにすることができる。
前記半導体装置は、前記第1半導体素子に相当する画素基板に、前記第2半導体素子に相当するロジックチップがCoW接続されている積層型CMOSイメージセンサとすることができる。
本開示の第2の側面である製造方法は、第1半導体素子の第1電極にマイクロバンプに対向する凹形状のバンプパッドを形成し、前記第1電極上に、第2金属層に採用されるバナジウム族に属する金属の窒化膜からなる第1金属層を形成し、前記第1金属層上に、前記バナジウム族に属する金属からなる前記第2金属層を形成し、前記第2金属層上に、前記マイクロバンプに拡散される第3金属層を形成し、前記第1金属層と前記第2金属層のそれぞれの少なくとも一部をパシベーション層により被覆し、第2半導体素子の第2電極に前記マイクロバンプを形成し、前記第3金属層に前記マイクロバンプを接触させ、還元雰囲気化による加熱処理により、前記第3金属層と前記マイクロバンプの表面の酸化膜を還元し、前記第3金属層を前記マイクロバンプに拡散させることにより前記マイクロバンプと前記第2金属層を接触させて、前記第1半導体素子の前記第1電極と前記第2半導体素子の前記第2電極とを電気的に接続するステップを含む。
前記マイクロバンプに、Snを含ませることができる。
前記マイクロバンプを、前記パシベーション層の側面に接するようにすることができる。
前記パシベーション層による被覆を行うステップにおいて、前記第1半導体素子の前記第3金属層上に前記パシベーション層を形成し、前記パシベーション層をエッチングすることにより、前記第3金属層が露出する開口部を設けるステップをさらに含ませることができる。
本開示の第1の側面によれば、第1半導体素子と第2半導体素子の電極どうしが電気的に接続された半導体装置を得ることができる。
本開示の第2の側面によれば、第1半導体素子と第2半導体素子の電極どうしが電気的に接続された半導体装置を製造できる。
積層する半導体素子の電極どうしの接続にSn系はんだからなるマイクロバンプを用いる手法の概要を説明するための図である。 Snとバリアメタルとされ得る各種のメタルとの時間に対する理論拡散距離を示す図である。 本開示を適用した半導体装置の構成例を示す断面図である。 図3の半導体装置の製造方法を説明するフローチャートである。 製造工程における半導体装置の断面図を示す図である。 製造工程における半導体装置の断面図を示す図である。 SnとTaとの相図である。 125℃放置試験での抵抗値変化を示す図である。 第1乃至第3金属層の材質および厚さの例を示す図である。 本開示を適用した半導体装置の第1の変形例を示す断面図である。 本開示を適用した半導体装置の第2の変形例を示す断面図である。 バンプパッドおよびマイクロバンプの径とバンプ容量の関係を示す図である。 バンプパッドとマイクロバンプの径と、抵抗値の関係を示す図である。 半導体装置の第2の変形例の応用例を示すブロック図である。 本開示を適用した半導体装置を積層型CMOSイメージセンサに適用した場合の積層前の状態を示す断面図である。 本開示を適用した半導体装置を積層型CMOSイメージセンサに適用した場合の積層後の状態を示す断面図である。 ロジックチップに形成されたWBパッドにI/Oを接続した状態を示す断面図である。 バンプパッドの形成に関する変形例を示す断面図である。 バンプパッドの形成に関する変形例を示す断面図である。 バンプパッドの形成に関する変形例を示す断面図である。
以下、本開示を実施するための最良の形態(以下、実施の形態と称する)について、図面を参照しながら詳細に説明する。
<半導体装置の構成例>
図3は、本開示の実施の形態である半導体装置の構成例を示す断面図である。ただし、同図は、積層されてSn系はんだにより電気的に接続される第1半導体素子と第2半導体素子のうち、マイクロバンプが形成されない方の第1半導体素子側のみを図示している。
なお、はんだの材料を示すSn系とは、SnAg系、SnBi系、SnCu系、SnIn系、SnAgCu系などを含むものとする。
図示するように、第1半導体素子10上には、電極としてのAl PAD11が設けられ、Al PAD11の一部が、第2半導体素子のマイクロバンプと接続するための開口部21(図5)とされて、開口部21の上層に順に、第1金属層13、第2金属層14、および第3金属層15が形成される。開口部21以外には、SiO2層12が形成され、その上層側にSiN層16が形成される。
バリアメタルとしての第1金属層13は、第2金属層14に採用される金属の窒化膜として形成される。同図の場合、例えばTaNが採用される。第1金属層13の平均厚みは、10nm以上程度とする。これにより、特にパーティクルリスクを低減できるウエハプロセスラインにて、第1金属層13の形成が可能となる。
第1金属層(バリアメタル)13を設けることにより、Al PAD11と第2金属層14、および、第2半導体素子のマイクロバンプを成すSn系はんだと第2金属層14との反応で生成し得る合金層とAl PAD11が反応することを防止できる。これにより半導体装置の信頼性と電気特性の向上が期待できる。なお、第1金属層13は省略してもよい。
第2金属層14には、Sn系はんだと相図を持ち拡散性が低い、例えばTaが採用される。
第2金属層14の平均厚みは30nm以上程度とする。これにより、特にパーティクルリスクを低減できるウエハプロセスラインにて第2金属層14の形成が可能となる。第2金属層14には、Taの他、Sn系はんだとの拡散性が低いバナジュウム族の金属(V,Nbなど)を採用することができる。
第3金属層15には、第2金属層14の表面に無洗浄フラックスや還元ガス等で表面酸化膜が還元可能であり、Snに対する拡散性が高い、例えば、Cuが採用される。第3金属層15の平均厚みは第2金属層14の酸化を防げるように80nm以上程度とする。第3金属層15には、Cuの他、Co,Ni,Pd,Au,Ptなどを採用することができる。
上述した構成を採用することにより、第2金属層14の材料として非常に酸化が進み易く、還元が容易ではないTaやTiなど採用した場合でも、Sn系はんだと第2金属層14を容易に接触(反応)させることができる。また、第2金属層14にTaを採用することにより、信頼性と電気特性を向上させることができる。
<半導体装置を製造する製造装置の製造方法>
次に、図3に示された半導体装置の製造方法について、図4乃至図6を参照して説明する。
図4は、図3の半導体装置の製造方法を説明するフローチャートである。図5および図6は、製造過程を示す半導体装置の断面図である。
ステップS1では、図5Aに示されるように、電極としてのAl PAD11が設けられた第1半導体素子10上にSiO2層12が形成される。次に、SiO2層12の上に、後述する開口部21の位置や径に応じた、開口部21以外の部分を保護するためのレジストパターニング(不図示)が施される。さらに、図5Bに示されるように、ドライエッチングによってAl PAD11が露出するまでSiO2層12が削られて開口部21が設けられる。
ステップS2では、図5Cに示されるように、スパッタ法により、第1金属層(TaN)13、第2金属層(Ta)14、および第3金属層(Cu)15が形成される。次に、ステップS3では、図5Dに示されるように、第3金属層15と同じ材料(いまの場合、Cu)のメッキプロセスによって第3金属層15の厚みが増加されて開口部21の凹みが第3金属層15によって埋められる。
ステップS4では、図5Eに示されるように、CMP(Chemical Mechanical Polishing)により、開口部21以外の第3金属層15、および第2金属層14が除去される。ステップS5では、表面全体にパシベーション層としてのSiN層16が形成され、SiN層16の上にレジストパターニング(不図示)が施されて、さらに、図6Aに示されるように、ドライエッチングによって開口部21の第3金属層15が露出するまでSiN層16が削られる。
これにより、開口部21が凹構造となるため、第2半導体素子23に形成されているSn系はんだからなるマイクロバンプ24との位置合わせが容易となる。以下、マイクロバンプ24と対向する開口部21をバンプパッド21とも称する。
ステップS6では、図6Bに示されるように、バンプパッド21の第3金属層15に、第2半導体素子23に形成されているマイクロバンプ24が接触され、ギ酸などの還元雰囲気化による加熱処理を行うことにより、第3金属層15とマイクロバンプ24を成すSn系はんだ表面の酸化膜が還元される。この後、ステップS7では、図6Cに示されるように、Sn系はんだに第3金属層15が拡散されることによりSn系はんだと第2金属層14が接触(反応)されて、第1半導体素子10の電極であるAl PAD11と第2半導体素子23の電極との接続が確立される。以上で、製造方法の説明を終了する。
<第2金属層14とSn系はんだ16との相図>
図7は、第2金属層14に採用したTaと、マイクロバンプ24を成すSn系はんだに含まれるSnとの相図を示している。バンプ接続が250℃で行われた場合、同図に示されるように、TaとSnとの境界にはTa3SnまたはTa2Sn3の合金が生成されていると推察される。
<高温放置時間におけるKelvin抵抗測定結果>
図8は、第1金属層13にTaN、第2金属層14にTa、第3金属層15にCuを採用した場合における第2金属層14とSn系はんだから成るマイクロバンプ24を接続した際の、125℃高温放置時間におけるKelvin抵抗測定結果を示したものである。同図に示されているように、168時間経過後も抵抗値は変化しなかった。したがって、第1半導体素子10と第2半導体素子23の電極どうしの電気的な接続は時間が経過しても維持されることが分かる。
<第1金属層13、第2金属層14、および第3金属層15の材料と厚さについて>
次に、図9は、第2金属層14の厚さと、第3金属層15の材料と厚さを変化された場合の第1乃至第5の例と比較例(特許文献1に記載されている構成)の評価を示している。
第1の例は、第1金属層13に15nmのTaN、第2金属層14に100nmのTa、第3金属層15に80nmのCuを採用した例である。第2の例は、第1金属層13に15nmのTaN、第2金属層14に100nmのTa、第3金属層15に100nmのCoを採用した例である。第3の例は、第1金属層13に15nmのTaN、第2金属層14に100nmのTa、第3金属層15に360nmのCuを採用した例である。第4の例は、第1金属層13に15nmのTaN、第2金属層14に50nmのTa、第3金属層15に80nmのCuを採用した例である。第5の例は、第1金属層13に15nmのTaN、第2金属層14に30nmのTa、第3金属層15に80nmのCuを採用した例である。第1乃至第5の例のいずれの場合でも接続性と高温放置試験の結果には問題がなく、第1半導体素子10と第2半導体素子23の電極どうしの物理的および電気的な接続が確立された。なお、比較例では、電極どうしの物理的な接続は確立されるものの、時間の経過とともに抵抗値が増して電気的な接続は維持されなかった。
<半導体装置の第1の変形例>
図10は、本開示の実施の形態である半導体装置の第1の変形例を示す断面図である。
該第1の変形例は、図3に示された構成例から第1金属層13は省略したものである。これにより、プロセスタクトの短縮とコスト削減が可能となる。
<半導体装置の第2の変形例>
次に、図11は、本開示の実施の形態である半導体装置の第2の変形例を示す断面図である。
該第2の変形例は、第1半導体素子10に設けられるバンプパッド21の径を、接続する電極(線)の用途に応じて変更したものである。第1半導体素子10に設けられた2ヶ所のバンプパッド21は、バンプパッド21−2がバンプパッド21−1に比較してその径が大きく形成されている。
なお、同一基板(いまの場合における第1半導体素子10)に設ける複数のバンプパッド21の径の変更は、上述した製造処理のステップS1の工程でSiO2層12の上に施されるレジストパターニング、およびステップS5の工程でSiN層16の上に施されるレジストパターニングを変えることによって容易に行うことができる。
一方、第2半導体素子のSn系はんだから成るマイクロバンプ24についても、その径を対応するバンプパッド21の径に合わせて変更するようにする。
<バンプパッド21およびマイクロバンプ24の径の違いに対するバンプ容量の変化> 図12は、バンプパッド21の径(開口部径)と、マイクロバンプの径の違いに対するバンプ容量の変化を示している。
同図に示されるように、バンプパッド21の径およびマイクロバンプ24の径が小さい場合と大きい場合とを比較すると、小さい場合の方が、バンプ容量が小さい。したがって、径が小さいバンプパッド21とマイクロバンプ24により信号線を接続すれば、通信する電気信号の信号特性の改善が期待できる。さらに、この場合、接続する配線の引き回しを容易に行うことができる。
<バンプパッド21およびマイクロバンプ24の径の違いに対する抵抗値の変化>
図13は、バンプパッド21の径(開口部径)と、マイクロバンプ24の径の違いに対する抵抗値の変化を示している。
同図に示されるように、バンプパッド21の径およびマイクロバンプ24の径がより大きいほど、抵抗値が小さい。したがって、より大きな径のバンプパッド21とマイクロバンプ24により電源線を接続すれば、IRドロップなどの電力供給に関する不具合の発生を抑止できる。
<半導体装置の第2の変形例の応用例>
次に、図14は、図11に示された第2の構成例の応用例を示している。
該応用例では、第1半導体素子10の電源部35と第2半導体素子23の電源部33をつなぐ電力線35を、径が大きなバンプパッド21−2とマイクロバンプ24により接続している。また、第1半導体素子10の信号処理部32と第2半導体素子23の信号処理部34をつなぐ信号線36,37を、径が小さなバンプパッド21−1とマイクロバンプ24により接続している。
図14に示された応用例によれば、第1半導体素子10と第2半導体素子23の間で通信する電気信号の信号特性を改善することができ、また、IRドロップなどの電力供給に関する不具合の発生を抑止できる。
<半導体装置の適用例>
次に、本開示の半導体装置を積層型CMOSイメージセンサ(以下、積層型CISと称する)に適用した場合の構成例について説明する。
図15は本開示の半導体装置を適用した積層型CISの積層前の状態、図16は積層後の状態を示している。
すなわち、該積層型CISは、光電変換を行う画素部が形成されている画素基板51に、画素基板51から出力される画素信号を処理するロジックチップ52がCoW(Chip on Wafer)接続により積層されて構成される。
画素基板51は、第1半導体素子10に相当し、光の入射側の面にはロジックチップ52のマイクロバンプ24と接続するためのバンプバッド21が形成される。一方、ロジックチップ52は、第2半導体素子23に相当し、画素基板51との接続面にはマイクロバンプ24が形成される。
画素基板51とロジックチップ52は、バンプパッド21とマイクロバンプ24が接触するように積層された状態で加熱処理され、これにより両者が電気的に接続される。なお、ロジックチップ52の画素基板51が接続された面の反対面には、図17に示されるようにWBパッド71が形成され、WBパッド71にI/O72が接続される。
図示したように、積層型CMOSイメージセンサに本開示の半導体装置を適用することにより、画素基板51側にもマイクロバンプを形成して接続した場合に発生し得る画素部のダスト欠陥などのダメージを抑止できる。また、画素基板51とロジックチップ52を積層した際の低背化を実現でき、CFの掃きムラを抑止できる。
<バンプパッドの形成に関する変形例>
次に、バンプパッドの形成に関する変形例について説明する。
図17は、画素基板51内に貫通電極81が形成される場合に、該貫通電極81の位置に開口部21を設け、該貫通電極81をロジックチップ52のマイクロバンプ24に対応するバンプパッドとした変形例である。貫通電極81自体をバンプパッドとした場合、第1金属層13乃至第3金属層15の形成を省略することができる。
図19および図20は、画素基板51(第1半導体素子10)からAl PAD11を省略し、画素基板51内部の金属配線(Cu配線)91に達するまで、開口部21を形成し、基板内部の該金属配線91を、ロジックチップ52のマイクロバンプ24に対応するバンプパッドとした変形例である。
Al PAD11を省略して画素基板51内部の金属配線91をバンプパッドとした場合、カスタム工程における掃きムラを改善することができ、また、チップシュリンク(chip shrink)が可能となる。さらに、ロジックチップ52の低背化が実現できる。
なお、本開示の半導体装置は、上述した積層型CISの他、積層された半導体素子の電極どうしが接続されるあらゆる種類の電子装置に適用することが可能である。
本開示の実施の形態は、上述した実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。
なお、本開示は以下のような構成も取ることができる。
(1)
半導体素子が積層されて構成され、対向する前記半導体素子の電極どうしが電気的に接続されている半導体装置において、
前記対向する半導体素子の一方である第2半導体素子の電極には、Sn系はんだからなるマイクロバンプが形成され、
前記マイクロバンプを介して前記第2半導体素子の電極と接続されている、前記対向する半導体素子の他方である第1半導体素子の電極には、前記マイクロバンプに対向する凹形状のバンプパッドが形成されている
半導体装置。
(2)
前記バンプパッドには、前記マイクロバンプ側から順に、前記マイクロバンプに拡散された第3金属層、およびバナジウム族に属する金属からなる第2金属層が形成されている 前記(1)に記載の半導体装置。
(3)
前記第1半導体素子上には、径が異なる複数の前記バンプパッドが設けられている
前記(1)または(2)に記載の半導体装置。
(4)
前記バンプパッドの径は、接続する前記電極の用途に応じて異なる
前記(1)から(3)のいずれかに記載の半導体装置。
(5)
前記第2半導体素子の前記マイクロバンプの径は、対応する前記第1半導体素子の前記バンプパッドの径に対応している
前記(1)から(4)のいずれかに記載の半導体装置。
(6)
前記バンプパッドには、前記マイクロバンプ側から順に、前記第3金属層、前記第2金属層、および前記第2金属層に採用されたバナジウム族に属する前記金属の窒化膜からなる第1金属層が形成されている
前記(1)から(5)のいずれかに記載の半導体装置。
(7)
前記第2金属層の平均厚みは30nm以上である
前記(1)から(6)のいずれかに記載の半導体装置。
(8)
前記第1金属層の平均厚みは10nm以上である
前記(1)から(6)のいずれかに記載の半導体装置。
(9)
前記第2金属層はTaであり、前記第1金属層はTaNである
前記(1)から(6)のいずれかに記載の半導体装置。
(10)
前記第3金属層はCu,Co,Ni,Pd,AuまたはPtである
前記(1)から(6)のいずれかに記載の半導体装置。
(11)
前記バンプパッドは、前記第1半導体素子の表面から前記第1半導体素子内の貫通電極まで設けられた開口部により形成されている
前記(1)に記載の半導体装置。
(12)
前記バンプパッドは、前記第1半導体素子の表面から前記第1半導体素子内の金属配線まで設けられた開口部により形成されている
前記(1)に記載の半導体装置。
(13)
前記半導体装置は、前記第1半導体素子に相当する画素基板に、前記第2半導体素子に相当するロジックチップがCoW接続されている積層型CMOSイメージセンサである
前記(1)に記載の半導体装置。
(14)
半導体素子が積層されて構成され、対向する前記半導体素子の電極どうしが電気的に接続されている半導体装置を製造する製造装置の製造方法において、
前記製造装置による、
前記対向する半導体素子の一方である第2半導体素子の電極にSn系はんだからなるマイクロバンプを形成するマイクロバンプ形成ステップと、
前記マイクロバンプを介して前記第2半導体素子の電極と接続される、前記対向する半導体素子の他方である第1半導体素子の電極に前記マイクロバンプに対向する凹形状のバンプパッドを形成するバンプパッド形成ステップと
を含む製造方法。
(15)
前記バンプパッド形成ステップは、
前記マイクロバンプを介して前記第2半導体素子の電極と接続される、前記対向する半導体素子の他方である第1半導体素子の電極上に、バナジウム族に属する金属からなる第2金属層を形成し、
前記第2金属層上に、前記マイクロバンプに拡散される第3金属層を形成し、
第3金属層に前記マイクロバンプを接触させ、還元雰囲気化による加熱処理により、前記第3金属層と前記マイクロバンプの表面の酸化膜を還元し、前記第3金属層を前記マイクロバンプに拡散させることにより前記マイクロバンプと前記第2金属層を接触させて、前記第1半導体素子と前記第2半導体素子の電極どうしを電気的に接続する
前記(14)に記載の製造方法。
(16)
前記バンプパッド形成ステップは、さらに、
前記第1半導体素子の前記第3金属層の上にパシベーション層を形成し、前記パシベーション層をエッチングすることにより、前記第3金属層が露出する開口部を設ける
前記(15)に記載の製造方法。
(17)
前記バンプパッド形成ステップは、さらに、
前記第2金属層を形成する前に、前記マイクロバンプを介して前記第2半導体素子の電極と接続される、前記対向する半導体素子の他方である第1半導体素子の電極上に、前記第2金属層に採用されるバナジウム族に属する前記金属の窒化膜からなる第1金属層を形成する
前記(15)に記載の製造方法。
(18)
前記バンプパッド形成ステップは、前記第1半導体素子の表面から前記第1半導体素子内の貫通電極まで開口部を設けることにより前記バンプパッドを形成する
前記(14)に記載の製造方法。
(19)
前記バンプパッド形成ステップは、前記第1半導体素子の表面から前記第1半導体素子内の金属配線まで開口部を設けることにより前記バンプパッドを形成する
前記(14)に記載の製造方法。
10 第1半導体素子, 11 Al PAD, 12 SiO2層, 13 第1金属層, 14 第2金属層, 15 第3金属層, 16 SiN層, 21 開口部(バンプパッド), 23 第2半導体素子, 24 マイクロバンプ, 31 電源部, 32 信号処理部, 33 電源部, 34 信号処理部, 35 電源線, 36,37 信号線, 51 画素基板, 52 ロジックチップ, 81 貫通電極, 91 Cu配線

Claims (4)

  1. 第1半導体素子の第1電極にマイクロバンプに対向する凹形状のバンプパッドを形成し、
    前記第1電極上に、第2金属層に採用されるバナジウム族に属する金属の窒化膜からなる第1金属層を形成し、
    前記第1金属層上に、前記バナジウム族に属する金属からなる前記第2金属層を形成し、
    前記第2金属層上に、前記マイクロバンプに拡散される第3金属層を形成し、
    記第1金属層と前記第2金属層のそれぞれの少なくとも一部をパシベーション層により被覆し、
    第2半導体素子の第2電極に前記マイクロバンプを形成し、
    前記第3金属層に前記マイクロバンプを接触させ、還元雰囲気化による加熱処理により、前記第3金属層と前記マイクロバンプの表面の酸化膜を還元し、前記第3金属層を前記マイクロバンプに拡散させることにより前記マイクロバンプと前記第2金属層を接触させて、前記第1半導体素子の前記第1電極と前記第2半導体素子の前記第2電極とを電気的に接続する
    ステップを含む半導体装置の製造方法。
  2. 前記マイクロバンプは、Snを含む
    請求項に記載の半導体装置の製造方法。
  3. 前記マイクロバンプが、前記パシベーション層の側面に接する
    請求項またはに記載の半導体装置の製造方法。
  4. 前記パシベーション層による被覆を行うステップにおいて、
    前記第1半導体素子の前記第3金属層上に前記パシベーション層を形成し、
    前記パシベーション層をエッチングすることにより、前記第3金属層が露出する開口部を設ける
    ステップをさらに含む請求項1乃至3のいずれかに記載の半導体装置の製造方法。
JP2018198181A 2014-04-23 2018-10-22 半導体装置の製造方法 Active JP6645555B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014088804 2014-04-23
JP2014088804 2014-04-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014256186A Division JP6424610B2 (ja) 2014-04-23 2014-12-18 半導体装置、および製造方法

Publications (2)

Publication Number Publication Date
JP2019033278A JP2019033278A (ja) 2019-02-28
JP6645555B2 true JP6645555B2 (ja) 2020-02-14

Family

ID=65523674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018198181A Active JP6645555B2 (ja) 2014-04-23 2018-10-22 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP6645555B2 (ja)

Also Published As

Publication number Publication date
JP2019033278A (ja) 2019-02-28

Similar Documents

Publication Publication Date Title
JP6424610B2 (ja) 半導体装置、および製造方法
JP6639188B2 (ja) 半導体装置、および製造方法
CN104867895B (zh) 晶圆接合工艺和结构
TWI437679B (zh) 半導體裝置及其製造方法
TW201417230A (zh) 半導體元件與其製造方法、封裝半導體元件
JP2015216350A5 (ja)
US20190244919A1 (en) Semiconductor Devices and Methods of Manufacture Thereof
JP6645555B2 (ja) 半導体装置の製造方法
JP2009044077A (ja) 半導体装置及び半導体装置の製造方法
CN105742193A (zh) 晶圆与晶圆接合的工艺及结构
JP2011249564A (ja) 半導体装置の製造方法及び実装構造
US20150097268A1 (en) Inductor structure and manufacturing method thereof
KR100855702B1 (ko) 웨이퍼 레벨 패키지 제조방법

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191223

R151 Written notification of patent or utility model registration

Ref document number: 6645555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151