JP6639787B2 - 呼吸を計測する方法 - Google Patents

呼吸を計測する方法 Download PDF

Info

Publication number
JP6639787B2
JP6639787B2 JP2015023301A JP2015023301A JP6639787B2 JP 6639787 B2 JP6639787 B2 JP 6639787B2 JP 2015023301 A JP2015023301 A JP 2015023301A JP 2015023301 A JP2015023301 A JP 2015023301A JP 6639787 B2 JP6639787 B2 JP 6639787B2
Authority
JP
Japan
Prior art keywords
body surface
respiration
electric conductor
surface region
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015023301A
Other languages
English (en)
Other versions
JP2016144577A (ja
Inventor
陽久 鈴木
陽久 鈴木
水野 寛隆
寛隆 水野
佐々木 実
佐々木  実
槙恵 寺澤
槙恵 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota School Foundation
Tsuchiya KK
Original Assignee
Toyota School Foundation
Tsuchiya KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota School Foundation, Tsuchiya KK filed Critical Toyota School Foundation
Priority to JP2015023301A priority Critical patent/JP6639787B2/ja
Publication of JP2016144577A publication Critical patent/JP2016144577A/ja
Application granted granted Critical
Publication of JP6639787B2 publication Critical patent/JP6639787B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は、呼吸を計測する方法に関する。
医療や健康分野では、様々な体の状態を計測するニーズがある。このため、体の信号を計測する試みは、従来から多く行われてきた。例えば心電図は、心臓の筋肉が拡張と収縮を繰り返して心臓循環を生み出すときに発生する、微弱な活動電流を計測したものである。また、呼吸は心臓循環と同様に生命活動にとって欠かせない生理機能であり、運動中の自然な状態における呼吸計測は、実際の生活の中での呼吸器官の機能を診断する上で重要である。
従来、計測対象者の呼吸を低侵襲で計測する場合、スパイロメータが広く用いられてきた。このスパイロメータでは、計測対象者の口元にマウスピースを装着し、このマウスピースから伸びるパイプ類に計測対象者の呼気または吸気を通して、この呼気または吸気をセンサにより計測する。
上記スパイロメータでは、マウスピースから伸びるパイプ類が計測対象者の運動を妨げるために、計測対象者の運動中の呼吸計測を行うことが難しい。このため、計測対象者の運動を妨げることなく呼吸計測ができる呼吸センサが望まれている。
計測対象者の運動を妨げることなく呼吸計測ができる呼吸センサとしては、例えば特許文献1に記載された発明が知られている。この発明では、計測対象者の胴体に密着して、横および縦方向に伸びるベストに圧電フィルムを設けている。そして、上記ベストの胸部および腹部の領域において、計測対象者の呼吸パターンおよび心臓の圧力に伴う胴体の変形によって圧電フィルムが歪むと、この歪みに圧電フィルムが反応して、上記呼吸パターンおよび心臓の圧力を求めるようになっている。
特許3609404号公報
ところで、呼吸は心臓循環機能と比べて随意的にも制御される側面があるため、計測対象者に与えられるストレスは呼吸の計測結果に影響を及ぼす。ここで、上述したスパイロメータにおいては、計測対象者はマウスピースの装着によりストレスを感じる。また、特許文献1の発明においては、計測対象者の胴体に密着させた圧電フィルムに生じる歪みから計測対象者の呼吸パターンおよび心臓の圧力を求めるため、計測対象者は歪まれた圧電フィルムからの反発力を受けてストレスを感じる。すなわち、上述した各呼吸計測の技術には、計測対象者に与えられるストレスのため、計測対象者の自然な状態における呼吸計測ができないという問題があった。
本発明は、上記した問題を解決するものとして創案されたものである。すなわち、本発明が解決しようとする課題は、計測対象者の呼吸を体表に配設された別体の2部材間の距離に応じた出力により検知して計測することで、呼吸計測の際に計測対象者にかかるストレスをなくして、計測対象者の自然な状態での呼吸計測を実現することである。
上記課題を解決するために、本発明の呼吸センサおよび呼吸を計測する方法は以下の手段をとる。
まず、第1の発明は、計測対象者の呼吸を低侵襲で計測できる呼吸センサである。この呼吸センサは、計測対象者が呼吸の際の、肺の膨張および収縮の影響が伸縮として現れる体表領域、あるいは、呼吸を行う際に動かされる体組織の動きの情報が伸縮に反映される体表領域であって、計測対象者の前側に設定される第1のポイントに配設される第1の電気伝導体を備えている。また、上記呼吸センサは、上記第1の電気伝導体とは別体とされて、上記体表領域において上記第1のポイントから離間され、かつ、計測対象者の前側に設定される第2のポイントに配設されることで、第1の電気伝導体と隣り合う第2の電気伝導体を備えている。また、上記呼吸センサは、上記第1の電気伝導体と上記第2の電気伝導体との間における静電容量の変化を求め、この静電容量の変化から計測対象者の呼吸に伴う体表領域の伸縮を検知する第1の検知手段を備えている。
ヒトを含む肺呼吸の動物は、呼吸の際に肺の膨張および収縮を繰り返し、併せて胸郭などの体内組織を大きく動かす。この肺および体内組織の動きは、計測対象者の所定の体表領域における伸縮として現れる。ここで、上記第1の発明によれば、計測対象者の呼吸に伴う体表領域の伸縮を、第1のポイントと第2のポイントとの離間距離の変化に応じた電気伝導体間の静電容量の変化として求め、この変化により計測対象者の呼吸を検知して計測することができる。ここで、第1のポイントに配設される第1の電気伝導体および第2のポイントに配設される第2の電気伝導体は互いに別体とされているため、計測対象者の体表領域の伸縮に対する反発力を計測対象者に与えることがない。これにより、呼吸計測の際に計測対象者にかかるストレスをなくして、計測対象者の自然な状態での呼吸計測を行うことができる。
ついで、第2の発明は、計測対象者の呼吸を低侵襲で計測できる呼吸センサである。この呼吸センサは、計測対象者が呼吸の際の、肺の膨張および収縮の影響が伸縮として現れる体表領域、あるいは、呼吸を行う際に動かされる体組織の動きの情報が伸縮に反映される体表領域である第1の体表領域であって、計測対象者の前側に設定される第1のポイントに配設される第1の電気伝導体を備えている。また、上記呼吸センサは、上記第1の電気伝導体とは互いに別体とされて、上記第1の体表領域において上記第1のポイントから離間され、かつ、計測対象者の前側に設定される第2のポイントに配設されることで、第1の電気伝導体と隣り合う第2の電気伝導体を備えている。また、呼吸センサは、計測対象者が第1の体表領域とは別に伸縮させる体表領域である第2の体表領域において設定される第3のポイントに配設される第3の電気伝導体を備えている。また、呼吸センサは、上記第3の電気伝導体とは別体とされて、上記第2の体表領域において上記第3のポイントから離間されて設定される第4のポイントに配設されることで、第3の電気伝導体と隣り合う第4の電気伝導体を備えている。また、呼吸センサは、第1の電気伝導体と第2の電気伝導体との間における静電容量の変化、および、第3の電気伝導体と第4の電気伝導体との間における静電容量の変化をそれぞれ求め、この各静電容量の変化に基づいて計測対象者の呼吸に伴う第1の体表領域および第2の体表領域の伸縮を検知する第2の検知手段を備えている。
この第2の発明によれば、上述した第1の発明と同様に、呼吸計測の際に計測対象者にかかるストレスをなくして、計測対象者の自然な状態での呼吸計測を行うことができる。また、呼吸センサに第3の電気伝導体および第4の電気伝導体を備えさせることで、後述する第5の発明あるいは第6の発明を実現させることができる。
さらに、第3の発明は、上述した第1の発明の呼吸センサを使用して、計測対象者の呼吸を低侵襲で計測する、呼吸を計測する方法である。この呼吸を計測する方法においては、上記体表領域を、計測対象者において右胸郭の前側に位置される右胸部分の体表に設定する。また、これとは別の発明は、上述した第1または第2の発明であって、計測対象者の体温を計測する温度計と、この温度計が計測した体温のデータに基づいて、計測対象者の呼吸の検知結果を補正する補正手段とを備えたものである。
ヒトを含む動物の肉体(および水)の比誘電率は、温度により変化する値であることが一般的に知られている。このため、計測対象者の呼吸計測を静電容量の変化として検知することで行う場合、運動などにより計測対象者の体温が変化すると、その体温の変化に合わせて呼吸の計測結果も変化する。
すなわち、上記の発明によれば、計測対象者の呼吸の検知結果を温度計によって計測した計測対象者の体温に基づいて補正することで、この体温の変化の影響を呼吸の計測結果から情報処理により除去または減少させることができる。これにより、計測対象者の呼吸の計測結果を容易に比較することができるようになるとともに、呼吸計測の精度を向上させることができる。また、上記第3の発明によれば、後述する第4の発明と同様に、呼吸の検知の精度を高くすることができる。
さらに、第4の発明は、上述した第2の発明の呼吸センサを使用して、計測対象者の呼吸を低侵襲で計測する、呼吸を計測する方法である。この呼吸を計測する方法においては、上記第1の体表領域を、計測対象者において右胸郭の前側に位置される右胸部分の体表に設定する。
呼吸による計測対象者の体表の伸縮は、この計測対象者において胸郭の前側に位置される胸部分の体表において顕著である。また、計測対象者の胸部分の体表において、左胸郭の前側に位置される左胸部分の体表は、計測対象者の心臓において全身に血液を送り出す左心室の拍動に応じて伸縮される。ここで、上記第4の発明によれば、上記呼吸による体表の伸縮が顕著に表れ、かつ、上記拍動による体表の伸縮が表れにくい右胸部分における体表の伸縮から計測対象者の呼吸を検知することで、この呼吸の検知の精度を高くすることができる。
さらに、第5の発明は、上述した第2の発明の呼吸センサを使用して、計測対象者の呼吸を低侵襲で計測する、呼吸を計測する方法である。この呼吸を計測する方法においては、上記第1の体表領域を、計測対象者が呼吸に伴って伸縮させる胸部の体表領域である胸部体表領域とし、上記第2の体表領域を、計測対象者が呼吸に伴って伸縮させる腹部の体表領域である腹部体表領域とする。
ヒトを含む哺乳類は、胸部の肋骨の間に位置する肋間筋を動かして行う胸式呼吸と、腹腔の胸腔と隣接する部分に位置する横隔膜を動かして行う腹式呼吸と、を組み合わせて呼吸を行う。この胸式呼吸および腹式呼吸の組み合わせ方は運動状態および体勢によって変わるので、運動中の呼吸計測においては胸式呼吸および腹式呼吸のそれぞれを区別して計測することが重要となる。ここで、胸部および腹部のそれぞれにおいて各体組織の動きを計測することで、胸式呼吸と腹式呼吸とを区別して計測できることが一部で知られている。
ここで、上記第5の発明によれば、計測対象者の胸部体表領域および腹部体表領域の各伸縮をそれぞれ静電容量の変化により求め、この各静電容量の変化により計測対象者の呼吸を検知して計測することができる。これにより、計測対象者の胸式呼吸と腹式呼吸とを区別して計測することができる。
さらに、第6の発明は、上述した第2の発明の呼吸センサを使用して、計測対象者の呼吸を低侵襲で計測する、呼吸を計測する方法である。この呼吸を計測する方法は、上記第1の体表領域に配設された第1の電気伝導体と第2の電気伝導体との間における静電容量の変化から、計測対象者の呼吸に伴う第1の体表領域の伸縮を検知する呼吸検知ステップを有している。また、上記呼吸を計測する方法は、上記第2の体表領域に配設された第3の電気伝導体と第4の電気伝導体との間における静電容量の変化から、計測対象者の体動を検知する体動検知ステップを有している。ここで、上記呼吸を計測する方法においては、計測対象者が呼吸とは別の体動により伸縮させる体表領域を上記第2の体表領域とする。また、上記呼吸を計測する方法は、上記呼吸検知ステップにおいて検知された計測対象者の呼吸に伴う第1の体表領域の伸縮の検知結果を、上記体動検知ステップにおいて検知された体動のデータに基づいて補正する補正ステップを有している。
計測対象者の体表は、計測対象者の呼吸に伴って伸縮される以外にも、計測対象者における体勢の変更などの体動によっても伸縮される。ここで、上記第6の発明によれば、計測対象者の呼吸の検知結果を第2の検知手段が検知した体動に基づいて補正することで、この体動による体表の伸縮の影響を情報処理により除去または減少させることができる。これにより、計測対象者の呼吸計測の精度を向上させることができる。
さらに、第7の発明は、上述した第1から第3の発明のいずれかの呼吸センサを用いた呼吸計測システムである。この呼吸計測システムは、呼吸センサの出力を無線送信する無線送信装置と、この無線送信装置からの無線送信を受信する無線受信装置とを備えている。
この第7の発明によれば、呼吸センサの出力を外部に無線送信するので、計測対象者の呼吸を、この計測対象者の行動範囲および運動状態に制限を設けることなく、外部の計測者が静止した状態で計測することができる。
本発明の第1の実施形態にかかる呼吸センサ10の使用状態を表した説明図である。 図1の部分拡大図である。 図2のIII−III線断面図である。 ヒトの胸部の皮膚に貼り付けた電極の対に交流電場を印加した際のインピーダンスの周波数特性をプロットしたグラフであり、上記ヒトが息を吐いた状態における計測結果である。 ヒトの胸部の皮膚に貼り付けた電極の対に交流電場を印加した際の位相の周波数特性をプロットしたグラフであり、上記ヒトが息を吐いた状態における計測結果である。 ヒトの胸部の皮膚に貼り付けた電極の対に交流電場を印加した際のインピーダンスの周波数特性をプロットしたグラフであり、上記ヒトが息を吸った状態における計測結果である。 ヒトの胸部の皮膚に貼り付けた電極の対に交流電場を印加した際の位相の周波数特性をプロットしたグラフであり、上記ヒトが息を吸った状態における計測結果である。 本発明の第2の実施形態にかかる呼吸センサ20の使用状態を表した説明図である。 ヒトの腹部の皮膚に貼り付けた電極の対に交流電場を印加した際における各電極間の静電容量の変化をプロットしたグラフであり、朝10時に行われた実験の結果である。 ヒトの腹部の皮膚に貼り付けた電極の対に交流電場を印加した際における各電極間の静電容量の変化をプロットしたグラフであり、昼食前に行われた実験の結果である。 ヒトの腹部の皮膚に貼り付けた電極の対に交流電場を印加した際における各電極間の静電容量の変化をプロットしたグラフであり、昼食中に行われた実験の結果である。 ヒトの腹部の皮膚に貼り付けた電極の対に交流電場を印加した際における各電極間の静電容量の変化をプロットしたグラフであり、昼食後に行われた実験の結果である。 ヒトの腹部の皮膚に貼り付けた電極の対に交流電場を印加した際における各電極間の静電容量の変化をプロットしたグラフであり、15時に行われた実験の結果である。 ヒトの腹部の皮膚に貼り付けた電極の対に交流電場を印加した際における各電極間の静電容量の変化をプロットしたグラフであり、16時に行われた実験の結果である。 ヒトの腹部の皮膚に貼り付けた電極の対に交流電場を印加した際における各電極間の静電容量の変化をプロットしたグラフであり、上記ヒトが左右ひねり運動をしている状態における計測結果である。 ヒトの腹部の皮膚に貼り付けた電極の対に交流電場を印加した際における各電極間の静電容量の変化をプロットしたグラフであり、上記ヒトが体幹前後屈運動をしている状態における計測結果である。
以下に、本発明を実施するための形態について、図面を用いて説明する。なお、以下においては、図3に示す電極11、12に芯線10B、10Dを接着させる導電性の接着剤などの付随的な構成について、その図示および詳細な説明を省略する。また、以下においては、上下、左右、前後の各方向を、立って正面を向いた状態の計測対象者90(図1参照)から見た方向として説明を行う。
〈第1の実施形態〉
始めに、第1の実施形態にかかる呼吸センサ10の構成について、図1ないし図3を用いて説明する。この呼吸センサ10は、図1に示すように、ヒトを計測対象者90として、この計測対象者90の日常生活における呼吸を、計測対象者90に対して負担をかけることなく(すなわち低侵襲の状態で)計測するための携帯型の呼吸センサである。
呼吸センサ10は、計測対象者90に貼り付けられる別体の電極11、12からそれぞれ伸びるケーブル10A、10Cに解析装置13を接続した構成となっている。各電極11、12は、図1および図2に示すように、導電糸を平織にした導電布11A、12Aに多数の孔(図2参照)を開けるメッシュ加工を施し、この各導電布11A、12Aに各ケーブル10A、10Cの芯線10B、10Dを接着させたものである。ここで、各電極11、12は、それぞれ本発明における「第1の電気伝導体」および「第2の電気伝導体」に相当する。
また、各電極11、12は、無色透明で透湿性のあるドレッシングテープ11B、12Bに両面を覆われて、このドレッシングテープ11B、12Bを介して計測対象者90に貼り付けられるようになっている。メッシュ加工が施された導電布11A、12Aにより形成された各電極11、12をドレッシングテープ11B、12Bを介して貼り付ける構成によれば、計測対象者90において各電極11、12が貼られた部分の蒸れを抑えて、計測対象者90がストレスを覚えることを抑えることができる。
各電極11、12は、図1および図3に示すように、それぞれ、計測対象者90が呼吸に伴って伸縮させる胸部の体表領域である胸部体表領域91において設定される第1のポイント91Aおよび第2のポイント91Bに配設される。この第1のポイント91Aおよび第2のポイント91Bは、それぞれに配設される電極11、12が互いに重なり合うことなく隣り合うように、互いに離間された位置に設定される。ここで、胸部体表領域91は、計測対象者90の胸郭93の前側(図3で見て上側)に位置されて、計測対象者90の呼吸に伴う体表の伸縮が顕著に表れる体表領域であり、本発明における「第1の体表領域」に相当する。
解析装置13は、各電極11、12間における静電容量の変化を求めて、この静電容量の変化から計測対象者90の呼吸を検知するものであり、本発明における「第1の検知手段」に相当する。なお、解析装置13は、各電極11、12間に一定の周波数の交流電場を印加した際のインピーダンスを計測し、その計測結果から各電極11、12間における静電容量の変化を算定して求めるように構成されている。また、解析装置13が検知した呼吸は、解析装置13に備えられたモニタ13A(図1参照)に、呼吸における換気量の時間変化を示す波形として出力されるようになっている。
呼吸センサ10は、計測対象者90の呼吸に伴う胸部体表領域91の伸縮を、第1のポイント91Aと第2のポイント91Bとの離間距離の変化に応じた各電極11、12間の静電容量の変化として求める。そして、呼吸センサ10は、求めた静電容量の変化により計測対象者90の呼吸を検知して計測することを実現させる。ここで、第1のポイント91Aに配設される電極11および第2のポイント91Bに配設される電極12は互いに別体とされているため、計測対象者90の胸部体表領域91の伸縮に対する反発力を計測対象者90に与えることがない。これにより、呼吸計測の際に計測対象者90にかかるストレスをなくして、計測対象者90の自然な状態での呼吸計測を行うことが可能な呼吸センサ10を提供することができる。
ここで、呼吸センサ10により計測対象者90の呼吸を計測する際には、図1および図3に示すように、第1のポイント91Aおよび第2のポイント91Bを、胸部体表領域91のうち右胸郭93Aの前側に位置される右胸部分91Cの体表に配設することが好ましい。ここで、右胸部分91Cは、計測対象者90の呼吸による体表の伸縮が顕著に表れる胸部体表領域91において、左胸郭93Bの前側に位置される左胸部分91D(図1参照)よりも計測対象者90の心臓94(図1参照)の拍動による体表の伸縮が表れにくい。これは、図1に示すように、計測対象者90の心臓94において全身に血液を送り出す拍動により計測対象者90の体表を伸縮させる左心室94Aが、計測対象者90の正中線90Aと比べて左側に寄っていることによるものである。第1のポイント91Aおよび第2のポイント91Bが配設される第1の体表領域を右胸部分91Cの体表に設定する手法によれば、左心室94Aの拍動による体表の伸縮の影響を抑えて、計測対象者90の呼吸の検知精度を高めることができる。
また、呼吸センサ10により計測対象者90の呼吸を計測する際には、計測対象者90において各電極11、12が貼られた部分の蒸れを抑えることが好ましい。これは、呼吸計測の際に計測対象者90にかかるストレスをなくして、計測対象者90の自然な状態での呼吸計測を行うことを可能とするためである。また、上記蒸れの原因となる水分が各電極11、12間の静電容量に影響を及ぼして正確な呼吸計測ができなくなることを回避するためでもある。
本発明者らは、上述した呼吸センサ10の計測結果と実際の呼吸との対応関係を調べるために実験(以下、「第1の実験」とも称する。)を行った。以下、この第1の実験について、主に図4ないし図7を用いて説明する。本発明者らは、呼吸センサ10における各電極11、12(図2参照)と同じ電極の対をヒトの胸部の皮膚に貼り付け、上記電極の対に交流電場を印加した際のインピーダンスおよび位相の周波数特性を計測する実験を行った。この第1の実験は、上記ヒトが息を吐き終わってから吸い始めるまでの息の止まった状態(以下、「息を吐いた状態」とも称する。)と、上記ヒトが息を吸い終わってから吐き始めるまでの息の止まった状態(以下、「息を吸った状態」とも称する。)とにおいて行われた。
上記第1の実験からは、図5および図7に示すように、上記電極の対に印加される交流電場の周波数が50[kHz]以上200[kHz]以下である場合、その位相は上記ヒトの呼吸によらずほぼ−90[°]であることが分かった。これは、上記電極の対をヒトの皮膚に貼り付けて交流電場を印加した場合、この交流電場の周波数が50[kHz]以上200[kHz]以下であれば、上記電極の対はコンデンサーとして振る舞うことを意味している。
また、上記第1の実験からは、図4および図6に示すように、上記ヒトが息を吸った状態から吐いた状態になると、50[kHz]以上200[kHz]以下の周波数範囲における上記電極の対のインピーダンスが2.5倍程度に大きくなることが分かった。これは、ヒトの皮膚に貼り付けられた上記電極の対がコンデンサーとして振る舞う場合における上記電極の対間の静電容量が、上記ヒトの呼吸に応じて大きく変動することを意味している。このため、本発明の呼吸センサ10が計測する各電極11、12(図2参照)間の静電容量の変化は、計測対象者90の呼吸における換気量の変化を計測するために用いることができると推定される。
〈第2の実施形態〉
続いて、第2の実施形態にかかる呼吸センサ20の構成について、主に図8を用いて説明する。第2の実施形態にかかる呼吸センサ20は、第1の実施形態にかかる呼吸センサ10を変形した実施形態である。したがって、上記第1の実施形態にかかる呼吸センサ10の各構成と共通する構成については、第1の実施形態にかかる呼吸センサ10の各構成に付した符号から、その十の位の数字を「2」に置き換えた符号を付して対応させ、その詳細な説明を省略する。
第2の実施形態の呼吸センサ20は、図8に示すように、複数の計測対象者90の呼吸を、各計測対象者90に負担をかけることなく(すなわち低侵襲の状態で)計測するための呼吸計測システムの一部をなす呼吸センサである。この呼吸センサ20の解析装置23には、計測対象者90の第1のポイント91Aおよび第2のポイント91Bに配設される各電極21、22に加えて、計測対象者90の腹部体表領域92に貼り付けられる別体の電極24、25が接続されている。ここで、腹部体表領域92は、計測対象者90の呼吸に伴って胸部体表領域91とは別に伸縮され、かつ、計測対象者90における体勢の変更などの、呼吸とは別の体動によっても伸縮される腹部の体表領域であり、本発明における「第2の体表領域」に相当する。なお、各電極21、22、24、25の具体的な構成およびその作用効果は、それぞれ、第1の実施形態にかかる呼吸センサ10の各電極11、12(図1参照)の構成および作用効果と同様であるので、その図示および詳細な説明を省略する。
各電極24、25は、図8に示すように、計測対象者90の腹部体表領域92において設定される第3のポイント92Aおよび第4のポイント92Bに配設され、ケーブル20E、20Fを介して解析装置23に接続される。ここで、第3のポイント92Aおよび第4のポイント92Bは、それぞれに配設される電極24、25が互いに重なり合うことなく隣り合うように、互いに離間された位置に設定される。すなわち、各電極24、25は、それぞれ本発明における「第3の電気伝導体」および「第4の電気伝導体」に相当する。なお、図8においては、第3のポイント92Aおよび第4のポイント92Bは、計測対象者90の腹部体表領域92において、計測対象者90の正中線90Aに対して対象となる位置に設定されている。
解析装置23は、各電極21、22間における静電容量の変化と、各電極24、25間における静電容量の変化をそれぞれ求めて、この各静電容量の変化に基づいて計測対象者90の呼吸を検知するものであり、本発明における「第2の検知手段」に相当する。なお、解析装置23は、各電極21、22間および各電極24、25間に一定の周波数の交流電場を印加した際のインピーダンスを計測し、その各計測結果から計測対象者90の呼吸を検知して求めるように構成されている。
ここで、各電極21、22、24、25による検知結果のうち、各電極24、25間の静電容量の変化からは計測対象者90の腹式呼吸の情報が多く得られ、各電極21、22間の静電容量の変化からは計測対象者90の胸式呼吸の情報が多く得られる。これにより、計測対象者90の胸式呼吸と腹式呼吸とを区別して計測することができる。
ところで、解析装置23は、各電極21、22、24、25による計測対象者90の呼吸の検知結果を補正する装置である補正手段23Cを備えている。この補正手段23Cには、ケーブル23Aを介して温度計23Bが接続されている。この温度計23Bは、計測対象者90の体表に貼り付けられてこの計測対象者90の体温を常時計測し、計測した体温のデータを補正手段23Cに常時出力するようになっている。
上記各構成により、解析装置23は、以下の手法で計測対象者90の呼吸を計測することを実現させる。すなわち、解析装置23は、まず、計測対象者90の胸部体表領域91に配設された各電極21、22の間における静電容量の変化から、計測対象者90の呼吸を検知する。ついで、解析装置23は、計測対象者90の腹部体表領域92に配設された各電極24、25の間における静電容量の変化から、計測対象者90の呼吸とこの呼吸とは別の体動とを検知する。このとき、解析装置23の補正手段23Cは、各電極24、25の間における静電容量の変化から検知した上記体動のデータに基づいて、各電極21、22および各電極24、25の間における静電容量の変化に基づく計測対象者90の呼吸の検知結果を補正する。また、解析装置23の補正手段23Cは、温度計23Bから入力される計測対象者90の体温のデータに基づいて、上記体動のデータにより補正された計測対象者90の呼吸の各検知結果をさらに補正する。
上述した手法によれば、計測対象者90の呼吸の検知結果を解析装置23が検知した体動に基づいて補正することで、この体動による体表の伸縮の影響を情報処理により除去または減少させることができる。これにより、計測対象者90の呼吸計測の精度を向上させることができる。さらに、上述した手法によれば、計測対象者90の呼吸の検知結果を温度計23Bによって計測した計測対象者90の体温に基づいて補正することで、この体温の変化の影響を呼吸の計測結果から情報処理により除去または減少させることができる。これにより、計測対象者90の呼吸の計測結果を容易に比較することができるようになるとともに、呼吸計測の精度を向上させることができる。
また、解析装置23の補正手段23Cには、ケーブル26Aを介して無線送信装置26(本実施形態では市販のZIGBEE(登録商標)製品)が接続されている。この無線送信装置26は、補正手段23Cによる補正が完了した計測対象者90の呼吸の各検知結果に、呼吸センサ20の識別符号を付加して電波26Bとして無線送信する。この電波26Bは、モニタ27Aを備えた無線受信装置27により受信される。この無線受信装置27は、電波26Bから抽出した計測対象者90の呼吸の各検知結果を換気量の変化に変換して呼吸センサ20の識別符号とともにモニタ27Aに表示させる。このモニタ27Aは、外部の計測者または自動監視装置(図示省略)により監視することができ、複数の計測対象者90の呼吸を長期間にわたって計測することができるようになっている。これにより、複数の計測対象者90の健康状態を診断することができる。
上記構成によれば、呼吸センサ20からの出力は、無線送信により外部のモニタ27Aに表示される。このため、計測対象者90の呼吸を、この計測対象者90の行動範囲および運動状態に制限を設けることなく、外部の計測者(図示省略)が静止した状態で計測することができる。また、呼吸センサ20からの出力を呼吸センサ20の識別符号とともに表示することで、複数の計測対象者90の呼吸をそれぞれ計測する場合に、計測結果の取り違えを防ぐことができる。
本発明者らは、上述した呼吸センサ20の計測結果と実際の呼吸および体動との対応関係を調べるために実験を行った。以下、本発明者らが行った実験について、主に図9ないし図16を用いて説明する。
本発明者らは、呼吸センサ20における各電極24、25(図8参照)と同じ電極の対をヒトの腹部の皮膚に貼り付けて交流電場を印加した際における上記各電極間の静電容量の変化を、時間を追って計測する実験(以下、「第2の実験」とも称する。)を行った。この第2の実験は、上記電極の対の貼り替えを行うことなく、同日の朝10時、昼食前、昼食中、昼食後、15時、16時の各時間帯において、上記ヒトに同じ姿勢をとらせた状態で行われた。ここで、昼食前は朝10時よりも後で昼食中よりも前の時間帯であり、昼食後は昼食中よりも後で15時よりも前の時間帯である。
上記第2の実験からは、図9ないし図14に示すように、上記各電極間の静電容量は、時間帯によらず2〜3[秒]程度の周期で10[pF]程度の増減を繰り返していることが分かった。ここで、本発明者らは、上記各電極間の静電容量の変化と上記ヒトの様子とを一緒に観察することで、このヒトが息を吐いて腹が凹むと上記各電極間の静電容量が減少し、上記ヒトが息を吸って腹が膨れると上記各電極間の静電容量が増加することを確認している。このため、本発明の呼吸センサ20が計測する各電極24、25(図5参照)間の静電容量の変化は、計測対象者90の呼吸における換気量の変化を計測するために用いることができると推定される。
また、上記第2の実験からは、上記各電極間の静電容量は、上記ヒトが食事をした後に増加し、この食事から時間がたつと減少することが分かった。これは、上記ヒトが食事をすることによる腹の膨れが、上記各電極間の静電容量に影響を及ぼしたためであると推定される。
さて、本発明者らは、上記第2の実験で使用した電極の対をヒトの腹部の皮膚に貼り付けて交流電場を印加した際における上記各電極間の静電容量の変化を、上記ヒトが左右ひねり運動を行っている間に計測する実験(以下、「第3の実験」とも称する。)を行った。ここで、「左右ひねり運動」とは、立った状態の計測対象者90が、正面を向いた体勢、上体を左にひねった左ひねりの体勢、上体を正面に戻した体勢、および、上体を右にひねった右ひねりの体勢の各体勢をこの順で繰り返す運動のことである。
上記第3の実験からは、図15に示すように、上記各電極間の静電容量は、2[秒]程度の周期で増減を繰り返していることが分かった。ここで、本発明者らは、上記各電極間の静電容量の変化と上記ヒトの様子とを一緒に観察することで、このヒトが息を吐いて腹が凹むと上記各電極間の静電容量が減少し、上記ヒトが息を吸って腹が膨れると上記各電極間の静電容量が増加することを確認している。また、上記第3の実験からは、上記ヒトが左ひねりの体勢を取ったときには上記各電極間の静電容量が増加し、上記ヒトが右ひねりの体勢を取ったときにはこのヒトの呼吸に伴う静電容量の増減の幅が小さくなることが分かった。
また、本発明者らは、上記第3の実験におけるヒトの運動を左右ひねり運動から体幹前後屈運動に変更し、それ以外の条件を上記第3の実験と同じとした場合における、各電極間の静電容量の変化を計測する実験(以下、「第4の実験」とも称する。)を行った。ここで、「体幹前後屈運動」とは、立った状態の計測対象者90が、正面を向いた体勢、上体を前に倒した前屈の体勢、上体を正面に戻した体勢、および、上体を後ろに返らせた後屈の体勢の各体勢をこの順で繰り返す運動のことである。
上記第4の実験からは、図16に示すように、上記各電極間の静電容量は、2[秒]程度の周期で増減を繰り返していることが分かった。ここで、本発明者らは、上記各電極間の静電容量の変化と上記ヒトの様子とを一緒に観察することで、このヒトが息を吐いて腹が凹むと上記各電極間の静電容量が減少し、上記ヒトが息を吸って腹が膨れると上記各電極間の静電容量が増加することを確認している。また、上記第4の実験からは、上記ヒトが前屈の体勢を取ったときにはこのヒトの呼吸に伴う静電容量の増減の幅が小さくなり、上記ヒトが後屈の体勢を取ったときには上記各電極間の静電容量が増加することが分かった。
上述した第3の実験および第4の実験からは、ヒトの皮膚に貼り付けられた上記電極の対間の静電容量が、上記ヒトの呼吸および体動に応じて、それぞれに異なる態様で変動することが分かる。このため、図8に示す呼吸センサ20が計測する各電極24、25間の静電容量の変化は、計測対象者90の呼吸を計測する用途と、各電極21、22による計測対象者90の呼吸の計測結果を補正する用途との2つの用途に用いることができると推定される。
本発明は、上述した第1および第2の実施形態で説明した外観、構成に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。例えば、以下のような各種の形態を実施することができる。
(1)上述した第1の実施形態においては、呼吸センサの解析装置に、計測対象者における呼吸とは別の体動を計測するモーションセンサと、このモーションセンサの計測結果に基づき計測対象者の呼吸の検知結果を補正する補正手段とを接続した変形例が採用可能である。ここで、上記モーションセンサとしては、加速度センサおよびジャイロセンサの一方あるいは両方の組み合わせを使用することができる。
(2)上述した第1の実施形態において、呼吸センサの解析装置に、計測対象者の体温を計測する温度計と、この温度計が計測した体温のデータに基づいて計測対象者の呼吸の検知結果を補正する補正手段とを接続した変形例を採用することができる。
(3)呼吸センサの各電極の導電性繊維を有する布は、織物や不織布、編物など、任意の構造の布とすることができる。また、上記各電極は導電性繊維を有する布に限定されない。すなわち、各電極は、導電性を有して全体が導通されていればよく、例えば各電極を金属などの良導体によって形成された箔または網とすることができ、その形状は適宜設定することができる。ただし、各電極は、柔軟性を備えて、呼吸計測時において計測対象者に不快感やストレスを与えないものであることが望ましい。
10 呼吸センサ
10A ケーブル
10B 芯線
10C ケーブル
10D 芯線
11 電極(第1の電気伝導体)
11A 導電布
11B ドレッシングテープ
12 電極(第2の電気伝導体)
12A 導電布
12B ドレッシングテープ
13 解析装置(第1の検知手段)
20 呼吸センサ
20A ケーブル
20C ケーブル
20E ケーブル
20F ケーブル
21 電極(第1の電気伝導体)
22 電極(第2の電気伝導体)
23 解析装置(第2の検知手段)
23A ケーブル
23B 温度計
23C 補正手段
24 電極(第3の電気伝導体)
25 電極(第4の電気伝導体)
26 無線送信装置
26A ケーブル
26B 電波
27 無線受信装置
27A モニタ
90 計測対象者
90A 正中線
91 胸部体表領域(第1の体表領域)
91A 第1のポイント
91B 第2のポイント
91C 右胸部分(第1の体表領域)
91D 左胸部分
92 腹部体表領域(第2の体表領域)
92A 第3のポイント
92B 第4のポイント
93 胸郭
93A 右胸郭
93B 左胸郭
94 心臓
94A 左心室

Claims (3)

  1. 計測対象者の呼吸を低侵襲で計測できる呼吸センサにおいて、
    前記計測対象者における前記呼吸の際の、肺の膨張および収縮の影響が伸縮として現れる所定の体表領域、あるいは、前記呼吸を行う際に動かされる体組織の動きの情報が伸縮に反映される所定の体表領域において、前記計測対象者の前側に設定される第1のポイントに配設される第1の電気伝導体と、
    前記第1の電気伝導体とは別体とされて、前記体表領域において、前記第1のポイントから離間され、かつ、前記計測対象者の前側に設定される第2のポイントに配設されることで、前記第1の電気伝導体と隣り合う第2の電気伝導体と、
    前記第1の電気伝導体と前記第2の電気伝導体との間における静電容量の変化を求め、この静電容量の変化から前記計測対象者の前記呼吸に伴う前記体表領域の伸縮を検知する第1の検知手段と、
    を備えている、
    呼吸センサを使用して、前記計測対象者の前記呼吸を低侵襲で計測する、呼吸を計測する方法であって、
    前記体表領域を、前記計測対象者において右胸郭の前側に位置される右胸部分の体表に設定する、
    呼吸を計測する方法。
  2. 計測対象者の呼吸を低侵襲で計測できる呼吸センサにおいて、
    前記計測対象者における前記呼吸の際の、肺の膨張および収縮の影響が伸縮として現れる所定の体表領域、あるいは、前記呼吸を行う際に動かされる体組織の動きの情報が伸縮に反映される所定の体表領域の一部である第1の体表領域において、前記計測対象者の前側に設定される第1のポイントに配設される第1の電気伝導体と、
    前記第1の電気伝導体とは別体とされて、前記第1の体表領域において、前記第1のポイントから離間され、かつ、前記計測対象者の前側に設定される第2のポイントに配設されることで、前記第1の電気伝導体と隣り合う第2の電気伝導体と、
    前記計測対象者が前記第1の体表領域とは別に伸縮させる、前記体表領域の一部である第2の体表領域において設定される第3のポイントに配設される第3の電気伝導体と、
    前記第3の電気伝導体とは別体とされて、前記第2の体表領域において前記第3のポイントから離間されて設定される第4のポイントに配設されることで、前記第3の電気伝導体と隣り合う第4の電気伝導体と、
    前記第1の電気伝導体と前記第2の電気伝導体との間における静電容量の変化、および、前記第3の電気伝導体と前記第4の電気伝導体との間における静電容量の変化をそれぞれ求め、この各静電容量の変化に基づいて前記計測対象者の前記呼吸に伴う前記第1の体表領域および前記第2の体表領域の伸縮を検知する第2の検知手段と、
    を備えている、
    呼吸センサを使用して、前記計測対象者の前記呼吸を低侵襲で計測する、呼吸を計測する方法であって、
    前記第1の体表領域を、前記計測対象者において右胸郭の前側に位置される右胸部分の体表に設定する、
    呼吸を計測する方法。
  3. 計測対象者の呼吸を低侵襲で計測できる呼吸センサにおいて、
    前記計測対象者における前記呼吸の際の、肺の膨張および収縮の影響が伸縮として現れる所定の体表領域、あるいは、前記呼吸を行う際に動かされる体組織の動きの情報が伸縮に反映される所定の体表領域の一部である第1の体表領域において、前記計測対象者の前側に設定される第1のポイントに配設される第1の電気伝導体と、
    前記第1の電気伝導体とは別体とされて、前記第1の体表領域において、前記第1のポイントから離間され、かつ、前記計測対象者の前側に設定される第2のポイントに配設されることで、前記第1の電気伝導体と隣り合う第2の電気伝導体と、
    前記計測対象者が前記第1の体表領域とは別に伸縮させる、前記体表領域の一部である第2の体表領域において設定される第3のポイントに配設される第3の電気伝導体と、
    前記第3の電気伝導体とは別体とされて、前記第2の体表領域において前記第3のポイントから離間されて設定される第4のポイントに配設されることで、前記第3の電気伝導体と隣り合う第4の電気伝導体と、
    前記第1の電気伝導体と前記第2の電気伝導体との間における静電容量の変化、および、前記第3の電気伝導体と前記第4の電気伝導体との間における静電容量の変化をそれぞれ求め、この各静電容量の変化に基づいて前記計測対象者の前記呼吸に伴う前記第1の体表領域および前記第2の体表領域の伸縮を検知する第2の検知手段と、
    を備えている、
    呼吸センサを使用して、前記計測対象者の前記呼吸を低侵襲で計測する、呼吸を計測する方法であって、
    前記第1の体表領域を、前記計測対象者が前記呼吸に伴って伸縮させる胸部の体表領域である胸部体表領域とし、
    前記第2の体表領域を、前記計測対象者が前記呼吸に伴って伸縮させる腹部の体表領域である腹部体表領域とする、
    呼吸を計測する方法。
JP2015023301A 2015-02-09 2015-02-09 呼吸を計測する方法 Active JP6639787B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015023301A JP6639787B2 (ja) 2015-02-09 2015-02-09 呼吸を計測する方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015023301A JP6639787B2 (ja) 2015-02-09 2015-02-09 呼吸を計測する方法

Publications (2)

Publication Number Publication Date
JP2016144577A JP2016144577A (ja) 2016-08-12
JP6639787B2 true JP6639787B2 (ja) 2020-02-05

Family

ID=56685028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015023301A Active JP6639787B2 (ja) 2015-02-09 2015-02-09 呼吸を計測する方法

Country Status (1)

Country Link
JP (1) JP6639787B2 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63109840A (ja) * 1986-10-25 1988-05-14 フクダ電子株式会社 多電極型生体電気インピーダンス計測装置
JP3072724B2 (ja) * 1998-02-19 2000-08-07 日本電気株式会社 呼吸計測装置
JP2001321353A (ja) * 2000-05-16 2001-11-20 Sekisui Chem Co Ltd 電気特性測定装置
KR101805078B1 (ko) * 2010-08-13 2018-01-10 레스퍼러토리 모션 인코포레이티드 호흡량, 운동 및 가변성 측정에 의한 호흡 변화 모니터링 장치 및 방법
JP5739291B2 (ja) * 2011-09-16 2015-06-24 学校法人北里研究所 インピーダンス呼吸測定装置及び呼吸状態測定システム
JP6084361B2 (ja) * 2012-02-08 2017-02-22 株式会社槌屋 呼吸センサ
JP5587524B2 (ja) * 2012-07-06 2014-09-10 パナソニック株式会社 生体信号計測装置、および、生体信号計測方法

Also Published As

Publication number Publication date
JP2016144577A (ja) 2016-08-12

Similar Documents

Publication Publication Date Title
US11253159B2 (en) Tracking cardiac forces and arterial blood pressure using accelerometers
US10178964B2 (en) Heart monitoring system
CN109069004B (zh) 用于确定可穿戴设备在对象上的位置和取向中的至少一个的方法和装置
CN110072452B (zh) 用于对象的图像监测方法和设备,以及图像监测系统
CN110035691B (zh) 用于测量睡眠呼吸暂停的方法和设备
US20090281394A1 (en) Bio-mechanical sensor system
JP2017536896A5 (ja)
JP6215637B2 (ja) 生体情報収集装置
US20180271380A1 (en) Respiration rate monitoring by multiparameter algorithm in a device including integrated belt sensor
WO2005089642A1 (ja) 電極を有する生体情報計測用衣服、生体情報計測システムおよび生体情報計測装置、および装置制御方法
JP2011098214A (ja) センサを有する生体情報計測用衣服、生体情報計測システムおよび生体情報計測装置、および装置制御方法
JP7303534B2 (ja) スマートウェア
EP3151748B1 (en) Breath volume monitoring system and method
JP6084361B2 (ja) 呼吸センサ
CN107205672B (zh) 用于评估监测对象的呼吸数据的装置和方法
Ramos-Garcia et al. Evaluation of RIP sensor calibration stability for daily estimation of lung volume
JP6639787B2 (ja) 呼吸を計測する方法
US20240197188A1 (en) Physiological parameter sensing systems and methods
Rahman et al. Extraction of Respiration Rate from Wrist ECG Signals
EP2833788B1 (en) Measuring lung volume changes by impedance pneumography
Paradiso et al. Textiles and smart materials for wearable monitoring systems
JP6140562B2 (ja) 呼吸測定方法および呼吸測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191009

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191225

R150 Certificate of patent or registration of utility model

Ref document number: 6639787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250