JP6643612B2 - High frequency oscillator - Google Patents

High frequency oscillator Download PDF

Info

Publication number
JP6643612B2
JP6643612B2 JP2015173096A JP2015173096A JP6643612B2 JP 6643612 B2 JP6643612 B2 JP 6643612B2 JP 2015173096 A JP2015173096 A JP 2015173096A JP 2015173096 A JP2015173096 A JP 2015173096A JP 6643612 B2 JP6643612 B2 JP 6643612B2
Authority
JP
Japan
Prior art keywords
magnetoresistive element
magnetization
layer
current source
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015173096A
Other languages
Japanese (ja)
Other versions
JP2017050727A (en
Inventor
知大 谷口
知大 谷口
久保田 均
均 久保田
章雄 福島
章雄 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2015173096A priority Critical patent/JP6643612B2/en
Publication of JP2017050727A publication Critical patent/JP2017050727A/en
Application granted granted Critical
Publication of JP6643612B2 publication Critical patent/JP6643612B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)

Description

本発明は、高周波発振器に関し、より具体的には、磁気抵抗素子の自励発振を利用する高周波発振器に関する。   The present invention relates to a high-frequency oscillator, and more specifically, to a high-frequency oscillator using self-excited oscillation of a magnetoresistive element.

マイクロ波帯(例えば、1GHzから100GHzの範囲の周波数)の通信は、近年重要になり、携帯電話、無線通信、衛星放送、車載レーダなど、多岐にわたって利用されている。その利用において、より小型で安価な高周波発振器の需要はますます大きくなっている。しかし、従来の半導体とLC共振器を用いた高周波発振器では、数GHz以上での周波数領域での小型化が難しいため、新しい原理による(あるいはLC共振器を必要としない)高周波発振器が望まれている。   Communication in the microwave band (for example, a frequency in the range of 1 GHz to 100 GHz) has become important in recent years, and is widely used in mobile phones, wireless communication, satellite broadcasting, on-vehicle radar, and the like. In its use, the demand for smaller and cheaper high-frequency oscillators is increasing. However, with conventional high-frequency oscillators using semiconductors and LC resonators, it is difficult to reduce the size in the frequency range above a few GHz, so a high-frequency oscillator based on a new principle (or that does not require an LC resonator) is desired. I have.

新しい原理による高周波発振として、微小な磁気抵抗素子に外部磁界下で直流電流を流すことでGHz帯の自励発振が起こることが見出され(非特許文献1)、その後、磁気抵抗素子の自励発振を用いた発振素子(以下、スピントルクオシレータ(STOと略す))においてより大きな出力を得るために、磁気抵抗比の大きな酸化マグネシウム(MgO)バリアを持つトンネル磁気抵抗素子でのマイクロ波発振の実現(非特許文献2)や、MgOバリアを持つトンネル磁気抵抗素子を構成要素とするマイクロ波発振器の提案(特許文献1)等が既になされている。また、最近では、STOに位相同期をかけ、より高いQ値の発振回路として用いる試みも行われている。   As high-frequency oscillation based on a new principle, it has been found that self-excited oscillation in the GHz band occurs when a DC current is applied to a minute magnetoresistive element under an external magnetic field (Non-Patent Document 1). In order to obtain a larger output in an oscillation element using excitation oscillation (hereinafter, spin torque oscillator (STO)), microwave oscillation in a tunnel magnetoresistive element with a magnesium oxide (MgO) barrier with a large magnetoresistance ratio (Non-Patent Document 2) and a proposal of a microwave oscillator using a tunnel magnetoresistive element having a MgO barrier as a component (Patent Document 1) have already been made. Recently, attempts have been made to apply phase synchronization to the STO and use it as an oscillation circuit with a higher Q value.

従来のSTOの開示では、STOの発振周波数は、磁気抵抗素子の材料によって決まりおおよそ数GHzから十数GHzの範囲であること、外部磁界下で与える直流電流の大きさにより発振周波数と振幅が変化することが示されている。しかし、STOが安定して発振する電流範囲は限られており、電流により発振周波数を大きく(例えば発振周波数の数分の一以上)変化させることは不可能であった。すなわち、外部磁界下で直流電流を制御するだけではSTOの発振周波数の制御に限界があった。   According to the conventional STO disclosure, the oscillation frequency of the STO is determined by the material of the magnetoresistive element and is approximately in the range of several GHz to several tens of GHz. It is shown to be. However, the current range in which the STO oscillates stably is limited, and it has not been possible to greatly change the oscillation frequency (for example, a fraction of the oscillation frequency or more) by the current. That is, there is a limit in controlling the oscillation frequency of the STO only by controlling the DC current under the external magnetic field.

特開2006-295908号公報JP 2006-295908 A

S. I. Kiselev, et al. ”Microwave oscillations of a nanomagnet driven by a spin-polarized current”, Nature, vol 425 (2003) 380, published 25 Sept. 2003S. I. Kiselev, et al. “Microwave oscillations of a nanomagnet driven by a spin-polarized current”, Nature, vol 425 (2003) 380, published 25 Sept. 2003 A. M. Deac, et al. “Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices”, Nature Physics 4 (2008) 803, published 10 Aug. 2008A. M. Deac, et al. “Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices”, Nature Physics 4 (2008) 803, published 10 Aug. 2008

本発明の目的は、上述した従来の技術の課題を解決/改善することであり、具体的には、STOを用いた高周波発振器において、発振周波数を大きく変化させることである。   An object of the present invention is to solve / improve the above-mentioned problem of the conventional technique, and specifically, to greatly change the oscillation frequency in a high-frequency oscillator using STO.

本発明の一態様では、第一の磁気抵抗素子と、第一の磁気抵抗素子を自励発振させるための第一の電流源と、第一の磁気抵抗素子に直列接続する第二の磁気抵抗素子と、第二の磁気抵抗素子が発する磁界を変化させるための第二の電流源と、を備える高周波発振器を提供する。   In one embodiment of the present invention, a first magnetoresistive element, a first current source for self-oscillating the first magnetoresistive element, and a second magnetoresistive element connected in series to the first magnetoresistive element Provided is a high-frequency oscillator including an element, and a second current source for changing a magnetic field generated by a second magnetoresistive element.

本発明の一態様によれば、第一の磁気抵抗素子の自励発振の状態を第一の電流源からの電流に加えて、第二の磁気抵抗素子が発する磁界(漏れ磁界)により制御することにより、言い換えれば外部磁界が無い状態で2つの電流源が供給する電流の制御により、発振周波数を大きく変化させることが可能な高周波発振器を提供することができる。   According to one embodiment of the present invention, the state of self-excited oscillation of the first magnetoresistive element is controlled by the magnetic field (leakage magnetic field) generated by the second magnetoresistive element, in addition to the current from the first current source. Thus, in other words, it is possible to provide a high-frequency oscillator capable of greatly changing the oscillation frequency by controlling the current supplied from the two current sources in the absence of an external magnetic field.

本発明の一態様では、第一の磁気抵抗素子に直列接続する第二の磁気抵抗素子に代えて、第一の磁気抵抗素子に並列接続する少なくとも一つの第二の磁気抵抗素子を備えることができる。   In one embodiment of the present invention, instead of the second magnetoresistance element connected in series to the first magnetoresistance element, at least one second magnetoresistance element connected in parallel to the first magnetoresistance element may be provided. it can.

本発明の一態様によれば、第一の磁気抵抗素子の周りに(平面上の周囲に)隣接して第二の磁気抵抗素子を複数配置することができ、その結果、第二の磁気抵抗素子からの漏れ磁界の大きさを複数のレベルで離散的に変化させ、STOの動作周波数を三つあるいは四つの周波数へと増やすことが可能である。   According to one embodiment of the present invention, a plurality of second magnetoresistance elements can be arranged adjacent to (around a plane) a first magnetoresistance element, and as a result, the second magnetoresistance element can be arranged. The operating frequency of the STO can be increased to three or four frequencies by discretely changing the magnitude of the leakage magnetic field from the element at a plurality of levels.

上記した本発明の一態様の各々では、第一の磁気抵抗素子は、磁化自由層、非磁性中間層、及び磁化固定層を含むトンネル磁気抵抗素子とし、第二の磁気抵抗素子は、磁化自由層、非磁性中間層、及び磁化固定層を含む巨大磁気抵抗素子とすることができる。   In each of the above aspects of the present invention, the first magnetoresistance element is a tunnel magnetoresistance element including a magnetization free layer, a nonmagnetic intermediate layer, and a magnetization fixed layer, and the second magnetoresistance element is a magnetization free layer. A giant magnetoresistive element including a layer, a non-magnetic intermediate layer, and a magnetization fixed layer can be provided.

本発明の一態様によれば、大きな磁気抵抗比を有するトンネル磁気抵抗素子によりSTOとして大きな発振出力を得ることができ、同時に、大きな電流を流すことができる巨大磁気抵抗素子により大きな漏れ磁界を発生/可変させてSTOの発振周波数を大きく変化させることが可能となる。   According to one embodiment of the present invention, a large oscillation output can be obtained as an STO by a tunnel magnetoresistance element having a large magnetoresistance ratio, and at the same time, a large leakage magnetic field is generated by a giant magnetoresistance element capable of flowing a large current. / It is possible to greatly change the oscillation frequency of the STO by changing

本発明の一実施形態の高周波発振器の構成(実施例1)を示す図である。FIG. 2 is a diagram illustrating a configuration (Example 1) of a high-frequency oscillator according to an embodiment of the present invention. 本発明の一実施形態の第一の磁気抵抗素子1の発振の概念図である。It is a conceptual diagram of the oscillation of the first magnetoresistive element 1 of one embodiment of the present invention. 本発明の一実施形態の第一の磁気抵抗素子1の発振の概念図である。It is a conceptual diagram of the oscillation of the first magnetoresistive element 1 of one embodiment of the present invention. 本発明の一実施形態の第二の磁気抵抗素子2の磁化反転の概念図である。It is a conceptual diagram of the magnetization reversal of the 2nd magnetoresistive element 2 of one Embodiment of this invention. 本発明の一実施形態の高周波発振器の他の構成(実施例2)を示す図である。FIG. 9 is a diagram illustrating another configuration (Example 2) of the high-frequency oscillator according to one embodiment of the present invention. 図5の本発明の一実施形態(実施例2)の高周波発振器の周波数特性の計算結果を示す図である。FIG. 6 is a diagram illustrating calculation results of frequency characteristics of the high-frequency oscillator according to the embodiment (Example 2) of the present invention illustrated in FIG. 5. 本発明の一実施形態の高周波発振器の他の構成(実施例3)を示す図である。FIG. 9 is a diagram illustrating another configuration (Example 3) of the high-frequency oscillator according to one embodiment of the present invention. 本発明の一実施形態の高周波発振器の他の構成(実施例4)を示す図である。FIG. 14 is a diagram illustrating another configuration (Example 4) of the high-frequency oscillator according to one embodiment of the present invention. 本発明の一実施形態の高周波発振器の他の構成(実施例5)を示す図である。FIG. 14 is a diagram illustrating another configuration (Example 5) of the high-frequency oscillator according to one embodiment of the present invention.

図1〜図9を参照しながら本発明の実施形態(実施例)について以下に説明する。   An embodiment (example) of the present invention will be described below with reference to FIGS.

図1は、自励発振を行うとして働く第一の磁気抵抗素子1と、漏れ磁界を発生させる第二の磁気抵抗素子2からなる高周波発振器100の一例である。図1の例では、第一の磁気抵抗素子1と第二の磁気抵抗素子2が直列接続されていることを特徴とする。第一の磁気抵抗素子1は、磁化自由層11と、トンネルバリア層(非磁性中間層)12と、磁化固定層13を含む。第二の磁気抵抗素子2は、磁化自由層21と、非磁性中間層22と、磁化固定層23を含む。第一の磁気抵抗素子1には自励発振を励起するための電流源3と、第二の磁気抵抗素子2にはその磁化配置(方向)を変化させるための電流源4が接続されている。   FIG. 1 shows an example of a high-frequency oscillator 100 including a first magnetoresistive element 1 serving as a self-excited oscillation and a second magnetoresistive element 2 for generating a leakage magnetic field. The example of FIG. 1 is characterized in that a first magnetoresistance element 1 and a second magnetoresistance element 2 are connected in series. The first magnetoresistance element 1 includes a magnetization free layer 11, a tunnel barrier layer (nonmagnetic intermediate layer) 12, and a magnetization fixed layer 13. The second magnetoresistive element 2 includes a magnetization free layer 21, a non-magnetic intermediate layer 22, and a magnetization fixed layer 23. A current source 3 for exciting self-excited oscillation is connected to the first magnetoresistive element 1, and a current source 4 for changing the magnetization arrangement (direction) is connected to the second magnetoresistive element 2. .

第一の磁気抵抗素子1はSTOとして高い出力を得ることが望ましいので、高い磁気抵抗比(以下MR比と記する)をもつ、トンネル磁気抵抗素子を用いることが望ましい。また、第二の磁気抵抗素子2を反転させるのに必要な電流に対して、第一の磁気抵抗素子1の耐電圧が十分大きければ、第二の磁気抵抗素子2への電流源4を省略することが可能である。しかし、現状ではそのような高耐電圧のトンネル磁気抵抗素子は存在しないので、図1に示すように第二の磁気抵抗素子2への電源4を別に設けることが望ましい。さらに、第二の磁気抵抗素子2は漏れ磁界を発生させるためであり、高い磁気抵抗比を備える必要はない。そのため、トンネル磁気抵抗素子に比べて大きな電流を流すことができる巨大磁気抵抗素子を用いることが望ましい。   Since it is desirable for the first magnetoresistance element 1 to obtain a high output as STO, it is desirable to use a tunnel magnetoresistance element having a high magnetoresistance ratio (hereinafter referred to as MR ratio). If the withstand voltage of the first magnetoresistive element 1 is sufficiently large with respect to the current required to reverse the second magnetoresistive element 2, the current source 4 to the second magnetoresistive element 2 is omitted. It is possible to However, at present, there is no such tunnel magnetic resistance element having a high withstand voltage. Therefore, it is desirable to separately provide a power supply 4 for the second magnetic resistance element 2 as shown in FIG. Further, the second magnetoresistance element 2 is for generating a leakage magnetic field, and does not need to have a high magnetoresistance ratio. Therefore, it is desirable to use a giant magnetoresistive element that can pass a larger current than a tunnel magnetoresistive element.

したがって、第一の磁気抵抗素子1としては、例えば、FeBを磁化自由層11、MgOをトンネルバリア層12、CoFeBを磁化固定層13とするトンネル磁気抵抗素子を利用することができる。第二の磁気抵抗素子2としては、例えば、FePtを磁化自由層21、Auを非磁性中間層22、FePtを磁化固定層23とする巨大磁気抵抗素子を利用することができる。なお、これらの各層の材料はあくまで一例であって、後述する第一の磁気抵抗素子1及び第二の磁気抵抗素子2の動作が可能であれば、他の材料及びその組み合わせを利用することができる。   Therefore, as the first magnetoresistive element 1, for example, a tunnel magnetoresistive element having FeB as the magnetization free layer 11, MgO as the tunnel barrier layer 12, and CoFeB as the magnetization fixed layer 13 can be used. As the second magnetoresistive element 2, for example, a giant magnetoresistive element having FePt as the magnetization free layer 21, Au as the non-magnetic intermediate layer 22, and FePt as the magnetization fixed layer 23 can be used. Note that the materials of these layers are merely examples, and other materials and combinations thereof can be used as long as the first and second magnetoresistive elements 1 and 2 described below can operate. it can.

ここで、図2〜図4を参照しながら図1の第一の磁気抵抗素子1と第二の磁気抵抗素子2の動作の概要を説明する。なお、下記に説明する実施例2〜5においても、この2つの磁気抵抗素子1、2の動作は基本的に同様である。図2は、第一の磁気抵抗素子1における発振の概念図である。図2では、磁化自由層11と磁化固定層13の両方が面内磁化膜からなる。(a)では、電流源3から直流電流を、磁化自由層11から磁化固定層13へ向かう方向(図の上から下)に流す。この場合、両層において磁化状態の変化はなく、磁化自由層11の磁化の向き15と、磁化固定層13の磁化の向き16は、層の面(水平)方向に保持されている。   Here, the outline of the operation of the first magnetoresistive element 1 and the second magnetoresistive element 2 of FIG. 1 will be described with reference to FIGS. The operations of the two magnetoresistive elements 1 and 2 are basically the same in Examples 2 to 5 described below. FIG. 2 is a conceptual diagram of the oscillation in the first magnetoresistance element 1. In FIG. 2, both the magnetization free layer 11 and the magnetization fixed layer 13 are formed of in-plane magnetization films. 2A, a direct current is supplied from the current source 3 in a direction from the magnetization free layer 11 to the magnetization fixed layer 13 (from the top to the bottom of the drawing). In this case, there is no change in the magnetization state in both layers, and the magnetization direction 15 of the magnetization free layer 11 and the magnetization direction 16 of the magnetization fixed layer 13 are maintained in the plane (horizontal) direction of the layer.

図2の(b)では、電流源3から比較的小さな直流電流を(a)の場合とは逆向きに、すなわち磁化固定層13から磁化自由層11へ向かう方向(図の下から上)に流す。この場合、磁化自由層11の磁化の向き15が楕円(容易磁化方向)17内において歳差運動可能な状態となり、外部磁界下で小さな自励発振が起こる。(c)と(d)は、(b)の場合と同じ電流の向きで、直流電流を中電流、大電流へと増やした場合を示す。電流の増加に伴って中程度の発振(c)と大きな発振(d)が発生可能となる。このように、磁化自由層11と磁化固定層13の両方が面内磁化膜からなる場合、電流源3からの直流電流の向きと大きさによって、第一の磁気抵抗素子1(磁化自由層11)の発振の有無とその大きさを制御することができる。なお、本発明では、詳細は後述するように、外部磁界として第二の磁気抵抗素子2が発する漏れ磁界を利用する。   In FIG. 2B, a relatively small DC current is supplied from the current source 3 in the opposite direction to that in FIG. 2A, that is, in the direction from the magnetization fixed layer 13 to the magnetization free layer 11 (from bottom to top in the figure). Shed. In this case, the magnetization direction 15 of the magnetization free layer 11 is in a state where it can be precessed within the ellipse (easy magnetization direction) 17, and a small self-excited oscillation occurs under an external magnetic field. (c) and (d) show a case where the DC current is increased to a medium current and a large current in the same current direction as in (b). As the current increases, medium oscillation (c) and large oscillation (d) can be generated. As described above, when both the magnetization free layer 11 and the magnetization fixed layer 13 are formed of in-plane magnetization films, the first magnetoresistive element 1 (the magnetization free layer 11) depends on the direction and magnitude of the DC current from the current source 3. ) Can control the presence or absence of oscillation and its magnitude. In the present invention, as will be described in detail later, a leakage magnetic field generated by the second magnetoresistive element 2 is used as an external magnetic field.

図3では、磁化自由層11が面内磁化膜からなり、磁化固定層13が垂直磁化膜からなる場合の発振の概念図である。(a)、(b)ともに磁化固定層13の磁化の向き16は垂直上向きである。(a)では、電流源3から直流電流を磁化自由層11から磁化固定層13へ向かう方向(図の上から下)に流す。この場合、磁化自由層11の磁化の向き15が楕円(容易磁化方向)17内において歳差運動可能となり、外部磁界下で自励発振が起こる。   FIG. 3 is a conceptual diagram of oscillation when the magnetization free layer 11 is formed of an in-plane magnetization film and the magnetization fixed layer 13 is formed of a perpendicular magnetization film. In both (a) and (b), the magnetization direction 16 of the magnetization fixed layer 13 is vertically upward. 3A, a direct current is supplied from the current source 3 in a direction from the magnetization free layer 11 to the magnetization fixed layer 13 (from the top to the bottom of the drawing). In this case, the magnetization direction 15 of the magnetization free layer 11 can be precessed within the ellipse (easy magnetization direction) 17, and self-excited oscillation occurs under an external magnetic field.

図3の(b)では、電流源3から直流電流を(a)の場合とは逆向きに、すなわち磁化固定層13から磁化自由層11へ向かう方向(図の下から上)に流す。この場合、同様に磁化自由層11の磁化の向き15が楕円(容易磁化方向)17内において歳差運動可能となり、外部磁界下で自励発振が起こる。このように、磁化自由層11が面内磁化膜からなり、磁化固定層13が垂直磁化膜からなる場合、電流源3からの直流電流の向きが上下どちらであっても発振し、直流電流の大きさによって発振の大きさを変えることができる。   In FIG. 3B, a direct current is supplied from the current source 3 in a direction opposite to that in FIG. 3A, that is, in a direction from the magnetization fixed layer 13 to the magnetization free layer 11 (from bottom to top in the figure). In this case, similarly, the magnetization direction 15 of the magnetization free layer 11 can be precessed within the ellipse (easy magnetization direction) 17, and self-excited oscillation occurs under an external magnetic field. As described above, when the magnetization free layer 11 is formed of the in-plane magnetization film and the magnetization fixed layer 13 is formed of the perpendicular magnetization film, oscillation occurs regardless of whether the direction of the DC current from the current source 3 is up or down. The magnitude of oscillation can be changed depending on the magnitude.

図4は、本発明の一実施形態の第二の磁気抵抗素子2の磁化反転の概念図である。(a)では、最初に磁化自由層21の磁化の向き25と磁化固定層23の磁化の向き26が反平行な状態にある。この状態で、電流源4から直流電流を磁化自由層21から磁化固定層23へ向かう方向(図の上から下)に流す。すると、(b)に示すように、磁化自由層21の磁化の向き25と磁化固定層23の磁化の向き26が平行な状態になる。   FIG. 4 is a conceptual diagram of the magnetization reversal of the second magnetoresistance element 2 according to one embodiment of the present invention. In (a), first, the magnetization direction 25 of the magnetization free layer 21 and the magnetization direction 26 of the magnetization fixed layer 23 are in an antiparallel state. In this state, a DC current flows from the current source 4 in a direction from the magnetization free layer 21 to the magnetization fixed layer 23 (from the top to the bottom in the drawing). Then, as shown in (b), the magnetization direction 25 of the magnetization free layer 21 and the magnetization direction 26 of the magnetization fixed layer 23 are in parallel.

次に、(c)に示すように、電流源4から直流電流を磁化固定層23から磁化自由層21へ向かう方向(図の下から上)に流す。すると、(d)に示すように、磁化自由層21の磁化の向き25と磁化固定層23の磁化の向き26が反平行な状態になる。このように、第二の磁気抵抗素子2に流す直流電流の向きに応じて磁化の向きを反転させることができる。第二の磁気抵抗素子2は、電流を流さない状態で、(b)の磁化の向きが平行な状態と(d)の磁化の向きが反平行な状態の2つの安定状態を持ち、この2つの状態において漏れ磁界に差が出るように構成される。すなわち、上記の(b)と(d)の磁化状態の変更によって、漏れ磁界の切り替え制御をおこなう。   Next, as shown in (c), a DC current flows from the current source 4 in the direction from the magnetization fixed layer 23 to the magnetization free layer 21 (from the bottom to the top in the figure). Then, as shown in (d), the magnetization direction 25 of the magnetization free layer 21 and the magnetization direction 26 of the magnetization fixed layer 23 become antiparallel. Thus, the direction of magnetization can be reversed according to the direction of the DC current flowing through the second magnetoresistive element 2. The second magnetoresistive element 2 has two stable states in which no current flows and a state in which the magnetization directions in (b) are parallel and a state in which the magnetization directions in (d) are antiparallel. It is configured so that the leakage magnetic field has a difference in the two states. That is, switching of the leakage magnetic field is controlled by changing the magnetization states of (b) and (d) described above.

図5は、本発明の一実施形態の高周波発振器100の他の構成(実施例2)を示す図である。図5の構成は、図1の高周波発振器100の構成と比較して、第一の磁気抵抗素子1の磁化自由層11と磁化固定層13の位置が上下で逆になっている点が異なり、他の構成は両者で同様である。図5の構成では、第一の磁気抵抗素子1の磁化自由層11を第二の磁気抵抗素子2に近づけることで、第二の磁気抵抗素子2の漏れ磁界を磁化自由層11に与える効率を高くすることができる。   FIG. 5 is a diagram showing another configuration (Example 2) of the high-frequency oscillator 100 according to one embodiment of the present invention. The configuration of FIG. 5 is different from the configuration of the high-frequency oscillator 100 of FIG. 1 in that the positions of the magnetization free layer 11 and the magnetization fixed layer 13 of the first magnetoresistive element 1 are vertically inverted. Other configurations are the same for both. In the configuration of FIG. 5, by bringing the magnetization free layer 11 of the first magnetoresistance element 1 close to the second magnetoresistance element 2, the efficiency of giving the leakage magnetic field of the second magnetoresistance element 2 to the magnetization free layer 11 is improved. Can be higher.

図6は、図5の本発明の一実施形態(実施例2)の高周波発振器の周波数特性の計算結果を示す図である。図6は、第二の磁気抵抗素子2の漏れ磁界により、STOである第一の磁気抵抗素子1の発振周波数が、どのくらい変化するかを数値計算によって見積もった結果である。図6の(a)では、簡便のため第一の磁気抵抗素子1の磁化自由層11と、磁化自由層11にかかる漏れ磁界の第二の磁気抵抗素子2の二つの磁性層の磁化の方向を示す矢印25、26のみを記している。第二の磁気抵抗素子2の二つの磁性層が平行の場合最も大きな漏れ磁界が発生し、反平行の場合は打ち消し合って漏れ磁界は小さくなる。   FIG. 6 is a diagram showing calculation results of frequency characteristics of the high-frequency oscillator according to the embodiment (Example 2) of the present invention shown in FIG. FIG. 6 is a result obtained by estimating, by numerical calculation, how much the oscillation frequency of the first magnetoresistive element 1 which is the STO changes due to the leakage magnetic field of the second magnetoresistive element 2. In FIG. 6A, the magnetization directions of the magnetization free layer 11 of the first magnetoresistance element 1 and the two magnetic layers of the second magnetoresistance element 2 due to the leakage magnetic field applied to the magnetization free layer 11 are shown for simplicity. Are indicated only by the arrows 25 and 26 indicating. When the two magnetic layers of the second magnetoresistive element 2 are parallel, the largest leakage magnetic field is generated, and when they are antiparallel, they cancel each other out and the leakage magnetic field becomes small.

この数値計算に用いたパラメータは、以下の通りである。ここで磁化自由層11の材料としてFeBを仮定している。

・磁化自由層の磁化: 1500emu/c.c.
・磁化自由層のダンピング: 0.01
・磁化自由層の磁気回転比: 17.6 × 106rad/(Oe s)
・磁化自由層の厚み: 2nm
・スピントルクのスピン偏極率: 0.7
・スピントルクの非対称性: スピントルクのスピン偏極率の2乗
・電流密度: 5×106A/cm2
・漏れ磁界の大きさ: ±600 Oe
The parameters used in this numerical calculation are as follows. Here, FeB is assumed as the material of the magnetization free layer 11.

・ Magnetization of magnetization free layer: 1500emu / cc
・ Damping of magnetization free layer: 0.01
・ Magnetorotation ratio of the magnetization free layer: 17.6 × 10 6 rad / (Oes)
・ Thickness of magnetization free layer: 2nm
・ Spin polarization of spin torque: 0.7
・ Asymmetry of spin torque: square of spin polarization of spin torque ・ Current density: 5 × 10 6 A / cm 2
・ The magnitude of leakage magnetic field: ± 600 Oe

図6(b)のグラフA、Bより、外部磁界ゼロにおいて、第二の磁気抵抗素子2の漏れ磁界がAの+600 OeからBの−600 Oeへと変化した時、本発明による一実施例の高周波発振器100の発振周波数は、14GHzから10GHzへと大きく変化することが分かる。図5に示した例では、第二の磁気抵抗素子2からの漏れ磁界が大きな場合(平行状態)と、小さな場合(反平行状態)での変化を検討すべきであるので、周波数の変化は上記の半分程度と見積もることができる。また、この漏れ磁界の大きさ(600 Oe程度)は、CoPt/Ru/CoPt等の反強磁性結合した垂直磁化膜を利用することで実現可能な大きさである。   According to the graphs A and B of FIG. 6B, when the external magnetic field is zero, when the leakage magnetic field of the second magnetoresistive element 2 changes from +600 Oe of A to −600 Oe of B, one embodiment according to the present invention. It can be seen that the oscillation frequency of the high-frequency oscillator 100 greatly changes from 14 GHz to 10 GHz. In the example shown in FIG. 5, changes in the case where the leakage magnetic field from the second magnetoresistive element 2 is large (parallel state) and in the case where it is small (antiparallel state) should be considered. It can be estimated to be about half of the above. The magnitude of the leakage magnetic field (about 600 Oe) can be realized by using an antiferromagnetically coupled perpendicular magnetization film such as CoPt / Ru / CoPt.

図7は、本発明の一実施形態の高周波発振器100の他の構成(実施例3)を示す図である。図7では、第一の磁気抵抗素子1と第二の磁気抵抗素子2が並列に接合されている。他の構成は図1の構成と同様である。第一の磁気抵抗素子1には自励発振を励起するための電流源3と、第二の磁気抵抗素子2にはその磁化配置を変化させるための電流源4が接続されている。第二の磁気抵抗素子2は、図4を参照しながら既に上述したように、電流を流さない状態で二つの安定状態を持ち、この二つの状態において漏れ磁界に差が出るように構成される。さらに、第二の磁気抵抗素子2の磁化状態を変化させる手法として、電流源4からの第二の磁気抵抗素子2を貫く直流電流を利用する。   FIG. 7 is a diagram illustrating another configuration (Example 3) of the high-frequency oscillator 100 according to an embodiment of the present invention. In FIG. 7, the first magnetoresistive element 1 and the second magnetoresistive element 2 are joined in parallel. Other configurations are the same as those in FIG. The first magnetoresistive element 1 is connected to a current source 3 for exciting self-excited oscillation, and the second magnetoresistive element 2 is connected to a current source 4 for changing its magnetization arrangement. As described above with reference to FIG. 4, the second magnetoresistive element 2 has two stable states in a state where no current flows, and is configured such that a difference occurs in a leakage magnetic field in these two states. . Further, as a method of changing the magnetization state of the second magnetoresistive element 2, a DC current from the current source 4 passing through the second magnetoresistive element 2 is used.

第一の磁気抵抗素子1と第二の磁気抵抗素子2を並列に配列することで、図1の実施例1の構成よりも第二の磁気抵抗素子2から第一の磁気抵抗素子1へ漏れ磁界を与える効率は悪くなることが予測される。しかし、第二の磁気抵抗素子2を複数にすること、すなわち漏れ磁界を与える第三の磁気抵抗素子、または第四の磁気抵抗素子を備えることで、漏れ磁界の大きさを離散的に変化させ、STOの動作周波数を三つの周波数、あるいは四つの周波数に増やすことも可能である。   By arranging the first magnetoresistive element 1 and the second magnetoresistive element 2 in parallel, the leakage from the second magnetoresistive element 2 to the first magnetoresistive element 1 is smaller than in the configuration of the first embodiment shown in FIG. It is expected that the efficiency of applying the magnetic field will be reduced. However, by providing a plurality of second magnetoresistive elements 2, that is, by providing a third magnetoresistive element or a fourth magnetoresistive element for providing a leakage magnetic field, the magnitude of the leakage magnetic field is discretely changed. It is also possible to increase the operating frequency of the STO to three or four frequencies.

図8は、本発明の一実施形態の高周波発振器100の他の構成(実施例4)を示す図である。図8では、図1の実施例1の構成と同様に、第一の磁気抵抗素子1と第二の磁気抵抗素子2が直列に接合されている。図1の実施例1の構成と違って、第二の磁気抵抗素子2では、磁化自由層21が磁化固定層23の下側に配置されている。第一の磁気抵抗素子1には自励発振を励起するための電流源3が接続されている。第二の磁気抵抗素子2は、図4を参照しながら既に上述したように、電流を流さない状態で2つの安定状態を持ち、この二つの状態において漏れ磁界に差が出るように構成される。   FIG. 8 is a diagram illustrating another configuration (Example 4) of the high-frequency oscillator 100 according to an embodiment of the present invention. In FIG. 8, the first magnetoresistive element 1 and the second magnetoresistive element 2 are connected in series similarly to the configuration of the first embodiment of FIG. Unlike the configuration of the first embodiment shown in FIG. 1, in the second magnetoresistive element 2, the magnetization free layer 21 is disposed below the magnetization fixed layer 23. A current source 3 for exciting self-pulsation is connected to the first magnetoresistive element 1. As described above with reference to FIG. 4, the second magnetoresistive element 2 has two stable states in a state where no current flows, and is configured such that a difference occurs in a leakage magnetic field in these two states. .

さらに、第二の磁気抵抗素子2の磁化状態を変化させる方法として、第二の磁気抵抗素子2の磁化自由層21に接した非磁性金属端子6を流れる電流によるスピン軌道トルクを利用することを特徴とする。ここで、非磁性金属としては、TaまたはPtが望ましい。第二の磁気抵抗素子2の磁化配置を変化させるための電流源4は、非磁性金属端子6に電流が流れるように接続されている。このような配置を取る時、STOである第一の磁気抵抗素子1に、第二の磁気抵抗素子2の磁化反転を行うための電流を流さなくても済むという利点がある。   Further, as a method of changing the magnetization state of the second magnetoresistive element 2, use of a spin orbit torque caused by a current flowing through the nonmagnetic metal terminal 6 in contact with the magnetization free layer 21 of the second magnetoresistive element 2. Features. Here, Ta or Pt is desirable as the nonmagnetic metal. A current source 4 for changing the magnetization arrangement of the second magnetoresistive element 2 is connected so that a current flows through the nonmagnetic metal terminal 6. In such an arrangement, there is an advantage that it is not necessary to supply a current for inverting the magnetization of the second magnetoresistive element 2 to the first magnetoresistive element 1 which is an STO.

図9は、本発明の一実施形態の高周波発振器100の他の構成(実施例5)を示す図である。図9では、図1の実施例1の構成と同様に、第一の磁気抵抗素子1と第二の磁気抵抗素子2が直列に接合されている。図1の実施例1の構成と違って、第二の磁気抵抗素子2では、磁化自由層21が磁化固定層23の下側に配置されている。第二の磁気抵抗素子2は、電流を流さない状態で2つの安定状態を持ち、この二つの状態において漏れ磁界に差が出るように構成される。さらに、第二の磁気抵抗素子2の磁化状態を変化させる方法として、第二の磁気抵抗素子2の磁化自由層21の近傍に設けた電線7に直流電流を流すことで生成した磁界を利用することを特徴とする。このような配置を取る時、図8の構成例(実施例4)の場合と同様に、STOである第一の磁気抵抗素子1に、第二の磁気抵抗素子2の磁化反転を行うための電流を流さなくても済むという利点がある。   FIG. 9 is a diagram showing another configuration (Example 5) of the high-frequency oscillator 100 according to one embodiment of the present invention. In FIG. 9, the first magnetoresistive element 1 and the second magnetoresistive element 2 are connected in series, similarly to the configuration of the first embodiment of FIG. Unlike the configuration of the first embodiment shown in FIG. 1, in the second magnetoresistive element 2, the magnetization free layer 21 is disposed below the magnetization fixed layer 23. The second magnetoresistive element 2 has two stable states in a state where no current flows, and is configured such that there is a difference in a leakage magnetic field in these two states. Further, as a method of changing the magnetization state of the second magnetoresistance element 2, a magnetic field generated by passing a direct current through the electric wire 7 provided near the magnetization free layer 21 of the second magnetoresistance element 2 is used. It is characterized by the following. When such an arrangement is adopted, as in the case of the configuration example (Embodiment 4) in FIG. 8, the first magnetoresistance element 1 which is an STO is used to perform the magnetization reversal of the second magnetoresistance element 2. There is an advantage that it is not necessary to supply a current.

本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。さらに、本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。   Embodiments of the present invention have been described with reference to the drawings. However, the present invention is not limited to these embodiments. Furthermore, the present invention can be implemented in various modified, modified, and modified embodiments based on the knowledge of those skilled in the art without departing from the spirit thereof.

本発明の高周波発振器は、携帯電話、無線通信、衛星放送、車載レーダなどで使用可能なマイクロ波帯の通信機器の局部発振器として利用することができる。   The high-frequency oscillator according to the present invention can be used as a local oscillator of a communication device in a microwave band that can be used in mobile phones, wireless communication, satellite broadcasting, in-vehicle radar, and the like.

1:第一の磁気抵抗素子
2:第二の磁気抵抗素子
3、4:電流源
6:非磁性金属端子(層)
7:導電(金属)層
11、21:磁化自由層
12、22:トンネルバリア層(非磁性中間層)
13、23:磁化固定層
15、16、25、26:磁化の向き
17:容易磁化方向
100:高周波発振器
1: first magnetic resistance element 2: second magnetic resistance element 3, 4: current source 6: non-magnetic metal terminal (layer)
7: conductive (metal) layer 11, 21: magnetization free layer 12, 22: tunnel barrier layer (non-magnetic intermediate layer)
13, 23: fixed magnetization layer 15, 16, 25, 26: magnetization direction 17: easy magnetization direction 100: high frequency oscillator

Claims (5)

第一の磁気抵抗素子と、
第一の磁気抵抗素子を自励発振させるための第一の電流源と、
第一の磁気抵抗素子に直列接続する第二の磁気抵抗素子と、
第二の磁気抵抗素子が発する磁界を変化させるための第二の電流源と、
表面が第二の磁気抵抗素子に接合し、2つの端部が第二の電流源に接続する非磁性金属層と、を備え、
第二の電流源は、非磁性金属層の2つの端部間を流れる直流電流の大きさを変えることにより第二の磁気抵抗素子が発する磁界の大きさを変化させる、高周波発振器。
A first magnetoresistive element,
A first current source for causing the first magnetoresistive element to self-oscillate,
A second magnetoresistance element connected in series to the first magnetoresistance element,
A second current source for changing the magnetic field generated by the second magnetoresistive element,
A nonmagnetic metal layer having a surface joined to the second magnetoresistive element and two ends connected to the second current source;
The second current source is a high-frequency oscillator that changes the magnitude of a magnetic field generated by the second magnetoresistive element by changing the magnitude of a direct current flowing between two ends of the nonmagnetic metal layer.
第一の磁気抵抗素子と、
第一の磁気抵抗素子を自励発振させるための第一の電流源と、
第一の磁気抵抗素子に直列接続する第二の磁気抵抗素子と、
第二の磁気抵抗素子が発する磁界を変化させるための第二の電流源と、
第二の磁気抵抗素子の近傍に設けられ、2つの端部が第二の電流源に接続する導線と、を備え、
第二の電流源は、導線の2つの端部間を流れる直流電流の大きさを変えることにより第二の磁気抵抗素子が発する磁界の大きさを変化させる、高周波発振器。
A first magnetoresistive element,
A first current source for causing the first magnetoresistive element to self-oscillate,
A second magnetoresistance element connected in series to the first magnetoresistance element,
A second current source for changing the magnetic field generated by the second magnetoresistive element,
A conductor provided near the second magnetoresistive element and having two ends connected to the second current source;
The second current source is a high-frequency oscillator that changes the magnitude of a magnetic field generated by the second magnetoresistive element by changing the magnitude of a direct current flowing between two ends of the conductor.
前記第一の磁気抵抗素子は、順番に積層された磁化固定層、非磁性中間層、及び磁化自由層を含むトンネル磁気抵抗素子からなり、
前記第二の磁気抵抗素子は、順番に積層された磁化自由層、非磁性中間層、及び磁化固定層を含む巨大磁気抵抗素子からなる、請求項1に記載の高周波発振器。
The first magnetoresistive element is composed of a tunneling magnetoresistive element including a magnetization fixed layer, a nonmagnetic intermediate layer, and a magnetization free layer that are sequentially stacked,
2. The high-frequency oscillator according to claim 1, wherein the second magnetoresistive element includes a giant magnetoresistive element including a magnetization free layer, a non-magnetic intermediate layer, and a magnetization fixed layer which are sequentially stacked. 3.
前記第一の磁気抵抗素子は、順番に積層された磁化固定層、非磁性中間層、及び磁化自由層を含むトンネル磁気抵抗素子からなり、
前記第二の磁気抵抗素子は、順番に積層された磁化自由層、非磁性中間層、及び磁化固定層を含む巨大磁気抵抗素子からなる、請求項2に記載の高周波発振器。
The first magnetoresistive element is composed of a tunneling magnetoresistive element including a magnetization fixed layer, a nonmagnetic intermediate layer, and a magnetization free layer that are sequentially stacked,
3. The high-frequency oscillator according to claim 2, wherein the second magnetoresistive element comprises a giant magnetoresistive element including a magnetization free layer, a non-magnetic intermediate layer, and a magnetization fixed layer, which are sequentially stacked.
前記第二の磁気抵抗素子の前記磁化自由層は前記非磁性金属層の表面に接合し、前記非磁性金属層を流れる前記直流電流によって発生するスピン軌道トルクによって前記第二の磁気抵抗素子の磁化状態が変化する、請求項3に記載の高周波発振器 The magnetization free layer of the second magnetoresistance element is bonded to the surface of the nonmagnetic metal layer, and the magnetization of the second magnetoresistance element is controlled by a spin orbit torque generated by the direct current flowing through the nonmagnetic metal layer. 4. The high frequency oscillator according to claim 3, wherein the state changes .
JP2015173096A 2015-09-02 2015-09-02 High frequency oscillator Active JP6643612B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015173096A JP6643612B2 (en) 2015-09-02 2015-09-02 High frequency oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015173096A JP6643612B2 (en) 2015-09-02 2015-09-02 High frequency oscillator

Publications (2)

Publication Number Publication Date
JP2017050727A JP2017050727A (en) 2017-03-09
JP6643612B2 true JP6643612B2 (en) 2020-02-12

Family

ID=58280399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015173096A Active JP6643612B2 (en) 2015-09-02 2015-09-02 High frequency oscillator

Country Status (1)

Country Link
JP (1) JP6643612B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022929B2 (en) * 2018-02-26 2022-02-21 パナソニックIpマネジメント株式会社 Wireless microphone system, receiver and wireless synchronization method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5036585B2 (en) * 2008-02-13 2012-09-26 株式会社東芝 Magnetic oscillation element, magnetic head having the magnetic oscillation element, and magnetic recording / reproducing apparatus
JP5488833B2 (en) * 2008-03-07 2014-05-14 日本電気株式会社 MRAM mixed loading system
JP5416992B2 (en) * 2009-03-04 2014-02-12 株式会社東芝 Cluster and spin RAM and spin torque oscillator using the same
US8203389B1 (en) * 2010-12-06 2012-06-19 Headway Technologies, Inc. Field tunable spin torque oscillator for RF signal generation
JP5809903B2 (en) * 2011-09-21 2015-11-11 株式会社東芝 Nonvolatile memory device

Also Published As

Publication number Publication date
JP2017050727A (en) 2017-03-09

Similar Documents

Publication Publication Date Title
Dürrenfeld et al. A 20 nm spin Hall nano-oscillator
US9461586B2 (en) Spintronic oscillator, and use thereof in radiofrequency devices
US9425738B2 (en) Spin current generation with nano-oscillator
JP5878311B2 (en) Oscillator and operation method thereof
US9595917B2 (en) Antiferromagnetically coupled spin-torque oscillator with hard perpendicular polarizer
US20100308923A1 (en) Magnetic voltage controlled oscillator
Boone et al. Experimental test of an analytical theory of spin-torque-oscillator dynamics
Muduli et al. Modulation of individual and mutually synchronized nanocontact-based spin torque oscillators
Bonetti et al. Nano-contact spin-torque oscillators as magnonic building blocks
Chen et al. Magnetic droplet mode in a vertical nanocontact-based spin hall nano-oscillator at oblique fields
US8610512B2 (en) Synthesizer of an oscillating signal
EP2973995A1 (en) Spin oscillator device
Heinonen et al. Decoherence, mode hopping, and mode coupling in spin torque oscillators
JP2020088088A (en) Spin torque oscillation element
JP5680903B2 (en) Oscillator and operation method thereof
Sani et al. Microwave signal generation in single-layer nano-contact spin torque oscillators
JP2016143701A (en) Magnetic resistance effective device
Bhoomeeswaran et al. Tuning of Microwave Frequency and Power Enhancement Using Spin Torque Nano-Oscillator With Tilted Polarizer
US8823460B2 (en) Magnetoresistive radiofrequency oscillator and method for generating an oscillating signal
JP6643612B2 (en) High frequency oscillator
Chen et al. Synchronization of spin-torque nano-oscillators from an induced corrugated attractor
US10522172B2 (en) Oscillator and calculating device
Zhang et al. Switching current reduction using MgO cap layer in magnetic tunnel junctions
JP6569350B2 (en) Magnetoresistive device
JP2019129164A (en) Magneto-resistance effect device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191205

R150 Certificate of patent or registration of utility model

Ref document number: 6643612

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250