JP6644625B2 - Apparatus and method for crushing magnetic separation of slag solidified in steelmaking furnace - Google Patents

Apparatus and method for crushing magnetic separation of slag solidified in steelmaking furnace Download PDF

Info

Publication number
JP6644625B2
JP6644625B2 JP2016078734A JP2016078734A JP6644625B2 JP 6644625 B2 JP6644625 B2 JP 6644625B2 JP 2016078734 A JP2016078734 A JP 2016078734A JP 2016078734 A JP2016078734 A JP 2016078734A JP 6644625 B2 JP6644625 B2 JP 6644625B2
Authority
JP
Japan
Prior art keywords
storage container
steelmaking furnace
crushing
slag
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016078734A
Other languages
Japanese (ja)
Other versions
JP2017189721A (en
Inventor
哲生 志賀
哲生 志賀
主計 伊藤
主計 伊藤
久雄 吉長
久雄 吉長
俊人 三木
俊人 三木
小松 喜美
喜美 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Bars and Shapes Corp
Original Assignee
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Bars and Shapes Corp filed Critical JFE Bars and Shapes Corp
Priority to JP2016078734A priority Critical patent/JP6644625B2/en
Publication of JP2017189721A publication Critical patent/JP2017189721A/en
Application granted granted Critical
Publication of JP6644625B2 publication Critical patent/JP6644625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Disintegrating Or Milling (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、製鋼炉スラグに酸化鉄(すなわちFeO、Fe2O3、Fe3O4)として含有されるFe
量の機器分析を行なうに先立って、機器分析に供する試料を得るために、製鋼炉スラグを凝固させた後、その凝固物を破砕しながら、スラグへの混入鉄分を磁力で選別(以下、磁選という)する破砕磁選装置および破砕磁選方法に関するものである。なお、ここで製鋼炉は、原料や方式によらず、溶鋼を製造する炉という意味であり、具体的には転炉や電気炉等の総称である。
The present invention, Fe is contained as iron oxide steelmaking slag (i.e. FeO, Fe 2 O 3, Fe 3 O 4)
Prior to conducting the instrumental analysis of the amount, in order to obtain a sample for instrumental analysis, after solidifying the steelmaking furnace slag, the iron content in the slag is separated by magnetic force while crushing the solidified material (hereinafter, magnetic separation). ) And a crushing magnetic separation method. Here, the steelmaking furnace means a furnace for producing molten steel irrespective of a raw material or a method, and is specifically a general term of a converter, an electric furnace, and the like.

製鋼炉(たとえば転炉、電気炉等)の操業において、炉内に生じるスラグ(以下、製鋼炉スラグという)にはFeが酸化鉄として含有されており、安定操業を維持する上で、そのスラグ中のFeの総量(いわゆるトータルFe)が有効な指標となることが知られている。つまり、スラグ中のトータルFeを適切な範囲に保持、管理することで鉄ロスの少ない合理的な操業をすることができる。   In the operation of steelmaking furnaces (eg, converters, electric furnaces, etc.), slag generated in the furnace (hereinafter referred to as steelmaking furnace slag) contains Fe as iron oxide, and in order to maintain stable operation, the slag is used. It is known that the total amount of Fe (so-called total Fe) is an effective index. In other words, by maintaining and managing the total Fe in the slag in an appropriate range, a rational operation with less iron loss can be performed.

トータルFeの適切な範囲は製鋼炉の仕様や製造する鋼種等に応じて異なるが、トータルFeを所定の範囲内に保持された操業をするためには、操業中に製鋼炉から製鋼炉スラグを採取し、さらにその成分を短時間で分析して、その測定結果を操業に反映させる必要がある。様々な機器を用いた分析技術(いわゆる機器分析)を採用すれば、トータルFeの測定に要する時間を短縮することは可能である。   The appropriate range of the total Fe differs depending on the specifications of the steelmaking furnace and the type of steel to be manufactured, but in order to operate with the total Fe maintained within the predetermined range, the steelmaking furnace slag must be removed from the steelmaking furnace during operation. It is necessary to collect the components, analyze the components in a short time, and reflect the measurement results in the operation. If an analysis technique using various devices (so-called device analysis) is adopted, it is possible to reduce the time required for measuring the total Fe.

しかし、機器分析に供する試料を得るためには、採取した製鋼炉スラグを冷却して凝固させ、さらにその凝固物を粒状に破砕する必要がある。また、製鋼炉スラグには溶鋼から酸化鉄ではない鉄(Fe)が混入しており、試料を得る過程で冷却することによって、粒子状の鉄(以下、粒鉄という)として凝固物中に分散している。トータルFeの測定精度を向上するためには、粒鉄を除去した試料を機器分析に供する必要がある。   However, in order to obtain a sample to be subjected to instrumental analysis, it is necessary to cool and solidify the collected steelmaking furnace slag and further to crush the coagulated product into granules. In addition, iron (Fe) that is not iron oxide from molten steel is mixed into the steelmaking furnace slag, and is cooled in the process of obtaining the sample to be dispersed in the coagulated material as particulate iron (hereinafter referred to as granular iron). are doing. In order to improve the measurement accuracy of the total Fe, it is necessary to provide a sample from which granular iron has been removed for instrumental analysis.

つまり、機器分析によるトータルFeの測定精度を高めるためには、製鋼炉スラグを冷却して凝固させた後、その凝固物を粒状に破砕し、さらに粒鉄を除去した試料を機器分析に供する必要がある。したがって、製鋼炉スラグを採取して凝固させ、さらに凝固物の破砕と粒鉄の除去を経て、機器分析の試料を得るまでに時間を要するので、トータルFeの測定結果を製鋼炉の操業に反映させ難いという問題がある。しかも粒鉄の除去は作業員が手作業で行なうので、除去作業の効率が悪いばかりでなく、機器分析の試料に残留する粒鉄の量が個人差に起因して変動する惧れがある。
そこで、粒鉄を効率良く除去して、機器分析の試料を短時間で安定して得る技術が検討されている。
In other words, in order to increase the measurement accuracy of total Fe by instrumental analysis, after cooling and solidifying the steelmaking furnace slag, it is necessary to crush the coagulated material into granules and then subject the sample from which the granular iron has been removed to instrumental analysis. There is. Therefore, it takes time to collect and solidify the steelmaking furnace slag, crush the coagulated material and remove the granular iron, and obtain a sample for instrumental analysis. There is a problem of difficulty. Moreover, since the removal of the granular iron is performed manually by an operator, not only the efficiency of the removal operation is poor, but also the amount of the granular iron remaining in the sample for the instrumental analysis may fluctuate due to individual differences.
Therefore, a technique for efficiently removing granular iron and stably obtaining a sample for instrumental analysis in a short time has been studied.

たとえば特許文献1には、高炉スラグや転炉スラグの凝固物をクラッシャーで破砕してドラムに落下させ、そのドラムに内蔵される磁石によって粒鉄をドラム表面に吸着させることによって、凝固物と粒鉄の選別を行なう技術が開示されている。この技術は、凝固物を破砕しながら、磁石による粒鉄の選別(以下、磁選という)を行なうことができるので、機器分析の試料を得るための所要時間を短縮できる。しかも、作業員の個人差に起因する問題点も解消できる。   For example, Patent Document 1 discloses that a coagulated product of a blast furnace slag and a converter slag is crushed by a crusher, dropped on a drum, and the iron particles are adsorbed on the drum surface by a magnet built in the drum. A technique for sorting iron is disclosed. According to this technique, it is possible to sort iron particles by a magnet (hereinafter, referred to as magnetic separation) while crushing the coagulated material, so that the time required to obtain a sample for instrumental analysis can be reduced. In addition, problems caused by individual differences among workers can be solved.

しかし特許文献1に記載された技術は、クラッシャーを使用するので、スラグの凝固物を破砕しながら磁選を行なう装置(以下、破砕磁選装置という)が大規模になるのは避けられず、したがって高炉、転炉あるいは電気炉等の工場内あるいは操作室内に設置するのは困難である。そのため、採取したスラグを工場から場外の破砕磁選装置へ運搬せざるを得ないので、機器分析の試料を得るための所要時間が長くなるという問題が生じる。   However, since the technology described in Patent Document 1 uses a crusher, it is inevitable that a device that performs magnetic separation while crushing solidified slag (hereinafter referred to as a crushed magnetic separation device) becomes large-scale. However, it is difficult to install it in a factory such as a converter or an electric furnace or in an operation room. For this reason, the collected slag has to be transported from the factory to a crushing magnetic separation apparatus outside the site, which causes a problem that the time required to obtain a sample for instrumental analysis becomes long.

また、様々な機器分析のうち、トータルFeの測定に好適な蛍光X線分析は、試料が細粒であるほど測定精度が改善される。ところが特許文献1に記載された技術は、クラッシャーを使用するので、スラグの凝固物を粗く破砕することは可能であるが、細かく破砕することは困難である。したがって特許文献1に記載された技術を採用して、蛍光X線分析によるトータルFeを測定すると、良好な測定精度が得られないという問題がある。したがって、製鋼炉から少量のスラグを採取して、その場で測定精度の高い分析を迅速に行なうことは困難である。   Further, among various types of instrumental analysis, in the X-ray fluorescence analysis suitable for the measurement of total Fe, the measurement accuracy is improved as the sample is finer. However, the technology described in Patent Literature 1 uses a crusher, so that it is possible to roughly crush the solidified slag, but it is difficult to finely crush it. Therefore, when the total Fe is measured by X-ray fluorescence analysis using the technique described in Patent Document 1, there is a problem that good measurement accuracy cannot be obtained. Therefore, it is difficult to collect a small amount of slag from a steelmaking furnace and quickly perform high-precision analysis on the spot.

特開2003-10724号公報JP 2003-10724 A

本発明は、従来の技術の問題点を解消し、簡便な手段で製鋼炉スラグの破砕と粒鉄の磁選(すなわち粒鉄の選別)とを同時に短時間で行なうことが可能であり、かつ破砕による製鋼炉スラグの凝固物の細粒化、ならびに磁選による粒鉄の確実な選別が可能となる破砕磁選装置および破砕磁選方法を提供することを目的とする。   The present invention solves the problems of the conventional technology, and can simultaneously perform crushing of steelmaking furnace slag and magnetic separation of granular iron (that is, sorting of granular iron) by simple means in a short time. It is an object of the present invention to provide a crushing magnetic separation apparatus and a crushing magnetic separation method capable of reducing the size of a solidified material of a steelmaking furnace slag by magnetic separation and reliably separating granular iron by magnetic separation.

本発明者は、トータルFeの測定に好適な機器分析として蛍光X線分析に着目した。そして、蛍光X線分析は製鋼炉の工場内で行なうことが可能であるから、トータルFeの測定結果を製鋼炉の操業に速やかに反映させるために、製鋼炉の工場内で測定に供する試料を得る技術について検討した。そして、製鋼炉から少量のスラグ(50g程度)を採取すれば、回転ブレードを高速で回転させることによって製鋼炉スラグの凝固物を細かく破砕することが可能となり、その結果、蛍光X線分析に供する試料の細粒化を図ることができるので、トータルFeの測定精度の向上に寄与することを見出した。しかも、製鋼炉スラグの凝固物を細かく破砕することによって、粒鉄を凝固物から分離し易くなる。   The present inventors have focused on X-ray fluorescence analysis as an instrumental analysis suitable for measuring total Fe. Since the fluorescent X-ray analysis can be performed in the steelmaking furnace factory, the sample to be used for the measurement in the steelmaking furnace factory should be used in order to promptly reflect the total Fe measurement result in the operation of the steelmaking furnace. The technology to obtain is discussed. Then, if a small amount of slag (about 50 g) is collected from the steelmaking furnace, it is possible to finely crush the coagulated material of the steelmaking furnace slag by rotating the rotating blade at a high speed, and as a result, subject it to fluorescent X-ray analysis. It has been found that the refinement of the sample can be achieved, which contributes to the improvement of the measurement accuracy of total Fe. In addition, by finely crushing the solidified material of the steelmaking furnace slag, it becomes easy to separate the granular iron from the solidified material.

さらに、破砕された凝固物が周辺に飛び散るのを防止するために、凝固物を収納する容器(以下、収納容器という)の内部で回転ブレードを回転させれば、製鋼炉の工場内(たとえば操作室内)で製鋼炉スラグの凝固物を破砕することが可能であることが分かった。そして、回転ブレードによって運動エネルギーを加えられた細粒の凝固物と粒鉄が収納容器内で飛散するので、磁石を配設することによって、粒鉄のみを磁着させることができる。
このようにして製鋼炉の工場内で破砕と磁選を同時に行ない、粒鉄を分離した細粒の凝固物は、蛍光X線分析の試料として好適に使用できる。
Further, in order to prevent the crushed solidified material from scattering around, if a rotating blade is rotated inside a container for storing the solidified material (hereinafter, referred to as a storage container), the inside of a steelmaking furnace factory (for example, operation) It was found that it was possible to crush the solidified material of the steelmaking furnace slag in the room. Then, the fine-grained solidified material and kinetic iron to which kinetic energy has been added by the rotating blades scatter in the storage container. Therefore, by arranging the magnet, only the granular iron can be magnetized.
In this manner, crushing and magnetic separation are simultaneously performed in the steelmaking furnace factory, and the fine solidified material obtained by separating the granular iron can be suitably used as a sample for X-ray fluorescence analysis.

本発明は、このような知見に基づいてなされたものである。
すなわち本発明は、蓋を着脱可能に装着できかつ製鋼炉スラグの凝固物を収納する収納容器と、収納容器の底部の内側に配設されて凝固物を破砕するとともに凝固物を収納容器の壁部へ飛散させる回転ブレードと、壁部の外側に配設されて凝固物中の粒鉄を壁部の内側に磁着させる磁石と、を有する製鋼炉スラグ凝固物の破砕磁選装置である。
The present invention has been made based on such findings.
That is, the present invention provides a storage container capable of detachably attaching a lid and storing a solidified product of a steelmaking furnace slag, a container disposed inside a bottom portion of the storage container to crush the solidified product, and to store the solidified product in a wall of the storage container A crushing magnetic separation apparatus for a steelmaking furnace slag coagulate having a rotating blade for scattering to a part and a magnet disposed outside the wall to magnetize the iron particles in the coagulate inside the wall.

本発明の破砕磁選装置においては、収納容器の直径が上方に広がるように壁部が傾斜することが好ましい。さらに、回転ブレードによって凝固物を破砕する間に、収納容器を揺動させる揺動手段を有することが好ましい。   In the crushing magnetic separation apparatus of the present invention, it is preferable that the wall is inclined so that the diameter of the storage container increases upward. Further, it is preferable to have a rocking means for rocking the storage container while crushing the coagulated material by the rotating blade.

また本発明は、収納容器に製鋼炉スラグの凝固物を収納し、収納容器に着脱可能な蓋を装着した後、収納容器の底部の内側に配設した回転ブレードを回転させて凝固物を破砕するとともに収納容器の壁部へ飛散させ、壁部の外側に配設した磁石によって凝固物中の粒鉄を壁部の内側に磁着させる製鋼炉スラグ凝固物の破砕磁選方法である。   In addition, the present invention stores the coagulated material of the steelmaking furnace slag in a storage container, attaches a detachable lid to the storage container, and then crushes the coagulated material by rotating a rotating blade disposed inside the bottom of the storage container. In addition, the method is a method of crushing and magnetizing a steelmaking furnace slag coagulated material in which iron is scattered to a wall portion of a storage container and magnetic iron in the coagulated material is magnetized inside the wall portion by a magnet disposed outside the wall portion.

本発明の破砕磁選方法においては、収納容器の直径が上方に広がるように壁部を傾斜させて、粒鉄を回転ブレードから加えられる運動エネルギーによって壁部に沿って一旦上昇させた後、粒鉄に加わる重力によって壁部に沿って下降させることが好ましい。さらに、回転ブレードによって凝固物を破砕する間に、収納容器を揺動させることが好ましい。   In the crushing magnetic separation method of the present invention, the wall is inclined so that the diameter of the storage container expands upward, and the grain iron is once raised along the wall by the kinetic energy applied from the rotating blade, and then the grain iron is separated. Is preferably lowered along the wall by the gravity applied to the wall. Further, it is preferable to swing the storage container while crushing the coagulated material by the rotating blade.

本発明によれば、簡便な手段で製鋼炉スラグの破砕と粒鉄の磁選とを同時に短時間で行なうことが可能であり、かつ破砕による製鋼炉スラグの凝固物の細粒化、ならびに磁選による粒鉄の確実な選別が可能となる。そして、蛍光X線分析によるトータルFeの測定精度が向上するので、産業上格段の効果を奏する。   According to the present invention, the crushing of the steelmaking furnace slag and the magnetic separation of the granular iron can be simultaneously performed in a short time by simple means, and the granulation of the solidified product of the steelmaking furnace slag by the crushing, and the magnetic separation can be performed. Reliable sorting of granular iron becomes possible. And, since the measurement accuracy of the total Fe by the fluorescent X-ray analysis is improved, an industrially remarkable effect is achieved.

本発明に係る破砕磁選装置の例を模式的に示す平面図である。It is a top view showing typically the example of the crushing magnetic separation device concerning the present invention. 図1に示す破砕磁選装置の側面を示す側面図である。It is a side view which shows the side surface of the crushing magnetic separation apparatus shown in FIG. 図1に示す破砕磁選装置の側面の別の例を示す側面図である。It is a side view which shows another example of the side surface of the crushing magnetic separation apparatus shown in FIG.

図1は本発明に係る破砕磁選装置の例を模式的に示す平面図である。製鋼炉スラグの凝固物を破砕するにあたって、凝固物を収納容器1に収納して、蓋を装着する。図1では収納容器1の内部を示すために、蓋は図示していない。そして図2に、その図1の側面図を示す。   FIG. 1 is a plan view schematically showing an example of a crushing magnetic separation apparatus according to the present invention. When crushing the solidified material of the steelmaking furnace slag, the solidified material is stored in the storage container 1 and a lid is attached. In FIG. 1, the lid is not shown to show the inside of the storage container 1. FIG. 2 shows a side view of FIG.

収納容器1の底部の内側には回転ブレード2が配設されており、収納容器1に蓋を装着した状態で、回転ブレード2を高速で回転させる。回転ブレード2の回転によって、製鋼炉スラグの凝固物と回転ブレード2とが繰り返し激しく衝突するので、凝固物が細かく破砕される。そして、製鋼炉スラグの凝固物中に分散している粒鉄が凝固物から分離されて、細粒の凝固物(以下、粉砕スラグという)と単体の粒鉄とが混在した状態となる。この過程で、粉砕スラグと粒鉄は、回転ブレード2から加えられる運動エネルギーによって、収納容器1の壁部へ飛散するが、蓋を装着して開口部を閉鎖しているので、収納容器1から外部へ飛び散るのは防止できる。   A rotating blade 2 is provided inside the bottom of the storage container 1, and the rotation blade 2 is rotated at a high speed with the lid attached to the storage container 1. As the rotating blade 2 rotates, the solidified material of the steelmaking furnace slag and the rotating blade 2 repeatedly and violently collide with each other, so that the solidified material is finely crushed. Then, the granular iron dispersed in the coagulated material of the steelmaking furnace slag is separated from the coagulated material, and the coagulated material of fine grains (hereinafter referred to as pulverized slag) and a single piece of granular iron are mixed. In this process, the crushed slag and the granular iron are scattered to the wall of the storage container 1 by the kinetic energy applied from the rotating blade 2, but since the opening is closed by attaching the lid, the storage container 1 Spattering to the outside can be prevented.

収納容器1の壁部の外側には、磁石3が配設されており、回転ブレード2によって飛散する粉砕スラグと粒鉄のうち、粒鉄のみが磁石3の磁力によって壁部の内側に磁着する。したがって収納容器1の材質は、金属等の磁力を透過し易いものが好ましい。具体的には、耐久性と価格の両立を図る観点から、ステンレス鋼製の収納容器1が好ましい。また、収納容器1内を飛散する粒鉄に磁石3の磁力を均等に作用させるために、収納容器1の水平断面形状は円形(図1参照)であることが好ましい。
一方で粉砕スラグは、収納容器1の壁部に衝突しても磁着せず、壁部に沿って滑落して、底部に貯留される。
The magnet 3 is disposed outside the wall of the storage container 1, and among the crushed slag and the granular iron scattered by the rotating blade 2, only the granular iron is magnetically attached to the inside of the wall by the magnetic force of the magnet 3. I do. Therefore, the material of the storage container 1 is preferably a material such as a metal that easily transmits magnetic force. Specifically, the storage container 1 made of stainless steel is preferable from the viewpoint of achieving both durability and price. Further, in order to uniformly apply the magnetic force of the magnet 3 to the granular iron scattered in the storage container 1, the horizontal cross-sectional shape of the storage container 1 is preferably circular (see FIG. 1).
On the other hand, even if the crushed slag collides with the wall of the storage container 1, it does not magnetically adhere, slides down along the wall, and is stored at the bottom.

このようにして、簡便な手段で製鋼炉スラグの破砕と粒鉄の磁選とを同時に短時間で行なうことが可能となる。しかも、破砕による粉砕スラグの細粒化、ならびに磁選による粒鉄の確実な選別が可能となる。
そして、回転ブレード2の回転を停止し、さらに蓋を取り外して、収納容器1の底部から粉砕スラグを回収すれば、蛍光X線分析の試料として好適に使用できる。
収納容器1から粉砕スラグを回収する手段は、特に限定しない。たとえば、手作業でつまみ上げる、スプーン状の治具を用いてすくい上げる等のように、適宜工夫して回収することができる。
In this way, it is possible to simultaneously carry out the crushing of the steelmaking furnace slag and the magnetic separation of the granular iron in a short time by simple means. Moreover, it is possible to make the crushed slag finer by crushing and to reliably sort the iron particles by magnetic separation.
If the rotation of the rotating blade 2 is stopped, the lid is further removed, and the pulverized slag is collected from the bottom of the storage container 1, it can be suitably used as a sample for X-ray fluorescence analysis.
The means for collecting the crushed slag from the storage container 1 is not particularly limited. For example, it can be collected by appropriately devising, for example, picking it up manually or scooping it up using a spoon-shaped jig.

また、粉砕スラグは磁着しないので、収納容器1を傾けて、粉砕スラグを壁部に沿って別の容器に流下させることによって回収できる。ただしその場合は、磁着している粒鉄が、粉砕スラグとの摩擦によって剥離して混入する惧れがある。そこで、図3に示すように、収納容器1の壁部に磁石3を配設しない部分を設けて、その部分を下側に向けて収納容器1を傾けることによって、粒鉄の混入を防止できる。つまり、磁石3を配設しない部分には粒鉄が磁着していないので、そこを流路として粉砕スラグを別の容器に流下させれば、粒鉄が粉砕スラグに混入するのを防止できる。   Further, since the crushed slag is not magnetically attached, it can be collected by tilting the storage container 1 and allowing the crushed slag to flow down to another container along the wall. However, in that case, there is a possibility that the magnetically-bonded granular iron may be separated and mixed by friction with the pulverized slag. Therefore, as shown in FIG. 3, a portion where the magnet 3 is not provided is provided on the wall portion of the storage container 1, and the storage container 1 is inclined with the portion directed downward, thereby preventing the mixing of granular iron. . That is, since the granular iron is not magnetically attached to the portion where the magnet 3 is not provided, if the pulverized slag flows down to another container using this as a flow path, it is possible to prevent the granular iron from being mixed into the pulverized slag. .

使用する磁石3の種類は、永久磁石、電磁石いずれも使用できる。ただし、電磁石は付帯設備(たとえば電源、配線等)が必要である。したがって、簡便な手段で破砕と磁選を同時に行なう観点から、永久磁石が好ましい。
磁石3の形状は、特に限定しない。磁石3を収納容器1の壁部に配設する際に、互いに隣り合う磁石同士の隙間を小さくすることが可能な形状(たとえば円形、正方形、正6角形等)のものを使用すれば良い。
As the type of the magnet 3 to be used, either a permanent magnet or an electromagnet can be used. However, the electromagnet requires ancillary equipment (for example, power supply, wiring, etc.). Therefore, a permanent magnet is preferred from the viewpoint of simultaneously performing crushing and magnetic separation by simple means.
The shape of the magnet 3 is not particularly limited. When arranging the magnets 3 on the wall of the storage container 1, it is sufficient to use one having a shape (for example, a circle, a square, a regular hexagon, or the like) capable of reducing a gap between adjacent magnets.

収納容器1は、既に説明した通り水平断面形状が円形であることが好ましい。加えて、その直径が上方に広がるように壁部を傾斜(図2、3参照)させることが好ましい。このように壁部を傾斜させることによって、粒鉄の磁着を促す効果が一層発揮される。つまり、回転ブレード2から加えられた運動エネルギーによって収納容器1の壁部に衝突した粒鉄は、傾斜した壁部に沿って一旦上昇した後、重力によって壁部に沿って下降する。その結果、磁石3の磁力が粒鉄に作用する時間を延長できるので、粒鉄を確実に磁着させることが可能となる。   As described above, the storage container 1 preferably has a circular horizontal cross-sectional shape. In addition, it is preferable to incline the wall (see FIGS. 2 and 3) so that the diameter increases upward. By inclining the wall portion in this manner, the effect of promoting magnetic adhesion of the granular iron is further exhibited. That is, the granular iron that has collided with the wall of the storage container 1 by the kinetic energy applied from the rotating blade 2 once rises along the inclined wall, and then descends along the wall by gravity. As a result, the time during which the magnetic force of the magnet 3 acts on the granular iron can be extended, so that the granular iron can be reliably magnetically bonded.

また、製鋼炉スラグの凝固物を破砕する間に、収納容器1を揺動させることによって、回転ブレード2の下側(すなわち回転ブレード2と収納容器1の底部との間)に滞留した凝固物を、回転ブレード2の上側へ移動させることができ、その結果、収納容器1内の凝固物を満遍なく破砕することが可能となる。
収納容器1を揺動する手段は、特に限定しない。たとえば、収納容器1を水平方向に往復運動させる、あるいは円弧方向に往復運動させる等の手段を用いるのが好ましい。
Further, by oscillating the storage container 1 during the crushing of the solidified material of the steelmaking furnace slag, the solidified material retained on the lower side of the rotary blade 2 (that is, between the rotary blade 2 and the bottom of the storage container 1). Can be moved to the upper side of the rotary blade 2, and as a result, the solidified matter in the storage container 1 can be uniformly crushed.
The means for swinging the storage container 1 is not particularly limited. For example, it is preferable to use means such as reciprocating the storage container 1 in the horizontal direction or reciprocating in the arc direction.

なお、本発明を適用して製鋼炉スラグの破砕と粒鉄の磁選とを同時に行なうにあたって、好適な回転ブレード2の回転速度(回/秒)や処理時間(秒)等の設定条件は、収納容器1の直径、収納容器1の壁部の傾斜角、回転ブレード2の寸法等に応じて変化するので、予め破砕磁選のテストを行なって好適な設定条件を求めておくことが好ましい。   In performing the crushing of the steelmaking furnace slag and the magnetic separation of the granular iron simultaneously by applying the present invention, the suitable setting conditions such as the rotation speed (times / second) of the rotary blade 2 and the processing time (second) are stored. Since it changes according to the diameter of the container 1, the inclination angle of the wall of the storage container 1, the size of the rotary blade 2, and the like, it is preferable to perform a test of crushing magnetic separation in advance to obtain suitable setting conditions.

このようにして操業中の製鋼炉から製鋼炉スラグを採取し、その製鋼炉スラグを冷却して凝固させた後、同じ工場内(たとえば操作室内)にて破砕と磁選を同時に行なうことによって短時間で試料を作成して、蛍光X線分析に供することができる。蛍光X線分析も同じく製鋼炉の工場内で行なうことが可能であるから、トータルFeの測定結果を直ちに製鋼炉の操業条件の調整に反映させることができる。   In this manner, the steelmaking furnace slag is collected from the operating steelmaking furnace, the steelmaking furnace slag is cooled and solidified, and then crushing and magnetic separation are performed simultaneously in the same factory (for example, in an operation room), thereby shortening the time. To prepare a sample, which can be subjected to X-ray fluorescence analysis. X-ray fluorescence analysis can also be performed in a steelmaking furnace factory, so that the total Fe measurement result can be immediately reflected in adjustment of operating conditions of the steelmaking furnace.

図1に示す本発明に係る破砕磁選装置を用いて、製鋼炉スラグとして電気炉スラグの凝固物の破砕と磁選を同時に行なって、粉砕スラグと粒鉄とを分離し、得られた粉砕スラグを蛍光X線分析に供してトータルFeを測定した。その手順について説明する。   Using the crushing magnetic separation apparatus according to the present invention shown in FIG. 1, crushing and magnetic separation of the coagulated material of the electric furnace slag as a steelmaking furnace slag are performed simultaneously to separate the crushed slag and the granular iron, and the obtained crushed slag is The sample was subjected to X-ray fluorescence analysis to measure total Fe. The procedure will be described.

製鋼炉スラグの凝固物の粗大な塊を収納容器1に収納し、蓋を装着して、回転ブレード2を高速で回転させて、凝固物を細かく破砕しながら、壁部へ飛散させて粒鉄を磁石3に磁着させた。磁石3は円形のフェライト磁石(TRUSCO社製、直径25mm、厚み4mm)を使用し、壁部に粘着テープで貼り付けたフェライト磁石は合計20個である。なお、収納容器1の壁部には磁石3を配設しない部分(図3参照)を設けて、破砕磁選が終了した後に細粒の凝固物を回収する際の流路とした。   A coarse lump of coagulated material of the steelmaking furnace slag is stored in the storage container 1, a lid is attached, the rotating blade 2 is rotated at a high speed, and while the coagulated material is finely crushed, the coagulated material is scattered to the wall to remove the iron particles. Was magnetically attached to the magnet 3. As the magnet 3, a circular ferrite magnet (manufactured by TRUSCO, diameter 25 mm, thickness 4 mm) is used, and a total of 20 ferrite magnets are attached to the wall with an adhesive tape. In addition, a portion (see FIG. 3) where the magnet 3 was not provided was provided on the wall portion of the storage container 1 to provide a flow path for collecting fine solidified matter after the completion of the crushing magnetic separation.

こうして、回転ブレード2を80秒間回転させる間に、適宜、収納容器1を揺動(円弧方向に±30°の往復運動)させた。そして回転ブレード2を停止した後、蓋を取り外し、さらに磁石3を配設しない部分を下側に向けて収納容器1を傾けることによって、粉砕スラグを別の容器に流下させて回収した。その回収した粉砕スラグ(粒径0.3mm以下)を蛍光X線分析に供してトータルFeを測定した。これを発明例とする。   In this way, while rotating the rotary blade 2 for 80 seconds, the storage container 1 was appropriately rocked (reciprocating movement of ± 30 ° in the arc direction). After the rotation blade 2 was stopped, the lid was removed, and the storage container 1 was tilted so that the portion where the magnet 3 was not provided was directed downward, so that the pulverized slag was flowed down to another container and collected. The collected pulverized slag (0.3 mm or less in particle size) was subjected to X-ray fluorescence analysis to measure total Fe. This is an invention example.

これに対して従来は、磁石を配設していない収納容器に製鋼炉スラグの凝固物の粗大な塊を収納し、蓋を装着した後、回転ブレードを高速で回転させて、凝固物を細かく破砕していた。破砕の所要時間は発明例と同じく80秒間であった。破砕が終了した後、蓋を取り外し、さらに作業員が手作業で磁石を収納容器内に差し入れて、粒鉄を磁石に磁着させて、破砕スラグと粒鉄を分離していた。こうして収納容器内に残留した粉砕スラグを蛍光X線分析に供してトータルFeを測定していた。これを従来例とする。
発明例と従来例の手順で12回ずつ蛍光X線分析を行なってトータルFeを測定した。その結果を表1に示す。
On the other hand, conventionally, a coarse lump of the coagulated material of the steelmaking furnace slag is stored in a storage container in which no magnet is provided, and after attaching a lid, the rotating blade is rotated at high speed to finely coagulate the coagulated material. Had been crushed. The time required for the crushing was 80 seconds as in the invention example. After the crushing was completed, the lid was removed, and a worker manually inserted a magnet into the storage container to magnetically attach the iron particles to the magnets, thereby separating the crushed slag and the iron particles. The ground slag remaining in the storage container was subjected to X-ray fluorescence analysis to measure the total Fe. This is a conventional example.
X-ray fluorescence analysis was performed 12 times each according to the procedure of the invention example and the conventional example, and total Fe was measured. Table 1 shows the results.

Figure 0006644625
Figure 0006644625

表1から明らかなように、測定値の最大値、最小値、平均値は、いずれも発明例の方が従来例よりも低くなっている。これは、発明例では粒鉄を十分に選別できたことを意味する。
また、最大値と最小値との差、標準偏差も発明例の方が小さくなっている。これは、発明例で使用した粉砕スラグ中に粒鉄が残留していないので、トータルFeの測定精度が向上したことを意味する。
As is clear from Table 1, the maximum value, the minimum value, and the average value of the measured values are all lower in the invention example than in the conventional example. This means that in the invention example, the granular iron was sufficiently selected.
Also, the difference between the maximum value and the minimum value and the standard deviation are smaller in the invention example. This means that the measurement accuracy of total Fe was improved because no granular iron remained in the pulverized slag used in the invention example.

さらに、従来例は破砕と磁選を別の工程として行なうのに対して、発明例は破砕と磁選を同時に行なうので、発明例では蛍光X線分析に供する試料の作成に要する時間を大幅に短縮できる。つまり、従来例における磁選の工程の所要時間は作業員の個人差によって変動するものの、発明例では、従来例における磁選の工程を省略できる。   Further, in the conventional example, the crushing and the magnetic separation are performed as separate steps, whereas in the example of the present invention, the crushing and the magnetic separation are performed at the same time. In the example of the present invention, the time required for preparing a sample to be subjected to the fluorescent X-ray analysis can be greatly reduced. . In other words, although the time required for the magnetic separation process in the conventional example varies depending on the individual differences of workers, the magnetic separation process in the conventional example can be omitted in the invention example.

1 収納容器
2 回転ブレード
3 磁石
DESCRIPTION OF SYMBOLS 1 Storage container 2 Rotating blade 3 Magnet

Claims (6)

蓋を着脱可能に装着できかつ製鋼炉スラグの凝固物を収納する収納容器と、該収納容器の底部の内側に配設されて前記凝固物を破砕するとともに前記凝固物を前記収納容器の壁部へ飛散させる回転ブレードと、前記壁部の外側に配設されて前記凝固物中の粒鉄を前記壁部の内側に磁着させる磁石と、を有することを特徴とする製鋼炉スラグ凝固物の破砕磁選装置。   A storage container to which a lid can be detachably attached and which stores the solidified product of the steelmaking furnace slag; and a wall portion of the storage container which is disposed inside a bottom portion of the storage container to crush the solidified product and to disperse the solidified product. A rotating blade that scatters to the wall portion, and a magnet that is disposed outside the wall portion and magnetizes the iron particles in the solidified portion to the inside of the wall portion. Crushing magnetic separator. 前記収納容器の直径が上方に広がるように前記壁部が傾斜することを特徴とする請求項1に記載の製鋼炉スラグ凝固物の破砕磁選装置。   The apparatus according to claim 1, wherein the wall is inclined so that the diameter of the storage container increases upward. 前記回転ブレードによって前記凝固物を破砕する間に、前記収納容器を揺動させる揺動手段を有することを特徴とする請求項1または2に記載の製鋼炉スラグ凝固物の破砕磁選装置。   The crushing magnetic separation apparatus for slag coagulated steelmaking furnace according to claim 1 or 2, further comprising a rocking means for rocking the storage container while crushing the coagulated material by the rotating blade. 収納容器に製鋼炉スラグの凝固物を収納し、前記収納容器に着脱可能な蓋を装着した後、前記収納容器の底部の内側に配設した回転ブレードを回転させて前記凝固物を破砕するとともに前記収納容器の壁部へ飛散させ、前記壁部の外側に配設した磁石によって前記凝固物中の粒鉄を前記壁部の内側に磁着させることを特徴とする製鋼炉スラグ凝固物の破砕磁選方法。   After storing the coagulated material of the steelmaking furnace slag in the storage container and attaching a detachable lid to the storage container, rotating the rotary blade disposed inside the bottom of the storage container to crush the coagulated product Crushing the steelmaking furnace slag coagulated material, wherein the steel iron slag is dispersed on the wall of the storage container, and the iron particles in the coagulated material are magnetically attached to the inside of the wall by a magnet disposed outside the wall. Magnetic separation method. 前記収納容器の直径が上方に広がるように前記壁部を傾斜させて、前記粒鉄を前記回転ブレードから加えられる運動エネルギーによって前記壁部に沿って一旦上昇させた後、前記粒鉄に加わる重力によって前記壁部に沿って下降させることを特徴とする請求項4に記載の製鋼炉スラグ凝固物の破砕磁選方法。   The wall portion is inclined so that the diameter of the storage container expands upward, and the granular iron is once raised along the wall portion by the kinetic energy applied from the rotating blade, and then gravity applied to the granular iron The method for crushing and magnetizing a steelmaking furnace slag solidified product according to claim 4, wherein the steelmaking furnace slag is lowered along the wall. 前記回転ブレードによって前記凝固物を破砕する間に、前記収納容器を揺動させることを特徴とする請求項4または5に記載の製鋼炉スラグ凝固物の破砕磁選方法。   The method according to claim 4 or 5, wherein the storage container is rocked while the solidified material is crushed by the rotating blade.
JP2016078734A 2016-04-11 2016-04-11 Apparatus and method for crushing magnetic separation of slag solidified in steelmaking furnace Active JP6644625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016078734A JP6644625B2 (en) 2016-04-11 2016-04-11 Apparatus and method for crushing magnetic separation of slag solidified in steelmaking furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016078734A JP6644625B2 (en) 2016-04-11 2016-04-11 Apparatus and method for crushing magnetic separation of slag solidified in steelmaking furnace

Publications (2)

Publication Number Publication Date
JP2017189721A JP2017189721A (en) 2017-10-19
JP6644625B2 true JP6644625B2 (en) 2020-02-12

Family

ID=60086453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016078734A Active JP6644625B2 (en) 2016-04-11 2016-04-11 Apparatus and method for crushing magnetic separation of slag solidified in steelmaking furnace

Country Status (1)

Country Link
JP (1) JP6644625B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117190724B (en) * 2023-11-03 2024-01-26 江苏奥派电气科技有限公司 Natural circulation efficient waste heat power generation device

Also Published As

Publication number Publication date
JP2017189721A (en) 2017-10-19

Similar Documents

Publication Publication Date Title
Bunge Recovery of metals from waste incinerator bottom ash
AU2017202002A1 (en) A process and system for dry recovery of iron-ore fines and superfines and a magnetic separation unit
JPH0422976B2 (en)
CN105451939A (en) Polishing tool and processing method for member
CN104162482A (en) Deironing and grading method for powder body
JP6644625B2 (en) Apparatus and method for crushing magnetic separation of slag solidified in steelmaking furnace
JP2019051472A (en) Magnetic separation method of steel-making slag, and magnetic separation device of steel-making slag
JP2019099838A (en) Treatment method of steel slag
CN209935835U (en) Vibration shakeout device capable of rapidly feeding and discharging
CN113613801A (en) Method for treating electronic and electrical equipment component scraps
CN202356148U (en) Iron removing structure of vertical mill
TWI790740B (en) Method for recovering valuable materials from lithium ion secondary cell
JP2020163256A (en) Selection method and selection device of used refractory material
JP5933800B1 (en) Mold-containing binder-containing sand and its production method
JPS63295458A (en) Process for recovering molten slag produced by electric steel making process fractionally and process for regenerating recovered molten slag
JP3564035B2 (en) Method and apparatus for separating and recovering metal and slag from metal-containing raw materials
Ott Experimental methods of flowsheet development for hard drive recycling by preferential degradation and physical separation
KR101311080B1 (en) Magnetic Separating Apparatus for Powder
CN214160386U (en) Mining wear-resisting steel ball sieving mechanism
CN215198154U (en) Quartz sand screening device
CN214132685U (en) Device for improving sand screening efficiency of washed white corundum section
RU2353682C2 (en) Processing method of disintegrating slag
RU2569291C1 (en) Method of manufacturing of steel powder to produce sintered products from ground sludge "+-15"
KR20140079435A (en) Slag ladle for separation and recovery of molten iron from slag
KR100908660B1 (en) Iron removal device of powder transportation path

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200108

R150 Certificate of patent or registration of utility model

Ref document number: 6644625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250