JP6641841B2 - Method for measuring human parvovirus B19 antigen - Google Patents

Method for measuring human parvovirus B19 antigen Download PDF

Info

Publication number
JP6641841B2
JP6641841B2 JP2015190821A JP2015190821A JP6641841B2 JP 6641841 B2 JP6641841 B2 JP 6641841B2 JP 2015190821 A JP2015190821 A JP 2015190821A JP 2015190821 A JP2015190821 A JP 2015190821A JP 6641841 B2 JP6641841 B2 JP 6641841B2
Authority
JP
Japan
Prior art keywords
surfactant
sample
antibody
alkyl group
molecule
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015190821A
Other languages
Japanese (ja)
Other versions
JP2017067513A (en
Inventor
然 顧
然 顧
金子 敦
敦 金子
克己 青柳
克己 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujirebio Inc
Original Assignee
Fujirebio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujirebio Inc filed Critical Fujirebio Inc
Priority to JP2015190821A priority Critical patent/JP6641841B2/en
Publication of JP2017067513A publication Critical patent/JP2017067513A/en
Application granted granted Critical
Publication of JP6641841B2 publication Critical patent/JP6641841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ヒトパルボウイルスB19抗原の免疫測定方法に関する。   The present invention relates to a method for immunoassay of human parvovirus B19 antigen.

ヒトパルボウイルスB19は、パルボウイルス科パルボウイルス属に属する一本鎖DNAウイルスである。ウイルス粒子は正20面体構造であり、カプシドタンパク質のVP-1(83 kDa)及びVP-2(58 kDa)が1:9の比率でカプシドを構成している。エンベロープは有していない。パルボウイルスB19感染による疾患・症状として、伝染性紅斑(りんご病)、関節炎、胎児水腫や流産等が知られている。   Human parvovirus B19 is a single-stranded DNA virus belonging to the parvovirus family, parvovirus genus. The virus particle has an icosahedral structure, and the capsid proteins VP-1 (83 kDa) and VP-2 (58 kDa) constitute a capsid in a ratio of 1: 9. There is no envelope. Known erythema infectious disease (apple disease), arthritis, hydrops fetalis, and miscarriage are known as diseases and symptoms caused by parvovirus B19 infection.

検体中のヒトパルボウイルスB19抗原を簡便かつ感度良く測定する手法として、pH3.5以下の酸性条件下で検体を処理してから抗ヒトパルボウイルスB19抗体による免疫測定を行なう手法が知られている(特許文献1)。また、これよりも若干pHが高い酸性条件下、グアニジンで検体を処理してから免疫測定を行なう手法も知られている(特許文献2)。   As a simple and sensitive method for measuring human parvovirus B19 antigen in a sample, there is known a method of treating a sample under acidic conditions of pH 3.5 or less and then performing an immunoassay with an anti-human parvovirus B19 antibody. (Patent Document 1). In addition, a method is also known in which an immunoassay is performed after treating a sample with guanidine under acidic conditions having a slightly higher pH (Patent Document 2).

検体中の病原体由来抗原を免疫学的手法により測定する方法においては、感染者体内で中和抗体等の抗原物質に対する抗体が生じている場合、検体中に存在する宿主由来の抗体が抗原を測定するための抗体と競合し、抗原が宿主由来抗体との間でも複合体を形成してしまい、結果として測定値が低下してしまうことがある。このことは、検体中に微量にしか含まれない抗原を測定しようとする場合に特に大きな問題となり得る。特許文献1や特許文献2の方法は、ヒトパルボウイルスB19抗原と宿主由来抗体との間の複合体形成による測定値の低下をある程度改善することができるが、更に改善の余地があった。   In the method of measuring pathogen-derived antigens in a sample by immunological techniques, when antibodies against antigenic substances such as neutralizing antibodies are generated in the infected body, host-derived antibodies present in the sample measure the antigens. In some cases, the antigen may form a complex with the host-derived antibody, resulting in a decrease in the measured value. This can be a particularly serious problem when trying to measure an antigen that is contained only in a trace amount in a sample. The methods described in Patent Documents 1 and 2 can reduce the decrease in measured values due to the formation of a complex between the human parvovirus B19 antigen and a host-derived antibody to some extent, but there is room for further improvement.

特許文献3には、検体中のC型肝炎ウイルス(HCV)抗原の免疫測定において、検体を酸性化剤と特定構造の陽イオン性界面活性剤とで前処理することにより、体内でのウイルス量が少ないHCVのウイルス抗原の検出感度を高める手法が開示されている。この検体処理方法では、酸性化剤での処理により検体中の宿主由来抗体を失活させ、酸処理によって生じる沈殿や白濁を抑制する目的で特定構造の陽イオン界面活性剤を添加する。HCVはエンベロープを有するウイルスであり、特許文献2にも記載される通り、エンベロープを有するウイルスの場合、ウイルス抗原を検出するためには、前処理によりエンベロープ膜を強力に破壊し、膜内の抗原タンパク質を曝露させる必要がある。特許文献3には、当該処理方法がヒトパルボウイルスに対しても適用可能であるとする記載がごく一部にあるものの、対象ウイルスは脂質膜(すなわちエンベロープ)を有するウイルスであるものと明記されており、実施例にもHCVの検出しか記載されていない。   Patent Document 3 discloses that in an immunoassay for hepatitis C virus (HCV) antigen in a sample, the amount of virus in the body is determined by pretreating the sample with an acidifying agent and a cationic surfactant having a specific structure. A technique has been disclosed for increasing the detection sensitivity of HCV virus antigens with a small amount of HCV. In this sample processing method, a cationic surfactant having a specific structure is added for the purpose of inactivating host-derived antibodies in the sample by treatment with an acidifying agent and suppressing precipitation or cloudiness caused by the acid treatment. HCV is a virus having an envelope. As described in Patent Document 2, in the case of a virus having an envelope, in order to detect a virus antigen, the envelope membrane is strongly destroyed by pretreatment, and the antigen in the membrane is removed. The protein needs to be exposed. Patent Literature 3 describes that the treatment method is applicable to a human parvovirus in only a few cases, but specifies that the target virus is a virus having a lipid membrane (that is, an envelope). In the examples, only the detection of HCV is described.

特許第4449171号Patent No. 4449171 特許第4855126号Patent No.4855126 特許第4744298号Patent No.4744298

上記した通り、ヒトパルボウイルスB19のようにエンベロープを持たないウイルスの抗原タンパク質の免疫測定において、検体中の宿主由来抗体による測定値の低下をさらに改善することが求められている。本発明は、ヒトパルボウイルスB19の免疫測定においてこの問題を解決できる手段を提供することを目的とする。   As described above, in immunoassay of an antigen protein of a virus having no envelope such as human parvovirus B19, it is required to further improve the decrease in the measurement value due to the host-derived antibody in the sample. An object of the present invention is to provide a means capable of solving this problem in an immunoassay for human parvovirus B19.

本願発明者らは、ヒトパルボウイルスB19抗原の免疫測定方法のさらなる感度向上を目的として鋭意研究した結果、pH3.5以下の酸性条件下で特定の界面活性剤にて検体を処理した後に抗体との反応に付すことにより、免疫測定に用いる抗体と宿主由来抗体との間の競合による測定値の低下を抑制し、検出感度をさらに高めることができることを見出し、本願発明を完成した。   The present inventors have conducted intensive studies with the aim of further improving the sensitivity of the immunoassay method for the human parvovirus B19 antigen.As a result, the antibody was treated with a specific surfactant under acidic conditions at a pH of 3.5 or less. The present inventors have found that by performing the reaction described above, it is possible to suppress a decrease in the measured value due to competition between the antibody used for the immunoassay and the host-derived antibody, and to further increase the detection sensitivity, and thus completed the present invention.

すなわち、本発明は、下記(1)〜(4)の少なくともいずれかの界面活性剤を含む処理液にて、pH3.5以下の酸性条件で検体を処理することを含む、ヒトパルボウイルスB19抗原の免疫測定方法を提供する。
(1) 分子内に炭素数10以上のアルキル基と第四級アンモニウムとを有する両性界面活性剤
(2) 分子内に炭素数10以上のアルキル基と第四級アンモニウムとを有する陽イオン性界面活性剤
(3) 分子内に炭素数9以上のアルキル基と第三級アミドとを有する非イオン性界面活性剤
(4) 分子内にステロイド骨格と第四級アンモニウムとを有する両性界面活性剤
That is, the present invention provides a human parvovirus B19 antigen, which comprises treating a specimen with a treatment solution containing at least one of the following surfactants (1) to (4) under acidic conditions of pH 3.5 or less. And a method for immunoassay.
(1) An amphoteric surfactant having an alkyl group having 10 or more carbon atoms and a quaternary ammonium in the molecule
(2) Cationic surfactant having an alkyl group having 10 or more carbon atoms and a quaternary ammonium in the molecule
(3) Nonionic surfactant having an alkyl group having 9 or more carbon atoms and a tertiary amide in the molecule
(4) Amphoteric surfactant having a steroid skeleton and quaternary ammonium in the molecule

さらに、本発明は、上記(1)〜(4)の少なくともいずれかの界面活性剤を含む検体処理液と、抗ヒトパルボウイルスB19抗体又はその抗原結合性断片とを含む、ヒトパルボウイルスB19抗原の免疫測定キットを提供する。   Further, the present invention provides a human parvovirus B19 antigen, comprising: a sample treatment solution containing at least one of the surfactants (1) to (4) above; and an anti-human parvovirus B19 antibody or an antigen-binding fragment thereof. An immunoassay kit is provided.

本発明によれば、エンベロープを持たないヒトパルボウイルスB19の抗原タンパク質の免疫測定において、検出に用いる抗体と競合する中和抗体等の宿主由来抗体が検体中に存在する場合であっても、宿主由来抗体と測定対象抗原との間で形成された複合体を解離し、測定値の低下を防止することができる。本発明によれば、従来のパルボウイルスB19抗原の免疫測定法よりもさらに検出感度を高めることができる。   According to the present invention, in an immunoassay for an antigen protein of human parvovirus B19 having no envelope, even when a host-derived antibody such as a neutralizing antibody that competes with the antibody used for detection is present in the sample, the host The complex formed between the derived antibody and the antigen to be measured can be dissociated, and a decrease in the measured value can be prevented. According to the present invention, the detection sensitivity can be further increased as compared with the conventional immunoassay for parvovirus B19 antigen.

本発明では、ヒトパルボウイルスB19抗原を測定すべき検体を、pH3.5以下の酸性条件下で、特定の界面活性剤を含む処理液にて処理する。使用される界面活性剤は、下記の(1)〜(4)の少なくともいずれかである。
(1) 分子内に炭素数10以上のアルキル基と第四級アンモニウムとを有する両性界面活性剤
(2) 分子内に炭素数10以上のアルキル基と第四級アンモニウムとを有する陽イオン性界面活性剤
(3) 分子内に炭素数9以上のアルキル基と第三級アミドとを有する非イオン性界面活性剤
(4) 分子内にステロイド骨格と第四級アンモニウムとを有する両性界面活性剤
In the present invention, a specimen for which human parvovirus B19 antigen is to be measured is treated with a treatment solution containing a specific surfactant under acidic conditions of pH 3.5 or less. The surfactant used is at least one of the following (1) to (4).
(1) An amphoteric surfactant having an alkyl group having 10 or more carbon atoms and a quaternary ammonium in the molecule
(2) Cationic surfactant having an alkyl group having 10 or more carbon atoms and a quaternary ammonium in the molecule
(3) Nonionic surfactant having an alkyl group having 9 or more carbon atoms and a tertiary amide in the molecule
(4) Amphoteric surfactant having a steroid skeleton and quaternary ammonium in the molecule

(1)の両性界面活性剤において、アルキル基は好ましくは直鎖アルキル基である。アルキル基の炭素数は12以上であることがより好ましい。(1)の界面活性剤の好ましい例としては、CH3-(CH2)n-N+(CH3)2-[(CH2)3-SO3 -](nは9以上の整数)で表される構造の両性界面活性剤を挙げることができ、具体例として下記表1に示す界面活性剤を挙げることができるが、これらに限定されない。 In the amphoteric surfactant (1), the alkyl group is preferably a linear alkyl group. More preferably, the alkyl group has 12 or more carbon atoms. (1) Preferred examples of the surfactant, CH 3 - In (n is 9 or more integer) (CH 2) n -N + (CH 3) 2 - - [(CH 2) 3 -SO 3] An amphoteric surfactant having the structure represented can be mentioned, and specific examples include the surfactants shown in Table 1 below, but are not limited thereto.

Figure 0006641841
Figure 0006641841

(2)の陽イオン性界面活性剤において、アルキル基は好ましくは直鎖アルキル基である。アルキル基の炭素数は12以上であることがより好ましい。(2)の界面活性剤の好ましい例としては、CH3-(CH2)n-N+(CH3)3・Br-、及びCH3-(CH2)n-N+(CH3)3・Cl-(いずれもnは9以上の整数)で表される陽イオン性界面活性剤を挙げることができ、具体例として下記表2に示す界面活性剤を挙げることができるが、これらに限定されない。 In the cationic surfactant (2), the alkyl group is preferably a straight-chain alkyl group. More preferably, the alkyl group has 12 or more carbon atoms. Preferred examples of the surfactant (2), CH 3 - ( CH 2) n -N + (CH 3) 3 · Br -, and CH 3 - (CH 2) n -N + (CH 3) 3 · Cl - (either n is 9 or more integer) can be mentioned cationic surfactant represented by, there may be mentioned a surfactant shown in table 2 as a specific example, limited to Not done.

Figure 0006641841
Figure 0006641841

(3)の非イオン性界面活性剤において、アルキル基は好ましくは直鎖アルキル基である。(3)の界面活性剤の好ましい例としては、MEGA-10(n-Decanoyl-N-methylglucamide)およびMEGA-12(n-Dodecanoyl-N-methylglucamide)を挙げることができる。MEGA-10がより好ましい。MEGA-10は、下記の構造を有する非イオン性界面活性剤である。MEGA-10は、炭素数9の直鎖アルキル基と第三級アミドとを分子中に含み、上記した(1)及び(2)の好ましい具体例と類似した構造を有している。MEGA-12も、炭素数11の直鎖アルキル基と第三級アミドとを分子中に含み、上記した(1)及び(2)の好ましい具体例と類似した構造を有している。   In the nonionic surfactant (3), the alkyl group is preferably a straight-chain alkyl group. Preferred examples of the surfactant (3) include MEGA-10 (n-Decanoyl-N-methylglucamide) and MEGA-12 (n-Dodecanoyl-N-methylglucamide). MEGA-10 is more preferred. MEGA-10 is a nonionic surfactant having the following structure. MEGA-10 contains a straight-chain alkyl group having 9 carbon atoms and a tertiary amide in the molecule, and has a structure similar to the preferred specific examples (1) and (2) described above. MEGA-12 also contains a straight-chain alkyl group having 11 carbon atoms and a tertiary amide in the molecule, and has a structure similar to the preferred specific examples (1) and (2) described above.

Figure 0006641841
Figure 0006641841

(4)の両性界面活性剤の好ましい例としては、CHAPS(3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate)およびCHAPSO (3-[(3-Cholamidopropyl)dimethylammonio]-2-hydroxypropanesulfonate)を挙げることができる。CHAPSがより好ましい。CHAPSは、下記構造を有する両性界面活性剤であり、分子内に第四級アンモニウムを含む-N+(CH3)2-[(CH2)3-SO3 -]構造を有する両性界面活性剤であるという点で、上記した(1)の好ましい具体例と共通した特徴を有している。CHAPSOも、分子内に第四級アンモニウムを含む-N+(CH3)2-[CH2-CHOH-CH2-SO3 -]構造を有する両性界面活性剤であるという点で、上記した(1)の好ましい具体例と非常に類似した特徴を有している。 Preferred examples of the amphoteric surfactant (4) include CHAPS (3-[(3-Cholamidopropyl) dimethylammonio] -1-propanesulfonate) and CHAPSO (3-[(3-Cholamidopropyl) dimethylammonio] -2-hydroxypropanesulfonate). Can be mentioned. CHAPS is more preferred. CHAPS is an amphoteric surfactant having the following structure, -N + (CH 3) comprising a quaternary ammonium in the molecule 2 - [(CH 2) 3 -SO 3 -] amphoteric surfactant having the structure In this respect, the second embodiment has features common to the above-described preferred embodiment (1). CHAPSO also, -N + (CH 3) comprising a quaternary ammonium in the molecule 2 - [CH 2 -CHOH-CH 2 -SO 3 -] structure in that it is an amphoteric surfactant having the above-mentioned ( It has features very similar to the preferred embodiment of 1).

Figure 0006641841
Figure 0006641841

(1)〜(4)の界面活性剤の中でも好ましく用いることができる界面活性剤としては、C12APS、C14APS、C16APS、C12TAB、C14TAB、C12TAC、及びC14TACを挙げることができ、とりわけ本発明ではC12APSを特に好ましく用いることができる。   Among the surfactants (1) to (4), surfactants that can be preferably used include C12APS, C14APS, C16APS, C12TAB, C14TAB, C12TAC, and C14TAC, and in particular, C12APS in the present invention. It can be particularly preferably used.

上記した(1)〜(4)の界面活性剤の処理液中の濃度は、0.01%〜5.0%程度、例えば0.01%〜3.0%程度、又は0.05%〜2.5%程度であればよい。(1)〜(4)の界面活性剤を複数組み合わせて用いる場合には、各界面活性剤が上記の濃度であってよいが、合計で10%程度以下とすることが望ましい。   The concentration of the surfactants (1) to (4) in the treatment liquid may be about 0.01% to 5.0%, for example, about 0.01% to 3.0%, or about 0.05% to 2.5%. When a plurality of surfactants (1) to (4) are used in combination, each surfactant may have the above concentration, but it is preferable that the total concentration is about 10% or less.

本発明においては、上記した(1)〜(4)の界面活性剤による処理に加え、さらにポリオキシエチレンアルキルフェニルエーテル系の非イオン性界面活性剤、及びポリソルベート系の非イオン性界面活性剤から選択される少なくとも一種による検体処理を行ってもよい。上記(1)〜(4)のいずれかの界面活性剤とこれらの非イオン性界面活性剤を組み合わせて用いることで、免疫測定の感度をさらに高めることができる。組み合わせて使用し得るこれらの非イオン性界面活性剤の処理液中濃度は、(1)〜(4)の界面活性剤と同様でよい。処理液中にこれらの非イオン性界面活性剤をさらに添加しておけば作業工程が簡便であるが、先にこれらの非イオン性界面活性剤と検体を混合してから上記処理液による処理を行ったり、あるいは上記処理液による処理の後にこれらの非イオン性界面活性剤を添加してもよい。   In the present invention, in addition to the above treatments with the surfactants (1) to (4), a polyoxyethylene alkylphenyl ether-based nonionic surfactant, and a polysorbate-based nonionic surfactant are further used. The sample processing by at least one selected may be performed. By using any of the surfactants (1) to (4) above in combination with these nonionic surfactants, the sensitivity of the immunoassay can be further increased. The concentration of these nonionic surfactants which can be used in combination in the treatment liquid may be the same as the surfactants (1) to (4). If these non-ionic surfactants are further added to the processing solution, the working process is simple.However, before mixing these non-ionic surfactants and the sample, the treatment with the above-mentioned processing solution is performed. These nonionic surfactants may be added after the treatment or after the treatment with the treatment solution.

ポリオキシエチレンアルキルフェニルエーテル系界面活性剤には、Triton X-100、Triton X-305、Triton X-405、Triton X-705、Nonidet P-40等の非イオン系界面活性剤が包含される。ポリオキシエチレンアルキルフェニルエーテル系界面活性剤は、Triton系界面活性剤とも呼ばれる。   The polyoxyethylene alkylphenyl ether-based surfactant includes nonionic surfactants such as Triton X-100, Triton X-305, Triton X-405, Triton X-705, and Nonidet P-40. The polyoxyethylene alkylphenyl ether-based surfactant is also called a Triton-based surfactant.

ポリソルベート系界面活性剤には、ポリソルベート20(ポリオキシエチレンソルビタンモノラウレート、商品名Tween20)、ポリソルベート40(ポリオキシエチレンソルビタンモノパルミテート、商品名Tween40)、ポリソルベート60(ポリオキシエチレンソルビタンモノステアレート、商品名Tween60)、ポリソルベート65(ポリオキシエチレンソルビタントリステアレート、商品名Tween65)、ポリソルベート80(ポリオキシエチレンソルビタンモノオレエート、商品名Tween80)、ポリソルベート85(ポリオキシエチレンソルビタントリオレエート、商品名Tween85)等の非イオン系界面活性剤が包含される。ポリソルベート系界面活性剤は、Tween系界面活性剤、又はポリオキシエチレンソルビタン系界面活性剤とも呼ばれる。   Polysorbate surfactants include polysorbate 20 (polyoxyethylene sorbitan monolaurate, trade name Tween20), polysorbate 40 (polyoxyethylene sorbitan monopalmitate, trade name Tween40), and polysorbate 60 (polyoxyethylene sorbitan monostearate). , Trade name Tween60), polysorbate 65 (polyoxyethylene sorbitan tristearate, trade name Tween65), polysorbate 80 (polyoxyethylene sorbitan monooleate, trade name Tween80), polysorbate 85 (polyoxyethylene sorbitan trioleate, trade name) Tween 85) and the like. The polysorbate-based surfactant is also called a Tween-based surfactant or a polyoxyethylene sorbitan-based surfactant.

ポリオキシエチレンアルキルフェニルエーテル系界面活性剤及びポリソルベート系界面活性剤の中で好ましい具体例としては、TritonX-705、ポリソルベート20、及びポリソルベート80等を挙げることができるが、これらに限定されない。   Preferred specific examples of the polyoxyethylene alkylphenyl ether-based surfactant and the polysorbate-based surfactant include, but are not limited to, Triton X-705, polysorbate 20, and polysorbate 80.

あるいはまた、上記した(1)〜(4)の界面活性剤による処理に加え、さらに変性剤による検体処理を行ってもよい。変性剤の具体例としては、グアニジン、グアニジン塩、グアニジン誘導体、及び尿素を挙げることができる。上記(1)〜(4)のいずれかの界面活性剤と変性剤を組み合わせて用いた場合にも、免疫測定の感度をさらに高めることができる。グアニジン塩の具体例としては、これらに限定されないが、グアニジン塩酸塩、グアニジン炭酸塩、グアニジン硝酸塩、グアニジンリン酸塩、グアニジンスルファミン酸塩等を挙げることができる。グアニジン誘導体の具体例としては、これらに限定されないが、グアニジノ安息香酸、グアニジノグルタル酸、グアニジノコハク酸、グアニジノ酢酸、グアニジノプロピオン酸、グアニジノベンズイミダゾール等を挙げることができる。変性剤の処理液中濃度は、0.5M〜5M程度でよい。変性剤もまた、処理液中にさらに添加しておいてもよいし、上記処理液による処理よりも先に又は後に変性剤処理を実施してもよい。   Alternatively, in addition to the above-described treatments with surfactants (1) to (4), sample treatment with a denaturant may be further performed. Specific examples of the denaturing agent include guanidine, guanidine salt, guanidine derivative, and urea. The sensitivity of the immunoassay can be further increased even when the surfactant and the denaturant of any of the above (1) to (4) are used in combination. Specific examples of the guanidine salt include, but are not limited to, guanidine hydrochloride, guanidine carbonate, guanidine nitrate, guanidine phosphate, guanidine sulfamate, and the like. Specific examples of the guanidine derivative include, but are not limited to, guanidinobenzoic acid, guanidinoglutaric acid, guanidinosuccinic acid, guanidinoacetic acid, guanidinopropionic acid, and guanidinobenzimidazole. The concentration of the denaturant in the treatment solution may be about 0.5M to 5M. A modifier may be further added to the treatment liquid, or the treatment with the modifier may be performed before or after the treatment with the treatment liquid.

本発明において、pH3.5以下の酸性条件下で検体を処理するとは、処理中の検体溶液(すなわち、検体と処理液を混合した溶液)がpH3.5以下であることを意味する。処理中の検体溶液のpHは、例えば、pH3.0程度以下、又はpH2.8程度以下としてもよい。処理中の検体溶液をこのような酸性条件にするために使用可能な酸は特に限定されず、無機酸でも有機酸でも使用可能である。例えば、塩酸、硫酸、酢酸、クエン酸等の酸を単独又は複数組み合わせて使用することができる。また、処理中の検体溶液を酸性条件にするために、例えば、適切なpHに調整した、グリシン塩酸緩衝液、クエン酸緩衝液等の酸性緩衝液を用いてもよい。処理液中に適当な量の酸又は酸性緩衝液を加えてもよいし、処理液とは別に検体に酸又は酸性緩衝液を混合してもよい。   In the present invention, treating a specimen under acidic conditions of pH 3.5 or less means that the specimen solution being treated (that is, a solution obtained by mixing the specimen and the treatment liquid) has a pH of 3.5 or less. The pH of the sample solution during the treatment may be, for example, about pH 3.0 or less, or about pH 2.8 or less. Acids that can be used to bring the sample solution under treatment to such acidic conditions are not particularly limited, and inorganic acids and organic acids can be used. For example, acids such as hydrochloric acid, sulfuric acid, acetic acid, and citric acid can be used alone or in combination. Further, in order to bring the sample solution under treatment into an acidic condition, for example, an acidic buffer such as a glycine hydrochloride buffer or a citrate buffer adjusted to an appropriate pH may be used. An appropriate amount of an acid or acid buffer may be added to the treatment solution, or an acid or acid buffer may be mixed with the specimen separately from the treatment solution.

処理液は、上記の界面活性剤を所定の濃度で含んでいる限り、その他の成分は特に限定されない。市販の免疫測定キット等において使用されている検体希釈液に上記した界面活性剤を添加し、処理中の検体溶液のpHが上記した通りの酸性条件となるように酸又は酸性緩衝液を添加して調製することができる。あるいは、酸又は酸性緩衝液は、上記した通り処理液と別個に検体に添加してもよい。   Other components are not particularly limited as long as the treatment liquid contains the surfactant at a predetermined concentration. The above-mentioned surfactant is added to the sample diluent used in the commercially available immunoassay kits and the like, and an acid or an acidic buffer is added so that the pH of the sample solution being processed is the acidic condition as described above. Can be prepared. Alternatively, the acid or acidic buffer may be added to the sample separately from the processing solution as described above.

処理液による検体の処理は、抗体との反応の前に実施する。検体処理時の温度は0℃〜50℃であればよく、通常は室温付近での処理が好ましい。処理時間は通常10秒〜10分間程度であるが、pHの値や処理温度に応じて処理時間を適宜調節してよい。   The treatment of the sample with the treatment solution is performed before the reaction with the antibody. The temperature at the time of sample processing may be 0 ° C. to 50 ° C., and processing at around room temperature is usually preferred. The processing time is usually about 10 seconds to 10 minutes, but the processing time may be appropriately adjusted according to the pH value and the processing temperature.

処理液と検体を混合して検体を処理した後、検体溶液をアルカリ性溶液で中和して中性付近にpHを調整する。抗体との反応の前に中和してもよいし、抗体との反応と同時に中和を行なってもよい。例えば、抗体液のpHを高め(例えばpH8.5〜pH10.0程度)に設定することで、酸性化された処理済み検体と抗体液との混合により、抗体反応と同時に中和を行なうことができる。   After treating the specimen by mixing the treatment liquid and the specimen, the pH of the specimen solution is adjusted to near neutrality by neutralizing the specimen solution with an alkaline solution. Neutralization may be performed before the reaction with the antibody, or neutralization may be performed simultaneously with the reaction with the antibody. For example, by raising the pH of the antibody solution (for example, about pH 8.5 to pH 10.0), neutralization can be performed simultaneously with the antibody reaction by mixing the acidified treated sample with the antibody solution. it can.

処理済み検体中のヒトパルボウイルスB19抗原の免疫測定に用いる抗ヒトパルボウイルスB19抗体は、ポリクローナル抗体でもモノクローナル抗体でもよい。一般にはモノクローナル抗体が好ましく用いられる。また、抗体に代えて、Fab'、F(ab')2、scFv等の抗原結合性断片を使用することもできる。抗ヒトパルボウイルスB19抗体は公知であり、市販のキットでも用いられている。そのような公知の抗体を好ましく用いることができる。あるいは、ポリクローナル抗体、モノクローナル抗体、抗原結合性断片の作製方法は周知であるので、ヒトパルボウイルスB19抗原を免疫原として用いて抗ヒトパルボウイルスB19抗体又はその抗原結合性断片を調製し、免疫測定に使用してもよい。免疫原として用いるヒトパルボウイルスB19抗原タンパク質は、例えば特開平7-147986号を参照して作製することができる。あるいは、ヒトパルボウイルスに感染したヒトの血清等から抽出精製して得ることもできる。 The anti-human parvovirus B19 antibody used for the immunoassay for the human parvovirus B19 antigen in the treated sample may be a polyclonal antibody or a monoclonal antibody. Generally, monoclonal antibodies are preferably used. Further, instead of the antibody, an antigen-binding fragment such as Fab ′, F (ab ′) 2 , scFv or the like can be used. Anti-human parvovirus B19 antibodies are known and are also used in commercially available kits. Such known antibodies can be preferably used. Alternatively, since polyclonal antibodies, monoclonal antibodies, and methods for producing antigen-binding fragments are well known, an anti-human parvovirus B19 antibody or an antigen-binding fragment thereof is prepared using human parvovirus B19 antigen as an immunogen, and immunoassay is performed. May be used. The human parvovirus B19 antigen protein used as an immunogen can be prepared, for example, with reference to JP-A-7-147986. Alternatively, it can also be obtained by extracting and purifying from human serum infected with human parvovirus.

本明細書において、「ヒトパルボウイルスB19抗原」という語には、カプシドタンパク質であるVP-1及びVP-2が包含される。ヒトパルボウイルスB19抗原を検出するための抗ヒトパルボウイルスB19抗体としては、特に限定されないが、ウイルス粒子中に占める存在割合が高いVP-2に対する抗VP-2抗体を用いることが好ましい。   As used herein, the term "human parvovirus B19 antigen" includes the capsid proteins VP-1 and VP-2. The anti-human parvovirus B19 antibody for detecting the human parvovirus B19 antigen is not particularly limited, but it is preferable to use an anti-VP-2 antibody against VP-2, which has a high proportion in virus particles.

本発明におけるヒトパルボウイルスB19抗原の免疫測定は、競合法、サンドイッチ法等の公知の免疫測定法により実施することができる。中でも本発明ではサンドイッチ法を好ましく採用できる。サンドイッチ免疫測定の具体例を挙げると、化学発光酵素免疫測定法(chemiluminescent enzyme immunoassay; CLEIA)、酵素結合免疫吸着法(Enzyme-Linked ImmunoSorbent Assay; ELISA)、ラジオイムノアッセイ、電気化学発光免疫測定法等の各種の手法がある。本発明においてはいずれの手法を用いてもよい。   The immunoassay for the human parvovirus B19 antigen in the present invention can be carried out by a known immunoassay such as a competition method or a sandwich method. Among them, the sandwich method can be preferably employed in the present invention. Specific examples of the sandwich immunoassay include chemiluminescent enzyme immunoassay (CLEIA), enzyme-linked immunosorbent assay (Enzyme-Linked ImmunoSorbent Assay; ELISA), radioimmunoassay, and electrochemiluminescence immunoassay. There are various methods. In the present invention, any method may be used.

サンドイッチ測定系においては、通常、2種類の抗体又はその抗原結合性断片のうちの一方を固相に固定化した固相抗体とし、他方を標識物質により標識した標識抗体として使用する。本発明に従い処理した処理済み検体中では、パルボウイルスB19抗原は大部分がモノマーとして存在していると考えられるため、サンドイッチ法で用いる固相抗体と標識抗体は、B19抗原の異なる部位を認識するものを用いることが望ましい。   In a sandwich measurement system, one of two types of antibodies or antigen-binding fragments thereof is usually used as a solid phase antibody immobilized on a solid phase, and the other is used as a labeled antibody labeled with a labeling substance. In the treated sample treated according to the present invention, since the parvovirus B19 antigen is considered to be present mostly as a monomer, the solid-phase antibody and the labeled antibody used in the sandwich method recognize different sites of the B19 antigen. It is desirable to use one.

固相は特に限定されず、公知のサンドイッチ免疫測定系で使用されている固相と同様でよい。固相の材質の具体例としては、ポリスチレン、ポリエチレン、セファロース等が挙げられるが、これらに限定されない。固相の物理的形状は本質的に重要ではない。使用する固相は、その表面への抗体の固定化が容易で、測定中に形成される免疫複合体と未反応の成分を容易に分離できるものであることが好ましい。特に、通常の免疫測定法に使用されるプラスチックプレートや磁性粒子が好ましい。取り扱い、保存、および分離の容易性等の観点から、前述のような材質の磁性粒子を使用することが最も好ましい。これらの固相への抗体の結合は当業者に周知の常法によって行なうことができる。   The solid phase is not particularly limited, and may be the same as the solid phase used in a known sandwich immunoassay system. Specific examples of the material of the solid phase include, but are not limited to, polystyrene, polyethylene, sepharose, and the like. The physical form of the solid phase is not critical in nature. The solid phase to be used is preferably one that can easily immobilize the antibody on its surface and can easily separate the immune complex formed during the measurement from unreacted components. In particular, a plastic plate or a magnetic particle used for an ordinary immunoassay is preferable. From the viewpoint of ease of handling, storage and separation, it is most preferable to use magnetic particles of the above-mentioned materials. The binding of the antibody to these solid phases can be performed by a conventional method well known to those skilled in the art.

標識物質も特に限定されず、公知の免疫測定系で使用されている標識物質と同様のものを用いることができる。具体例としては、酵素、蛍光物質、化学発光物質、染色物質、放射性物質などが挙げられる。酵素としては、アルカリホスファターゼ(ALP)、パーオキシダーゼ、βガラクトシダーゼ等、公知のものを用いることができるが、これに限定されるものではない。   The labeling substance is not particularly limited, and the same labeling substance as used in known immunoassay systems can be used. Specific examples include enzymes, fluorescent substances, chemiluminescent substances, staining substances, radioactive substances and the like. Known enzymes such as alkaline phosphatase (ALP), peroxidase, and β-galactosidase can be used as the enzyme, but are not limited thereto.

サンドイッチ免疫測定の手順を簡単に記載すると、まず、処理済み検体を固相抗体と反応させ、洗浄してB/F分離した後、標識抗体と反応させる。再度洗浄してB/F分離した後、標識抗体からのシグナル(蛍光、発光、発色等)を検出する。標識物質として酵素を使用した場合には、適当な基質を添加して反応させ、酵素反応により生じるシグナルを検出すればよい。ヒトパルボウイルスB19抗原を種々の濃度で含む濃度既知の標準試料について免疫測定を行ない、標識からのシグナルの量と標準試料中の抗源濃度との相関関係をプロットして検量線を作成しておけば、検体中のヒトパルボウイルスB19抗原の量を定量的に測定することができる。   Briefly, the procedure of sandwich immunoassay is as follows. First, a treated sample is reacted with a solid phase antibody, washed, B / F separated, and then reacted with a labeled antibody. After washing again and B / F separation, signals (fluorescence, luminescence, color development, etc.) from the labeled antibody are detected. When an enzyme is used as a labeling substance, an appropriate substrate may be added and reacted, and a signal generated by the enzyme reaction may be detected. Immunoassay was performed on standard samples with known concentrations containing human parvovirus B19 antigen at various concentrations, and a calibration curve was prepared by plotting the correlation between the amount of signal from the label and the antigen concentration in the standard sample. By doing so, the amount of the human parvovirus B19 antigen in the sample can be quantitatively measured.

なお、上記は2ステップ法による手順の説明であるが、処理済み検体と固相抗体と標識抗体とを同時に反応させる、1ステップ法を用いてもよい。   Although the above is a description of the procedure using the two-step method, a one-step method in which the treated sample, the solid-phase antibody, and the labeled antibody are simultaneously reacted may be used.

本発明の方法に供される検体は、典型的にはヒトから分離された検体である。検体提供者がヒトパルボウイルスB19に感染していた場合に該ウイルスの抗原を含むと予想される試料であれば特に限定されず、例えば血清、血漿、輸血用の血液などの血液由来の試料、血漿分画製剤等を挙げることができる。   The sample subjected to the method of the present invention is typically a sample separated from a human. If the sample donor is infected with human parvovirus B19, the sample is not particularly limited as long as it is a sample expected to contain the antigen of the virus, such as serum, plasma, blood-derived samples such as blood for transfusion, Plasma fraction preparations and the like can be mentioned.

本発明の免疫測定を実施するための免疫測定キットは、上記した(1)〜(4)の少なくともいずれかの界面活性剤を含む検体処理液と、抗ヒトパルボウイルスB19抗体又はその抗原結合性断片とを含む。該キットの検体処理液は、処理中の検体溶液のpHが上記した通りの酸性条件となるように酸又は酸性緩衝液を含んでいてもよいし、あるいは酸性緩衝液等の酸溶液を検体処理液とは別個に含んでいてもよい。また、該キットは、上記した通りの変性剤や、ポリオキシエチレンアルキルフェニルエーテル系の非イオン性界面活性剤及びポリソルベート系の非イオン性界面活性剤から選択される少なくとも一種を検体処理液中にさらに含んでいてもよいし、又は、検体処理液とは別個に含み、検体処理時に適宜添加して用いることとしてもよい。   The immunoassay kit for carrying out the immunoassay of the present invention comprises a sample treatment solution containing at least one of the above-mentioned surfactants (1) to (4), an anti-human parvovirus B19 antibody or its antigen-binding property. And fragments. The sample processing solution of the kit may contain an acid or an acidic buffer so that the pH of the sample solution being processed becomes the acidic condition as described above, or an acid solution such as an acidic buffer may be used for the sample processing. It may be contained separately from the liquid. In addition, the kit includes a denaturant as described above, and at least one selected from a polyoxyethylene alkylphenyl ether-based nonionic surfactant and a polysorbate-based nonionic surfactant in the sample processing solution. Further, it may be contained, or may be contained separately from the sample processing solution, and may be appropriately added and used at the time of sample processing.

以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

<抗パルボウイルス抗体固相化粒子の調製>
10 mM MES緩衝液(pH5.0)中で磁性粒子0.01g/mLに、マウス抗パルボウイルスB19モノクローナル抗体Prv334抗体0.2mg/mLを添加し、25℃で1時間ゆるやかに攪拌しながらインキュベートした。反応後、磁性粒子を磁石で集磁し、粒子を洗浄液(50mMトリス緩衝液、150mM NaCl、2.0%BSA、pH 7.2)にて洗浄し、抗パルボウイルス抗体固相化粒子を得た。測定時には、抗パルボウイルス抗体固相化粒子を粒子希釈液(400mMトリス緩衝液、1 mM EDTA2Na、0.1% NaN3、2.0% BSA、pH 9.0)に懸濁した。
<Preparation of particles immobilized with anti-parvovirus antibody>
Mouse anti-parvovirus B19 monoclonal antibody Prv334 antibody 0.2 mg / mL was added to magnetic particles 0.01 g / mL in 10 mM MES buffer (pH 5.0) and incubated at 25 ° C. for 1 hour with gentle stirring. After the reaction, the magnetic particles were magnetized with a magnet, and the particles were washed with a washing solution (50 mM Tris buffer, 150 mM NaCl, 2.0% BSA, pH 7.2) to obtain anti-parvovirus antibody-immobilized particles. At the time of measurement, the anti-parvovirus antibody-immobilized particles particles diluent (400 mM Tris buffer, 1 mM EDTA2Na, 0.1% NaN 3, 2.0% BSA, pH 9.0) was suspended in.

<アルカリホスファターゼ標識抗体の調製>
脱塩したアルカリホスファターゼ(ALP)とN-(4-マレイミドブチリロキシ)-スクシンイミド(GMBS)(終濃度0.3mg/mL)を混合し、30℃で1時間静置してマレイミド化を行った。次いで、カップリング用反応液(100mM リン酸緩衝液、1 mM EDTA2Na、pH 6.3)中で、Fab'化したマウス抗パルボウイルスB19モノクローナル抗体VP2-312抗体と、マレイミド化ALPを1:1のモル比で混合し、25℃で1時間反応させた。Superdex200 10/300 (GE社製)のカラムクロマトグラフィーを用いて、精製用緩衝液(100 mM トリス緩衝液、150 mM NaCl、0.1% NaN3、pH8.0)で、流速0.5 mL/minで主要ピークを分取して精製し、アルカリホスファターゼ標識抗体を得た。測定時には、アルカリホスファターゼ標識抗体を標識体希釈液(50 mM Tris緩衝液、100mM NaCl、0.3 mM ZnCl2、1 mM MgCl2、0.1% NaN3、2.0% BSA、pH 7.2)に懸濁した。
<Preparation of alkaline phosphatase-labeled antibody>
Desalted alkaline phosphatase (ALP) and N- (4-maleimidobutyryloxy) -succinimide (GMBS) (final concentration: 0.3 mg / mL) were mixed and left at 30 ° C. for 1 hour to perform maleimidation. Next, in a coupling reaction solution (100 mM phosphate buffer, 1 mM EDTA2Na, pH 6.3), Fab′-modified mouse anti-parvovirus B19 monoclonal antibody VP2-312 antibody and maleimidated ALP were mixed at a 1: 1 molar ratio. The mixture was mixed at a ratio and reacted at 25 ° C. for 1 hour. Superdex200 10/300 using column chromatography (GE Corp.), purification buffer (100 mM Tris buffer, 150 mM NaCl, 0.1% NaN 3, pH8.0) , the main flow rate 0.5 mL / min The peak was separated and purified to obtain an alkaline phosphatase-labeled antibody. At the time of measurement, the alkaline phosphatase-labeled antibody was suspended in a labeling solution (50 mM Tris buffer, 100 mM NaCl, 0.3 mM ZnCl 2 , 1 mM MgCl 2 , 0.1% NaN 3 , 2.0% BSA, pH 7.2).

<パルボウイルスB19抗原の測定>
前処理液20μLと試料100μLを反応槽に分注し攪拌後37℃で6.5分間インキュベーションした。その後、抗体固相化粒子50μLを分注し、攪拌した。その後、37℃で8分間インキュベーションし、B/F分離・洗浄を行った。酵素標識抗体50μLを反応槽に分注し、攪拌後37℃で8分間インキュベーションし、B/F分離・洗浄を行った。その後、化学発光基質である3-(2'-スピロアダマンタン)-4-メトキシ-4-(3''-ホスホリルオキシ)フェニル-1,2-ジオキセタン・2ナトリウム塩(AMPPD)を含むルミパルス基質液200μLを反応槽に分注し、攪拌後37℃で4分間インキュベーションした後、発光量をルミノメーターで測定した。実際の測定は全自動化学発光酵素免疫測定システム(ルミパルスプレストII(富士レビオ社製))にて行った。
<Measurement of parvovirus B19 antigen>
20 μL of the pretreatment solution and 100 μL of the sample were dispensed into a reaction tank, and the mixture was stirred and incubated at 37 ° C. for 6.5 minutes. Thereafter, 50 μL of the antibody-immobilized particles were dispensed and stirred. Thereafter, the mixture was incubated at 37 ° C. for 8 minutes to perform B / F separation and washing. 50 μL of the enzyme-labeled antibody was dispensed into the reaction tank, and after stirring, the mixture was incubated at 37 ° C. for 8 minutes to perform B / F separation and washing. Then, a lumipulse substrate solution containing a chemiluminescent substrate, 3- (2'-spiroadamantane) -4-methoxy-4- (3 "-phosphoryloxy) phenyl-1,2-dioxetane disodium salt (AMPPD) 200 μL was dispensed into the reaction tank, and after stirring, the mixture was incubated at 37 ° C. for 4 minutes, and the luminescence was measured with a luminometer. The actual measurement was performed with a fully automatic chemiluminescence enzyme immunoassay system (Lumipulse Presto II (Fujirebio)).

1.各種界面活性剤の効果の比較
下記表5に示す各種の界面活性剤を前処理液に添加し、サンプルの前処理を行なった。前処理液のpHは、前処理中のサンプル溶液がpH2.8となるように、グリシン塩酸緩衝液で適宜調整した。サンプルは、ヒト精製不活化抗原をTris緩衝液(50 mM Tris, 150 mM NaCl, 1 mM EDTA2Na, 0.1 % NaN3, 2.0% BSA, pH 7.2)に溶解させたものを陽性サンプルとして用いた。また、試薬に使用される抗体とバッティングする抗体を含む検体のモデルとして、陽性サンプルに阻害抗体を添加したものを用いた。阻害抗体として、パルボウイルスB19抗原との結合に関し固相抗体Prv334と競合し得る2種類のモノクローナル抗体(抗体1、抗体2)を用いた。ルミパルスプレストIIでのカウント数より、以下の式で結合分離率を算出し、各界面活性剤の効果を評価した。
1. Comparison of effects of various surfactants Various surfactants shown in Table 5 below were added to the pretreatment liquid, and the samples were pretreated. The pH of the pretreatment solution was appropriately adjusted with a glycine hydrochloride buffer so that the sample solution during the pretreatment had a pH of 2.8. Samples were used Tris buffer Human purified inactivated antigens (50 mM Tris, 150 mM NaCl , 1 mM EDTA2Na, 0.1% NaN 3, 2.0% BSA, pH 7.2) to which was dissolved in a positive sample. In addition, a model obtained by adding an inhibitory antibody to a positive sample was used as a model of a sample containing an antibody used as a reagent and an antibody to be batting. Two types of monoclonal antibodies (antibody 1 and antibody 2) capable of competing with the solid-phase antibody Prv334 for binding to the parvovirus B19 antigen were used as inhibitory antibodies. From the number of counts in Lumipulse Presto II, the bond separation rate was calculated by the following formula, and the effect of each surfactant was evaluated.

結合分離率(%)=(阻害抗体を添加した陽性サンプルのカウント値)/(阻害抗体非添加の陽性サンプルのカウント値)×100   Binding separation ratio (%) = (count value of positive sample to which inhibitory antibody was added) / (count value of positive sample to which inhibitory antibody was not added) × 100

結果を表5に示す。C12TAB、C12APS、C14APS、C16APSを添加した酸性の前処理液でサンプルを処理した場合、抗体の結合分離率が大幅に向上した。   Table 5 shows the results. When the sample was treated with an acidic pretreatment solution to which C12TAB, C12APS, C14APS, and C16APS were added, the binding separation rate of the antibody was significantly improved.

Figure 0006641841
Figure 0006641841

2.前処理中のpHが及ぼす影響の検討
前処理中のpHが界面活性剤の効果に及ぼす影響を評価した。界面活性剤としてC12APSを使用した。前処理液中の界面活性剤の濃度は2%とした。サンプルとして、陰性サンプル(NC)(Tris緩衝液)、陽性サンプル(PC)、及び陽性サンプルに阻害抗体を添加したサンプルを用いた。阻害抗体として、上記した抗体1及び抗体2に加え、標識抗体VP2-312の方と競合し得るモノクローナル抗体(抗体3)を用いた。
2. Examination of the effect of pH during pretreatment The effect of pH during pretreatment on the effect of surfactant was evaluated. C12APS was used as a surfactant. The concentration of the surfactant in the pretreatment liquid was 2%. The samples used were a negative sample (NC) (Tris buffer), a positive sample (PC), and a sample obtained by adding an inhibitory antibody to the positive sample. As an inhibitory antibody, a monoclonal antibody (antibody 3) capable of competing with the labeled antibody VP2-312 was used in addition to the antibodies 1 and 2 described above.

結果を表6に示す。表6には、各添加条件において測定されたカウント値と、カウント値から算出した結合分離率と、非添加条件の結合分離率に対する各添加条件の結合分離率の比率(%)を示す。検討したpH1.9〜3.5の全ての条件において、C12APSの添加により結合分離率が向上した。pHを低くしていくと結合分離率がより向上する傾向があった。   Table 6 shows the results. Table 6 shows the count value measured under each addition condition, the binding separation ratio calculated from the count value, and the ratio (%) of the binding separation ratio of each addition condition to the binding separation ratio of the non-addition condition. Under all the conditions of pH 1.9 to 3.5 studied, the binding separation rate was improved by the addition of C12APS. As the pH was lowered, the binding / separation rate tended to improve.

Figure 0006641841
Figure 0006641841

3.界面活性剤のアルキル鎖長の検討
界面活性剤のアルキル鎖の鎖長が結合分離率に及ぼす影響を評価した。下記表7に示す界面活性剤を検討した。処理液中の界面活性剤濃度は2%とし、処理中のpHは2.4とした。サンプルは上記2.と同様のものを用いた。
3. Investigation of surfactant alkyl chain length The effect of the surfactant alkyl chain length on the bond separation rate was evaluated. The surfactants shown in Table 7 below were studied. The surfactant concentration in the treatment liquid was 2%, and the pH during treatment was 2.4. The sample is 2. The same one as described above was used.

結果を表7に示す。アルキル鎖の炭素数が10個以上の界面活性剤で、結合分離率の向上効果が認められた。また陽イオン性界面活性剤も同様に効果を示すことが分かった。   Table 7 shows the results. With a surfactant having 10 or more carbon atoms in the alkyl chain, the effect of improving the bond separation rate was observed. It was also found that a cationic surfactant also exhibited an effect.

Figure 0006641841
Figure 0006641841

Figure 0006641841
Figure 0006641841

4.実検体での界面活性剤の効果の確認
ヒト血清検体を用いて界面活性剤の効果を評価した。血清検体は、BBI社より購入した3321-146-2(BBI2、1.71×1011 IU/mL)を使用した。この検体をルミパルス用希釈液で10n (n=3〜8)倍に希釈したサンプルを測定した。阻害抗体は抗体1〜3を混合して使用し、混合した抗体の終濃度が100μg/mLとなるように添加した。この抗体濃度は、ヒト血中に生じる特異的IgG量と大きく変わらない量である。界面活性剤はC12APSを使用し、前処理液中に2%となるように添加した。前処理中の検体溶液のpHは2.4となるように調整した。なお、界面活性剤と阻害抗体を共に添加していない条件において、あらかじめ複数の陰性検体と陽性検体とを測定し、得られたカウント値から、カットオフ値を算出した。本測定系では、カウント値がカットオフ値5500以上であれば、陽性検体と判定することができる。
4. Confirmation of effect of surfactant in actual sample The effect of the surfactant was evaluated using a human serum sample. As a serum sample, 3321-146-2 (BBI2, 1.71 × 10 11 IU / mL) purchased from BBI was used. The sample diluting the sample to 10 n (n = 3~8) times in Lumipulse for dilutions were measured. The inhibitory antibody was used by mixing Antibodies 1 to 3, and was added so that the final concentration of the mixed antibody became 100 μg / mL. This antibody concentration is an amount that is not significantly different from the amount of specific IgG generated in human blood. The surfactant used was C12APS, and was added so as to be 2% in the pretreatment liquid. The pH of the sample solution during the pretreatment was adjusted to 2.4. In addition, a plurality of negative samples and positive samples were measured in advance under the condition that both the surfactant and the inhibitory antibody were not added, and the cutoff value was calculated from the obtained count value. In this measurement system, a positive sample can be determined if the count value is 5500 or more.

結果を表8に示す。表中のDNA価はパルボウイルスのDNA価(IU/mL)である。阻害抗体を添加すると、界面活性剤非添加の場合、感度が約100倍程度低下するのに対し、C12APSの添加により、阻害抗体存在下でも、阻害抗体を添加していない場合と同程度の感度を有していた。つまり、阻害抗体存在下では、特定の界面活性剤の添加により感度が100倍に上昇した。これにより実際のヒト血清検体でも本技術の効果が得られることが確認された。   Table 8 shows the results. The DNA titers in the table are the parvovirus DNA titers (IU / mL). When an inhibitory antibody is added, the sensitivity is reduced by about 100 times when no surfactant is added.On the other hand, when C12APS is added, the sensitivity is the same as that when no inhibitory antibody is added, even in the presence of the inhibitory antibody. Had. That is, in the presence of the inhibitory antibody, the sensitivity was increased 100-fold by the addition of the specific surfactant. As a result, it was confirmed that the effect of the present technology can be obtained even with an actual human serum sample.

Figure 0006641841
Figure 0006641841

5.MEGA8、MEGA10、CHAPSの効果の検討
両性界面活性剤のCHAPS、非イオン性界面活性剤のMEGA8及びMEGA10の効果を評価した。界面活性剤は前処理液中に濃度2%となるように添加した。前処理中のpHは2.4とした。サンプルは上記2.と同様のものを用いた。
5. Examination of effects of MEGA8, MEGA10, and CHAPS The effects of CHAPS, an amphoteric surfactant, and MEGA8 and MEGA10, a nonionic surfactant, were evaluated. The surfactant was added to the pretreatment liquid so as to have a concentration of 2%. The pH during the pretreatment was 2.4. The sample is 2. The same one as described above was used.

結果を表9に示す。非イオン性界面活性剤では、MEGA10で結合分離率の顕著な向上が認められた。CHAPS(両性イオン界面活性剤)では、パルボウイルスB19への結合部位が標識抗体とバッティングする抗体3を添加した場合に顕著な効果が認められた。   Table 9 shows the results. As for the nonionic surfactant, MEGA10 showed a remarkable improvement in the bond separation rate. With CHAPS (amphoteric surfactant), a remarkable effect was observed when antibody 3 whose binding site to parvovirus B19 butted with a labeled antibody was added.

Figure 0006641841
Figure 0006641841

6.C12APS+非イオン性界面活性剤の効果の検討
C12APSに非イオン性界面活性剤を組み合わせて用いた場合の効果を評価した。処理液中のC12APS濃度は2%とし、これにさらに非イオン性界面活性剤を濃度2%となるように添加した。前処理中のpHは2.4とした。サンプルは上記2.と同様の5種に加え、各阻害抗体を10倍量で陽性サンプルに添加したもの(抗体1×10、抗体2×10、抗体3×10)を用いた。
6. Examination of the effect of C12APS + nonionic surfactant
The effect of using a nonionic surfactant in combination with C12APS was evaluated. The concentration of C12APS in the treatment solution was 2%, and a nonionic surfactant was further added thereto to a concentration of 2%. The pH during the pretreatment was 2.4. The sample is 2. In addition to the five types described above, 10-fold amounts of each inhibitory antibody added to a positive sample (antibody 1 × 10, antibody 2 × 10, antibody 3 × 10) were used.

結果を表10に示す。C12APSに非イオン性界面活性剤を組み合わせて使用すると、結合分離率がさらに向上した。   Table 10 shows the results. When C12APS was used in combination with a nonionic surfactant, the bond separation rate was further improved.

Figure 0006641841
Figure 0006641841

7.C12APS+変性剤の効果の検討
C12APSに変性剤を組み合わせて用いた場合の効果を評価した。変性剤として、尿素(2M、4M)及びグアニジン(4M)を用いた。前処理中のpHは2.8とした。サンプルは上記6.と同様のものを用いた。
7. Examination of effect of C12APS + denaturant
The effect of using a modifier combined with C12APS was evaluated. Urea (2M, 4M) and guanidine (4M) were used as denaturants. The pH during the pretreatment was 2.8. The sample is 6. The same one as described above was used.

結果を表11に示す。C12APSに変性剤を組み合わせて使用すると、結合分離率がさらに向上した。   Table 11 shows the results. The use of C12APS in combination with a denaturing agent further improved the binding separation rate.

Figure 0006641841
Figure 0006641841

8.界面活性剤の濃度の検討
前処理液中に添加する界面活性剤の濃度を検討した。界面活性剤としてC12APSを使用し、前処理液中の添加濃度は下記表12の通り0.1%〜2.0%とした。前処理中のpHは2.4とした。サンプルは上記2.と同様のものを用いた。
8. Investigation of surfactant concentration The concentration of the surfactant added to the pretreatment solution was examined. C12APS was used as a surfactant, and the addition concentration in the pretreatment liquid was 0.1% to 2.0% as shown in Table 12 below. The pH during the pretreatment was 2.4. The sample is 2. The same one as described above was used.

結果を表12に示す。0.1%〜2.0%の全ての条件で結合分離率が向上した。前処理液中に界面活性剤が0.1%以上の濃度で存在すれば向上効果が得られると考えられる。結合分離率は界面活性剤の濃度依存的に高まることが確認された。   Table 12 shows the results. The bond separation rate was improved under all conditions from 0.1% to 2.0%. It is considered that an improvement effect can be obtained if the surfactant is present in the pretreatment liquid at a concentration of 0.1% or more. It was confirmed that the bond separation rate increased in a surfactant concentration-dependent manner.

Figure 0006641841
Figure 0006641841

9.(比較例)尿素の効果の検討
酸性条件下で界面活性剤に代えて尿素を単独で用いることの効果を確認した。前処理中のpHが2.4となるように調整した前処理液に、下記表13に示す濃度で尿素を添加した。サンプルは上記2.と同様のものを用いた。
9. (Comparative Example) Investigation of the effect of urea The effect of using urea alone instead of the surfactant under acidic conditions was confirmed. Urea was added at a concentration shown in Table 13 below to the pretreatment solution adjusted to have a pH of 2.4 during the pretreatment. The sample is 2. The same one as described above was used.

結果を表13に示す。尿素を4M以上の濃度で使用すると陽性サンプルであってもカウント値が大幅に低下してしまった。カウント値が維持された2M尿素の添加では結合分離率の向上効果は認められなかった。   Table 13 shows the results. When urea was used at a concentration of 4M or more, the count value was significantly reduced even in a positive sample. Addition of 2M urea, whose count value was maintained, did not show any effect of improving the bond separation rate.

Figure 0006641841
Figure 0006641841

Claims (12)

下記(1)〜(4)の少なくともいずれかの界面活性剤を含む処理液にて、pH3.5以下の酸性条件で検体を処理することを含む、ヒトパルボウイルスB19抗原の免疫測定方法。
(1) 分子内に炭素数10以上のアルキル基と第四級アンモニウムとを有する両性界面活性剤
(2) 分子内に炭素数10以上のアルキル基と第四級アンモニウムとを有する陽イオン性界面活性剤
(3) 分子内に炭素数9以上のアルキル基と第三級アミドとを有する非イオン性界面活性剤
(4) 分子内にステロイド骨格と第四級アンモニウムとを有する両性界面活性剤
An immunoassay method for the human parvovirus B19 antigen, comprising treating a specimen with a treatment solution containing at least one of the following surfactants (1) to (4) under acidic conditions of pH 3.5 or less.
(1) An amphoteric surfactant having an alkyl group having 10 or more carbon atoms and a quaternary ammonium in the molecule
(2) Cationic surfactant having an alkyl group having 10 or more carbon atoms and a quaternary ammonium in the molecule
(3) Nonionic surfactant having an alkyl group having 9 or more carbon atoms and a tertiary amide in the molecule
(4) Amphoteric surfactant having a steroid skeleton and quaternary ammonium in the molecule
前記(1)〜(3)におけるアルキル基が直鎖アルキル基である、請求項1記載の方法。   The method according to claim 1, wherein the alkyl group in (1) to (3) is a linear alkyl group. 前記(1)の両性界面活性剤が、C12APS、C14APS、及びC16APSから選択される界面活性剤である、請求項1又は2記載の方法。   The method according to claim 1 or 2, wherein the amphoteric surfactant (1) is a surfactant selected from C12APS, C14APS, and C16APS. 前記(2)の陽イオン性界面活性剤が、C12TAB、C14TAB、C16TAB、C12TAC、C14TAC、及びC16TACから選択される界面活性剤である、請求項1ないし3のいずれか1項に記載の方法。   The method according to any one of claims 1 to 3, wherein the cationic surfactant (2) is a surfactant selected from C12TAB, C14TAB, C16TAB, C12TAC, C14TAC, and C16TAC. 前記(3)の非イオン性界面活性剤がMEGA-10であり、前記(4)の両性界面活性剤がCHAPSである、請求項1ないし4のいずれか1項に記載の方法。   The method according to any one of claims 1 to 4, wherein the nonionic surfactant (3) is MEGA-10, and the amphoteric surfactant (4) is CHAPS. 検体をポリオキシエチレンアルキルフェニルエーテル系界面活性剤及びポリソルベート系界面活性剤から選択される少なくとも一種の非イオン性界面活性剤で処理することをさらに含む、請求項1ないし5のいずれか1項に記載の方法。   The method according to any one of claims 1 to 5, further comprising treating the sample with at least one nonionic surfactant selected from a polyoxyethylene alkylphenyl ether surfactant and a polysorbate surfactant. The described method. 前記少なくとも一種の非イオン性界面活性剤が、TritonX-705、ポリソルベート20、及びポリソルベート80から選択される少なくとも1種である、請求項6記載の方法。   The method according to claim 6, wherein the at least one nonionic surfactant is at least one selected from Triton X-705, polysorbate 20, and polysorbate 80. 検体を変性剤で処理することをさらに含む、請求項1ないし7のいずれか1項に記載の方法。   The method according to any one of claims 1 to 7, further comprising treating the sample with a denaturing agent. 変性剤がグアニジン、グアニジン塩、グアニジン誘導体、及び尿素から選択される少なくとも一種である、請求項8記載の方法。   The method according to claim 8, wherein the denaturing agent is at least one selected from guanidine, guanidine salts, guanidine derivatives, and urea. 免疫測定がサンドイッチ法により行なわれる、請求項1ないし9のいずれか1項に記載の方法。   The method according to any one of claims 1 to 9, wherein the immunoassay is performed by a sandwich method. 下記(1)〜(4)の少なくともいずれかの界面活性剤を含む検体処理液と、抗ヒトパルボウイルスB19抗体又はその抗原結合性断片とを含む、ヒトパルボウイルスB19抗原の免疫測定キット。
(1) 分子内に炭素数10以上のアルキル基と第四級アンモニウムとを有する両性界面活性剤
(2) 分子内に炭素数10以上のアルキル基と第四級アンモニウムとを有する陽イオン性界面活性剤
(3) 分子内に炭素数9以上のアルキル基と第三級アミドとを有する非イオン性界面活性剤
(4) 分子内にステロイド骨格と第四級アンモニウムとを有する両性界面活性剤
An immunoassay kit for human parvovirus B19 antigen, comprising a sample treatment solution containing at least one of the following surfactants (1) to (4) and an anti-human parvovirus B19 antibody or an antigen-binding fragment thereof.
(1) An amphoteric surfactant having an alkyl group having 10 or more carbon atoms and a quaternary ammonium in the molecule
(2) Cationic surfactant having an alkyl group having 10 or more carbon atoms and a quaternary ammonium in the molecule
(3) Nonionic surfactant having an alkyl group having 9 or more carbon atoms and a tertiary amide in the molecule
(4) Amphoteric surfactant having a steroid skeleton and quaternary ammonium in the molecule
ポリオキシエチレンアルキルフェニルエーテル系界面活性剤及びポリソルベート系界面活性剤から選択される少なくとも一種の非イオン性界面活性剤を、前記検体処理液中にさらに含むか、又は前記検体処理液とは別個に含む、請求項11記載のキット。At least one nonionic surfactant selected from a polyoxyethylene alkylphenyl ether-based surfactant and a polysorbate-based surfactant, or further contained in the sample processing solution, or separately from the sample processing solution. The kit of claim 11, comprising a kit.
JP2015190821A 2015-09-29 2015-09-29 Method for measuring human parvovirus B19 antigen Active JP6641841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015190821A JP6641841B2 (en) 2015-09-29 2015-09-29 Method for measuring human parvovirus B19 antigen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015190821A JP6641841B2 (en) 2015-09-29 2015-09-29 Method for measuring human parvovirus B19 antigen

Publications (2)

Publication Number Publication Date
JP2017067513A JP2017067513A (en) 2017-04-06
JP6641841B2 true JP6641841B2 (en) 2020-02-05

Family

ID=58492292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015190821A Active JP6641841B2 (en) 2015-09-29 2015-09-29 Method for measuring human parvovirus B19 antigen

Country Status (1)

Country Link
JP (1) JP6641841B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110462402A (en) 2017-03-27 2019-11-15 日本火腿株式会社 The substance that antigen-antibody reaction caused by preventing because of body fluid hinders

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449171B2 (en) * 2000-06-05 2010-04-14 富士レビオ株式会社 Method for immunoassay of human parvovirus B19 antigen
WO2005040815A1 (en) * 2003-10-28 2005-05-06 Advanced Life Science Institute, Inc. Method of detecting hepatitis c virus
ATE493659T1 (en) * 2004-05-19 2011-01-15 Advanced Life Science Inst Inc METHOD FOR DETECTING HEPATITIS B VIRUS
JP4855126B2 (en) * 2006-04-07 2012-01-18 アボットジャパン株式会社 Parvovirus B19 antigen measurement method

Also Published As

Publication number Publication date
JP2017067513A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
KR101840525B1 (en) Vitamin d measurement method and measurement kit
JP7060510B2 (en) Tumor marker measurement method and measurement reagent
JP6999561B2 (en) Measurement method and measurement reagent for myocardial troponin
JPWO2005111620A1 (en) Method for detecting hepatitis B virus
JP2014149189A (en) Method for reducing false negative results in immunoassay for measuring specimen derived from living mucous membrane
JP7320492B2 (en) Immunoassay method for hepatitis B virus antigen
JP7198222B2 (en) Method and kit for measuring hepatitis B virus s antigen
JP6960508B1 (en) Methods for measuring viral antigens in samples, antibody sets and reagent kits
JPWO2015037635A1 (en) Sample processing method and immunoassay method for immunoassay of influenza virus
JP7209498B2 (en) Immunoassay method for hepatitis B virus core antibody
JP7308914B2 (en) Serological detection method for viral antigens
US11768209B2 (en) Method and reagent for measuring thyroglobulin
JP6641841B2 (en) Method for measuring human parvovirus B19 antigen
CA3084683C (en) A kit and method for quantitative detection of hbsag
KR102156994B1 (en) Pretreatment method for rapid detection of HCV core antigen
JP3873576B2 (en) Method for producing antigen-binding solid phase
JPH09127114A (en) Stabilized igm reagent for immunoassay
JP4855126B2 (en) Parvovirus B19 antigen measurement method
JP2022174541A (en) Immunological detection method and reagent for sars-cov-2
US20220373546A1 (en) METHODS AND REAGENTS OF IMMUNOLOGICALLY DETECTING SARS-CoV-2
WO2022154119A1 (en) Method for processing soluble gpc3-containing specimens in soluble gpc3 immunoassays
JP7055715B2 (en) Methods and kits for detecting Zika virus antigens and anti-Zika virus antibodies
JPH085637A (en) Method for measuring hav antigen and antibody immunologially reactive thereto
KR20110009210A (en) Lytic proteins of vero cell, preparation method thereof and detection kit for vero hcp comprising the same
JP2003083976A (en) HBs ANTIGEN MEASURING REAGENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191216

R150 Certificate of patent or registration of utility model

Ref document number: 6641841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350