JP6642557B2 - Manufacturing method of wavelength conversion member - Google Patents

Manufacturing method of wavelength conversion member Download PDF

Info

Publication number
JP6642557B2
JP6642557B2 JP2017233159A JP2017233159A JP6642557B2 JP 6642557 B2 JP6642557 B2 JP 6642557B2 JP 2017233159 A JP2017233159 A JP 2017233159A JP 2017233159 A JP2017233159 A JP 2017233159A JP 6642557 B2 JP6642557 B2 JP 6642557B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
conversion member
mass
sintered body
yag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017233159A
Other languages
Japanese (ja)
Other versions
JP2018172628A (en
Inventor
淳良 柳原
淳良 柳原
直人 藤岡
直人 藤岡
鈴木 啓介
鈴木  啓介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to US15/906,612 priority Critical patent/US10947448B2/en
Publication of JP2018172628A publication Critical patent/JP2018172628A/en
Application granted granted Critical
Publication of JP6642557B2 publication Critical patent/JP6642557B2/en
Priority to US17/167,763 priority patent/US11447694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発光ダイオード(Light Emitting Diode、以下「LED」ともいう。)やレーザーダイオード(Laser Diode、以下「LD」ともいう。)から発せられた光の波長を変換する波長変換部材の製造方法に関する。   The present invention relates to a method for manufacturing a wavelength conversion member for converting the wavelength of light emitted from a light emitting diode (hereinafter also referred to as “LED”) or a laser diode (hereinafter also referred to as “LD”). About.

LEDを発光素子として用いる発光装置は、変換効率の高い光源であり、消費電力が少なく、長寿命であり、サイズの小型化が可能であることから、白熱電球や蛍光灯に代わる光源として利用されている。LEDを用いた発光装置は、室内照明や車載用照明などの照明分野のみならず、液晶用バックライト光源、イルミネーションなどの広範囲の分野で利用されている。なかでも青色光を発する発光素子と黄色蛍光体を組み合わせて、それらの混色光を放出する発光装置は、コスト面及び品質面で優れており、広く利用されている。   A light-emitting device using an LED as a light-emitting element is used as a light source that replaces an incandescent lamp or a fluorescent lamp because it is a light source with high conversion efficiency, consumes little power, has a long life, and can be downsized. ing. Light emitting devices using LEDs are used not only in lighting fields such as indoor lighting and vehicle lighting, but also in a wide range of fields such as backlight sources for liquid crystals and illuminations. Above all, a light emitting device that emits a mixed color light by combining a light emitting element that emits blue light and a yellow phosphor is excellent in cost and quality, and is widely used.

発光装置に用いられる蛍光体は、(Y,Gd,Tb,Lu)(Al,Ga)12:Ceで表される希土類アルミン酸塩蛍光体、(Sr,Ca,Ba)SiO:Euで表されるシリケート蛍光体、Ca−αサイアロン蛍光体などが知られている。
波長変換部材として、例えば、ガラス粉末と無機蛍光体粉末とを混合し、ガラス粉末を溶融させ固化させた焼結体からなる波長変換部材が開示されている(特許文献1)。
The phosphor used in the light emitting device is a rare earth aluminate phosphor represented by (Y, Gd, Tb, Lu) 3 (Al, Ga) 5 O 12 : Ce, and (Sr, Ca, Ba) 2 SiO 4 : Silicate phosphors represented by Eu, Ca-α sialon phosphors, and the like are known.
As a wavelength conversion member, for example, a wavelength conversion member made of a sintered body obtained by mixing a glass powder and an inorganic phosphor powder and melting and solidifying the glass powder is disclosed (Patent Document 1).

特開2014−234487号公報JP 2014-234487 A

しかしながら、特許文献1に開示されている波長変換部材は、ガラス成分が焼結体の形成時に無機蛍光体中に混入し、光変換効率が著しく低下する場合がある。また、ガラスを用いた場合、高密度の焼結体を得ることが難しく、焼結体の内部に空孔が存在し、発光装置に用いた場合に光変換効率も低下する。
そこで本発明の一態様は、発光強度が高く、光変換効率の高い波長変換部材の製造方法を提供することを目的とする。
However, in the wavelength conversion member disclosed in Patent Literature 1, a glass component may be mixed into the inorganic phosphor during the formation of the sintered body, and the light conversion efficiency may be significantly reduced. In addition, when glass is used, it is difficult to obtain a high-density sintered body, pores are present inside the sintered body, and when used in a light emitting device, light conversion efficiency is reduced.
Therefore, an object of one embodiment of the present invention is to provide a method for manufacturing a wavelength conversion member having high emission intensity and high light conversion efficiency.

前記課題を解決するための手段は、以下の態様を包含する。   Means for solving the above problem include the following aspects.

本発明の第一の態様は、下記式(I)で表される組成を有するイットリウムアルミニウムガーネット系蛍光体と、アルミナ純度99.0質量%以上のアルミナ粒子とを含む成形体を準備することと、
前記成形体を一次焼成し、第一の焼結体を得ることと、
前記第一の焼結体を熱間等方加圧(HIP)処理により二次焼成し、第二の焼結体を得ることを含む、波長変換部材の製造方法。
(Y1−a−bGdCeAl12 (I)
(式(I)中、a及びbは、0≦a≦0.3、0<b≦0.022を満たす数である。)
A first aspect of the present invention is to provide a molded body containing an yttrium aluminum garnet-based phosphor having a composition represented by the following formula (I) and alumina particles having an alumina purity of 99.0% by mass or more. ,
Primary firing of the molded body to obtain a first sintered body,
A method for producing a wavelength conversion member, comprising: secondary firing the first sintered body by hot isostatic pressing (HIP) to obtain a second sintered body.
(Y 1-a-b Gd a Ce b) 3 Al 5 O 12 (I)
(In the formula (I), a and b are numbers satisfying 0 ≦ a ≦ 0.3 and 0 <b ≦ 0.022.)

本発明の第二の態様は、イットリウムアルミニウムガーネット系蛍光体とアルミナ純度99.0質量%以上のアルミナ粒子を含む成形体を準備することと、前記成形体を一次焼成し、第一の焼結体を得ることと、前記第一の焼結体を熱間等方加圧(HIP)処理により二次焼成し、第二の焼結体を得ることと、前記第二の焼結体を酸素含有雰囲気のもとでアニーリングすることを含む、波長変換部材の製造方法である。   According to a second aspect of the present invention, there is provided a compact including an yttrium aluminum garnet-based phosphor and alumina particles having an alumina purity of 99.0% by mass or more. Obtaining a second sintered body by subjecting the first sintered body to secondary sintering by hot isostatic pressing (HIP), and obtaining the second sintered body A method for producing a wavelength conversion member, which includes annealing under a contained atmosphere.

本発明の一実施形態によれば、発光強度が高く、光変換効率の高い波長変換部材の製造方法を提供することができる。   According to one embodiment of the present invention, it is possible to provide a method of manufacturing a wavelength conversion member having high light emission intensity and high light conversion efficiency.

図1は、本開示の第一の実施形態の波長変換部材の製造方法の工程順序を示すフローチャートである。FIG. 1 is a flowchart illustrating a process sequence of a method for manufacturing a wavelength conversion member according to the first embodiment of the present disclosure. 図2は、本開示の第二の実施形態の波長変換部材の製造方法の工程順序を示すフローチャートである。FIG. 2 is a flowchart illustrating a process sequence of a method for manufacturing a wavelength conversion member according to the second embodiment of the present disclosure. 図3は、実施例1に係る波長変換部材の断面SEM写真である。FIG. 3 is a cross-sectional SEM photograph of the wavelength conversion member according to the first embodiment. 図4は、実施例11に係る波長変換部材の断面SEM写真である。FIG. 4 is a cross-sectional SEM photograph of the wavelength conversion member according to Example 11. 図5は、実施例1に係る波長変換部材の外観写真である。FIG. 5 is an external photograph of the wavelength conversion member according to the first embodiment. 図6は、実施例21に係る波長変換部材の断面SEM写真である。FIG. 6 is a cross-sectional SEM photograph of the wavelength conversion member according to Example 21. 図7は、比較例31に係る波長変換部材の断面SEM写真である。FIG. 7 is a cross-sectional SEM photograph of the wavelength conversion member according to Comparative Example 31. 図8は、比較例31に係る波長変換部材の外観写真である。FIG. 8 is an external photograph of the wavelength conversion member according to Comparative Example 31. 図9は、実施例32に係る波長変換部材の外観写真である。FIG. 9 is an external photograph of the wavelength conversion member according to Example 32. 図10は、実施例21に係る波長変換部材の外観写真である。FIG. 10 is an external photograph of the wavelength conversion member according to Example 21. 図11、実施例34に係る波長変換部材の外観写真である。FIG. 11 is an appearance photograph of the wavelength conversion member according to Example 34.

以下、本発明に係る波長変換部材の製造方法を実施形態に基づいて説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための例示であって、本発明は、以下の波長変換部材の製造方法に限定されない。なお、色名と色度座標との関係、光の波長範囲と単色光の色名との関係等は、JIS Z8110に従う。   Hereinafter, a method for manufacturing a wavelength conversion member according to the present invention will be described based on embodiments. However, the embodiments described below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following method for manufacturing a wavelength conversion member. The relationship between the color name and the chromaticity coordinates, the relationship between the light wavelength range and the color name of the monochromatic light, and the like conform to JIS Z8110.

第一の実施形態に係る波長変換部材の製造方法
第一の実施形態に係る波長変換部材の製造方法は、下記式(I)で表される組成を有するイットリウムアルミニウムガーネット系蛍光体と、アルミナ純度99.0質量%以上のアルミナ粒子とを含む成形体を準備することと、前記成形体を一次焼成し、第一の焼結体を得ることと、前記第一の焼結体を熱間等方加圧(HIP)処理により二次焼成し、第二の焼結体を得ることを含む。
以下、イットリウムアルミニウムガーネット系蛍光体を「YAG系蛍光体」とも称する場合がある。
(Y1−a−bGdCeAl12 (I)
ここで、式(I)中、a及びbは、0≦a≦0.3、0<b≦0.022を満たす数である。
Method for Manufacturing Wavelength Conversion Member According to First Embodiment A method for manufacturing a wavelength conversion member according to the first embodiment includes an yttrium aluminum garnet-based phosphor having a composition represented by the following formula (I), and alumina purity. Preparing a compact containing 99.0% by mass or more of alumina particles, primary sintering of the compact to obtain a first sintered body, hot working of the first sintered body, etc. Secondary sintering by a hot pressing (HIP) process to obtain a second sintered body.
Hereinafter, the yttrium aluminum garnet-based phosphor may also be referred to as “YAG-based phosphor”.
(Y 1-a-b Gd a Ce b) 3 Al 5 O 12 (I)
Here, in the formula (I), a and b are numbers satisfying 0 ≦ a ≦ 0.3 and 0 <b ≦ 0.022.

式(I)で表される組成を有する蛍光体において、変数aはGdの賦活量であり、変数aは、0以上0.3以下(0≦a≦0.3)であり、好ましくは0.01以上0.28以下(0.01≦a≦0.28)、より好ましくは0.02以上0.27以下(0.02≦b≦0.27)、さらに好ましくは0.03以上0.25以下(0.03≦a≦0.25)、さらにより好ましくは0.05以上0.25以下(0.05≦a≦0.25)である。式(I)で表される組成を有する蛍光体において、Gdは結晶構造中に含まれていなくてもよい。式(I)であらわされる組成を有する蛍光体において、Gdの賦活量である変数aが0.3を超えると、蛍光体の発光ピーク波長が移動し、所望の光変換効率を得ることができない場合がある。   In the phosphor having the composition represented by the formula (I), the variable a is the activation amount of Gd, and the variable a is 0 or more and 0.3 or less (0 ≦ a ≦ 0.3), preferably 0 or less. 0.01 to 0.28 (0.01 ≦ a ≦ 0.28), more preferably 0.02 to 0.27 (0.02 ≦ b ≦ 0.27), even more preferably 0.03 to 0 .25 or less (0.03 ≦ a ≦ 0.25), and even more preferably 0.05 or more and 0.25 or less (0.05 ≦ a ≦ 0.25). In the phosphor having the composition represented by the formula (I), Gd may not be included in the crystal structure. In the phosphor having the composition represented by the formula (I), when the variable a, which is the activation amount of Gd, exceeds 0.3, the emission peak wavelength of the phosphor shifts, and a desired light conversion efficiency cannot be obtained. There are cases.

式(I)で表される組成を有するYAG系蛍光体において、変数bはCeの賦活量であり、変数bは、0を超えて0.022以下(0<b≦0.022)であり、好ましくは0.0001以上0.020以下(0.0001≦b≦0.02)であることが好ましく、より好ましくは0.0002以上0.015以下(0.0002≦b≦0.015)、さらに好ましくは0.0002以上0.012以下(0.0002≦b≦0.012)、よりさらに好ましくは0.0003以上0.012以下(0.0003≦b≦0.012)である。式(I)で表される組成を有する蛍光体において、Ceの賦活量である変数bの数値が、0であると発光中心となる元素が結晶構造中に存在せず発光しない。変数bの数値が0.022を超えると、濃度消光により発光強度が低下する傾向があり、所望の光変換効率が得られない。   In the YAG-based phosphor having the composition represented by the formula (I), the variable b is the activation amount of Ce, and the variable b is more than 0 and equal to or less than 0.022 (0 <b ≦ 0.022). It is preferably 0.0001 or more and 0.020 or less (0.0001 ≦ b ≦ 0.02), and more preferably 0.0002 or more and 0.015 or less (0.0002 ≦ b ≦ 0.015). And still more preferably 0.0002 or more and 0.012 or less (0.0002 ≦ b ≦ 0.012), and still more preferably 0.0003 or more and 0.012 or less (0.0003 ≦ b ≦ 0.012). In the phosphor having the composition represented by the formula (I), when the value of the variable b, which is the amount of activation of Ce, is 0, the element serving as the luminescence center does not exist in the crystal structure and does not emit light. When the value of the variable b exceeds 0.022, the light emission intensity tends to decrease due to concentration quenching, and a desired light conversion efficiency cannot be obtained.

YAG系蛍光体粒子の平均粒径は好ましくは1μm以上50μm以下の範囲であり、より好ましくは1μm以上40μm以下の範囲であり、さらに好ましくは2μm以上40μm以下の範囲であり、よりさらに好ましくは2μm以上20μm以下の範囲であり、特に好ましくは2μm以上15μm以下の範囲である。YAG系蛍光体粒子の平均粒径が1μm以上であると、YAG系蛍光体粒子を成形体に略均一に分散させることができる。YAG系蛍光体の平均粒径が50μm以下であると、波長変換部材中の空隙が少なくなるので光変換効率を高くすることができる。本明細書において、蛍光体の平均粒径とは、フィッシャーサブシーブサイザー法(Fisher sub-sieve sizer、以下「FSSS法」ともいう。)により測定した平均粒径(Fisher sub-sieve sizer’s number)をいう。   The average particle size of the YAG phosphor particles is preferably in the range of 1 μm to 50 μm, more preferably in the range of 1 μm to 40 μm, still more preferably in the range of 2 μm to 40 μm, and still more preferably 2 μm. The range is at least 20 μm and particularly preferably at least 2 μm and at most 15 μm. When the average particle size of the YAG-based phosphor particles is 1 μm or more, the YAG-based phosphor particles can be substantially uniformly dispersed in the molded body. When the average particle diameter of the YAG-based phosphor is 50 μm or less, the voids in the wavelength conversion member are reduced, so that the light conversion efficiency can be increased. In this specification, the average particle size of the phosphor is defined as an average particle size (Fisher sub-sieve sizer's number) measured by a Fisher sub-sieve sizer (hereinafter also referred to as “FSSS method”). Say.

YAG系蛍光体とアルミナ粒子の合計量100質量%に対して、YAG系蛍光体の含有量が、好ましくは0.1質量%以上99.9質量%以下、より好ましくは0.5質量%以上99質量%以下、さらに好ましくは1質量%以上95質量%以下、よりさらに好ましくは2質量%以上80質量%以下、よりさらに好ましくは3質量%以上70質量%以下、よりさらに好ましくは3質量%以上50質量%以下、よりさらに好ましくは4質量%以上50質量%以下、とくに好ましくは5質量%以上50質量%以下である。   The content of the YAG-based phosphor is preferably 0.1% by mass or more and 99.9% by mass or less, more preferably 0.5% by mass or more, based on 100% by mass of the total amount of the YAG-based phosphor and the alumina particles. 99% by mass or less, more preferably 1% by mass or more and 95% by mass or less, still more preferably 2% by mass or more and 80% by mass or less, still more preferably 3% by mass or more and 70% by mass or less, still more preferably 3% by mass or less. It is at least 50% by mass, more preferably at least 4% by mass and at most 50% by mass, particularly preferably at least 5% by mass and at most 50% by mass.

成形体を構成する粉体中に含まれるアルミナ粒子は、アルミナ純度が99.0質量%以上であり、より好ましくはアルミナ純度が99.5質量%以上である。成形体を構成する粉体に、アルミナ純度が99.0質量%以上であるアルミナ粒子を含むと、光変換効率を高くすることができ、良好な熱伝導率を有する波長変換部材を得ることができる。アルミナ純度は、市販のアルミナ粒子を用い場合には、カタログ値を参照することができる。アルミナ純度が不明である場合には、アルミナ粒子の質量を測定した後、各アルミナ粒子を800℃で1時間、大気雰囲気で焼成し、アルミナ粒子に付着している有機分やアルミナ粒子が吸湿している水分を除去し、焼成後のアルミナ粒子の質量を測定し、焼成後のアルミナ粒子の質量を焼成前のアルミナ粒子の質量で除すことによって、アルミナ純度を測定することができる。アルミナ純度は、例えば、以下の式によって算出することができる。
アルミナ純度(質量%)=(焼成後のアルミナ粒子の質量÷焼成前のアルミナ粒子の質量)×100
The alumina particles contained in the powder constituting the compact have an alumina purity of 99.0% by mass or more, more preferably 99.5% by mass or more. When the powder constituting the molded body contains alumina particles having an alumina purity of 99.0% by mass or more, the light conversion efficiency can be increased, and a wavelength conversion member having good thermal conductivity can be obtained. it can. When using commercially available alumina particles, the catalog value can be referred to for the alumina purity. If the alumina purity is unknown, after measuring the mass of the alumina particles, each alumina particle is fired at 800 ° C. for 1 hour in an air atmosphere, and the organic components and the alumina particles adhering to the alumina particles absorb moisture. By removing the water content, measuring the mass of the alumina particles after firing, and dividing the mass of the alumina particles after firing by the mass of the alumina particles before firing, the alumina purity can be measured. The alumina purity can be calculated, for example, by the following equation.
Alumina purity (% by mass) = (mass of alumina particles after firing / mass of alumina particles before firing) × 100

アルミナ粒子は、その平均粒径が好ましくは0.2μm以上1.3μm以下の範囲であり、より好ましくは0.2μm以上1.0μm以下の範囲であり、さらに好ましくは0.3μm以上0.8μm以下の範囲であり、よりさらに好ましくは0.3μm以上0.6μm以下の範囲である。アルミナ粒子の平均粒径が前記範囲であると、YAG系蛍光体粉体とアルミナ粒子を均一に混合することができ、空隙が少なく密度の高い焼結体からなる波長変換部材を製造することができる。本明細書において、アルミナ粒子の平均粒径とは、レーザー回折散乱式粒度分布測定法によって測定した小径側からの体積累積頻度が50%に達する粒径(メジアン径)をいう。   The average particle diameter of the alumina particles is preferably in the range of 0.2 μm to 1.3 μm, more preferably in the range of 0.2 μm to 1.0 μm, and still more preferably 0.3 μm to 0.8 μm. The range is as follows, and more preferably the range is 0.3 μm or more and 0.6 μm or less. When the average particle size of the alumina particles is in the above range, the YAG-based phosphor powder and the alumina particles can be uniformly mixed, and the wavelength conversion member formed of a sintered body having a small amount of voids and a high density can be manufactured. it can. In the present specification, the average particle size of the alumina particles refers to a particle size (median size) at which the volume accumulation frequency from the small diameter side reaches 50% as measured by a laser diffraction scattering type particle size distribution measuring method.

YAG系蛍光体とアルミナ粒子の合計量100質量%に対して、アルミナ純度99.0質量%以上のアルミナ粒子の含有量が、好ましくは0.1質量%以上99.9質量%以下、より好ましくは1質量%以上99.5質量%以下、さらに好ましくは5質量%以上99質量%以下、よりさらに好ましくは20質量%以上98質量%以下、よりさらに好ましくは30質量%以上97質量%以下、よりさらに好ましくは50質量%以上97質量%以下、よりさらに好ましくは50質量%以上96質量%以下、とくに好ましくは50質量%以上95質量%以下である。   The content of the alumina particles having an alumina purity of 99.0% by mass or more is preferably 0.1% by mass or more and 99.9% by mass or less, more preferably 100% by mass or more with respect to the total amount of the YAG phosphor and the alumina particles of 100% by mass. Is from 1% by mass to 99.5% by mass, more preferably from 5% by mass to 99% by mass, still more preferably from 20% by mass to 98% by mass, still more preferably from 30% by mass to 97% by mass, It is even more preferably 50% by mass to 97% by mass, still more preferably 50% by mass to 96% by mass, and particularly preferably 50% by mass to 95% by mass.

成形体を構成する粉体は、YAG系蛍光体粒子とアルミナ純度99.0質量%以上のアルミナ粒子の他に、YAG系蛍光体粒子による光の変換を妨げず、発光素子からの光を透過させる粉体を含んでいてもよい。成形体を構成するYAG系蛍光体粒子とアルミナ純度99.0質量%以上のアルミナ粒子以外の粉体は、比較的高い熱伝導率を有する粉体であることが好ましい。これにより、YAG系蛍光体粒子に加わる熱を外部に放出させやすくなり、波長変換部材の放熱性を向上させることができる。発光素子からの光を透過させる粉体としては、MgO、LiF、Nb、NiO、SiO、TiO及びYの少なくとも1種を含む粉体が挙げられる。発光素子からの光を透過させる粉体としては、MgO、LiF、SiO、TiO及びYからなる群から選ばれる2種以上を含む結晶構造を有する粉体を用いてもよい。
成形体を構成する粉体中に、YAG系蛍光体及びアルミナ純度99.0質量%以上のアルミナ粒子以外の粉体(以下、「他の粉体」ともいう。)を含む場合には、その他の粉体とアルミナ粒子の合計量が、成形体を構成する粉体100質量%中、99.9質量%以下、より好ましくは98.0質量%以下、さらに好ましくは95.0質量%以下、よりさらに好ましくは90.0質量%以下であり、好ましくは0.1質量%以上、より好ましくは1.0質量%以上である。アルミナ粒子とその他の粉体の配合比率(アルミナ粒子:他の粉体)が、好ましくは1:99から99:1、より好ましくは10:90から90:10である。
The powder constituting the molded body transmits light from the light emitting element without hindering the conversion of light by the YAG-based phosphor particles, in addition to the YAG-based phosphor particles and alumina particles having an alumina purity of 99.0% by mass or more. May be contained. The powder other than the YAG phosphor particles and the alumina particles having an alumina purity of 99.0% by mass or more that constitute the molded body is preferably a powder having a relatively high thermal conductivity. Thereby, the heat applied to the YAG-based phosphor particles can be easily released to the outside, and the heat radiation of the wavelength conversion member can be improved. The powder which transmits light from the light emitting element, MgO, LiF, Nb 2 O 5, NiO, powder containing at least one of SiO 2, TiO 2 or Y 2 O 3 and the like. As the powder that transmits light from the light-emitting element, a powder having a crystal structure including two or more types selected from the group consisting of MgO, LiF, SiO 2 , TiO 2, and Y 2 O 3 may be used.
In the case where the powder constituting the molded body contains a powder other than the YAG phosphor and alumina particles having an alumina purity of 99.0% by mass or more (hereinafter, also referred to as “other powders”), the other is used. The total amount of the powder and the alumina particles is 99.9% by mass or less, more preferably 98.0% by mass or less, still more preferably 95.0% by mass or less, in 100% by mass of the powder constituting the compact. It is still more preferably 90.0% by mass or less, preferably 0.1% by mass or more, more preferably 1.0% by mass or more. The mixing ratio of alumina particles to other powder (alumina particles: other powder) is preferably 1:99 to 99: 1, more preferably 10:90 to 90:10.

図1は、第一の実施形態に係る波長変換部材の製造方法の工程順序の一例を示すフローチャートである。図1を参照にして波長変換部材の製造方法の工程を説明する。波長変換部材の製造方法は、成形体準備工程S102と、一次焼成工程S103と、二次焼成工程S104とを含む。波長変換部材の製造方法は、成形体準備工程S102の前に、粉体混合工程S101を含んでいてもよく、二次焼成工程S104の後に、波長変換部材を加工する加工工程S105を含んでいてもよい。   FIG. 1 is a flowchart illustrating an example of a process sequence of a method for manufacturing a wavelength conversion member according to the first embodiment. The steps of the method for manufacturing a wavelength conversion member will be described with reference to FIG. The method for manufacturing the wavelength conversion member includes a molded body preparing step S102, a primary firing step S103, and a secondary firing step S104. The method for manufacturing a wavelength conversion member may include a powder mixing step S101 before the compact preparing step S102, and includes a processing step S105 for processing the wavelength conversion member after the secondary firing step S104. Is also good.

粉体混合工程
粉体混合工程では、成形体を構成する粉体を混合する。成形体を構成する粉体は、YAG系蛍光体粒子とアルミナ純度99.0質量%以上のアルミナ粒子を含む。粉体の混合は、乳鉢及び乳棒を用いて混合することができる。粉体の混合には、ボールミルなどの混合媒体を用いて混合してもよい。また、粉体の混合を行いやすくし、さらに混合後の粉体を成形しやすくするために、少量の水やエタノール等の成形助剤を用いてもよい。成形助剤は、後の焼成工程において揮発しやすいものであるものが好ましく、成形助剤を加える場合は、粉体100質量%に対して、成形助剤が10質量%以下であることが好ましく、より好ましくは8質量%以下であり、さらに好ましくは5質量%以下である。
Powder mixing step In the powder mixing step, the powder constituting the compact is mixed. The powder constituting the compact includes YAG-based phosphor particles and alumina particles having an alumina purity of 99.0% by mass or more. The powder can be mixed using a mortar and pestle. The powder may be mixed using a mixing medium such as a ball mill. Also, a small amount of a molding aid such as water or ethanol may be used to facilitate mixing of the powder and further facilitate molding of the powder after mixing. The molding aid is preferably one that is easily volatilized in the subsequent firing step. When the molding aid is added, the molding aid is preferably 10% by mass or less based on 100% by mass of the powder. , More preferably 8% by mass or less, and even more preferably 5% by mass or less.

成形体準備工程
成形体準備工程では、YAG系蛍光体を含む粉体を、所望の形状に成形し、成形体を得る。粉体の成形方法は、プレス成形法などの知られている方法を採用することができ、例えば金型プレス成形法、冷間等方加圧法(CIP:Cold Isostatic Pressing、以下、「CIP」ともいう。)などが挙げられる。成形方法は、成形体の形状を整えるために、2種の方法を採用してもよく、金型プレス成形をした後に、CIPを行ってもよい。CIPでは、水を媒体とする冷間静水等方加圧法により成形体をプレスすることが好ましい。
Molded Body Preparing Step In the molded body preparing step, a powder containing the YAG-based phosphor is molded into a desired shape to obtain a molded body. A known method such as a press molding method can be used as a method of molding the powder. For example, a die press molding method, a cold isostatic pressing method (CIP: Cold Isostatic Pressing, hereinafter, also referred to as “CIP”). ). As the molding method, two types of methods may be employed in order to adjust the shape of the molded body, and CIP may be performed after performing die press molding. In the case of CIP, it is preferable to press the formed body by a cold isostatic pressing method using water as a medium.

金型プレス成形時の圧力は、好ましくは5MPaから50MPaであり、より好ましくは5MPaから20MPaである。金型プレス成形時の圧力が前記範囲であれば、成形体を所望の形状に整えることができる。   The pressure at the time of die press molding is preferably from 5 MPa to 50 MPa, more preferably from 5 MPa to 20 MPa. When the pressure at the time of die press molding is in the above range, the molded body can be adjusted to a desired shape.

CIP処理における圧力は、好ましくは50MPaから200MPaであり、より好ましくは50MPaから180MPaである。CIP処理における圧力が前記範囲であると、成形体の密度を高め、全体が略均一な密度を有する成形体を得ることができ、後の一次焼成工程及び二次焼成工程において、得られる焼結体の密度を高めることができる。   The pressure in the CIP treatment is preferably from 50 MPa to 200 MPa, more preferably from 50 MPa to 180 MPa. When the pressure in the CIP treatment is within the above range, the density of the molded body can be increased, and a molded body having a substantially uniform density can be obtained as a whole, and the sintered body obtained in the subsequent primary firing step and secondary firing step can be obtained. Increases body density.

一次焼成工程
一次焼成工程は、成形体を一次焼成し、第一の焼結体を得る工程である。一次焼成工程において、成形体に含まれるYAG系蛍光体粒子同士又はYAG系蛍光体粒子とその他の粉体の焼結密度を高めることによって、一次焼成後の二次焼成において、さらに焼結体の密度を高めることができる。
Primary firing step The primary firing step is a step of first firing the molded body to obtain a first sintered body. In the primary firing step, by increasing the sintering density of the YAG-based phosphor particles contained in the molded body or between the YAG-based phosphor particles and other powders, the secondary firing after the primary firing further reduces the sintered body. Density can be increased.

一次焼成は、酸素含有雰囲気のもとで行なうことが好ましい。酸素含有雰囲気は、少なくとも酸素を含む雰囲気であり、雰囲気中に含まれる酸素濃度が5体積%以上であればよく、好ましくは10体積%以上、さらに好ましくは15体積%以上である。一次焼成を行う酸素含有雰囲気は、大気(酸素濃度が約20体積%)であることが好ましい。成形体の一次焼成を酸素含有雰囲気で行うことにより、YAG系蛍光体粒子の焼成による変質が原因と考えられる成形体の黒色化を修復することができる。   The primary firing is preferably performed in an oxygen-containing atmosphere. The oxygen-containing atmosphere is an atmosphere containing at least oxygen, and the concentration of oxygen contained in the atmosphere may be 5% by volume or more, preferably 10% by volume or more, and more preferably 15% by volume or more. The oxygen-containing atmosphere in which the primary firing is performed is preferably air (oxygen concentration is about 20% by volume). By performing the primary firing of the molded body in an oxygen-containing atmosphere, the blackening of the molded body, which is considered to be caused by the deterioration of the YAG-based phosphor particles due to the firing, can be restored.

一次焼成の温度は、好ましくは1200℃以上1800℃以下の範囲であり、より好ましくは1500℃以上1800℃以下の範囲であり、よりさらに好ましくは1600℃以上1780℃以下の範囲である。一次焼成の温度が1200℃以上であれば、焼結体の焼結密度を高め、一次焼成後の二次焼成において、さらに第二の焼結体の密度を高めることができる。一焼成の温度が1800℃以下であれば、成形体を溶解させることなく焼結体を形成することができる。   The primary firing temperature is preferably in the range of 1200 ° C. to 1800 ° C., more preferably in the range of 1500 ° C. to 1800 ° C., and even more preferably in the range of 1600 ° C. to 1780 ° C. When the temperature of the primary firing is 1200 ° C. or higher, the sintered density of the sintered body can be increased, and in the secondary firing after the primary firing, the density of the second sintered body can be further increased. When the temperature of one firing is 1800 ° C. or less, a sintered body can be formed without dissolving the molded body.

二次焼成工程
二次焼成工程は、第一の焼結体を熱間等方加圧(HIP:Hot Isostatic Pressing)処理(以下、「HIP処理」ともいう。)により、第二の焼結体を得る工程である。二次焼成工程において、HIP処理により、第一の焼結体に含有される空隙をより少なくし、第二の焼結体の密度を高めることができる。
Secondary firing step In the secondary firing step, the first sintered body is subjected to hot isostatic pressing (HIP) processing (hereinafter, also referred to as “HIP processing”) to form the second sintered body. This is the step of obtaining In the secondary firing step, the HIP treatment can reduce the voids contained in the first sintered body and increase the density of the second sintered body.

二次焼成は、不活性ガス雰囲気のもとで行なうことが好ましい。二次焼成は、HIP処理により行うため、HIP処理を行う圧力媒体が不活性ガス雰囲気であることが好ましい。不活性ガス雰囲気とは、アルゴン、ヘリウム、窒素等を雰囲気中の主成分とする雰囲気を意味する。ここでアルゴン、ヘリウム、窒素等を雰囲気中の主成分とするとは、雰囲気中に、アルゴン、ヘリウム及び窒素からなる群から選択される少なくとも1種の気体を50体積%以上含むことをいう。不活性ガス雰囲気中の酸素の濃度は、好ましくは3体積%以下、より好ましくは1体積%以下である。   The secondary firing is preferably performed in an inert gas atmosphere. Since the secondary firing is performed by the HIP process, the pressure medium for performing the HIP process is preferably in an inert gas atmosphere. The inert gas atmosphere means an atmosphere containing argon, helium, nitrogen, or the like as a main component in the atmosphere. Here, that argon, helium, nitrogen, or the like is the main component in the atmosphere means that the atmosphere contains at least one gas selected from the group consisting of argon, helium, and nitrogen in an amount of 50% by volume or more. The concentration of oxygen in the inert gas atmosphere is preferably 3% by volume or less, more preferably 1% by volume or less.

二次焼成を行うHIP処理における圧力は、好ましくは50MPa以上300MPa以下であり、より好ましくは80MPa以上200MPa以下である。HIP処理における圧力が前記範囲であると、YAG系蛍光体粒子の結晶構造を破壊することなく、焼結体の全体を均一に、より高い密度にすることができる。   The pressure in the HIP treatment for performing the secondary firing is preferably from 50 MPa to 300 MPa, more preferably from 80 MPa to 200 MPa. When the pressure in the HIP treatment is within the above range, the entire sintered body can be uniformly and at a higher density without destroying the crystal structure of the YAG-based phosphor particles.

二次焼成の温度は、好ましくは1500℃以上1800℃以下の範囲であり、より好ましくは1600℃以上1780℃以下の範囲、さらに好ましくは1600℃以上1770℃以下の範囲である。二次焼成の温度が1500℃以上であれば、焼結体の焼結密度を高めることができる。二次焼成の温度が1800℃以下であれば、焼結体を溶解させることなく焼結体を形成することができる。   The temperature of the secondary firing is preferably in the range of 1500 ° C to 1800 ° C, more preferably in the range of 1600 ° C to 1780 ° C, and even more preferably in the range of 1600 ° C to 1770 ° C. When the secondary firing temperature is 1500 ° C. or higher, the sintered density of the sintered body can be increased. If the secondary firing temperature is 1800 ° C. or lower, a sintered body can be formed without melting the sintered body.

加工工程
波長変換部材の製造方法において、得られた波長変換部材を加工する加工工程を含んでいてもよい。加工工程は、得られた波長変換部材を所望の大きさに切断加工する工程等が挙げられる。波長変換部材の切断方法は、公知の方法を利用することができ、例えば、ブレードダイシング、レーザーダイシング、ワイヤーソー等が挙げられる。これらのうち、切断面が高精度に平らになる点からワイヤーソーが好ましい。加工工程によって、所望の厚さや大きさの波長変換部材を得ることができる。波長変換部材の厚さは特に制限されないが、機械的強度や波長変換効率を考慮して、好ましくは1μm以上1mm以下の範囲、より好ましくは10μm以上800μm以下、さらに好ましくは50μm以上500μm以下、よりさらに好ましくは100μm以上300μm以下の範囲である。
Processing Step The manufacturing method of the wavelength conversion member may include a processing step of processing the obtained wavelength conversion member. The processing step includes a step of cutting the obtained wavelength conversion member into a desired size. As a method for cutting the wavelength conversion member, a known method can be used, and examples thereof include blade dicing, laser dicing, and a wire saw. Among them, a wire saw is preferable because the cut surface is flattened with high precision. Through the processing step, a wavelength conversion member having a desired thickness and size can be obtained. The thickness of the wavelength conversion member is not particularly limited, but is preferably in the range of 1 μm to 1 mm, more preferably 10 μm to 800 μm, still more preferably 50 μm to 500 μm, in consideration of mechanical strength and wavelength conversion efficiency. More preferably, it is in the range of 100 μm or more and 300 μm or less.

第二の実施形態に係る波長変換部材の製造方法
本発明の第二の実施形態に係る波長変換部材の製造方法は、YAG系蛍光体とアルミナ純度99.0質量%以上のアルミナ粒子を含む成形体を準備することと、前記成形体を一次焼成し、第一の焼結体を得ることと、前記第一の焼結体を熱間等方加圧(HIP)処理により二次焼成し、第二の焼結体を得ることと、前記第二の焼結体を酸素含有雰囲気のもとでアニーリングすることを含む。
Method for Producing Wavelength Conversion Member According to Second Embodiment A method for producing a wavelength conversion member according to a second embodiment of the present invention is directed to a molding method including a YAG-based phosphor and alumina particles having an alumina purity of 99.0% by mass or more. Preparing a body, first firing the molded body to obtain a first sintered body, and second firing the first sintered body by hot isostatic pressing (HIP) processing; Obtaining a second sintered body and annealing the second sintered body in an oxygen-containing atmosphere.

図2は、第二の実施形態に係る波長変換部材の製造方法の工程順序の一例を示すフローチャートである。図2を参照にして、波長変換部材の製造方法の工程を説明する。波長変換部材の製造方法は、成形体準備工程S202と、一次焼成工程S203と、二次焼成工程S204と、アニーリング工程S205とを含む。波長変換部材の製造方法は、成形体準備工程S202の前に、粉体混合工程S201を含んでいてもよく、アニーリング工程S205の後に、波長変換部材を加工する加工工程S206を含んでいてもよい。   FIG. 2 is a flowchart illustrating an example of a process sequence of a method for manufacturing a wavelength conversion member according to the second embodiment. With reference to FIG. 2, steps of a method for manufacturing a wavelength conversion member will be described. The method for manufacturing the wavelength conversion member includes a compact preparing step S202, a primary firing step S203, a secondary firing step S204, and an annealing step S205. The method for manufacturing the wavelength conversion member may include a powder mixing step S201 before the molded body preparing step S202, and may include a processing step S206 for processing the wavelength conversion member after the annealing step S205. .

YAG系蛍光体としては、YAl12:Ceで表されるYAG系蛍光体、(Y、Gd)(Al,Ga)12:Ceで表されるYAG系蛍光体を用いてもよい。YAG系蛍光体は、式(I)で表される組成を有するYAG系蛍光体も包含する。YAl12:Ceで表されるYAG系蛍光体は、イットリウムの少なくとも一部をテルビウム(Tb)、ルテチウム(Lu)などの元素で置換した組成であってもよい。成形体を構成する粉体中のYAG系蛍光体粒子の含有量は、第一の実施形態の製造方法におけるYAG系蛍光体の含有量と同様の範囲であればよい。
また、アルミナ純度99.0質量%以上のアルミナ粒子は、第一の実施形態の製造方法と同様のものを用いることができる。成形体を構成する粉体中のアルミナ粒子の含有量も、第一の実施形態の製造方法におけるアルミナ粒子の含有量と同様の範囲であればよい。
As the YAG-based phosphor, a YAG-based phosphor represented by Y 3 Al 5 O 12 : Ce and a YAG-based phosphor represented by (Y, Gd) 3 (Al, Ga) 5 O 12 : Ce are used. You may. The YAG-based phosphor also includes a YAG-based phosphor having a composition represented by the formula (I). The YAG-based phosphor represented by Y 3 Al 5 O 12 : Ce may have a composition in which at least a part of yttrium is replaced by an element such as terbium (Tb) or lutetium (Lu). The content of the YAG-based phosphor particles in the powder constituting the compact may be in the same range as the content of the YAG-based phosphor in the production method of the first embodiment.
Further, as the alumina particles having an alumina purity of 99.0% by mass or more, the same particles as in the production method of the first embodiment can be used. The content of the alumina particles in the powder constituting the compact may be in the same range as the content of the alumina particles in the production method of the first embodiment.

第二の実施形態に係る波長変換部材の製造方法において、成形体準備工程、一次焼成工程、二次焼成工程は、第一の実施形態に係る波長変換部材の製造方法と同様の方法であればよい。第二の実施形態に係る波長変換部材の製造方法においても、成形体準備工程において、第一の実施形態に係る波長変換部材の製造方法における成形体の準備工程と同様に、YAG系蛍光体粒子とアルミナ純度99.0質量%以上のアルミナ粒子の他に、YAG系蛍光体粒子による光の変換を妨げず、発光素子からの光を透過させる粉体を含んでいてもよい。   In the method for manufacturing the wavelength conversion member according to the second embodiment, the green body preparation step, the primary firing step, and the secondary firing step are the same as the method for manufacturing the wavelength conversion member according to the first embodiment. Good. Also in the method for manufacturing the wavelength conversion member according to the second embodiment, in the green body preparation step, similarly to the preparation step for the green body in the method for manufacturing the wavelength conversion member according to the first embodiment, YAG-based phosphor particles are used. In addition to the alumina particles having an alumina purity of 99.0% by mass or more, a powder that transmits light from the light emitting element without hindering the conversion of light by the YAG-based phosphor particles may be included.

アニーリング工程
第二の実施形態に係る波長変換部材の製造方法は、アニーリング工程を含む。アニーリング工程は、第二の焼結体を酸素含有雰囲気のもとでアニーリングし、波長変換部材を得る工程である。二次焼成工程において密度を高めた第二の焼結体が得られる一方、第二の焼結体が黒く着色する場合がある。これは、二次焼成工程において、YAG系蛍光体組成の構成元素の一つである酸素の組成比が変化してしまうことが原因の一つと考えられる。そこで、二次焼成工程の後で第二の焼結体が黒く着色した場合には、アニーリング工程を経ることによって、二次焼成工程において高めた焼結体の密度を低下させることなく、YAG系蛍光体の本来の体色に戻すことができる。アニーリング工程後の波長変換部材は、全体的に明るくYAG系蛍光体の本来の体色を有しており、光を吸収してしまう黒い領域が少ないので、光変換効率を高くすることができる。
Annealing Step The method for manufacturing a wavelength conversion member according to the second embodiment includes an annealing step. The annealing step is a step of annealing the second sintered body in an oxygen-containing atmosphere to obtain a wavelength conversion member. In the secondary firing step, while a second sintered body having an increased density is obtained, the second sintered body may be colored black. This is considered to be one of the causes of a change in the composition ratio of oxygen, which is one of the constituent elements of the YAG-based phosphor composition, in the secondary firing step. Therefore, when the second sintered body is colored black after the secondary firing step, the YAG-based material is subjected to the annealing step without lowering the density of the sintered body increased in the secondary firing step. The original color of the phosphor can be restored. After the annealing step, the wavelength conversion member is generally bright and has the original body color of the YAG-based phosphor, and there are few black regions that absorb light, so that the light conversion efficiency can be increased.

アニーリングは、酸素含有雰囲気のもとで行なう。酸素含有雰囲気は、少なくとも酸素を含む雰囲気であり、雰囲気中に含まれる酸素濃度が5体積%以上であればよく、好ましくは10体積%以上、さらに好ましくは15体積%以上である。アニーリングは、大気(酸素濃度が約20体積%)雰囲気で行うことが好ましい。   Annealing is performed in an oxygen-containing atmosphere. The oxygen-containing atmosphere is an atmosphere containing at least oxygen, and the concentration of oxygen contained in the atmosphere may be 5% by volume or more, preferably 10% by volume or more, and more preferably 15% by volume or more. Annealing is preferably performed in an atmosphere (at an oxygen concentration of about 20% by volume).

アニーリングの温度は、好ましくは1200℃以上1700℃以下の範囲であり、より好ましくは1570℃以上1700℃以下、よりさらに好ましくは1580℃以上1630℃以下の範囲である。アニーリングの温度が1200℃以上であれば、第二の焼結体の密度を低下させることなく、第二の焼結体の暗く黒っぽい色を、YAG系蛍光体の本来の体色に戻すことができる。アニーリングの温度が1700℃以下であれば、第二の焼結体の結晶構造を維持し、第二の焼結体の暗く黒っぽい色をYAG系蛍光体の本来の体色に戻すことができる。   The annealing temperature is preferably in the range of 1200 ° C. to 1700 ° C., more preferably 1570 ° C. to 1700 ° C., and even more preferably 1580 ° C. to 1630 ° C. If the annealing temperature is 1200 ° C. or more, the dark and dark color of the second sintered body can be returned to the original body color of the YAG phosphor without lowering the density of the second sintered body. it can. When the annealing temperature is 1700 ° C. or lower, the crystal structure of the second sintered body can be maintained, and the dark and dark color of the second sintered body can be returned to the original body color of the YAG-based phosphor.

第二の実施形態に係る波長変換部材の製造方法において、第一の実施形態に係る波長変換部材の製造方法と同様に、得られた波長変換部材を加工する加工工程を含んでいてもよい。加工工程は、第一の実施形態に係る波長変換部材の製造方法における加工工程と同様の方法を用いることができる。   The method of manufacturing the wavelength conversion member according to the second embodiment may include a processing step of processing the obtained wavelength conversion member, as in the method of manufacturing the wavelength conversion member according to the first embodiment. For the processing step, the same method as the processing step in the method for manufacturing the wavelength conversion member according to the first embodiment can be used.

第一の焼結体の相対密度
第一及び第二の実施形態の波長変換部材の製造方法において、一次焼成工程において得られる第一の焼結体は、相対密度が、好ましくは95%以上であり、より好ましくは96%以上である。第一の焼結体の相対密度が95%以上であることによって、一次焼成後の二次焼成においてさらに第二の焼結体の密度を高めることができ、波長変換部材の空隙が少なくなり、空隙内での光の散乱が抑制されるため、光変換効率の高い波長変換部材を製造することができる。
Relative Density of First Sintered Body In the method for manufacturing the wavelength conversion member of the first and second embodiments, the first sintered body obtained in the primary firing step has a relative density of preferably 95% or more. And more preferably 96% or more. When the relative density of the first sintered body is 95% or more, the density of the second sintered body can be further increased in the secondary firing after the primary firing, and the gap of the wavelength conversion member is reduced, Since the scattering of light in the gap is suppressed, a wavelength conversion member having high light conversion efficiency can be manufactured.

本明細書において第一の焼結体の相対密度とは、第一の焼結体の真密度に対する第一の焼結体の見掛け密度により算出される値をいう。相対密度は、下記式(1)により算出される。
相対密度(%)=(第一の焼結体の見掛け密度÷第一の焼結体の真密度)×100 (1)
第一の焼結体の真密度は、YAG系蛍光体、アルミナ粒子及び他の粉体との合計量に対するYAG系蛍光体の質量割合にYAG系蛍光体の真密度を乗じて得られた値と、アルミナ粒子及び他の粉体の質量割合にアルミナ粒子及び他の粉体の真密度を乗じて得られた値との和である。第一の焼結体にYAG系蛍光体とアルミナ粒子とを含み、他の粉体を含まない場合には、YAG系蛍光体とアルミナ粒子との合計量に対するアルミナ粒子の質量割合にアルミナ粒子の真密度を乗じて得られた値と、YAG系蛍光体の質量割合にYAG系蛍光体の真密度を乗じて得られた値との和をいう。例えば、第一の焼結体の真密度は、下記式(2)より算出される。
第一の焼結体の真密度=(YAG系蛍光体とアルミナ粒子の合計量に対するYAG系蛍光体の質量割合×YAG系蛍光体の真密度)+(YAG系蛍光体とアルミナ粒子の合計量に対するアルミナ粒子の質量割合×アルミナ粒子の真密度) (2)
第一の焼結体の見掛け密度は、第一の焼結体の質量をアルキメデス法によって求められる第一の焼結体の体積で除した値をいう。第一の焼結体の見掛け密度は、下記式(3)により算出される。
第一の焼結体の見掛け密度=第一の焼結体の質量÷第一の焼結体のアルキメデス法により求められた体積 (3)
In this specification, the relative density of the first sintered body refers to a value calculated by an apparent density of the first sintered body with respect to a true density of the first sintered body. The relative density is calculated by the following equation (1).
Relative density (%) = (apparent density of first sintered body ÷ true density of first sintered body) × 100 (1)
The true density of the first sintered body is a value obtained by multiplying the mass ratio of the YAG-based phosphor to the total amount of the YAG-based phosphor, alumina particles and other powders by the true density of the YAG-based phosphor. And the value obtained by multiplying the mass ratio of the alumina particles and the other powder by the true density of the alumina particles and the other powder. When the first sintered body contains the YAG-based phosphor and the alumina particles, and does not contain other powders, the mass ratio of the alumina particles to the mass ratio of the alumina particles to the total amount of the YAG-based phosphor and the alumina particles is used. It means the sum of the value obtained by multiplying the true density and the value obtained by multiplying the mass ratio of the YAG-based phosphor by the true density of the YAG-based phosphor. For example, the true density of the first sintered body is calculated by the following equation (2).
True density of first sintered body = (mass ratio of YAG-based phosphor to total amount of YAG-based phosphor and alumina particles × true density of YAG-based phosphor) + (total amount of YAG-based phosphor and alumina particles) (Mass ratio of alumina particles with respect to the actual density of alumina particles) (2)
The apparent density of the first sintered body is a value obtained by dividing the mass of the first sintered body by the volume of the first sintered body obtained by the Archimedes method. The apparent density of the first sintered body is calculated by the following equation (3).
Apparent density of first sintered body = mass of first sintered body / volume of first sintered body determined by Archimedes method (3)

波長変換部材の相対密度
第一及び第二の実施形態の波長変換部材の製造方法において、二次焼成後又はアニーリング後に得られる波長変換部材は、相対密度が97%以上であることが好ましい。波長変換部材の相対密度が97%以上であることによって、波長変換部材の空隙が少なくなり、光変換効率を高くすることができる。また、二次焼成後又はアニーリング後に、相対密度が97%以上の波長変換部材が得られることによって、例えば加工工程において、加工を行っても欠けたりすることなく、波長変換部材の加工が行いやすくなる。
Relative Density of Wavelength Conversion Member In the method for manufacturing the wavelength conversion member according to the first and second embodiments, the wavelength conversion member obtained after the secondary firing or after the annealing preferably has a relative density of 97% or more. When the relative density of the wavelength conversion member is 97% or more, the gap of the wavelength conversion member is reduced, and the light conversion efficiency can be increased. Further, since the wavelength conversion member having a relative density of 97% or more after the secondary firing or the annealing is obtained, for example, in the processing step, the wavelength conversion member can be easily processed without chipping even if processing is performed. Become.

本明細書において波長変換部材の相対密度とは、波長変換部材の真密度に対する波長変換部材の見掛け密度により算出される値をいう。相対密度は、下記式(4)により算出される。
相対密度(%)=(波長変換部材の見掛け密度÷波長変換部材の真密度)×100 (4)
波長変換部材の真密度の算出方法は、第一の焼結体の真密度と同様の方法によって算出される。波長変換部材の真密度は、第一の焼結体の真密度と同じ値である。
波長変換部材の見掛け密度は、波長変換部材の質量をアルキメデス法によって求められる波長変換部材の体積で除した値をいう。波長変換部材の見掛け密度は、下記式(5)により算出される。
波長変換部材の見掛け密度=波長変換部材の質量÷波長変換部材のアルキメデス法により求められた体積 (5)
In this specification, the relative density of the wavelength conversion member refers to a value calculated by an apparent density of the wavelength conversion member with respect to a true density of the wavelength conversion member. The relative density is calculated by the following equation (4).
Relative density (%) = (apparent density of wavelength conversion member / true density of wavelength conversion member) × 100 (4)
The method of calculating the true density of the wavelength conversion member is calculated in the same manner as the true density of the first sintered body. The true density of the wavelength conversion member is the same value as the true density of the first sintered body.
The apparent density of the wavelength conversion member is a value obtained by dividing the mass of the wavelength conversion member by the volume of the wavelength conversion member obtained by the Archimedes method. The apparent density of the wavelength conversion member is calculated by the following equation (5).
Apparent density of wavelength conversion member = mass of wavelength conversion member / volume determined by Archimedes method of wavelength conversion member (5)

本実施形態の製造方法によって得られる波長変換部材は、波長変換部材が高密度であり、相対発光強度を高くすることができ、光変換効率を高くすることができる。   In the wavelength conversion member obtained by the manufacturing method of the present embodiment, the wavelength conversion member has a high density, the relative emission intensity can be increased, and the light conversion efficiency can be increased.

波長変換部材は、溶融したアルミナからなるマトリックス中に、アルミナのマトリックスとは粒界によって区別されたYAG系蛍光体粒子が存在し、アルミナ粒子とYAG系蛍光体が一体となってセラミックスの波長変換部材を構成する。第一の実施形態及び第二の実施形態において、一次焼成の前の成形体準備工程において、YAG系蛍光体を構成する原料とアルミナ粒子を混合して成形体とするのではなく、YAG系蛍光体とアルミナ粒子とを混合して成形体とし、一次焼成及び二次焼成して波長変換部材が得られる。波長変換部材の断面写真を観察すると、アルミナ粒子が溶融して一体となったアルミナから構成されたマトリックス中に、マトリックスとは粒界によって区別されたYAG系蛍光体粒子が点在していることが確認できる。アルミナからなるマトリックス中にYAG系蛍光体粒子が略均一に分散し、波長変換部材の相対密度が97%以上であることによって、セラミックスの波長変換部材は切断等の加工を施した場合であっても、割れや欠けを生じることなく、波長変換部材を発光装置に用いた場合に、色むらの発生を抑制することができる。   The wavelength conversion member is composed of a matrix of molten alumina, in which YAG-based phosphor particles that are distinguished from the alumina matrix by grain boundaries are present, and the alumina particles and the YAG-based phosphor are integrated to convert the wavelength of ceramics. Configure the members. In the first embodiment and the second embodiment, in the green body preparation step before the primary firing, the raw material constituting the YAG-based phosphor and the alumina particles are not mixed to form a green body, but the YAG-based fluorescent material is used. The body and alumina particles are mixed to form a molded body, which is subjected to primary firing and secondary firing to obtain a wavelength conversion member. Observation of the cross-sectional photograph of the wavelength conversion member shows that YAG-based phosphor particles, which are distinguished from the matrix by the grain boundaries, are scattered in the matrix composed of alumina, which is formed by melting and integrating alumina particles. Can be confirmed. When the YAG-based phosphor particles are substantially uniformly dispersed in the matrix made of alumina and the relative density of the wavelength conversion member is 97% or more, the wavelength conversion member made of ceramics is processed by cutting or the like. Even when the wavelength conversion member is used for a light emitting device, generation of color unevenness can be suppressed without causing cracks or chipping.

第一の実施形態の製造方法又は第二の実施形態の製造方法によって得られる波長返変換部材は、発光素子と組み合わせることによって、発光素子から発せられた光を変換し、発光素子からの光と波長変換部材で波長変換された混色光を発する発光装置を構成することが可能となる。発光素子は、例えば、350nm以上500nm以下の波長範囲の光を発する発光素子を用いることができる。発光素子には、例えば、窒化物系半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)を用いた半導体発光素子を用いることができる。励起光源として半導体発光素子を用いることによって、高効率で入力に対する出力のリニアリティが高く、機械的衝撃にも強い安定した発光装置を得ることができる。 The wavelength conversion member obtained by the manufacturing method of the first embodiment or the manufacturing method of the second embodiment, by combining with a light emitting element, converts light emitted from the light emitting element, and the light from the light emitting element It is possible to configure a light emitting device that emits mixed color light whose wavelength is converted by the wavelength conversion member. As the light-emitting element, for example, a light-emitting element which emits light in a wavelength range of 350 nm to 500 nm can be used. As the light-emitting element, for example, a semiconductor light-emitting element using a nitride-based semiconductor (In X Al Y Ga 1-XY N, 0 ≦ X, 0 ≦ Y, X + Y ≦ 1) can be used. By using a semiconductor light emitting element as an excitation light source, it is possible to obtain a stable light emitting device with high efficiency, high output linearity with respect to input, and strong mechanical shock.

以下、本発明を実施例により具体的に説明する。本発明は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described specifically with reference to examples. The present invention is not limited to these examples.

YAG系蛍光体の製造例
酸化イットリウム(Y)、酸化ガドリニウム(Gd)、酸化セリウム(CeO)、酸化アルミニウム(Al)を実施例及び比較例の組成比となるように、それぞれ計量して原料混合物とし、フラックスとしてフッ化バリウム(BaF)を添加し、原料混合物及びフラックスをボールミルで混合した。この混合物をアルミナルツボに入れ、還元性雰囲気下、1400℃から1600℃の範囲で10時間焼成して焼成物を得た。得られた焼成物を、純水中に分散させ、ふるいを介して種々の振動を加えながら溶媒流を流して、湿式ふるいを通過させ、次いで脱水、乾燥し、乾式ふるいを通過させて分級し、目的の組成を有する実施例1から19及び比較例1から4で用いる各蛍光体を準備した。各蛍光体の組成及び平均粒径は、以下の方法によって測定した。結果を表1に示す。
Production Example of YAG Phosphor Yttrium oxide (Y 2 O 3 ), gadolinium oxide (Gd 2 O 3 ), cerium oxide (CeO 2 ), and aluminum oxide (Al 2 O 3 ) The resulting mixture was weighed to obtain a raw material mixture, barium fluoride (BaF 2 ) was added as a flux, and the raw material mixture and the flux were mixed by a ball mill. This mixture was put into an alumina crucible and fired in a reducing atmosphere at a temperature in the range of 1400 ° C. to 1600 ° C. for 10 hours to obtain a fired product. The obtained calcined product is dispersed in pure water, a solvent stream is applied while applying various vibrations through a sieve, passed through a wet sieve, then dehydrated, dried, and classified by passing through a dry sieve. Each phosphor having a desired composition and used in Examples 1 to 19 and Comparative Examples 1 to 4 was prepared. The composition and average particle size of each phosphor were measured by the following methods. Table 1 shows the results.

平均粒径
得られた蛍光体について、レーザー回折式粒度分布測定装置(製品名:MASTER SIZER(マスターサイザー)3000、MALVERN(マルバーン)社製)により測定した小径側からの体積累積頻度が50%に達する体積平均粒径(メジアン径)を平均粒径粒径とした。
Average Particle Size The obtained phosphor has a volume accumulation frequency from the small diameter side of 50% as measured by a laser diffraction particle size distribution analyzer (product name: MASTER Sizer 3000, manufactured by MALVERN). The volume average particle diameter (median diameter) reached was defined as the average particle diameter.

組成分析
得られた蛍光体について、ICP−AES(誘導結合プラズマ発光分析装置)(製品名:Perkin Elmer(パーキンエルマー)社製)により、YAG系蛍光体を構成する酸素を除く各元素(Y、Gd、Ce、Al、O)の質量百分率(質量%)を測定し、各元素の質量百分率の値から各元素のモル比を算出した。表1に示すGdのモル比(変数a)及びCeのモル比(変数b)は、測定されたAlのモル比を5とし、このAlのモル比5を基準として算出した値である。
Composition analysis The obtained phosphor was analyzed by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer) (product name: Perkin Elmer) to remove each element (Y, Gd, Ce, Al, O) were measured for the mass percentage (% by mass), and the molar ratio of each element was calculated from the value of the mass percentage of each element. The molar ratio of Gd (variable a) and the molar ratio of Ce (variable b) shown in Table 1 are values calculated on the assumption that the measured molar ratio of Al is 5, and the molar ratio of Al is 5 as a reference.

実施例1
YAG系蛍光体の製造例によって得られた平均粒径5μmの(Y0.921Gd0.070Ce0.009Al12で表されるYAG系蛍光体を25質量部と、平均粒径0.40μmのαアルミナ粒子(品名:AHP200、日本軽金属株式会社製、アルミナ純度99.5質量%)75質量部とを秤量し、乾式ボールミルで混合し、成形体用の混合粉体を準備した。αアルミナ粒子のアルミナ純度は、後述するアルミナ純度の測定方法と同様の方法により測定した。混合粉体から混合媒体に用いたボールを除いた後、混合粉体を金型に充填し、19.6MPa(200kgf/cm)の圧力で直径20mm、厚さ20mmの円筒形状の成形体を形成した。得られた成形体を包装容器に入れて真空包装し、冷間静水等方加圧装置(KOBELCO社製)により176MPaでCIP処理を行った。得られた成形体を焼成炉(丸祥電器社製)、大気雰囲気(酸素濃度:約20体積%)で、1700℃の温度で6時間保持して、一次焼成を行い、第一の焼結体を得た。得られた第一の焼結体を、HIP装置(KOBELCO社製)を用いて、圧力媒体に窒素ガスを用いて窒素ガス雰囲気(窒素:99体積%以上)のもとで、1750℃、198MPa、2時間、HIP処理により二次焼成を行い、第二の焼結体を得て、この第二の焼結体を波長変換部材とした。
Example 1
25 parts by mass of a YAG-based phosphor represented by (Y 0.921 Gd 0.070 Ce 0.009 ) 3 Al 5 O 12 having an average particle size of 5 μm obtained by a production example of the YAG-based phosphor, 75 parts by mass of α-alumina particles having a particle size of 0.40 μm (product name: AHP200, manufactured by Nippon Light Metal Co., Ltd., alumina purity: 99.5% by mass) are weighed and mixed by a dry ball mill to obtain a mixed powder for a compact. Got ready. The alumina purity of the α-alumina particles was measured by the same method as the method for measuring the alumina purity described below. After removing the balls used as the mixing medium from the mixed powder, the mixed powder was filled in a mold, and a cylindrical molded body having a diameter of 20 mm and a thickness of 20 mm was formed at a pressure of 19.6 MPa (200 kgf / cm 2 ). Formed. The obtained molded body was placed in a packaging container, vacuum-packaged, and subjected to a CIP treatment at 176 MPa by a cold isostatic pressing device (manufactured by KOBELCO). The obtained molded body is held in a firing furnace (manufactured by Marusho Denki KK) in an air atmosphere (oxygen concentration: about 20% by volume) at a temperature of 1700 ° C. for 6 hours to perform primary sintering, thereby performing first sintering. I got a body. The obtained first sintered body was heated at 1750 ° C. and 198 MPa using a HIP apparatus (manufactured by KOBELCO) under a nitrogen gas atmosphere (nitrogen: 99% by volume or more) using nitrogen gas as a pressure medium. Second firing was performed by HIP treatment for 2 hours to obtain a second sintered body, which was used as a wavelength conversion member.

実施例2
YAG系蛍光体を40質量部と、αアルミナ粒子を60質量部とを混合した混合粉体を準備したこと以外は、実施例1と同様にして、波長変換部材を得た。
Example 2
A wavelength conversion member was obtained in the same manner as in Example 1 except that a mixed powder in which 40 parts by mass of a YAG-based phosphor and 60 parts by mass of α-alumina particles were mixed was prepared.

実施例3
YAG系蛍光体を50質量部と、αアルミナ粒子を50質量部とを混合した混合粉体を準備したこと以外は、実施例1と同様にして波長変換部材を得た。
Example 3
A wavelength conversion member was obtained in the same manner as in Example 1 except that a mixed powder in which 50 parts by mass of a YAG-based phosphor and 50 parts by mass of α-alumina particles were mixed was prepared.

実施例4
YAG系蛍光体の製造例によって得られた平均粒径5μmの(Y0.862Gd0.130Ce0.008Al12で表されるYAG系蛍光体を15質量部と、平均粒径0.40μmのαアルミナ粒子(品名:AHP200、日本軽金属株式会社製、アルミナ純度99.5質量%)を85質量部とを秤量し、乾式ボールミルで混合し、成形体用の混合粉体を準備した。混合粉体から混合媒体に用いたボールを除いた後、混合粉体を金型に充填し、19.6MPa(200kgf/cm)の圧力で直径20mm、厚さ20mmの円筒形状の成形体を形成した。得られた成形体を包装容器に入れて真空包装し、冷間静水等方加圧装置(KOBELCO社製)により176MPaでCIP処理を行った。得られた成形体を焼成炉(丸祥電器社製)、大気雰囲気(酸素濃度:約20体積%)で、1700℃の温度で6時間保持して、一次焼成を行い、第一の焼結体を得た。
得られた第一の焼結体を、HIP装置(KOBELCO社製)を用いて、圧力媒体に窒素ガスを用いて窒素ガス雰囲気(窒素:99体積%以上)のもとで、1750℃、198MPa、2時間、HIP処理により二次焼成を行い、第二の焼結体を得て、この第二の焼結体を波長変換部材とした。
Example 4
15 parts by mass of the YAG-based phosphor represented by (Y 0.862 Gd 0.130 Ce 0.008 ) 3 Al 5 O 12 having an average particle size of 5 μm obtained by the production example of the YAG-based phosphor, 85 parts by mass of α-alumina particles having a particle size of 0.40 μm (product name: AHP200, manufactured by Nippon Light Metal Co., Ltd., alumina purity: 99.5% by mass) were weighed and mixed by a dry ball mill to obtain a mixed powder for a compact. Was prepared. After removing the balls used as the mixing medium from the mixed powder, the mixed powder was filled in a mold, and a cylindrical molded body having a diameter of 20 mm and a thickness of 20 mm was formed at a pressure of 19.6 MPa (200 kgf / cm 2 ). Formed. The obtained molded body was placed in a packaging container, vacuum-packaged, and subjected to a CIP treatment at 176 MPa by a cold isostatic pressing device (manufactured by KOBELCO). The obtained molded body is held in a firing furnace (manufactured by Marusho Denki KK) in an air atmosphere (oxygen concentration: about 20% by volume) at a temperature of 1700 ° C. for 6 hours to perform primary sintering, thereby performing first sintering. I got a body.
The obtained first sintered body was heated at 1750 ° C. and 198 MPa using a HIP apparatus (manufactured by KOBELCO) under a nitrogen gas atmosphere (nitrogen: 99% by volume or more) using nitrogen gas as a pressure medium. Second firing was performed by HIP treatment for 2 hours to obtain a second sintered body, which was used as a wavelength conversion member.

実施例5
YAG系蛍光体を20質量部と、αアルミナ粒子を80質量部とを混合した混合粉体を準備したこと以外は、実施例4と同様にして波長変換部材を得た。
Example 5
A wavelength conversion member was obtained in the same manner as in Example 4, except that a mixed powder was prepared by mixing 20 parts by mass of a YAG-based phosphor and 80 parts by mass of α-alumina particles.

実施例6
YAG系蛍光体の製造例によって得られた平均粒径5μmの(Y0.746Gd0.250Ce0.004Al12で表されるYAG系蛍光体を25質量部と、平均粒径0.40μmのαアルミナ粒子(品名:AHP200、日本軽金属株式会社製、アルミナ純度99.5質量%)を75質量部とを秤量し、乾式ボールミルで混合し、成形体用の混合粉体を準備した。混合粉体から混合媒体に用いたボールを除いた後、混合粉体を金型に充填し、19.6MPa(200kgf/cm)の圧力で直径20mm、厚さ20mmの円筒形状の成形体を形成した。得られた成形体を包装容器に入れて真空包装し、冷間静水等方加圧装置(KOBELCO社製)により176MPaでCIP処理を行った。得られた成形体を焼成炉(丸祥電器社製)、大気雰囲気(酸素濃度:約20体積%)で、1700℃の温度で6時間保持して、一次焼成を行い、第一の焼結体を得た。
得られた第一の焼結体を、HIP装置(KOBELCO社製)を用いて、圧力媒体に窒素ガスを用いて窒素ガス雰囲気(窒素:99体積%以上)のもとで、1750℃、198MPa、2時間、HIP処理により二次焼成を行い、第二の焼結体を得て、この第二の焼結体を波長変換部材とした
Example 6
25 parts by mass of a YAG-based phosphor represented by (Y 0.746 Gd 0.250 Ce 0.004 ) 3 Al 5 O 12 having an average particle size of 5 μm obtained by a production example of the YAG-based phosphor, 75 parts by mass of α-alumina particles having a particle size of 0.40 μm (product name: AHP200, manufactured by Nippon Light Metal Co., Ltd., alumina purity: 99.5% by mass) are weighed and mixed by a dry ball mill to obtain a mixed powder for a compact. Was prepared. After removing the balls used as the mixing medium from the mixed powder, the mixed powder was filled in a mold, and a cylindrical molded body having a diameter of 20 mm and a thickness of 20 mm was formed at a pressure of 19.6 MPa (200 kgf / cm 2 ). Formed. The obtained molded body was placed in a packaging container, vacuum-packaged, and subjected to a CIP treatment at 176 MPa by a cold isostatic pressing device (manufactured by KOBELCO). The obtained molded body is held in a firing furnace (manufactured by Marusho Denki KK) in an air atmosphere (oxygen concentration: about 20% by volume) at a temperature of 1700 ° C. for 6 hours to perform primary sintering, thereby performing first sintering. I got a body.
The obtained first sintered body was heated at 1750 ° C. and 198 MPa using a HIP apparatus (manufactured by KOBELCO) under a nitrogen gas atmosphere (nitrogen: 99% by volume or more) using nitrogen gas as a pressure medium. Secondary baking was performed by HIP treatment for 2 hours to obtain a second sintered body, and this second sintered body was used as a wavelength conversion member.

実施例7
YAG系蛍光体の製造例によって得られた平均粒径5μmの(Y0.927Gd0.070Ce0.003Al12で表されるYAG系蛍光体を用いたこと以外は、実施例6と同様にして波長変換部材を得た。
Example 7
Except that a YAG-based phosphor represented by (Y 0.927 Gd 0.070 Ce 0.003 ) 3 Al 5 O 12 having an average particle size of 5 μm obtained by a production example of the YAG-based phosphor was used. A wavelength conversion member was obtained in the same manner as in Example 6.

実施例8
YAG系蛍光体の製造例によって得られた平均粒径5μmの(Y0.897Gd0.100Ce0.003Al12で表されるYAG系蛍光体を用いたこと以外は、実施例6と同様にして波長変換部材を得た。
Example 8
Except that a YAG-based phosphor represented by (Y 0.897 Gd 0.100 Ce 0.003 ) 3 Al 5 O 12 having an average particle size of 5 μm obtained by a production example of the YAG-based phosphor was used. A wavelength conversion member was obtained in the same manner as in Example 6.

実施例9
YAG系蛍光体の製造例によって得られた平均粒径5μmの(Y0.867Gd0.130Ce0.003Al12で表されるYAG系蛍光体を用いたこ以外は、実施例6と同様にして波長変換部材を得た。
Example 9
Except that a YAG-based phosphor represented by (Y 0.867 Gd 0.130 Ce 0.003 ) 3 Al 5 O 12 having an average particle diameter of 5 μm obtained by a production example of the YAG-based phosphor was used. A wavelength conversion member was obtained in the same manner as in Example 6.

実施例10
YAG系蛍光体の製造例によって得られた平均粒径5μmの(Y0.797Gd0.200Ce0.003Al12で表されるYAG系蛍光体を用いたこと以外は、実施例6と同様にして波長変換部材を得た。
Example 10
Except that a YAG-based phosphor represented by (Y 0.797 Gd 0.200 Ce 0.003 ) 3 Al 5 O 12 having an average particle size of 5 μm obtained by a production example of the YAG-based phosphor was used. A wavelength conversion member was obtained in the same manner as in Example 6.

実施例11
YAG系蛍光体の製造例によって得られた平均粒径12μmの(Y0.922Gd0.070Ce0.008Al12で表されるYAG系蛍光体を25質量部と、平均粒径0.40μmのαアルミナ粒子(品名:AHP200、日本軽金属株式会社製、アルミナ純度99.5質量%)を75質量部とを秤量し、乾式ボールミルで混合し、成形体用の混合粉体を準備した。混合粉体から混合媒体に用いたボール除いた後、混合粉体を金型に充填し、19.6MPa(200kgf/cm)の圧力で直径20mm、厚さ20mmの円筒形状の成形体を形成した。得られた成形体を包装容器に入れて真空包装し、冷間静水等方加圧装置(KOBELCO社製)により176MPaでCIP処理を行った。得られた成形体を焼成炉(丸祥電器社製)、大気雰囲気(酸素濃度:約20体積%)で、1700℃の温度で6時間保持して、一次焼成を行い、第一の焼結体を得た。
得られた第一の焼結体を、HIP装置(KOBELCO社製)を用いて、圧力媒体に窒素ガスを用いて窒素ガス雰囲気(窒素:99体積%以上)のもとで、1750℃、198MPa、2時間、HIP処理により二次焼成を行い、第二の焼結体を得て、この第二の焼結体を波長変換部材とした。
Example 11
25 parts by mass of a YAG-based phosphor represented by (Y 0.922 Gd 0.070 Ce 0.008 ) 3 Al 5 O 12 having an average particle diameter of 12 μm obtained by a production example of the YAG-based phosphor, 75 parts by mass of α-alumina particles having a particle size of 0.40 μm (product name: AHP200, manufactured by Nippon Light Metal Co., Ltd., alumina purity: 99.5% by mass) are weighed and mixed by a dry ball mill to obtain a mixed powder for a compact. Was prepared. After removing the balls used as the mixing medium from the mixed powder, the mixed powder is filled in a mold to form a cylindrical molded body having a diameter of 20 mm and a thickness of 20 mm at a pressure of 19.6 MPa (200 kgf / cm 2 ). did. The obtained molded body was placed in a packaging container, vacuum-packaged, and subjected to a CIP treatment at 176 MPa by a cold isostatic pressing device (manufactured by KOBELCO). The obtained molded body is held in a firing furnace (manufactured by Marusho Denki KK) in an air atmosphere (oxygen concentration: about 20% by volume) at a temperature of 1700 ° C. for 6 hours to perform primary sintering, thereby performing first sintering. I got a body.
The obtained first sintered body was heated at 1750 ° C. and 198 MPa using a HIP apparatus (manufactured by KOBELCO) under a nitrogen gas atmosphere (nitrogen: 99% by volume or more) using nitrogen gas as a pressure medium. Second firing was performed by HIP treatment for 2 hours to obtain a second sintered body, which was used as a wavelength conversion member.

実施例12
YAG系蛍光体を30質量部と、αアルミナ粒子を70質量部とを用いた混合粉体を準備したこと以外は、実施例11と同様にして波長変換部材を得た。
Example 12
A wavelength conversion member was obtained in the same manner as in Example 11, except that a mixed powder using 30 parts by mass of a YAG-based phosphor and 70 parts by mass of α-alumina particles was prepared.

実施例13
YAG系蛍光体を40質量部と、αアルミナ粒子を60質量部とを用いた混合粉体を準備したこと以外は、実施例11と同様にして波長変換部材を得た。
Example 13
A wavelength conversion member was obtained in the same manner as in Example 11, except that a mixed powder was prepared using 40 parts by mass of a YAG-based phosphor and 60 parts by mass of α-alumina particles.

実施例14
YAG系蛍光体を50質量部と、αアルミナ粒子を50質量部とを用いた混合粉体を準備したこと以外は、実施例11と同様にして波長変換部材を得た。
Example 14
A wavelength conversion member was obtained in the same manner as in Example 11, except that a mixed powder using 50 parts by mass of a YAG-based phosphor and 50 parts by mass of α-alumina particles was prepared.

実施例15
YAG系蛍光体の製造例でよって得られた平均粒径12μmの(Y0.921Gd0.070Ce0.009Al12で表されるYAG系蛍光体を用いたこと以外は、実施例11と同様にして波長変換材料を得た。
Example 15
Except that a YAG-based phosphor represented by (Y 0.921 Gd 0.070 Ce 0.009 ) 3 Al 5 O 12 having an average particle diameter of 12 μm obtained in the production example of the YAG-based phosphor was used. In the same manner as in Example 11, a wavelength conversion material was obtained.

実施例16
YAG系蛍光体を5質量部と、αアルミナ粒子を95質量部とを用いた混合粉体を準備したこと以外は、実施例11と同様にして波長変換部材を得た。
Example 16
A wavelength conversion member was obtained in the same manner as in Example 11, except that a mixed powder using 5 parts by mass of a YAG-based phosphor and 95 parts by mass of α-alumina particles was prepared.

実施例17
YAG系蛍光体を7質量部と、αアルミナ粒子を93質量部とを用いた混合粉体を準備したこと以外は、実施例11と同様にして波長変換部材を得た。
Example 17
A wavelength conversion member was obtained in the same manner as in Example 11, except that a mixed powder using 7 parts by mass of a YAG-based phosphor and 93 parts by mass of α-alumina particles was prepared.

実施例18
YAG系蛍光体を9質量部と、αアルミナ粒子を91質量部とを用いた混合粉体を準備したこと以外は、実施例11と同様にして波長変換部材を得た。
Example 18
A wavelength conversion member was obtained in the same manner as in Example 11, except that a mixed powder using 9 parts by mass of a YAG-based phosphor and 91 parts by mass of α-alumina particles was prepared.

実施例19
YAG系蛍光体を15質量部と、αアルミナ粒子を85質量部とを用いた混合粉体を準備したこと以外は、実施例11と同様にして波長変換部材を得た。
Example 19
A wavelength conversion member was obtained in the same manner as in Example 11, except that a mixed powder using 15 parts by mass of a YAG-based phosphor and 85 parts by mass of α-alumina particles was prepared.

比較例1
平均粒径5μmの(Y0.976Ce0.024Al12で表されるYAG系蛍光体7質量部と、平均粒径0.40μmのαアルミナ粒子(品名:AHP200、日本軽金属株式会社製、アルミナ純度99.5質量%)93質量部とを秤量し、乾式ボールミルで混合して、成形体用の混合粉体を準備した。混合粉体から混合媒体に用いたボールを除いた後、混合粉体を金型に充填し、19.6MPa(200kgf/cm)の圧力で直径20mm、厚さ20mmの円筒形状の成形体を形成した。得られた成形体を包装容器に入れて真空包装し、冷間静水等方加圧装置(KOBELCO社製)により176MPaでCIP処理を行った。得られた成形体を焼成炉(丸祥電器社製)、大気雰囲気(酸素濃度:約20体積%)で、1700℃の温度で6時間保持して、一次焼成を行い、第一の焼結体を得た。
得られた第一の焼結体を、HIP装置(KOBELCO社製)を用いて、圧力媒体に窒素ガスを用いて窒素ガス雰囲気(窒素:99体積%以上)のもとで、1750℃、198MPa、2時間、HIP処理により二次焼成を行い、第二の焼結体を得て、この第二の焼結体を波長変換部材とした。
Comparative Example 1
7 parts by mass of a YAG phosphor represented by (Y 0.976 Ce 0.024 ) 3 Al 5 O 12 having an average particle size of 5 μm, and α-alumina particles having an average particle size of 0.40 μm (product name: AHP200, Nippon Light Metal) 93 parts by mass (alumina purity: 99.5% by mass, manufactured by Co., Ltd.) were weighed and mixed by a dry ball mill to prepare a mixed powder for a compact. After removing the balls used as the mixing medium from the mixed powder, the mixed powder was filled in a mold, and a cylindrical molded body having a diameter of 20 mm and a thickness of 20 mm was formed at a pressure of 19.6 MPa (200 kgf / cm 2 ). Formed. The obtained molded body was placed in a packaging container, vacuum-packaged, and subjected to a CIP treatment at 176 MPa by a cold isostatic pressing device (manufactured by KOBELCO). The obtained molded body is held in a firing furnace (manufactured by Marusho Denki KK) in an air atmosphere (oxygen concentration: about 20% by volume) at a temperature of 1700 ° C. for 6 hours to perform primary sintering, thereby performing first sintering. I got a body.
The obtained first sintered body was heated at 1750 ° C. and 198 MPa using a HIP apparatus (manufactured by KOBELCO) under a nitrogen gas atmosphere (nitrogen: 99% by volume or more) using nitrogen gas as a pressure medium. Second firing was performed by HIP treatment for 2 hours to obtain a second sintered body, which was used as a wavelength conversion member.

比較例2
YAG系蛍光体を11質量部と、αアルミナ粒子を89質量部とを用いた混合粉体を準備したこと以外は、比較例1と同様にして波長変換部材を得た。
Comparative Example 2
A wavelength conversion member was obtained in the same manner as in Comparative Example 1, except that a mixed powder using 11 parts by mass of a YAG-based phosphor and 89 parts by mass of α-alumina particles was prepared.

比較例3
YAG系蛍光体を15質量部と、αアルミナ粒子を85質量部とを用いた混合粉体を準備したこと以外は、比較例1と同様にして波長変換部材を得た。
Comparative Example 3
A wavelength conversion member was obtained in the same manner as in Comparative Example 1, except that a mixed powder using 15 parts by mass of a YAG-based phosphor and 85 parts by mass of α-alumina particles was prepared.

比較例4
YAG系蛍光体を20質量部と、αアルミナ粒子を80質量部とを用いた混合粉体を準備したこと以外は、比較例1と同様にして波長変換部材を得た。
Comparative Example 4
A wavelength conversion member was obtained in the same manner as in Comparative Example 1, except that a mixed powder using 20 parts by mass of a YAG-based phosphor and 80 parts by mass of α-alumina particles was prepared.

第一の焼結体の相対密度の測定
実施例1から19及び比較例1から4において、各第一の焼結体の相対密度を測定した。結果を表1に示す。
相対密度は下記式(1)により算出した。
相対密度(%)=(第一の焼結体の見掛け密度÷第一の焼結体の真密度)×100 (1)
Measurement of Relative Density of First Sintered Body In Examples 1 to 19 and Comparative Examples 1 to 4, the relative density of each first sintered body was measured. Table 1 shows the results.
The relative density was calculated by the following equation (1).
Relative density (%) = (apparent density of first sintered body ÷ true density of first sintered body) × 100 (1)

第一の焼結体の真密度は、下記式(2)より算出した。実施例及び比較例で用いたαアルミナ粒子の真密度は3.98g/cmとし、実施例1〜3、実施例7、実施例11〜19を4.69g/cm、実施例4〜5、実施例9を4.77g/cm、実施例6を4.92g/cm、実施例8を4.73g/cm、実施例10を4.86g/cm、比較例1〜4を4.60g/cmとして算出した。
第一の焼結体の真密度=(YAG系蛍光体とアルミナ粒子の合計量に対するYAG系蛍光体の質量割合×YAG系蛍光体の真密度)+(YAG系蛍光体とアルミナ粒子の合計量に対するアルミナ粒子の質量割合×アルミナ粒子の真密度) (2)
The true density of the first sintered body was calculated from the following equation (2). The true density of the α-alumina particles used in Examples and Comparative Examples was 3.98 g / cm 3, and Examples 1-3, Example 7, and Examples 11-19 were 4.69 g / cm 3 , Examples 4- 5, example 9 4.77 g / cm 3, example 6 4.92 g / cm 3, example 8 4.73 g / cm 3, example 10 4.86 g / cm 3, Comparative example 1 4 was calculated as 4.60 g / cm 3 .
True density of first sintered body = (mass ratio of YAG-based phosphor to total amount of YAG-based phosphor and alumina particles × true density of YAG-based phosphor) + (total amount of YAG-based phosphor and alumina particles) (Mass ratio of alumina particles with respect to the actual density of alumina particles) (2)

第一の焼結体の見掛け密度は、下記式(3)により算出した。
第一の焼結体の見掛け密度=第一の焼結体の質量÷第一の焼結体のアルキメデス法により求められた体積 (3)
The apparent density of the first sintered body was calculated by the following equation (3).
Apparent density of first sintered body = mass of first sintered body / volume of first sintered body determined by Archimedes method (3)

波長変換部材の相対密度の測定
実施例1から19及び比較例1から4の波長変換部材の相対密度を測定した。結果を表1に示す。
相対密度は下記式(4)により算出した。
相対密度(%)=(波長変換部材の見掛け密度÷波長変換部材の真密度)×100 (4)
Measurement of relative density of wavelength conversion member The relative density of the wavelength conversion members of Examples 1 to 19 and Comparative Examples 1 to 4 was measured. Table 1 shows the results.
The relative density was calculated by the following equation (4).
Relative density (%) = (apparent density of wavelength conversion member / true density of wavelength conversion member) × 100 (4)

波長変換部材の真密度の算出方法は、YAG系蛍光体とαアルミナ粒子の合計量に対するアルミナ粒子の質量割合にアルミナ粒子の真密度を乗じて得られた値と、YAG系蛍光体とαアルミナ粒子の合計量に対するYAG系蛍光体粒子の質量割合にYAG系蛍光体粒子の真密度を乗じて得られた値との和である。各YAG系蛍光体の真密度及びαアルミナ粒子の真密度は、第一の焼結体の真密度の算出方法で用いた数値と同じ数値を用いた。   The method for calculating the true density of the wavelength conversion member is a value obtained by multiplying the mass ratio of the alumina particles to the total amount of the YAG-based phosphor and α-alumina particles by the true density of the alumina particles, This is the sum of the mass ratio of the YAG-based phosphor particles to the total amount of the particles and the value obtained by multiplying the true density of the YAG-based phosphor particles. The same numerical values as those used in the method for calculating the true density of the first sintered body were used for the true density of each YAG-based phosphor and the true density of α-alumina particles.

波長変換部材の見掛け密度は、下記式(5)により算出した。
波長変換部材の見掛け密度=波長変換部材の質量÷波長変換部材のアルキメデス法により求められた体積 (5)
The apparent density of the wavelength conversion member was calculated by the following equation (5).
Apparent density of wavelength conversion member = mass of wavelength conversion member / volume determined by Archimedes method of wavelength conversion member (5)

相対発光強度の測定
実施例1から19及び比較例1から4の波長変換部材を、ワイヤーソーを用いて厚さ300μmに切断し、サンプルを形成した。発光ピーク波長が455nmである窒化物半導体からなるLEDチップを光源として用いて、この光源から波長変換部材のサンプルに光を照射し、光源からの光を受けて実施例1から19及び比較例1から4の各波長変換部材のサンプルから得られた430nm以上800nm以下の波長範囲にある発光ピーク波長の発光強度を、分光蛍光光度計(日亜化学工業株式会社製)を用いて測定した。比較例1の波長変換部材のサンプルから得られた430nm以上800nm以下の波長範囲にある発光ピーク波長の発光強度を100%として、各サンプルから得られた430nm以上800nm以下の波長範囲にある発光ピーク波長の発光強度を相対発光強度(%)として表した。結果を表1に示す。
Measurement of relative light emission intensity The wavelength conversion members of Examples 1 to 19 and Comparative Examples 1 to 4 were cut to a thickness of 300 µm using a wire saw to form samples. Using an LED chip made of a nitride semiconductor having an emission peak wavelength of 455 nm as a light source, the light source irradiates light to a sample of a wavelength conversion member, receives light from the light source, and receives light from the light source. The emission intensity of the emission peak wavelength in the wavelength range of 430 nm to 800 nm obtained from the samples of the wavelength conversion members of Nos. To 4 was measured using a spectrofluorometer (manufactured by Nichia Corporation). Assuming that the emission intensity of the emission peak wavelength in the wavelength range of 430 nm to 800 nm obtained from the sample of the wavelength conversion member of Comparative Example 1 is 100%, the emission peak in the wavelength range of 430 nm to 800 nm obtained from each sample. The emission intensity at the wavelength was expressed as relative emission intensity (%). Table 1 shows the results.

光変換効率の測定
実施例1から19及び比較例1から4の波長変換部材を、ワイヤーソーを用いて厚さ300μmに切断し、サンプルを形成した。発光ピーク波長が455nmである窒化物半導体からなるLEDチップを光源として用いて、この光源から波長変換部材のサンプルに光を照射し、430nm以上480nm以下の波長範囲にある波長変換部材のサンプルが吸収する光子量と、490nm以上800nm以下の波長範囲にある波長変換部材のサンプルから放出される光子量とを以下の測定条件で、積分球を用いて測定した。430nm以上480nm以下の波長範囲にある波長変換部材のサンプルが吸収した光子量に対する490nm以上800nm以下の波長範囲にある波長変換部材のサンプルから放出される光子量の割合を百分率で表し、光変換効率(%)とした。結果を表1に示す。
光変換効率の測定条件
励起光源電流値:800mA
励起光源駆動方式:パルス(周期:5msec、Duty:1%)
検出器:マルチチャンネル分光器
Measurement of Light Conversion Efficiency The wavelength conversion members of Examples 1 to 19 and Comparative Examples 1 to 4 were cut to a thickness of 300 μm using a wire saw to form samples. Using an LED chip made of a nitride semiconductor having an emission peak wavelength of 455 nm as a light source, the light source irradiates light to a sample of the wavelength conversion member, and the sample of the wavelength conversion member in the wavelength range of 430 nm to 480 nm is absorbed. The amount of photons to be emitted and the amount of photons emitted from the sample of the wavelength conversion member in the wavelength range of 490 nm to 800 nm were measured using an integrating sphere under the following measurement conditions. The ratio of the amount of photons emitted from the sample of the wavelength conversion member in the wavelength range of 490 nm to 800 nm to the amount of photons absorbed by the sample of the wavelength conversion member in the wavelength range of 430 nm to 480 nm is expressed as a percentage, and the light conversion efficiency is expressed as a percentage. (%). Table 1 shows the results.
Light conversion efficiency measurement conditions Excitation light source current value: 800 mA
Excitation light source drive method: pulse (period: 5 msec, Duty: 1%)
Detector: Multi-channel spectrometer

SEM写真
走査型電子顕微鏡(SEM)を用いて、実施例1及び実施例11の波長変換部材の断面のSEM写真を得た。図3は、実施例1の波長変換部材の断面のSEM写真である。図4は、実施例11の波長変換部材の断面のSEM写真である。
SEM photograph Using a scanning electron microscope (SEM), SEM photographs of the cross sections of the wavelength conversion members of Example 1 and Example 11 were obtained. FIG. 3 is an SEM photograph of a cross section of the wavelength conversion member of Example 1. FIG. 4 is an SEM photograph of a cross section of the wavelength conversion member of Example 11.

外観写真
実施例1の外観写真を得た。図5は、実施例1の波長変換部材の外観写真である。
Appearance photograph An appearance photograph of Example 1 was obtained. FIG. 5 is an external photograph of the wavelength conversion member of Example 1.

Figure 0006642557
Figure 0006642557

表1に示すように、式(I)で表される組成を有するYAG系蛍光体とアルミナ純度99.0質量%以上のアルミナ粒子とを含む成形体を準備し、一次焼成及び二次焼成して得られた実施例1から19の波長変換部材は、式(I)で表される組成を有していないYAG系蛍光体とアルミナ粒子とを含む成形体を準備し、一次焼成及び二次焼成して得られた比較例1から4の波長変換部材よりも高い相対発光強度を有し、比較例1よりも高い光変換効率を有していた。   As shown in Table 1, a molded body containing a YAG-based phosphor having a composition represented by the formula (I) and alumina particles having an alumina purity of 99.0% by mass or more was prepared and subjected to primary firing and secondary firing. For the wavelength conversion members of Examples 1 to 19 obtained as described above, a molded body containing a YAG-based phosphor not having the composition represented by the formula (I) and alumina particles was prepared, and primary firing and secondary firing were performed. It had a higher relative luminous intensity than the wavelength conversion members of Comparative Examples 1 to 4 obtained by firing, and had a higher light conversion efficiency than Comparative Example 1.

表1に示すように、実施例14の波長変換部材は、YAG系蛍光体の平均粒径が10μmを超えて大きく、成形体を構成する混合粉体のうち、YAG系蛍光体の含有量が50質量%と大きくなると、相対発光強度も高く、光変換効率も高いものの、相対
密度が97%以下となった。
As shown in Table 1, in the wavelength conversion member of Example 14, the average particle diameter of the YAG-based phosphor was larger than 10 μm, and the content of the YAG-based phosphor in the mixed powder constituting the compact was reduced. When it was increased to 50% by mass, the relative emission intensity was high and the light conversion efficiency was high, but the relative density was 97% or less.

表1に示すように、実施例16から18の波長変換部材は、YAG系蛍光体の平均粒径が10μmを超えて大きい場合には、YAG系蛍光体とアルミナ粒子の合計量100質量%に対してYAG系蛍光体の含有量が5質量%以上10質量%以下と少なくしても、比較例1又は比較例2の波長変換部材よりも相対発光強度が120%以上と高くなった。   As shown in Table 1, when the average particle diameter of the YAG-based phosphor is larger than 10 μm, the wavelength conversion members of Examples 16 to 18 reduce the total amount of the YAG-based phosphor and alumina particles to 100% by mass. On the other hand, even when the content of the YAG-based phosphor was reduced to 5% by mass or more and 10% by mass or less, the relative emission intensity was higher by 120% or more than that of the wavelength conversion member of Comparative Example 1 or Comparative Example 2.

図3のSEM写真に示すように、実施例1の波長変換部材は、焼結体のマトリックスを構成する溶融したアルミナ2中に、アルミナのマトリックスとは粒界によって区別されたYAG系蛍光体粒子1が存在し、マトリックスを構成するアルミナ2とYAG系蛍光体粒子1が一体となってセラミックスの波長変換部材が形成されていた。   As shown in the SEM photograph of FIG. 3, the wavelength conversion member of Example 1 has YAG-based phosphor particles that are distinguished from the alumina matrix by grain boundaries in the fused alumina 2 that constitutes the matrix of the sintered body. 1 and alumina 2 constituting the matrix and the YAG-based phosphor particles 1 were integrally formed to form a ceramic wavelength conversion member.

図4のSEM写真に示すように、平均粒径が12μmと大きいYAG系蛍光体粒子1を含む実施例11の波長変換部材は、粒界によってマトリックスを構成するアルミナ2とははっきり区別されたYAG系蛍光体粒子1を確認することができる。
図示を省略したが、実施例1から19の波長変換部材は、予め製造したYAG系蛍光体粒子とアルミナ粒子とを混合した混合粉体を一次焼成及び二次焼成して波長変換部材とするため、波長変換部材中のYAG系蛍光体の特性が損なわれることなく、高い発光強度と、高い光変換効率とを有する波長変換部材が得られる。
As shown in the SEM photograph of FIG. 4, the wavelength conversion member of Example 11 including the YAG-based phosphor particles 1 having a large average particle size of 12 μm was clearly distinguished from the alumina 2 constituting the matrix by the grain boundaries. The system phosphor particles 1 can be confirmed.
Although not shown, the wavelength conversion members of Examples 1 to 19 are used for primary and secondary firing of a mixed powder obtained by mixing previously produced YAG-based phosphor particles and alumina particles to obtain a wavelength conversion member. A wavelength conversion member having high emission intensity and high light conversion efficiency can be obtained without impairing the characteristics of the YAG-based phosphor in the wavelength conversion member.

図5の外観写真に示すように、実施例1の波長変換部材は、全体的に明るく、YAG系蛍光体の本来の体色を維持しており、一次焼成及びHIP処理による二次焼成によって変質していないことが確認できた。   As shown in the external appearance photograph of FIG. 5, the wavelength conversion member of Example 1 is bright overall and maintains the original body color of the YAG-based phosphor, and is deteriorated by primary firing and secondary firing by HIP processing. It was confirmed that it did not.

表1の比較例1から4に示すように、式(I)で表される組成を有していないYAG系蛍光体とアルミナ粒子とを含む成形体を一次焼成及び二次焼成して得られた波長変換部材は、成形体を構成する混合粉体中のYAG系蛍光体の含有量を20質量%まで増やしても、YAG系蛍光体の含有量20質量%と同じである実施例5よりも相対発光強度が低く、また、光変換効率も低くなった。   As shown in Comparative Examples 1 to 4 in Table 1, a molded article containing a YAG-based phosphor not having the composition represented by the formula (I) and alumina particles was obtained by primary firing and secondary firing. The wavelength conversion member according to Example 5 in which the content of the YAG-based phosphor in the mixed powder constituting the molded body was the same as the content of the YAG-based phosphor of 20% by mass even when the content of the YAG-based phosphor was increased to 20% by mass. Also had a low relative emission intensity and a low light conversion efficiency.

次に、実施例21から29、32、34から36と、比較例31、33について説明する。   Next, Examples 21 to 29 and 32 and 34 to 36 and Comparative Examples 31 and 33 will be described.

製造例1−1から製造例1−3
平均粒径20μmのYAl12:Ce((Y0.978Ce0.022Al12とも表すことができる。)で表されるYAG系蛍光体20質量部と、平均粒径0.40μmのαアルミナ粒子(品名:AHP200、日本軽金属株式会社製)80質量部とを秤量し、乾式ボールミルで混合した。混合媒体に用いたボールを混合粉体から除いた後、混合粉体を金型に充填し、19.6MPa(200kgf/cm)の圧力で直径20mm、厚さ20mmの円筒形状の成形体を形成した。得られた成形体を包装容器に入れて真空包装し、冷間静水等方加圧装置(KOBELCO社製)により176MPaでCIP処理を行った。得られた成形体を焼成炉(ADVANTEC社製)、大気雰囲気(酸素濃度:約20体積%)で、1700℃、1750℃、1780℃の各温度で6時間保持して、各温度で一次焼成を行い、製造例1−1、製造例1−2、製造例1−3の各第一の焼結体を得た。
Production Example 1-1 to Production Example 1-3
20 parts by mass of a YAG-based phosphor represented by Y 3 Al 5 O 12 : Ce having an average particle diameter of 20 μm (also represented by (Y 0.978 Ce 0.022 ) 3 Al 5 O 12 ), and 80 parts by mass of α-alumina particles having a particle size of 0.40 μm (product name: AHP200, manufactured by Nippon Light Metal Co., Ltd.) were weighed and mixed by a dry ball mill. After removing the ball used as the mixing medium from the mixed powder, the mixed powder was filled in a mold, and a cylindrical molded body having a diameter of 20 mm and a thickness of 20 mm was formed at a pressure of 19.6 MPa (200 kgf / cm 2 ). Formed. The obtained molded body was placed in a packaging container, vacuum-packaged, and subjected to a CIP treatment at 176 MPa by a cold isostatic pressing device (manufactured by KOBELCO). The obtained molded body is kept at 1700 ° C., 1750 ° C., and 1780 ° C. for 6 hours in a firing furnace (manufactured by ADVANTEC) in an air atmosphere (oxygen concentration: about 20% by volume), and primary fired at each temperature. Was performed to obtain each first sintered body of Production Example 1-1, Production Example 1-2, and Production Example 1-3.

製造例2−1から製造例2−3
平均粒径0.46μmのαアルミナ粒子(品名:AKP−20、住友化学株式会社製)を用いたこと以外は、製造例1−1から製造例1−3と同様にして製造例2−1から製造例2−3の各第一の焼結体を得た。
Production Example 2-1 to Production Example 2-3
Production Example 2-1 was performed in the same manner as in Production Examples 1-1 to 1-3 except that α-alumina particles having an average particle diameter of 0.46 μm (product name: AKP-20, manufactured by Sumitomo Chemical Co., Ltd.) were used. Obtained the first sintered bodies of Production Examples 2-3.

製造例3−1から製造例3−3
平均粒径1.00μmのαアルミナ粒子(品名:RA−40、岩谷産業株式会社製)を用いたこと以外は、製造例1−1から製造例1−3と同様にして製造例3−1から製造例3−3の各第一の焼結体を得た。
Production Example 3-1 to Production Example 3-3
Production Example 3-1 except that α-alumina particles having an average particle size of 1.00 μm (product name: RA-40, manufactured by Iwatani Corporation) were used in the same manner as Production Examples 1-1 to 1-3. Obtained the respective first sintered bodies of Production Example 3-3.

製造例4−1から製造例4−3
平均粒径1.30μmのαアルミナ粒子(品名:AHP300、日本軽金属株式会社製)を用いたこと以外は、製造例1−1から製造例1−3と同様にして製造例4−1から製造例4−3の各第一の焼結体を得た。
Production Example 4-1 to Production Example 4-3
Except for using α-alumina particles having an average particle size of 1.30 μm (product name: AHP300, manufactured by Nippon Light Metal Co., Ltd.), the same procedure as in Production Examples 1-1 to 1-3 was used to produce from Production Example 4-1. Each first sintered body of Example 4-3 was obtained.

製造例5−1から製造例5−3
平均粒径0.51μmの活性アルミナ粒子(γアルミナ)(品名:RG−40、岩谷産業株式会社製)を用いたこと以外は、製造例1−1から製造例1−3と同様にして製造例5−1から製造例5−3の各第一の焼結体を得た。
製造例6
得られた成形体を焼成炉(ADVANTEC社製)、大気雰囲気(酸素濃度:約20体積%)で、1650℃の温度で6時間保持して、一次焼成を行う他は、製造例1−1と同様にして、製造例6の第一の焼結体を得た。
Production Example 5-1 to Production Example 5-3
Except that activated alumina particles (γ-alumina) having an average particle size of 0.51 μm (product name: RG-40, manufactured by Iwatani Sangyo Co., Ltd.) were used, and produced in the same manner as in Production Examples 1-1 to 1-3. Each first sintered body of Example 5-1 to Production Example 5-3 was obtained.
Production Example 6
Production Example 1-1 except that the obtained molded body was primary-baked in a firing furnace (manufactured by ADVANTEC) in an air atmosphere (oxygen concentration: about 20% by volume) at a temperature of 1650 ° C. for 6 hours. In the same manner as in the above, a first sintered body of Production Example 6 was obtained.

第一の焼結体の相対密度の測定
製造例1−1から製造例5−3および製造例6の各第一の焼結体の相対密度を測定した。結果を表2に示す。
相対密度は下記式(1)により算出した。
相対密度(%)=(第一の焼結体の見掛け密度÷第一の焼結体の真密度)×100 (1)
第一の焼結体の真密度は、下記式(2)より算出した。実施例及び比較例で用いたαアルミナ粒子の真密度は3.98g/cmとし、各YAG系蛍光体の真密度は、4.60g/cmとして算出した。各製造例における第一の焼結体の真密度は、表2に示す。
第一の焼結体の真密度=(YAG系蛍光体とアルミナ粒子の合計量に対するYAG系蛍光体の質量割合×YAG系蛍光体の真密度)+(YAG系蛍光体とアルミナ粒子の合計量に対するアルミナ粒子の質量割合×アルミナ粒子の真密度) (2)
第一の焼結体の見掛け密度は、下記式(3)により算出した。
第一の焼結体の見掛け密度=第一の焼結体の質量÷第一の焼結体のアルキメデス法により求められた体積 (3)
Measurement of Relative Density of First Sintered Body The relative density of each first sintered body of Production Example 1-1 to Production Example 5-3 and Production Example 6 was measured. Table 2 shows the results.
The relative density was calculated by the following equation (1).
Relative density (%) = (apparent density of first sintered body ÷ true density of first sintered body) × 100 (1)
The true density of the first sintered body was calculated from the following equation (2). True density of the α-alumina particles used in Examples and Comparative Examples was set to 3.98 g / cm 3, the true density of the YAG phosphor was calculated as 4.60 g / cm 3. Table 2 shows the true density of the first sintered body in each production example.
True density of first sintered body = (mass ratio of YAG-based phosphor to total amount of YAG-based phosphor and alumina particles × true density of YAG-based phosphor) + (total amount of YAG-based phosphor and alumina particles) (Mass ratio of alumina particles with respect to the actual density of alumina particles) (2)
The apparent density of the first sintered body was calculated by the following equation (3).
Apparent density of first sintered body = mass of first sintered body / volume of first sintered body determined by Archimedes method (3)

アルミナ純度の測定
アルミナ粒子の質量を測定した後、各アルミナ粒子を800℃で1時間、大気雰囲気で焼成し、アルミナ粒子に付着している有機分やアルミナ粒子が吸湿している水分を除去した。焼成後のアルミナ粒子の質量を測定し、焼成後のアルミナ粒子の質量を焼成前のアルミナ粒子の質量で除すことによって、アルミナ純度を以下の式(6)により算出した。各アルミナ粒子のアルミナ純度は、表2に示す。
アルミナ純度(質量%)=(焼成後のアルミナ粒子の質量÷焼成前のアルミナ粒子の質量)×100 (6)
Measurement of Alumina Purity After measuring the mass of the alumina particles, each of the alumina particles was fired at 800 ° C. for 1 hour in an air atmosphere to remove organic components attached to the alumina particles and moisture absorbed by the alumina particles. . The mass of the alumina particles after the calcination was measured, and the mass of the alumina particles after the calcination was divided by the mass of the alumina particles before the calcination, whereby the alumina purity was calculated by the following equation (6). Table 2 shows the alumina purity of each alumina particle.
Alumina purity (% by mass) = (mass of alumina particles after firing / mass of alumina particles before firing) × 100 (6)

Figure 0006642557
Figure 0006642557

表2に示すように、アルミナ純度が99.0質量%以上であり、平均粒径が0.2μm以上1.3μm以下のアルミナ粒子は、YAG系蛍光体粒子と共に、相対密度が95%以上の高い密度を有する第一の焼結体を形成することができる。アルミナ粒子の平均粒径が0.2μm以上1.0μm以下であると、一次焼成の温度が1700℃以上1750℃以下の範囲であれば、相対密度が95.9%以上のより高い密度を有する第一の焼結体を形成することができる。アルミナ純度が99.0質量%未満のアルミナ粒子を用いた場合は、製造例5−1から製造例5−3に示すように第一の焼結体の相対密度が95%未満と低下した。   As shown in Table 2, alumina particles having an alumina purity of 99.0% by mass or more and an average particle size of 0.2 μm or more and 1.3 μm or less have a relative density of 95% or more together with the YAG-based phosphor particles. A first sintered body having a high density can be formed. When the average particle size of the alumina particles is 0.2 μm or more and 1.0 μm or less, if the primary firing temperature is in the range of 1700 ° C. or more and 1750 ° C. or less, the relative density has a higher density of 95.9% or more. A first sintered body can be formed. When alumina particles having an alumina purity of less than 99.0% by mass were used, the relative density of the first sintered body was reduced to less than 95% as shown in Production Examples 5-1 to 5-3.

次に、製造例1−1で得られた第一の焼結体を用いて製造した波長変換部材の実施例21から29、32、34から36および37と、HIP処理及びアニーリングを行っていない比較例31と、アルミナ粒子の代わりにガラス粒子を用いた比較例33について説明する。   Next, Examples 21 to 29, 32, 34 to 36, and 37 of the wavelength conversion member manufactured using the first sintered body obtained in Production Example 1-1 were not subjected to HIP processing and annealing. Comparative Example 31 and Comparative Example 33 using glass particles instead of alumina particles will be described.

実施例21
製造例1−1で得られた第一の焼結体を、HIP装置(KOBELCO社製)を用いて、圧力媒体に窒素ガスを用いて窒素ガス雰囲気(窒素:99体積%以上)のもとで、1700℃、198MPa、2時間、HIP処理を行い、第二の焼結体を得た。得られた第二の焼結体を、大気焼成炉(丸祥電器社製)を用いて、大気雰囲気(酸素:約20体積%)で、1500℃、5時間、アニーリングし、波長変換部材を得た。
Example 21
The first sintered body obtained in Production Example 1-1 was placed under a nitrogen gas atmosphere (nitrogen: 99% by volume or more) using a HIP apparatus (manufactured by KOBELCO) and a nitrogen gas as a pressure medium. Then, HIP treatment was performed at 1700 ° C. and 198 MPa for 2 hours to obtain a second sintered body. The obtained second sintered body was annealed at 1500 ° C. for 5 hours in an air atmosphere (oxygen: about 20% by volume) using an air firing furnace (manufactured by Marusho Denki Co., Ltd.) to obtain a wavelength conversion member. Obtained.

実施例22
アニーリングを1600℃で行ったこと以外は、実施例21と同様にして、波長変換部材を得た。
Example 22
A wavelength conversion member was obtained in the same manner as in Example 21 except that annealing was performed at 1600 ° C.

実施例23
アニーリングを1700℃で行ったこと以外は、実施例21と同様にして、波長変換部材を得た。
Example 23
A wavelength conversion member was obtained in the same manner as in Example 21 except that annealing was performed at 1700 ° C.

実施例24
HIP処理を1740℃で行い、アニーリングを1600℃で行ったこと以外は、実施例21と同様にして、波長変換部材を得た。
Example 24
A wavelength conversion member was obtained in the same manner as in Example 21, except that the HIP treatment was performed at 1740 ° C and the annealing was performed at 1600 ° C.

実施例25
HIP処理を1750℃で行い、アニーリングを1600℃で行ったこと以外は、実施例21と同様にして、波長変換部材を得た。
Example 25
A wavelength conversion member was obtained in the same manner as in Example 21, except that the HIP treatment was performed at 1750 ° C and the annealing was performed at 1600 ° C.

実施例26
HIP処理を1760℃で行い、アニーリングを1600℃で行ったこと以外は、実施例21と同様にして、波長変換部材を得た。
Example 26
A wavelength conversion member was obtained in the same manner as in Example 21, except that the HIP treatment was performed at 1760 ° C and the annealing was performed at 1600 ° C.

実施例27
HIP処理を1770℃で行い、アニーリングを1600℃で行ったこと以外は、実施例21と同様にして、波長変換部材を得た。
Example 27
A wavelength conversion member was obtained in the same manner as in Example 21, except that the HIP treatment was performed at 1770 ° C and the annealing was performed at 1600 ° C.

実施例28
HIP処理を1780℃で行い、アニーリングを1600℃で行ったこと以外は、実施例21と同様にして、波長変換部材を得た。
Example 28
A wavelength conversion member was obtained in the same manner as in Example 21, except that the HIP treatment was performed at 1780 ° C and the annealing was performed at 1600 ° C.

実施例29
HIP処理を1790℃で行い、アニーリングを1600℃で行ったこと以外は、実施例31と同様にして、波長変換部材を得た。
Example 29
A wavelength conversion member was obtained in the same manner as in Example 31, except that the HIP treatment was performed at 1790 ° C and the annealing was performed at 1600 ° C.

比較例31
製造例1−1で得られた第一の焼結体を、HIP処理及びアニーリングを行うことなく、比較例31の波長変換部材とした。
Comparative Example 31
The first sintered body obtained in Production Example 1-1 was used as a wavelength conversion member of Comparative Example 31 without performing HIP processing and annealing.

実施例32
製造例1−1で得られた第一の焼結体を、HIP装置(品名:KOBELCO社製)を用いて、圧力媒体に窒素ガスを用いて窒素ガス雰囲気(窒素:99体積%以上)のもとで、1700℃、198MPa、2時間、HIP処理を行い、第二の焼結体を得た。第二の焼結体を、アニーリングを行うことなく、実施例32の波長変換部材とした。
Example 32
The first sintered body obtained in Production Example 1-1 was placed in a nitrogen gas atmosphere (nitrogen: 99% by volume or more) using a HIP apparatus (product name: manufactured by KOBELCO) and using nitrogen gas as a pressure medium. Originally, HIP treatment was performed at 1700 ° C. and 198 MPa for 2 hours to obtain a second sintered body. The second sintered body was used as the wavelength conversion member of Example 32 without performing annealing.

比較例33
平均粒径20μmのYAl12:Ceで表されるYAG系蛍光体11質量部と、硼珪酸ガラス粉末(松波硝子工業社製) 89質量部とを秤量し、乾式ボールミルで混合した。混合媒体に用いたボールを混合粉体から除いた後、混合粉体を金型に充填し、19.6MPa(200kgf/cm)の圧力で直径20mm、厚さ20mmの円筒形状の成形体を形成した。得られた成形体を包装容器に入れて真空包装し、冷間静水等方加圧装置(KOBELCO社製)により176MPaでCIP処理を行った。得られた成形体を焼成炉(ADVANTEC社製)、大気雰囲(酸素濃度:約20体積%)で、800℃の温度で6時間保持して、一次焼成を行い、焼結体を得ようとしたが、焼成炉内で溶融して取り出すことができなかった。
Comparative Example 33
11 parts by mass of a YAG-based phosphor represented by Y 3 Al 5 O 12 : Ce having an average particle size of 20 μm and 89 parts by mass of borosilicate glass powder (manufactured by Matsunami Glass Industry Co., Ltd.) were weighed and mixed by a dry ball mill. . After removing the ball used as the mixing medium from the mixed powder, the mixed powder was filled in a mold, and a cylindrical molded body having a diameter of 20 mm and a thickness of 20 mm was formed at a pressure of 19.6 MPa (200 kgf / cm 2 ). Formed. The obtained molded body was placed in a packaging container, vacuum-packaged, and subjected to a CIP treatment at 176 MPa by a cold isostatic pressing device (manufactured by KOBELCO). The obtained molded body is kept in a firing furnace (manufactured by ADVANTEC) in an air atmosphere (oxygen concentration: about 20% by volume) at a temperature of 800 ° C. for 6 hours to perform primary firing to obtain a sintered body. However, it could not be taken out by melting in the firing furnace.

実施例34
アニーリングを、酸素濃度が1体積%未満の還元雰囲気のもとで、1400℃、5時間行ったこと以外は、実施例21と同様にして、波長変換部材を得た。
Example 34
A wavelength conversion member was obtained in the same manner as in Example 21, except that annealing was performed at 1400 ° C. for 5 hours in a reducing atmosphere having an oxygen concentration of less than 1% by volume.

実施例35
アニーリングを1500℃で行ったこと以外は、実施例34と同様にして、波長変換部材を得た。
Example 35
A wavelength conversion member was obtained in the same manner as in Example 34 except that annealing was performed at 1500 ° C.

実施例36
アニーリングを1600℃で行ったこと以外は、実施例34と同様にして、波長変換部材を得た。
Example 36
A wavelength conversion member was obtained in the same manner as in Example 34 except that annealing was performed at 1600 ° C.

実施例37
製造例6で得られた第一の焼結体を、HIP装置(品名:KOBELCO社製)を用いて、圧力媒体に窒素ガスを用いて窒素ガス雰囲気(窒素:99体積%以上)のもとで、1650℃、198MPa、2時間、HIP処理を行い、第二の焼結体を得た。第二の焼結体を、アニーリングを行うことなく、実施例37の波長変換部材とした。
実施例21から29、32、34から36、37及び比較例31の波長変換部材の相対密度、相対発光強度、光変換効率は、実施例1から19及び比較例1から4の波長変換部材を測定した方法と同様の方法を用いて測定した。
波長変換部材の真密度の算出方法は、YAG系蛍光体とαアルミナ粒子の合計量に対するアルミナ粒子の質量割合にアルミナ粒子の真密度を乗じて得られた値と、YAG系蛍光体とαアルミナ粒子の合計量に対するYAG系蛍光体粒子の質量割合にYAG系蛍光体粒子の真密度を乗じて得られた値との和である。αアルミナ粒子の真密度は3.98g/cmとし、各YAG系蛍光体の真密度は、4.60g/cmとして算出した。
相対発光強度は、比較例31の波長変換部材のサンプルから得られた430nm以上800nm以下の波長範囲にある発光ピーク波長の発光強度を100%として、各サンプルから得られた430nm以上800nm以下の波長範囲にある発光ピーク波長の発光強度を相対発光強度(%)として表した。結果を表3に示す。
Example 37
The first sintered body obtained in Production Example 6 was subjected to a nitrogen gas atmosphere (nitrogen: 99% by volume or more) using a HIP device (product name: manufactured by KOBELCO) and using nitrogen gas as a pressure medium. Then, HIP processing was performed at 1650 ° C. and 198 MPa for 2 hours to obtain a second sintered body. The second sintered body was used as the wavelength conversion member of Example 37 without performing annealing.
The relative densities, relative emission intensities, and light conversion efficiencies of the wavelength conversion members of Examples 21 to 29, 32, 34 to 36, and 37 and Comparative Example 31 were the same as those of Examples 1 to 19 and Comparative Examples 1 to 4. The measurement was performed using the same method as the measurement.
The method for calculating the true density of the wavelength conversion member is a value obtained by multiplying the mass ratio of the alumina particles to the total amount of the YAG-based phosphor and α-alumina particles by the true density of the alumina particles, This is the sum of the mass ratio of the YAG-based phosphor particles to the total amount of the particles and the value obtained by multiplying the true density of the YAG-based phosphor particles. true density of the α-alumina particles and 3.98 g / cm 3, the true density of the YAG phosphor was calculated as 4.60 g / cm 3.
The relative emission intensity is defined as a wavelength of 430 nm or more and 800 nm or less obtained from each sample, with 100% as the emission intensity of the emission peak wavelength in the wavelength range of 430 nm or more and 800 nm or less obtained from the sample of the wavelength conversion member of Comparative Example 31. The emission intensity of the emission peak wavelength in the range was expressed as relative emission intensity (%). Table 3 shows the results.

SEM写真
走査型電子顕微鏡(SEM)を用いて、実施例21及び比較例31の波長変換部材の断面のSEM写真を得た。図6は、実施例21の波長変換部材の断面のSEM写真である。図7は、比較例31の波長変換部材の断面のSEM写真である。
SEM photograph Using a scanning electron microscope (SEM), SEM photographs of the cross sections of the wavelength conversion members of Example 21 and Comparative Example 31 were obtained. FIG. 6 is an SEM photograph of a cross section of the wavelength conversion member of Example 21. FIG. 7 is an SEM photograph of a cross section of the wavelength conversion member of Comparative Example 31.

外観写真
比較例31、実施例32、実施例21、実施例34の外観写真を得た。図8は、比較例31の波長変換部材の外観写真である。図9は、実施例32の波長変換部材の外観写真である。図10は、実施例21の波長変換部材の外観写真である。図11は実施例34の波長変換部材の外観写真である。
Photographs of external appearance Photographs of Comparative Example 31, Example 32, Example 21, and Example 34 were obtained. FIG. 8 is an external photograph of the wavelength conversion member of Comparative Example 31. FIG. 9 is an external photograph of the wavelength conversion member of Example 32. FIG. 10 is an external photograph of the wavelength conversion member of Example 21. FIG. 11 is an external photograph of the wavelength conversion member of Example 34.

Figure 0006642557
Figure 0006642557

表3に示すように、実施例21から29、32、34から36および37の波長変換部材は、比較例31の波長変換部材よりも相対密度が高く、相対発光強度及び光変換効率が高くなった。特に、一次焼成の温度が1600℃以上1780℃以下であり、かつ、二次焼成の温度が1600℃以上1780℃以下である、実施例32および37の波長変換部材は、相対発光強度及び光変換効率が高くなった。二次焼成の温度が1700℃以上1780℃以下であり、かつ、アニーリングの温度が1400℃以上1700℃以下である、実施例21から28、34から36の波長変換部材は、相対発光強度及び光変換効率が高くなった。   As shown in Table 3, the wavelength conversion members of Examples 21 to 29, 32, 34 to 36, and 37 had higher relative densities and higher relative emission intensities and light conversion efficiencies than the wavelength conversion members of Comparative Example 31. Was. In particular, the wavelength conversion members of Examples 32 and 37 in which the primary firing temperature is 1600 ° C. or more and 1780 ° C. or less and the secondary firing temperature is 1600 ° C. or more and 1780 ° C. Efficiency increased. The wavelength conversion members of Examples 21 to 28 and 34 to 36 in which the temperature of the secondary firing is 1700 ° C. or more and 1780 ° C. or less and the temperature of the annealing is 1400 ° C. or more and 1700 ° C. Conversion efficiency increased.

一方、二次焼成及びアニーリングを行っていない比較例31の波長変換部材は、実施例21から29、32、34から36および37の波長変換部材と比べて、相対密度が低く、光変換効率が低かった。   On the other hand, the wavelength conversion members of Comparative Example 31 in which the secondary firing and annealing were not performed had lower relative densities and lower light conversion efficiencies than the wavelength conversion members of Examples 21 to 29, 32, 34 to 36, and 37. It was low.

実施例32の波長変換部材は、HIP処理により二次焼成した後、アニーリングを行っておらず、HIP処理による二次焼成によって、波長変換部材の外観は、表面が全体的に暗く黒っぽい色となっていたが、比較例31の波長変換部材よりも、相対発光郷土及び光変換効率は高くなった。   The wavelength conversion member of Example 32 was not subjected to annealing after the secondary firing by the HIP process, and the secondary firing by the HIP process caused the entire surface of the wavelength conversion member to have a dark blackish color on the entire surface. However, the relative light emission locality and light conversion efficiency were higher than those of the wavelength conversion member of Comparative Example 31.

比較例33は、二次焼成でガラスが溶融して形状が変化し、焼結体を容器から取り出せず、焼結体の特性が得られなかった。また、HIP処理を1800℃で行った場合も、焼結体が溶融し、容器から取り出せない状態であった。   In Comparative Example 33, the glass was melted by the secondary firing to change its shape, and the sintered body could not be taken out of the container, and the characteristics of the sintered body could not be obtained. Also, when the HIP treatment was performed at 1800 ° C., the sintered body was melted and could not be taken out of the container.

実施例34から36の波長変換部材は、HIP処理による二次焼成後、さらに還元雰囲気のもとでアニーリングを行っており、波長変換部材の外観は、表面が全体的に暗く黒っぽい色となっていたが、比較例31の波長変換部材よりも、相対発光強度及び光変換効率は高くなった。実施例34から36の波長変換部材の外観が暗く黒っぽい色であるのは、HIP処理によるYAG系蛍光体の酸素組成比の変化がアニーリングを行っても修復されなかったためであると推測される。   After the secondary baking by the HIP treatment, the wavelength conversion members of Examples 34 to 36 were further annealed in a reducing atmosphere, and the appearance of the wavelength conversion member was such that the entire surface was dark and blackish in color. However, relative emission intensity and light conversion efficiency were higher than those of the wavelength conversion member of Comparative Example 31. It is presumed that the reason why the appearance of the wavelength conversion members of Examples 34 to 36 is dark and darkish is that the change in the oxygen composition ratio of the YAG-based phosphor due to the HIP treatment was not restored even after annealing.

図6のSEM写真に示すように、実施例21の波長変換部材は、成形体を一次焼成した後、HIP処理により二次焼成しているため、YAG系蛍光体粒子1と焼結体のマトリックスを構成しているアルミナ2との間の空隙3が少なくなり、また、焼結体のマトリックスを構成しているアルミナ2中に形成されている微小な空隙3も少ないことが確認できた。   As shown in the SEM photograph of FIG. 6, the wavelength conversion member of Example 21 is obtained by first firing the molded body and then secondary firing by the HIP process. Therefore, the matrix of the YAG-based phosphor particles 1 and the sintered body is obtained. It was confirmed that the voids 3 between the alumina 2 and the alumina 2 included in the sintered body were reduced, and the minute voids 3 formed in the alumina 2 included in the matrix of the sintered body were also reduced.

図6に示すように、実施例21の波長変換部材は、二次焼成工程において、アルミナ粒子が溶融してマトリックスを構成したアルミナ2中に、アルミナのマトリックスとは粒界によって区別されたYAG系蛍光体粒子1が存在し、マトリックスを構成するアルミナ2とYAG系蛍光体粒子1が一体となってセラミックスの波長変換部材が形成されていた。波長変換部材中のYAG系蛍光体粒子は、一次焼成の前の成形体準備工程において、YAG系蛍光体粒子の原料とアルミナ粒子を混合して成形体とするのではなく、YAG系蛍光体粒子とアルミナ粒子とを混合して成形体とするため、YAG系蛍光体粒子1は、波長変換部材の断面写真において、粒子が溶融して一体となってマトリックスを構成するアルミナ2とは粒界によって区別することができた。図6に示すように、波長変換部材中のYAG系蛍光体粒子1は、YAG系蛍光体粒子の個々の粒子の形状を保ったまま、マトリックスを構成するアルミナ2中に点在していることが確認できた。   As shown in FIG. 6, in the wavelength conversion member of Example 21, in the secondary firing step, in the alumina 2 in which alumina particles were melted to form a matrix, a YAG-based material was distinguished from the alumina matrix by a grain boundary. The phosphor particles 1 were present, and the alumina 2 and the YAG-based phosphor particles 1 constituting the matrix were integrated to form a ceramic wavelength conversion member. The YAG-based phosphor particles in the wavelength conversion member are not mixed with the raw material of the YAG-based phosphor particles and the alumina particles in the compact preparation step before the primary firing to form the YAG-based phosphor particles. And the alumina particles are mixed to form a molded body. Therefore, in the cross-sectional photograph of the wavelength conversion member, the YAG-based phosphor particles 1 Could be distinguished. As shown in FIG. 6, the YAG-based phosphor particles 1 in the wavelength conversion member are scattered in the alumina 2 constituting the matrix while maintaining the shape of each of the YAG-based phosphor particles. Was confirmed.

一方、図7のSEM写真に示すように、比較例31の波長変換部材は、成形体を一次焼成した後、HIP処理による二次焼成を行っていないため、YAG系蛍光体粒子1と、焼結体のマトリックスを構成しているアルミナ2との間に比較的大きな空隙3が形成されており、焼結体のマトリックスを構成しているアルミナ2中にも微小な空隙3が形成されていることが確認できた。   On the other hand, as shown in the SEM photograph of FIG. 7, the wavelength conversion member of Comparative Example 31 was not subjected to the secondary firing by the HIP process after the primary firing of the molded body, so that the YAG-based phosphor particles 1 A relatively large void 3 is formed between the sintered body and the alumina 2 forming the matrix, and a minute void 3 is also formed in the alumina 2 forming the sintered body matrix. That was confirmed.

図8に示すように、比較例31の波長変換部材は、成形体を一次焼成したものであり、一次焼成後の第一の焼結体は、全体的に明るく、YAG系蛍光体の本来の体色を維持しており、第一の焼結体に含まれるYAG系蛍光体粒子は一次焼成によって変質していないことが確認できた。   As shown in FIG. 8, the wavelength conversion member of Comparative Example 31 is obtained by subjecting a molded body to primary firing, and the first sintered body after primary firing is bright overall, and is the original YAG-based phosphor. The body color was maintained, and it was confirmed that the YAG-based phosphor particles contained in the first sintered body were not altered by the primary firing.

図9に示すように、実施例32の波長変換部材は、第一の焼結体をHIP処理により二次焼成した第二の焼結体であり、この第二の焼結体は、表面が全体的に暗く黒っぽい色となっており、第二の焼結体に含まれるYAG系蛍光体粒子はHIP処理による二次焼成によって変質する場合があった。   As shown in FIG. 9, the wavelength conversion member of Example 32 is a second sintered body obtained by secondary firing the first sintered body by the HIP processing, and the surface of the second sintered body is The YAG-based phosphor particles contained in the second sintered body were sometimes changed in quality due to the secondary firing by the HIP treatment.

図10に示すように、実施例21の波長変換部材は、HIP処理による二次焼成後、さらに酸素含有雰囲気のもとでアニーリングを行うことにより、YAG系蛍光体の本来の体色に戻すことができ、波長変換部材は全体的に明るい色となっていた。   As shown in FIG. 10, the wavelength conversion member of Example 21 can be returned to the original body color of the YAG-based phosphor by performing annealing under an oxygen-containing atmosphere after secondary firing by HIP processing. As a result, the wavelength conversion member had a bright color as a whole.

図11に示すように、実施例34の波長変換部材は、HIP処理による二次焼成後、さらに還元雰囲気のもとでアニーリングを行ったため、全体的に暗く黒っぽい色のままであった。   As shown in FIG. 11, the wavelength conversion member of Example 34 was subjected to annealing under a reducing atmosphere after the secondary baking by the HIP treatment, and thus remained entirely dark and blackish in color.

上述した実施例32は、表3に示されるように、波長変換部材全体としては相対発光強度及び光変換効率が高いが、図9に示されるように、波長変換部材の一部に暗く黒っぽい色の部分が存在する場合もある。そのような部分を有する波長変換部材は、黒っぽい色の部分が光を吸収するため、好ましくない。実施例32のように、第二の焼結体に含まれるYAG系蛍光体がHIP処理により二次焼成によって変質し、第二の焼結体の一部が黒っぽい色になる場合には、第二の焼結体を酸素含有雰囲気のもとでアニーリングすることにより、図10の実施例21に示すように、YAG系蛍光体の本来の体色に戻すことができる。   In Example 32 described above, as shown in Table 3, the relative emission intensity and light conversion efficiency were high as a whole of the wavelength conversion member, but as shown in FIG. May be present. A wavelength conversion member having such a portion is not preferable because a dark-colored portion absorbs light. As in Example 32, when the YAG-based phosphor contained in the second sintered body is deteriorated by the secondary firing due to the HIP treatment and a part of the second sintered body becomes blackish, By annealing the two sintered bodies in an oxygen-containing atmosphere, the original body color of the YAG-based phosphor can be restored as shown in Example 21 of FIG.

本開示の製造方法によって製造された波長変換部材は、発光強度が高く、光変換効率が高く、LEDやLDから発せられた光の波長を変換する波長変換部材、固体シンチレーターの材料として利用できる。   The wavelength conversion member manufactured by the manufacturing method of the present disclosure has high emission intensity, high light conversion efficiency, and can be used as a material for a wavelength conversion member that converts the wavelength of light emitted from an LED or LD, or a solid scintillator.

1・・・YAG系蛍光体粒子、2・・・焼結体のマトリックスを構成するアルミナ、3・・・空隙。   1 ... YAG phosphor particles, 2 ... Alumina constituting matrix of sintered body, 3 ... Void.

Claims (17)

下記式(I)で表される組成を有するイットリウムアルミニウムガーネット系蛍光体と、アルミナ純度99.0質量%以上のアルミナ粒子とを含む成形体を準備することと、
1200℃以上1800℃以下の範囲で、前記成形体を一次焼成し、第一の焼結体を得ることと、
前記第一の焼結体を熱間等方加圧(HIP)処理により二次焼成し、第二の焼結体を得ることを含む、波長変換部材の製造方法。
(Y1−a−bGdCeAl12 (I)
(式(I)中、a及びbは、0<a≦0.3、0.0001≦b≦0.022を満たす数である。)
Preparing a compact including an yttrium aluminum garnet-based phosphor having a composition represented by the following formula (I) and alumina particles having an alumina purity of 99.0% by mass or more;
Primary firing the molded body in the range of 1200 ° C. or more and 1800 ° C. or less to obtain a first sintered body;
A method for producing a wavelength conversion member, comprising: secondary firing the first sintered body by hot isostatic pressing (HIP) to obtain a second sintered body.
(Y 1-a-b Gd a Ce b) 3 Al 5 O 12 (I)
(In the formula (I), a and b are numbers satisfying 0 <a ≦ 0.3 and 0.0001 ≦ b ≦ 0.022.)
前記式(I)中、a及びbは、0.05≦a≦0.25、0.0002≦b≦0.012を満たす数である、請求項1に記載の波長変換部材の製造方法。   The method for producing a wavelength conversion member according to claim 1, wherein in the formula (I), a and b are numbers satisfying 0.05 ≦ a ≦ 0.25 and 0.0002 ≦ b ≦ 0.012. 前記第二の焼結体を酸素含有雰囲気のもとでアニーリングすることを含む、請求項1又は2に記載の波長変換部材の製造方法。   The method for manufacturing a wavelength conversion member according to claim 1, further comprising annealing the second sintered body under an oxygen-containing atmosphere. 前記一次焼成を酸素含有雰囲気のもとで行う、請求項1から3のいずれか1項に記載の波長変換部材の製造方法。   The method for producing a wavelength conversion member according to claim 1, wherein the primary firing is performed in an oxygen-containing atmosphere. 前記一次焼成の温度が、1600℃以上1780℃以下の範囲である、請求項1から4のいずれか1項に記載の波長変換部材の製造方法。   5. The method for producing a wavelength conversion member according to claim 1, wherein a temperature of the primary firing is in a range of 1600 ° C. to 1780 ° C. 5. 前記二次焼成を不活性ガス雰囲気のもとで行う、請求項1から5のいずれか1項に記載の波長変換部材の製造方法。   The method for producing a wavelength conversion member according to any one of claims 1 to 5, wherein the secondary firing is performed in an inert gas atmosphere. 前記二次焼成の温度が、1500℃以上1800℃未満の範囲である、請求項1から6のいずれか1項に記載の波長変換部材の製造方法。   The method for producing a wavelength conversion member according to any one of claims 1 to 6, wherein a temperature of the secondary firing is in a range of 1500 ° C or more and less than 1800 ° C. 前記二次焼成の温度が、1600℃以上1780℃以下の範囲である、請求項1から7のいずれか1項に記載の波長変換部材の製造方法。   The method for producing a wavelength conversion member according to claim 1, wherein a temperature of the secondary firing is in a range of 1600 ° C. or more and 1780 ° C. or less. 前記第二の焼結体を酸素含有雰囲気のもとでアニーリングすることを含み、前記アニーリングの温度が、1200℃以上1700℃以下の範囲である、請求項1から8のいずれか1項に記載の波長変換部材の製造方法。 Wherein the second sintered body comprises that anneals under oxygen-containing atmosphere, the temperature of the annealing is in the range of 1200 ° C. or higher 1700 ° C. or less, according to any one of claims 1 8 A method for manufacturing a wavelength conversion member. 前記イットリウムアルミニウムガーネット系蛍光体の平均粒径が1μm以上40μm以下の範囲である、請求項1から9のいずれ1項に記載の波長変換部材の製造方法。 The average particle size of the yttrium-aluminum-garnet phosphor is 40μm or less in the range of 1 [mu] m, the method for manufacturing a wavelength conversion member according to any one of claims 1 to 9. 前記イットリウムアルミニウムガーネット系蛍光体の平均粒径が2μm以上15μm以下の範囲である、請求項1から10のいずれ1項に記載の波長変換部材の製造方法。 The average particle size of the yttrium-aluminum-garnet phosphor is 15μm or less in the range of 2 [mu] m, the method for manufacturing a wavelength conversion member according to any one of claims 1 to 10. 前記アルミナ粒子の平均粒径が0.2μm以上1.0μm以下の範囲である、請求項1から11のいずれか1項に記載の波長変換部材の製造方法。   The method for producing a wavelength conversion member according to claim 1, wherein the average particle diameter of the alumina particles is in a range of 0.2 μm to 1.0 μm. 前記イットリウムアルミニウムガーネット系蛍光体と前記アルミナ粒子との合計量に対して、前記イットリウムアルミニウムガーネット系蛍光体を3質量%以上50質量%以下と、前記アルミナ粒子を50質量%以上97質量以下とを混合して、前記成形体を準備する、求項1から12のいずれか1項に記載の波長変換部材の製造方法。 With respect to the total amount of the yttrium aluminum garnet-based phosphor and the alumina particles, the yttrium aluminum garnet-based phosphor is 3% by mass or more and 50% by mass or less, and the alumina particles are 50% by mass or more and 97% by mass or less. mixed and, to prepare the green body, the method for manufacturing a wavelength conversion member according to any one of the Motomeko 1 to 12. 前記イットリウムアルミニウムガーネット系蛍光体と前記アルミナ粒子との合計量に対して、前記イットリウムアルミニウムガーネット系蛍光体を15質量%以上50質量%以下と、前記アルミナ粒子を50質量%以上85質量%以下とを混合して前記成形体を準備する、請求項1から13のいずれか1項に記載の波長変換部材の製造方法。 The total amount of the yttrium aluminum garnet phosphor and the alumina particles, and the yttrium-aluminum-garnet phosphor than 15 wt% to 50 wt%, and the alumina particles 50 mass% or more and 85 mass% or less The method for producing a wavelength conversion member according to any one of claims 1 to 13, wherein the mixture is mixed to prepare the molded body . 前記イットリウムアルミニウムガーネット系蛍光体と前記アルミナ粒子との合計量に対して、前記イットリウムアルミニウムガーネット系蛍光体を25質量%以上50質量%以下と、前記アルミナ粒子を50質量%以上75質量%以下とを混合して前記成形体を準備する、請求項1から14のいずれか1項に記載の波長変換部材の製造方法。 Based on the total amount of the yttrium aluminum garnet-based phosphor and the alumina particles, the yttrium aluminum garnet-based phosphor is 25% by mass or more and 50% by mass or less, and the alumina particles are 50% by mass or more and 75 % by mass or less . The method for producing a wavelength conversion member according to any one of claims 1 to 14, wherein the mixture is mixed to prepare the molded body . 前記第一の焼結体の相対密度が95%以上である、請求項1から15のいずれか1項に記載の波長変換部材の製造方法。   The method according to any one of claims 1 to 15, wherein the relative density of the first sintered body is 95% or more. 前記波長変換部材の相対密度が97%以上である、請求項1から16のいずれか1項に記載の波長変換部材の製造方法。 The method for manufacturing a wavelength conversion member according to any one of claims 1 to 16, wherein the relative density of the wavelength conversion member is 97% or more.
JP2017233159A 2017-02-28 2017-12-05 Manufacturing method of wavelength conversion member Active JP6642557B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/906,612 US10947448B2 (en) 2017-02-28 2018-02-27 Method for manufacturing wavelength conversion member
US17/167,763 US11447694B2 (en) 2017-02-28 2021-02-04 Method for manufacturing wavelength conversion member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017036175 2017-02-28
JP2017036175 2017-02-28
JP2017088292 2017-04-27
JP2017088292 2017-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019226297A Division JP6852780B2 (en) 2017-02-28 2019-12-16 Manufacturing method of wavelength conversion member

Publications (2)

Publication Number Publication Date
JP2018172628A JP2018172628A (en) 2018-11-08
JP6642557B2 true JP6642557B2 (en) 2020-02-05

Family

ID=64107149

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017233159A Active JP6642557B2 (en) 2017-02-28 2017-12-05 Manufacturing method of wavelength conversion member
JP2019226297A Active JP6852780B2 (en) 2017-02-28 2019-12-16 Manufacturing method of wavelength conversion member

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019226297A Active JP6852780B2 (en) 2017-02-28 2019-12-16 Manufacturing method of wavelength conversion member

Country Status (1)

Country Link
JP (2) JP6642557B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7260740B2 (en) * 2018-12-07 2023-04-19 日亜化学工業株式会社 CERAMIC COMPOSITE, LIGHT-EMITTING DEVICE USING THE SAME, AND METHOD FOR MANUFACTURING CERAMIC COMPOSITE
US11920072B2 (en) 2019-04-11 2024-03-05 Nichia Corporation Method for producing rare earth aluminate sintered body
JP7448806B2 (en) 2019-05-22 2024-03-13 日亜化学工業株式会社 Method for manufacturing wavelength conversion sintered body
JP7339788B2 (en) * 2019-06-28 2023-09-06 デンカ株式会社 Method for manufacturing phosphor plate and method for manufacturing light emitting device using the same
JP7157898B2 (en) * 2019-08-09 2022-10-21 株式会社タムラ製作所 Wavelength conversion member
CN113745389A (en) 2020-05-29 2021-12-03 日亚化学工业株式会社 Light emitting device
CN112358878A (en) * 2020-11-19 2021-02-12 陕西彩虹新材料有限公司 Method for manufacturing laser display green fluorescent powder
US11512247B2 (en) 2020-12-28 2022-11-29 Coorstek Kk Phosphor plate

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5490407B2 (en) * 2005-03-14 2014-05-14 コーニンクレッカ フィリップス エヌ ヴェ Phosphor having a polycrystalline ceramic structure, and light emitting device having the phosphor
DE102006037730A1 (en) * 2006-08-11 2008-02-14 Merck Patent Gmbh LED conversion phosphors in the form of ceramic bodies
WO2008134418A1 (en) * 2007-04-24 2008-11-06 Nanocerox, Inc. Sintered polycrystalline yttrium aluminum garnet and use thereof in optical devices
JP2009096653A (en) * 2007-10-15 2009-05-07 Panasonic Electric Works Co Ltd Manufacturing method of color converting member
JP5462515B2 (en) * 2009-03-31 2014-04-02 株式会社ワールドラボ Transparent ceramics, manufacturing method thereof, and device using the transparent ceramics
CN102449111B (en) * 2009-06-01 2014-12-24 日东电工株式会社 Luminescent ceramic and light-emitting device using the same
CN104937074A (en) * 2013-01-23 2015-09-23 田纳西大学研究基金会 Codoping method for modifying the scintillation and optical properties of garnet-type scintillators
JP2016525798A (en) * 2013-07-10 2016-08-25 ゴールデンアイ,インコーポレイテッド Self-cooling light source
JP6121282B2 (en) * 2013-08-07 2017-04-26 神島化学工業株式会社 Transparent polycrystalline sintered body of lutetium aluminum garnet and method for producing the same
JP6341284B2 (en) * 2014-08-08 2018-06-13 信越化学工業株式会社 Method for producing transparent ceramics
JP6356573B2 (en) * 2014-10-23 2018-07-11 国立研究開発法人物質・材料研究機構 Single crystal phosphor and light emitting device
KR102521767B1 (en) * 2014-11-11 2023-04-14 루미리즈 홀딩 비.브이. Lighting device with ceramic garnet
JP6456741B2 (en) * 2015-03-25 2019-01-23 株式会社クレハ Separator / interlayer laminate, non-aqueous electrolyte secondary battery structure, and aqueous latex
JP2016204561A (en) * 2015-04-24 2016-12-08 太平洋セメント株式会社 Fluorescent member, manufacturing method therefor and light emitting device
JP6518628B2 (en) * 2016-06-27 2019-05-22 日本特殊陶業株式会社 Ceramic sintered body

Also Published As

Publication number Publication date
JP2020073993A (en) 2020-05-14
JP2018172628A (en) 2018-11-08
JP6852780B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP6642557B2 (en) Manufacturing method of wavelength conversion member
JP6834491B2 (en) Manufacturing method of sintered phosphor, light emitting device, lighting device, vehicle headlight, and sintered phosphor
US10873009B2 (en) Barrier layer functioned novel-structure ceramic converter materials and light emitting devices
US11447694B2 (en) Method for manufacturing wavelength conversion member
US11387390B2 (en) Method for producing wavelength converting member, and wavelength converting member
EP3438229A1 (en) Fluorescent body, light-emitting device, illuminating apparatus, and image display apparatus
US11001755B2 (en) Sintered phosphor-composite, light-emitting device, lighting device and vehicle indicator lamp
WO2009154193A1 (en) Ceramic composition, phosphor ceramic and method for producing the same, and light-emitting device
JP7277788B2 (en) Method for manufacturing wavelength conversion member and wavelength conversion member
EP3495449B1 (en) Wavelength converting member and method for producing the same
JP2018021193A (en) Sintered phosphor, light-emitting device, illumination device, image display device and indicator lamp for vehicle
JP7208473B2 (en) CERAMIC COMPOSITE MANUFACTURING METHOD, CERAMIC COMPOSITE, AND LIGHT EMITTING DEVICE
JP7140968B2 (en) CERAMIC COMPOSITE, LIGHT SOURCE FOR PROJECTOR, AND METHOD FOR MANUFACTURING CERAMIC COMPOSITE
JP7094183B2 (en) Ceramic complex and its manufacturing method
JP7448806B2 (en) Method for manufacturing wavelength conversion sintered body
US11149193B2 (en) Method for producing ceramic composite material, ceramic composite material, and light emitting device
KR20220137015A (en) Phosphor plate and light emitting device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6642557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250