JP6638343B2 - Sensor chip and optical sample detection system equipped with the sensor chip - Google Patents

Sensor chip and optical sample detection system equipped with the sensor chip Download PDF

Info

Publication number
JP6638343B2
JP6638343B2 JP2015223371A JP2015223371A JP6638343B2 JP 6638343 B2 JP6638343 B2 JP 6638343B2 JP 2015223371 A JP2015223371 A JP 2015223371A JP 2015223371 A JP2015223371 A JP 2015223371A JP 6638343 B2 JP6638343 B2 JP 6638343B2
Authority
JP
Japan
Prior art keywords
light
flow path
cover member
sensor chip
path cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015223371A
Other languages
Japanese (ja)
Other versions
JP2017090349A (en
Inventor
史生 長井
史生 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2015223371A priority Critical patent/JP6638343B2/en
Publication of JP2017090349A publication Critical patent/JP2017090349A/en
Application granted granted Critical
Publication of JP6638343B2 publication Critical patent/JP6638343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Description

本発明は、表面プラズモン共鳴(SPR:Surface Plasmon Resonance)現象を応用した表面プラズモン共鳴装置や、表面プラズモン励起増強蛍光分光法(SPFS:Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づいた表面プラズモン励起増強蛍光測定装置などで使用されるセンサーチップおよびこのセンサーチップを備えた光学式検体検出システムに関する。   The present invention relates to a surface plasmon resonance apparatus that applies a surface plasmon resonance (SPR) phenomenon, and a surface plasmon excitation based on the principle of surface plasmon-excited fluorescence spectroscopy (SPFS). The present invention relates to a sensor chip used in an enhanced fluorescence measurement device and the like, and an optical sample detection system provided with the sensor chip.

従来、極微少な物質の検出を行う場合において、物質の物理的現象を応用することでこのような物質の検出を可能とした様々な検体検出装置が用いられている。
このような検体検出装置の一つとして、ナノメートルレベルなどの微細領域中で電子と光が共鳴することにより、高い光出力を得る現象(表面プラズモン現象(SPR:Surface Plasmon Resonance)現象)を応用し、例えば、生体内の極微少なアナライトの検出を行うようにした表面プラズモン共鳴装置(以下、「SPR装置」と言う)が挙げられる。
2. Description of the Related Art Conventionally, in the case of detecting a very small substance, various specimen detection apparatuses that can detect such a substance by applying a physical phenomenon of the substance have been used.
As one of such specimen detection devices, a phenomenon of obtaining high light output by resonating electrons and light in a fine region such as a nanometer level (Surface Plasmon Resonance (SPR) phenomenon) is applied. For example, a surface plasmon resonance device (hereinafter, referred to as an “SPR device”) configured to detect minute analytes in a living body may be used.

また、表面プラズモン共鳴(SPR)現象を応用した、表面プラズモン励起増強蛍光分光法(SPFS:Surface Plasmon-field enhanced Fluorescence Spectroscopy)の原理に基づき、SPR装置よりもさらに高感度にアナライト検出を行えるようにした表面プラズモン励起増強蛍光分光測定装置(以下、「SPFS装置」と言う)も、このような検体検出装置の一つである。   Also, based on the principle of Surface Plasmon-field enhanced Fluorescence Spectroscopy (SPFS) that applies the surface plasmon resonance (SPR) phenomenon, analyte detection can be performed with higher sensitivity than an SPR device. The surface plasmon excitation enhanced fluorescence spectrometer (hereinafter, referred to as “SPFS device”) is one of such sample detectors.

この表面プラズモン励起増強蛍光分光法(SPFS)は、光源より照射したレーザー光などの励起光が、金属薄膜表面で全反射減衰(ATR:Attenuated Total Reflectance)する条件において、金属薄膜表面に表面プラズモン光(疎密波)を発生させることによって、光源より照射した励起光が有する光密度を数十倍〜数百倍に上げて、表面プラズモン光の電場増強効果を得るようになっている。   This surface plasmon excitation enhanced fluorescence spectroscopy (SPFS) uses surface plasmon light on the surface of a metal thin film under the condition that excitation light such as laser light emitted from a light source is attenuated by the total reflection (ATR) on the surface of the metal thin film. By generating (compression waves), the light density of the excitation light emitted from the light source is increased to several tens to several hundreds of times, and an electric field enhancing effect of surface plasmon light is obtained.

図7は、従来のSPFSシステム100の構成を説明するための概略構成図である。図8は図7に示したセンサーチップ114の概略上面図である。センサーチップ114は、SPFS装置101の上に載置されて、極微少な物質の検出が高感度に検出される。
なお、SPFS装置101は、センサーチップ114を搭載するセンサーチップ装填部116、投光ユニット122、集光部材117、波長選択機能部材119、光検出手段120、などから構成されている。
FIG. 7 is a schematic configuration diagram for explaining the configuration of the conventional SPFS system 100. FIG. 8 is a schematic top view of the sensor chip 114 shown in FIG. The sensor chip 114 is placed on the SPFS device 101, and the detection of a very small substance is detected with high sensitivity.
The SPFS device 101 includes a sensor chip loading unit 116 on which the sensor chip 114 is mounted, a light projecting unit 122, a light collecting member 117, a wavelength selection function member 119, a light detecting unit 120, and the like.

従来のSPFSシステム100は、鉛直断面形状が略台形であるプリズム形状の誘電体部材102と、この誘電体部材102の水平な上面102aに形成された金属膜104と、金属膜104の上面に形成された反応層106と、反応層106を囲繞するように流路108を形成する流路形成部材110及び流路蓋部材112とからなるセンサーチップ114を備えている。このセンサーチップ114は、図7に示したように、SPFS装置101のセンサーチップ装填部116の上面に、試薬ウェル45を介して装填されている。   The conventional SPFS system 100 includes a prism-shaped dielectric member 102 having a substantially trapezoidal vertical cross section, a metal film 104 formed on a horizontal upper surface 102a of the dielectric member 102, and a metal film 104 formed on the upper surface of the metal film 104. And a sensor chip 114 including a flow path forming member 110 and a flow path cover member 112 for forming a flow path 108 so as to surround the reaction layer 106. As shown in FIG. 7, the sensor chip 114 is mounted on the upper surface of the sensor chip mounting section 116 of the SPFS apparatus 101 via the reagent well 45.

センサーチップ114の反応層106は、蛍光物質で標識されたアナライトを捕捉するための固相膜を有している。反応層106では、アナライトを含む検体液を流路108に送液することにより、アナライトを金属膜104上に固定することができる。
また、センサーチップ114の上方には、金属膜104上に発生した表面プラズモン光(疎密波)により励起された蛍光物質により発光される蛍光118の強度を測定するために、蛍光118のみを選択するように形成された波長選択機能部材119、光検出手段120が配設されている。
The reaction layer 106 of the sensor chip 114 has a solid phase film for capturing an analyte labeled with a fluorescent substance. In the reaction layer 106, the analyte can be fixed on the metal film 104 by sending the sample liquid containing the analyte to the flow path 108.
Further, only the fluorescent light 118 is selected above the sensor chip 114 in order to measure the intensity of the fluorescent light 118 emitted by the fluorescent substance excited by the surface plasmon light (compression wave) generated on the metal film 104. The wavelength selection function member 119 and the light detection means 120 formed as described above are provided.

なお、SPFS装置の場合は、受光ユニット130によって検出される蛍光118がアナライト物質量に相関する光である。ここで受光ユニット130は、光検出手段120、波長選択機能部材119、集光部材117を有する。   In the case of the SPFS device, the fluorescent light 118 detected by the light receiving unit 130 is light correlated with the amount of the analyte substance. Here, the light receiving unit 130 includes a light detection unit 120, a wavelength selection function member 119, and a light collection member 117.

また、図7に示したように、誘電体部材102の下方の一方の側面(入射面102b)側には、投光ユニット122が配置されており、この投光ユニット122の光源から照射される励起光124が、誘電体部材102の外側下方から、誘電体部材102の入射面102bに入射し、誘電体部材102を介して、誘電体部材102の上面102aに形成された金属膜104に照射される。   As shown in FIG. 7, a light projecting unit 122 is disposed on one side (incident surface 102 b) below the dielectric member 102, and light is emitted from the light source of the light projecting unit 122. Excitation light 124 enters the incident surface 102b of the dielectric member 102 from below the outside of the dielectric member 102, and irradiates the metal film 104 formed on the upper surface 102a of the dielectric member 102 via the dielectric member 102. Is done.

このように構成された従来のSPFSシステム100では、投光ユニット122の光源から金属膜104に向かって励起光124を照射することにより、金属膜104表面に表面プラズモン光(疎密波)が発生し、この表面プラズモン光(疎密波)によって、アナライトを標識する蛍光物質が励起され、蛍光118が発光する。この蛍光118を、集光部材117と波長選択機能部材119を介して光検出手段120によって検出し、蛍光118の光量に基づき、アナライトの量を算出している。   In the conventional SPFS system 100 configured as described above, by irradiating the excitation light 124 from the light source of the light projecting unit 122 toward the metal film 104, surface plasmon light (compression waves) is generated on the surface of the metal film 104. The fluorescent substance that labels the analyte is excited by the surface plasmon light (compression waves), and the fluorescent light 118 emits light. The fluorescent light 118 is detected by the light detecting means 120 via the light collecting member 117 and the wavelength selecting function member 119, and the amount of the analyte is calculated based on the amount of the fluorescent light 118.

また、検体中に含有されるアナライトは、例えば、核酸(一本鎖であっても二本鎖であってもよいDNA、RNA、ポリヌクレオチド、オリゴヌクレオチド、PNA(ペプチド核酸)等、またはヌクレオシド、ヌクレオチドおよびそれらの修飾分子)、タンパク質(ポリペプチド、オリゴペプチド等)、アミノ酸(修飾アミノ酸も含む。)、糖質(オリゴ糖、多糖類、糖鎖等)、脂質、またはこれらの修飾分子、複合体などが挙げられ、具体的には、AFP(αフェトプロテイン)等のがん胎児性抗原や腫瘍マーカー、シグナル伝達物質、ホルモンなどであってもよく、特に限定されない。   The analyte contained in the sample is, for example, a nucleic acid (DNA, RNA, polynucleotide, oligonucleotide, PNA (peptide nucleic acid), which may be single-stranded or double-stranded, or a nucleoside). , Nucleotides and their modified molecules), proteins (polypeptides, oligopeptides, etc.), amino acids (including modified amino acids), carbohydrates (oligosaccharides, polysaccharides, sugar chains, etc.), lipids, or modified molecules thereof, Examples thereof include a complex, and specific examples thereof include a carcinoembryonic antigen such as AFP (α-fetoprotein), a tumor marker, a signal transmitting substance, a hormone, and the like, and are not particularly limited.

なお、流路蓋部材112には、図8に示したように、検体注入口108aと、検体排出口108bとが形成されている。また、検体注入口108aの上方には円筒状の検体注入口部材92が立設され、検体排出口108bの上方には、液混合用の内部空間を備えた円筒状の液溜部材94が立設されている。   Note that, as shown in FIG. 8, a sample inlet 108a and a sample outlet 108b are formed in the channel cover member 112. A cylindrical sample inlet member 92 is provided upright above the sample inlet 108a, and a cylindrical liquid reservoir member 94 having an internal space for liquid mixing is provided above the sample outlet 108b. Has been established.

このようなSPFS測定では、蛍光118の光量は、励起光124の光量に対して10桁程度低いため、光検出手段120に励起光124が僅かでも入射するとS/Nが悪化し、検出精度が劣化してしまうため、迷光を低減することが重要となる。   In such SPFS measurement, since the light quantity of the fluorescent light 118 is about ten orders of magnitude lower than the light quantity of the excitation light 124, even if the excitation light 124 is slightly incident on the light detection means 120, the S / N is deteriorated, and the detection accuracy is reduced. Therefore, it is important to reduce stray light.

なお、励起光124は、誘電体部材102の入射面102bから入射した後、金属膜104で反射し、誘電体部材102の出射面102cから出射するようになっている。
しかしながら、誘電体部材102の出射面102cにおいて、励起光124の一部が反射し、誘電体部材102の入射面102bから出射する出射面反射光124bが存在する。
The excitation light 124 enters from the incident surface 102b of the dielectric member 102, is reflected by the metal film 104, and exits from the exit surface 102c of the dielectric member 102.
However, part of the excitation light 124 is reflected on the emission surface 102c of the dielectric member 102, and there is emission surface reflected light 124b emitted from the incident surface 102b of the dielectric member 102.

この出射面反射光124bが、流路蓋部材112に入射し、流路蓋部材112の側面112aで反射すると、流路蓋部材112内を矢印のように全反射で導光する光となる。そして、光検出手段120の測定領域Sに出射面反射光124bが存在すると、出射面反射光124bが流路蓋部材112を励起して自家蛍光が発生してしまい、光検出手段120が流路蓋部材112内の自家蛍光をも検出してしまい、S/Nの悪化に繋がる。また、自家蛍光だけでなく、出射面反射光124bが流路蓋部材112の測定領域S内で散乱する散乱光をも検出してしまし、S/Nの悪化に繋がる。また、出射面反射光124bだけでなく、下方に位置する投光ユニット122から出射した光の回折光や迷光、励起光がセンサーチップ装填部116などの装置内部を照射し散乱した光が流路蓋部材112に入射すると、一部の光が矢印のような全反射で導光する光が発生し、S/Nの悪化に繋がる。   When the outgoing surface reflected light 124b is incident on the flow path cover member 112 and is reflected by the side surface 112a of the flow path cover member 112, the light becomes light guided inside the flow path cover member 112 by total reflection as indicated by an arrow. If the exit surface reflected light 124b is present in the measurement area S of the light detection unit 120, the exit surface reflected light 124b excites the flow path cover member 112 to generate autofluorescence. Autofluorescence in the lid member 112 is also detected, which leads to deterioration of S / N. Further, not only the autofluorescence, but also the scattered light in which the emission surface reflected light 124b is scattered in the measurement region S of the flow path cover member 112 is detected, which leads to deterioration of S / N. Further, not only the reflected light 124b on the emission surface, but also the diffracted light, stray light, and excitation light of the light emitted from the light projecting unit 122 located below irradiates the inside of the device such as the sensor chip mounting unit 116 and the light scattered by the flow path. When the light enters the lid member 112, light is generated in which some light is guided by total reflection as shown by an arrow, which leads to deterioration of S / N.

なお、出射面反射光124bは、誘電体部材102の反射率が4%程度(通常の光学部材の界面の反射率)であり、流路蓋部材112内を全反射で導光する光は略100%の反射率であるため、蛍光118に対して同等かそれ以上に大きな自家蛍光光量を発生させてしまい、除去すべき迷光と言える。   The emission surface reflected light 124b has a reflectivity of the dielectric member 102 of about 4% (a reflectivity of an interface of a normal optical member), and light guided by total reflection in the flow path cover member 112 is substantially equal to the light. Since the reflectance is 100%, an amount of autofluorescence that is equal to or larger than the fluorescence 118 is generated, and can be said to be stray light to be removed.

このような迷光を低減するために様々な手法が提案されている。
例えば、特許文献1では、図9に示したように、誘電体部材16aに向かって入射された励起光20のうち、金属膜12から反射した反射光21を吸収する光吸収部46を、誘電体部材16aの光路中に設けている。
Various techniques have been proposed to reduce such stray light.
For example, in Patent Document 1, as shown in FIG. 9, a light absorbing portion 46 that absorbs the reflected light 21 reflected from the metal film 12 of the excitation light 20 incident toward the dielectric member 16a is formed by a dielectric material. It is provided in the optical path of the body member 16a.

また、特許文献2では、図10に示したように、センサーチップ10の内部の散乱光や反射光を除去するために励起光カットフィルタ(波長フィルタ)60を上蓋11bの上面に設置することで励起光Lをカットしている。しかしながら、このような構造でも蛍光波長は通過するため、自家蛍光による迷光が残ってしまう。   Further, in Patent Document 2, as shown in FIG. 10, an excitation light cut filter (wavelength filter) 60 is provided on the upper surface of the upper lid 11b to remove scattered light and reflected light inside the sensor chip 10. The excitation light L is cut. However, even with such a structure, the fluorescent wavelength passes, so that stray light due to autofluorescence remains.

特開2014−167479号公報JP 2014-167479 A 特開2012−202911号公報JP 2012-202911 A

本発明は、このような実情に鑑み、例えば、SPFSシステムなどの光学式検体検出システムに使用され、反応層の上部を覆うように載置された流路部蓋部材の横方向の長さが、誘電体部材の横方向の長さよりも長く設定されたセンサーチップにおいて、流路蓋部材内に入射してしまった散乱光や反射光の一部を、流路蓋部材の側面の形状により流路蓋部材内を全反射で導光して測定領域まで到達する光を発生させないようにすることで迷光を大幅に低減して、高精度・高感度にアナライトを定量的に測定できるセンサーチップおよびこのセンサーチップを備えた光学式検体検出システムを提供することを目的としている。   In view of such circumstances, for example, the present invention is used in an optical sample detection system such as a SPFS system, and the lateral length of a flow path portion cover member placed so as to cover an upper portion of a reaction layer is reduced. In a sensor chip set to be longer than the length of the dielectric member in the horizontal direction, part of the scattered light or reflected light that has entered the flow passage cover member flows through the side surface shape of the flow passage cover member. A sensor chip that can quantitatively measure analytes with high precision and high sensitivity by greatly reducing stray light by preventing light reaching the measurement area by guiding light inside the roadside member by total internal reflection. And an optical sample detection system provided with the sensor chip.

本発明は、前述したような従来技術における課題を解決するために発明されたものであって、上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映したセンサーチップは、
金属膜と、
前記金属膜の一方側に隣接し、励起光を入射する入射面を有する誘電体部材と、
前記金属膜の他方側に位置する反応層と、
前記反応層の上方に隣接する板状の流路蓋部材と、を備えたセンサーチップであって、
前記入射面の垂線と、前記金属膜平面の垂線とを含み、且つ前記金属膜平面に垂直な仮想断面において、
前記流路蓋部材の横方向の長さが、前記誘電体部材の横方向の長さよりも大きく、
前記流路蓋部材の前記誘電体部材側の下面と、前記流路蓋部材の横方向端面のうち前記入射面側の端面とのなす角度が、鈍角に形成されている。
The present invention has been invented to solve the problems in the prior art as described above, and in order to realize at least one of the above-described objects, a sensor chip reflecting one aspect of the present invention is ,
A metal film,
A dielectric member that is adjacent to one side of the metal film and has an incident surface on which excitation light is incident;
A reaction layer located on the other side of the metal film,
A plate-shaped flow channel cover member adjacent above the reaction layer, and a sensor chip comprising:
And the perpendicular of the entrance surface, and a perpendicular line of the metal Makutaira surface, and the vertical virtual cross section to the metal film plane,
The lateral length of the channel cover member is greater than the lateral length of the dielectric member,
The angle formed between the lower surface of the flow path cover member on the side of the dielectric member and the end face of the flow path cover member on the incident surface side of the lateral end faces is obtuse.

さらに、本発明に係る光学式検体検出システムは、
上記センサーチップと、
前記励起光を照射する投光ユニットと、
前記金属膜に前記誘電体部材を介して前記励起光を照射したときに発生するアナライト物質量に相関する光を検出する受光ユニットとを備え、前記アナライト物質量を検出している。
Further, the optical sample detection system according to the present invention,
The above sensor chip,
A light emitting unit for irradiating the excitation light,
A light-receiving unit that detects light correlated with the amount of analyte substance generated when the metal film is irradiated with the excitation light via the dielectric member, and detects the amount of analyte substance.

本発明に係るセンサーチップによれば、流路蓋部材の立ち上がり部の角度を鈍角に形成することにより、流路蓋部材の下面から入射し立ち上がり部の斜面を反射する光において、流路蓋部材内を全反射で導光する光を完全になくすことができ、アナライトの測定感度・測定精度を向上させることができる。   According to the sensor chip of the present invention, by forming the angle of the rising portion of the flow path cover member at an obtuse angle, the light incident from the lower surface of the flow path cover member and reflecting the slope of the rising portion can be used as the flow path cover member. The light guided by total internal reflection can be completely eliminated, and the measurement sensitivity and measurement accuracy of the analyte can be improved.

図1は本発明に係るセンサーチップを備えたSPFSシステムの構成を説明するための概略図である。FIG. 1 is a schematic diagram for explaining a configuration of an SPFS system including a sensor chip according to the present invention. 図2Aは図1に示したセンサーチップの概略斜視図である。FIG. 2A is a schematic perspective view of the sensor chip shown in FIG. 図2Bは図1に示したセンサーチップの概略上面図である。FIG. 2B is a schematic top view of the sensor chip shown in FIG. 図3は本発明に係るセンサーチップの他の実施例を示した概略断面図である。FIG. 3 is a schematic sectional view showing another embodiment of the sensor chip according to the present invention. 図4は流路蓋部材に下方から光が入射した場合の光の光路を示す概略図である。FIG. 4 is a schematic diagram showing an optical path of light when light enters the flow path cover member from below. 図5は流路蓋部材の下面からの光入射角度と流路蓋部材の上面からの光出射角度をプロットした図である。FIG. 5 is a diagram in which the light incident angle from the lower surface of the flow path cover member and the light emission angle from the upper surface of the flow path cover member are plotted. 図6は本発明に係る光学式検体検出システムを上方から見た場合の概略上面図である。FIG. 6 is a schematic top view when the optical sample detection system according to the present invention is viewed from above. 図7は従来のSPFSシステムの構成を説明するための概略図である。FIG. 7 is a schematic diagram for explaining the configuration of a conventional SPFS system. 図8は図7に示したセンサーチップの概略上面図である。FIG. 8 is a schematic top view of the sensor chip shown in FIG. 図9は特開2014−167479号公報に開示されている従来のセンサーチップの断面図である。FIG. 9 is a cross-sectional view of a conventional sensor chip disclosed in JP-A-2014-167479. 図10は特開2012−202911号公報に開示されている他の従来センサーチップの断面図である。FIG. 10 is a cross-sectional view of another conventional sensor chip disclosed in Japanese Patent Application Laid-Open No. 2012-202911.

以下、図面を参照しながら、本発明の実施の形態(実施例)について、より詳細に説明する。
図1は、本発明の光学式検体検出システムの一態様であるSPFSシステムの概略を模式的に示す概略図である。
Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a schematic diagram schematically showing an outline of an SPFS system which is one embodiment of the optical sample detection system of the present invention.

なお、以下の説明では、図1の状態において、「上」、「下」の方向を規定する。すなわち、図1の光検出手段44は、誘電体部材34の上方に位置しており、投光ユニット48は、誘電体部材34の下方に位置している。   In the following description, “up” and “down” directions are defined in the state of FIG. That is, the light detecting means 44 in FIG. 1 is located above the dielectric member 34, and the light projecting unit 48 is located below the dielectric member 34.

図2A、図2Bは、図1のSPFSシステム70に採用されたセンサーチップ30を示したものである。図1に示したように、本実施例に係るSPFSシステム70のセンサーチップ30は、金属膜32と、金属膜32の一方側に隣接する誘電体部材34と、金属膜32の他方側に位置する反応層36と、反応層36の上方に流路を形成する流路蓋部材38とを備えている。このセンサーチップ30は、図7に示した場合と同様に、SPFS装置68のチップ装填部116に試薬ウェル45を介して装填されている。   2A and 2B show the sensor chip 30 employed in the SPFS system 70 of FIG. As illustrated in FIG. 1, the sensor chip 30 of the SPFS system 70 according to the present embodiment includes a metal film 32, a dielectric member 34 adjacent to one side of the metal film 32, and a sensor member 30 positioned on the other side of the metal film 32. And a flow path cover member 38 that forms a flow path above the reaction layer 36. The sensor chip 30 is loaded into the chip loading section 116 of the SPFS device 68 via the reagent well 45 as in the case shown in FIG.

本実施例では、センサーチップ30が、励起光L1に対して透光性を有する素材により形成された試薬ウェル45を備えている。
試薬ウェル45は、例えば、検体液や薬液などが収容される容器である。センサーチップ30は、試薬ウェル45に設けられたセンサーチップ装填孔49に装填される。
また、チップ装填部116と流路蓋部材38とが接するようにセンサーチップ30がチップ装填部116に装填されてもよい。
In this embodiment, the sensor chip 30 includes a reagent well 45 formed of a material having a property of transmitting the excitation light L1.
The reagent well 45 is, for example, a container that stores a sample liquid, a drug solution, and the like. The sensor chip 30 is loaded in a sensor chip loading hole 49 provided in the reagent well 45.
Further, the sensor chip 30 may be loaded in the chip loading section 116 such that the chip loading section 116 and the flow path cover member 38 are in contact with each other.

また、図2A、図2Bに示したように、センサーチップ30の流路蓋部材38における長手方向の両側端部には、アナライトを含む検体液を、上記反応層36に送液するための検体流入口55と、検体排出口57とが形成されている。また、本実施例では、検体流入口55の上方に円筒状の検体注入口部材58が立設され、検体排出口57の上方に、検体混合用の空間部が具備された液溜部材59が立設されている。   Further, as shown in FIGS. 2A and 2B, a sample liquid containing an analyte is supplied to the reaction layer 36 at both ends in the longitudinal direction of the flow path cover member 38 of the sensor chip 30. A sample inlet 55 and a sample outlet 57 are formed. In the present embodiment, a cylindrical sample inlet member 58 is provided upright above the sample inlet 55, and a liquid reservoir member 59 having a space for sample mixing is provided above the sample outlet 57. It is erected.

なお、ここで用いられる検体液は、検体を用いて調製された溶液であり、例えば、検体と試薬とを混合して検体中に含有されるアナライトに蛍光物質を結合させるための処理をしたものが挙げられる。
このような検体としては、血液、血清、血漿、尿、鼻孔液、唾液、便、体腔液(髄液、腹水、胸水等)などが挙げられる。
The sample liquid used here is a solution prepared using a sample, for example, a process of mixing a sample and a reagent to bind a fluorescent substance to an analyte contained in the sample. Things.
Examples of such a sample include blood, serum, plasma, urine, nasal fluid, saliva, stool, body cavity fluid (cerebrospinal fluid, ascites, pleural effusion, etc.).

なお、本実施例におけるセンサー部材30では、検体流入口55に接続された検体注入口部材58と、検体排出口57に接続された液溜部材59とは、流路蓋部材38に対して別体で形成されている。そして、別体で形成された検体注入口部材58と液溜部材59とは、後の工程で流路蓋部材38に一体化されている。   In the sensor member 30 according to the present embodiment, the sample inlet member 58 connected to the sample inlet 55 and the liquid reservoir member 59 connected to the sample outlet 57 are separate from the channel cover member 38. The body is formed. The sample inlet member 58 and the liquid reservoir member 59 formed separately are integrated with the flow path cover member 38 in a later step.

したがって、本実施例では、例えば、流路蓋部材38を射出成形した場合であっても、この流路蓋部材38は、検体注入口部材58や液溜部材59の金型からの抜き勾配のことを考慮せずに、それ自身の形状を設定することができる。   Therefore, in the present embodiment, for example, even when the flow path cover member 38 is injection-molded, the flow path cover member 38 has a gradient of the sample injection port member 58 and the liquid storage member 59 from the mold. It is possible to set its own shape without regard to this.

例えば、図3に示した他の実施例のように、流路蓋部材38の形状に対して、検体注入部材58及び液溜部材59の金型からの抜き勾配が異なった形状も設定することが可能である。また検体注入部材58及び液溜部材59の内部の勾配を図3のよう円錐形状にすると、液残りなく注入排出が容易にできる。また、検体注入部材58と液溜部材59は一体成形されていてもよい。   For example, as in the other embodiment shown in FIG. 3, a shape in which the draft of the sample injection member 58 and the liquid reservoir member 59 from the mold is different from the shape of the flow path cover member 38 is also set. Is possible. When the gradients inside the sample injection member 58 and the liquid storage member 59 are made conical as shown in FIG. 3, the injection and discharge can be easily performed without liquid remaining. Further, the sample injection member 58 and the liquid storage member 59 may be integrally formed.

なお、図2A、図2Bに示した実施例、および図3に示した実施例では、流路蓋部材38の他方の端部に、混合用の液溜部材59を設けた例を示しているが、本発明はこれに限定されず、例えば、検体流入口55と検体排出口57とを、ポンプなどの循環送液手段によって接続することで、検体液を一方側に循環送液するセンサーチップにも適用可能である。
流路蓋部材38は、例えばPMMA(ポリメタクリル酸メチル樹脂)などの透光性が良好な樹脂から形成されている。
In the embodiment shown in FIGS. 2A and 2B and the embodiment shown in FIG. 3, an example in which a liquid reservoir 59 for mixing is provided at the other end of the channel cover member 38 is shown. However, the present invention is not limited to this. For example, a sensor chip that circulates and sends the sample liquid to one side by connecting the sample inlet 55 and the sample outlet 57 by a circulating liquid sending unit such as a pump. Is also applicable.
The channel cover member 38 is formed of a resin having a good light transmission property, such as PMMA (polymethyl methacrylate resin).

また、反応層36は、図7、図8に示した従来例の場合と同様に、アナライトを含む検体液を、例えば図2A、図2Bに示した検体流入口55を介して流路33に送液することにより、アナライトを金属膜32に固定することができる。   In addition, the reaction layer 36, as in the case of the conventional example shown in FIGS. 7 and 8, allows the analyte liquid containing the analyte to flow through the channel 33 through the sample inlet 55 shown in FIGS. 2A and 2B, for example. Can be fixed to the metal film 32.

なお、図2A、図2Bに示した実施例および図3に示した実施例では、検体液を流路33に送液することで反応層36に検体液を導入する構成を示しているが、本発明はこれに限定されず、反応層36として、ウェル部を設け、このウェル部に検体液を滞留させる構成であっても適用可能である。   2A and 2B and the embodiment shown in FIG. 3 show a configuration in which the sample liquid is introduced into the reaction layer 36 by sending the sample liquid to the flow path 33. The present invention is not limited to this. The present invention is also applicable to a configuration in which a well portion is provided as the reaction layer 36 and the sample liquid is retained in the well portion.

一方、図1に示したように、SPFSシステム70のセンサーチップ30の下方側には、金属膜32に向かって励起光L1を照射する投光ユニット48が配置されている。さらにセンサーチップ30の上方側には、受光ユニット71が配置されている。   On the other hand, as shown in FIG. 1, a light projecting unit 48 for irradiating the metal film 32 with the excitation light L1 is disposed below the sensor chip 30 of the SPFS system 70. Further, a light receiving unit 71 is disposed above the sensor chip 30.

受光ユニット71は、絞り73、波長選択機能部材43、集光部材52、および光検出手段44などから構成されている。絞り73は、波長選択機能部材43や集光部材52や光検出手段44と一体になっていてもよい。または、絞り73は、波長選択機能部材43や集光部材52や光検出手段44を保持する部材(図示せず)と一体になっていてもよい。   The light receiving unit 71 includes a stop 73, a wavelength selection function member 43, a light collecting member 52, a light detection unit 44, and the like. The diaphragm 73 may be integrated with the wavelength selecting function member 43, the light collecting member 52, and the light detecting means 44. Alternatively, the diaphragm 73 may be integrated with a member (not shown) that holds the wavelength selection function member 43, the light condensing member 52, and the light detection unit 44.

センサーチップ30において、誘電体部材34の下方の一方の側面が、投光ユニット48からの励起光L1が入射する入射面34aを形成し、誘電体部材34の下方の他方の側面が、金属膜32によって反射された反射光が出射する出射面34bを形成している。   In the sensor chip 30, one lower side surface of the dielectric member 34 forms an incident surface 34a on which the excitation light L1 from the light projecting unit 48 enters, and the other lower side surface of the dielectric member 34 is formed of a metal film. An emission surface 34b from which the light reflected by the light 32 is emitted is formed.

誘電体部材34の材質は、少なくとも励起光L1に対して光学的に透明な材料から形成されている。また、安価で取り扱い性に優れるセンサーチップ30を提供する上で、射出成形による樹脂材料から形成されている。   The material of the dielectric member 34 is formed of a material that is optically transparent at least to the excitation light L1. Further, in order to provide the sensor chip 30 which is inexpensive and has excellent handleability, it is formed from a resin material by injection molding.

誘電体部材34を形成する樹脂材料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン類、環状オレフィンコポリマー(COC)、環状オレフィンポリマー(COP)などのポリ環状オレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデンなどのビニル系樹脂、ポリスチレン、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)などを用いることができる。   Examples of the resin material forming the dielectric member 34 include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate; polyolefins such as polyethylene (PE) and polypropylene (PP); cyclic olefin copolymer (COC); Polycyclic olefins such as olefin polymer (COP), vinyl resins such as polyvinyl chloride and polyvinylidene chloride, polystyrene, polyetheretherketone (PEEK), polysulfone (PSF), polyethersulfone (PES), polycarbonate ( PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), or the like.

誘電体部材34の上面には、流路溝が打ち抜かれたアクリル系粘着シートからなる流路形成部材50が配置されている。このようなアクリル系粘着シートの厚さとしては、特に限定されるものではないが、0.1mm程度であることが好ましい。
このような流路形成部材50が、誘電体部材34の上面に貼着されることによって、検査溶液が収容される反応層36が形成されている。
On the upper surface of the dielectric member 34, a flow path forming member 50 made of an acrylic pressure-sensitive adhesive sheet having a flow path groove punched out is disposed. The thickness of such an acrylic pressure-sensitive adhesive sheet is not particularly limited, but is preferably about 0.1 mm.
By reacting such a flow path forming member 50 on the upper surface of the dielectric member 34, the reaction layer 36 in which the test solution is stored is formed.

以下に、本実施例の特徴要件である流路蓋部材38について詳述する。
本実施例では、投光ユニット48の光源から金属膜32に向かって入射角θで励起光L1を射出した場合に、励起光L1が入射する誘電体部材34の入射面34aの垂線と、金属膜平面の垂線とが交差する仮想断面を、「仮想断面40」と規定している。この仮想断面40は、図1の流路蓋部材38にハッチングで示されている面方向の断面である。
Hereinafter, the flow path cover member 38 which is a characteristic requirement of the present embodiment will be described in detail.
In the present embodiment, when the excitation light L1 is emitted from the light source of the light emitting unit 48 toward the metal film 32 at an incident angle θ, the perpendicular of the incident surface 34a of the dielectric member 34 on which the excitation light L1 is incident and the metal The virtual cross section where the perpendicular to the film plane intersects is defined as "virtual cross section 40". The imaginary cross section 40 is a cross section in a plane direction indicated by hatching on the flow path cover member 38 in FIG.

本実施例では、流路蓋部材38の横方向の長さDは、誘電体部材34における同方向の長さEに対して長く設定されている。   In the present embodiment, the lateral length D of the flow path cover member 38 is set to be longer than the length E of the dielectric member 34 in the same direction.

また、本実施例では、流路蓋部材38の誘電体部材34側の下面38aと、流路蓋部材38の横方向端面のうち入射面側の端面38cとのなす角度X1が、鈍角に形成されている。   Further, in the present embodiment, the angle X1 between the lower surface 38a of the flow path cover member 38 on the dielectric member 34 side and the end face 38c on the incident surface side of the lateral end faces of the flow path cover member 38 is formed at an obtuse angle. Have been.

すなわち、流路蓋部材38の入射面34a側に位置する下面立ち上がり部Xの角度X1が、鈍角に形成されている。この角度X1の範囲は、例えば、90°<X1<150°であることが好ましい。90°であると金型成形用の抜き勾配を確保できないのと、90°未満であると流路蓋部材38内を導光する光が存在しS/Nが悪化する。また150°以上であると流路蓋部材38が欠けてしまう問題やセンサーチップの大型化してしまう問題がある。角度X1が、上記のような範囲に設定されていれば、流路蓋部材38の立ち上がり部Xにおいて、流路蓋部材38の下面38aにいかなる角度で光が入射したとしても、流路蓋部材38の立ち上がり部Xの側面38cを反射し流路蓋部材38内を全反射で導光する光は存在しなくなる。そのため、誘電体部材34の裏面を反射し流路蓋部材38の立ち上がり部Xに向かう光だけでなく、投光ユニット48から発生する回折光や迷光、励起光L1がセンサーチップ装填部116などの装置部内を照射し散乱した光などにおいても、流路蓋部材38の下面38aにいかなる角度で光が入射したとしても、流路蓋部材38の立ち上がり部Xの側面38cを反射し流路蓋部材38内を全反射で導光する光は存在しなくなる。
このため、流路蓋部材38内を全反射で導光することは無くなり、高精度でアナライト検出が可能になる。
That is, the angle X1 of the lower surface rising portion X located on the incident surface 34a side of the flow path cover member 38 is formed to be an obtuse angle. The range of the angle X1 is preferably, for example, 90 ° <X1 <150 °. If the angle is 90 °, a draft angle for molding cannot be ensured. If the angle is less than 90 °, light that guides the inside of the flow path cover member 38 exists, and the S / N deteriorates. Further, when the angle is more than 150 °, there is a problem that the flow path cover member 38 is chipped and a problem that the sensor chip becomes large. If the angle X1 is set in the above range, no matter what angle the light enters the lower surface 38a of the flow path cover member 38 at the rising portion X of the flow path cover member 38, the flow path cover member There is no light that reflects the side surface 38c of the rising portion X of 38 and guides the inside of the flow path cover member 38 by total internal reflection. Therefore, not only the light reflected from the back surface of the dielectric member 34 toward the rising portion X of the flow path cover member 38 but also the diffracted light, the stray light, and the excitation light L1 generated from the light projecting unit 48 Even when the light irradiates the inside of the device and scatters the light, even if the light is incident on the lower surface 38a of the flow path cover member 38 at any angle, it reflects the side surface 38c of the rising portion X of the flow path cover member 38 and reflects the light. There is no light that guides the inside of the device 38 by total internal reflection.
For this reason, light is not guided inside the flow path cover member 38 by total reflection, and analyte detection can be performed with high accuracy.

また、この流路蓋部材38を導光しない光は流路蓋材38の上面38bから出射するため、測定領域Sの外方に予め遮光部材47などを配置しておくと、後述する光検出手段44に不要光が入ることを阻止することができる。これにより、SPFS装置70では、励起光を照射したときに発生する蛍光をアナライト物質量に相関する光として、高精度・高感度でアナライトの検出が可能になる。   In addition, since light that does not guide the flow path cover member 38 is emitted from the upper surface 38b of the flow path cover material 38, if a light shielding member 47 or the like is arranged in advance outside the measurement region S, light detection described later will be performed. Unnecessary light can be prevented from entering the means 44. Thus, the SPFS device 70 can detect an analyte with high accuracy and high sensitivity by using the fluorescence generated when the excitation light is irradiated as light correlated with the amount of the analyte substance.

ここで、測定領域Sとは、流路33及び流路蓋部材38内における、光検出手段44で測定可能な測定範囲(光検出手段44まで光を導光するレンズなどがある場合は、レンズを含む受光ユニットで測定可能範囲つまり、受光ユニットの視野範囲)のことを言う。
ここで、光が屈折率n1の媒質1から屈折率n0(<n1)の媒質0へ向かう場合、媒質1と媒質0の界面へ入射する光の入射角度をθi[°]としたとき、下記条件式を満足するときに媒質1内で全反射が生じる。
sinθi>n0/n1
Here, the measurement area S is a measurement range in the flow path 33 and the flow path cover member 38 that can be measured by the light detection means 44 (when there is a lens for guiding light to the light detection means 44, a lens (Measureable range of the light receiving unit including the light receiving unit, that is, the visual field range of the light receiving unit)
Here, when the light travels from the medium 1 having the refractive index n1 to the medium 0 having the refractive index n0 (<n1), when the incident angle of the light incident on the interface between the medium 1 and the medium 0 is θi [°], When the conditional expression is satisfied, total reflection occurs in the medium 1.
sinθi> n0 / n1

以下は、流路蓋部材38の一例である。
図4に示したように流路蓋部材38の屈折率を1.5、流路蓋部材38の上面38bよりも上側、及び下面38aよりも下側の媒質を空気、流路蓋部材38の下面38aと側面38cとのなす角度を95°、91°としたときと、比較例として89°、85°としたときの、流路蓋部材38の下面38aへの光入射角度と流路蓋部材38の上面38bからの光出射角度をプロットした図を図5に示す。光出射角度が0°のとき、流路蓋部材38内部を全反射で導光している。
なお、図4において、θ0は光入射角度、θ1は光出射角度、X1は流路蓋部材38の傾斜角度である。
The following is an example of the channel cover member 38.
As shown in FIG. 4, the refractive index of the flow path cover member 38 is 1.5, the medium above the upper surface 38 b of the flow path cover member 38 and the medium below the lower surface 38 a are air, The light incident angle on the lower surface 38a of the flow path cover member 38 and the flow path lid when the angle between the lower surface 38a and the side surface 38c is 95 ° and 91 °, and when the angle is 89 ° and 85 ° as a comparative example. FIG. 5 is a diagram in which the light emission angle from the upper surface 38b of the member 38 is plotted. When the light emission angle is 0 °, the inside of the flow path cover member 38 is guided by total reflection.
In FIG. 4, θ0 is the light incident angle, θ1 is the light emission angle, and X1 is the inclination angle of the flow path cover member 38.

このように、流路蓋部材38の下面38aと、入射面側の端面38cとのなす角度X1を鈍角にすることで、流路蓋部材38内を全反射して導光し測定領域Sまで到達する光を阻止することができるため、流路蓋部材38の自家蛍光などを低減でき、高精度・高感度でアナライトを定量的に測定が可能となる。   In this manner, by making the angle X1 between the lower surface 38a of the flow path cover member 38 and the end face 38c on the incident surface side an obtuse angle, the light inside the flow path cover member 38 is totally reflected and guided to reach the measurement area S. Since the reaching light can be blocked, the autofluorescence of the channel cover member 38 can be reduced, and the analyte can be quantitatively measured with high accuracy and high sensitivity.

また、本実施例では、流路蓋部材38の誘電体部材34側の下面38aと、流路蓋部材38の一対の横方向端面のうち入射面34a側の端面38cと反対側に位置する他方の端面38dとのなす角度が、鈍角に形成されている。すなわち、誘電体部材34の出射面34b側に位置する下面立ち上がり部Yの角度Y1が、鈍角に形成されている。この角度Y1の範囲は、上記X1と同様に、例えば、90°<Y1<150°であることが好ましい。   In this embodiment, the lower surface 38a of the flow path cover member 38 on the dielectric member 34 side and the other of the pair of lateral end faces of the flow path cover member 38 which are located on the opposite side to the end face 38c on the incident surface 34a side. Is formed at an obtuse angle with the end face 38d. That is, the angle Y1 of the lower surface rising portion Y located on the emission surface 34b side of the dielectric member 34 is formed at an obtuse angle. It is preferable that the range of the angle Y1 is, for example, 90 ° <Y1 <150 ° as in the case of X1.

立ち上がり部Yの角度Y1が、このような範囲に設定されていれば、出射面34bを抜けた励起光L4が装置部内で反射または散乱して流路蓋部材38の立ち上がり部Y付近に入射した場合に、いかなる角度で流路蓋部材38の下面38aに光が入射したとしても、その入射した光は流路蓋部材内を全反射で導光することは無いため、高精度・高感度でアナライトを定量的に検出が可能になる。   If the angle Y1 of the rising portion Y is set in such a range, the excitation light L4 that has passed through the emission surface 34b is reflected or scattered in the device section and entered near the rising portion Y of the channel cover member 38. In this case, even if light is incident on the lower surface 38a of the flow path cover member 38 at any angle, the incident light does not guide the inside of the flow path cover member by total reflection, so that high accuracy and high sensitivity can be achieved. The analyte can be quantitatively detected.

また、この流路蓋部材38を導光しない光は流路蓋部材38の上面38bから出射するため、測定領域Sの外方に予め遮光部材47などを配置しておくと、後述する光検出手段44に不要光が入ることを阻止することができ、さらに高感度・高精度でアナライト検出が可能になる。   In addition, since light that does not guide the flow path cover member 38 is emitted from the upper surface 38b of the flow path cover member 38, if a light shielding member 47 or the like is disposed in advance outside the measurement region S, light detection described later will be performed. Unnecessary light can be prevented from entering the means 44, and the analyte can be detected with high sensitivity and high accuracy.

さらに、本実施例のセンサーチップ30では、流路蓋部材38の端面38cと端面38dは、それぞれ平滑面に形成されている。このように、端面38c、38dが平滑面に形成されていれば、乱反射が発生しないので、流路蓋部材33内を導光する方向に光を反射させることを効果的に防止することができる。   Further, in the sensor chip 30 of the present embodiment, the end surfaces 38c and 38d of the flow path cover member 38 are formed as smooth surfaces, respectively. As described above, if the end surfaces 38c and 38d are formed as smooth surfaces, irregular reflection does not occur, so that it is possible to effectively prevent light from being reflected in a direction in which light is guided in the flow path cover member 33. .

ここで投光ユニット48から照射される励起光L1としてはレーザー光が好ましく、波長200〜900nm、0.001〜1,000mWのLDレーザー、または波長230〜800nm、0.01〜100mWの半導体レーザーが好適である。また、表面プラズモンの発生には金属膜32への光入射角度依存性が存在するため、励起光L1はコリメート光であることが好適である。   Here, the excitation light L1 emitted from the light projecting unit 48 is preferably a laser light, and an LD laser having a wavelength of 200 to 900 nm and 0.001 to 1,000 mW, or a semiconductor laser having a wavelength of 230 to 800 nm and 0.01 to 100 mW. Is preferred. Further, since generation of surface plasmons has a light incident angle dependency on the metal film 32, it is preferable that the excitation light L1 is a collimated light.

一方、センサーチップ30の上方に設けられた光検出手段44は、反応層36で生じた蛍光60を受光するものであり、この光検出手段44としては、超高感度の光電子増倍管、または多点計測が可能なCCDイメージセンサを用いることが好ましい。また、フォトダイオードやアバランシェフォトダイオードを用いてもよい。   On the other hand, the light detecting means 44 provided above the sensor chip 30 receives the fluorescence 60 generated in the reaction layer 36, and the light detecting means 44 includes an ultra-high-sensitivity photomultiplier or It is preferable to use a CCD image sensor capable of multipoint measurement. Further, a photodiode or an avalanche photodiode may be used.

また、流路蓋部材38と光検出手段44との間には、光を効率よく集光するための集光部材52や、供給されてくる光の中で蛍光60のみを透過する波長選択機能部材などが設けられている。   Further, between the channel cover member 38 and the light detecting means 44, a light collecting member 52 for efficiently collecting light, and a wavelength selecting function for transmitting only the fluorescent light 60 in the supplied light. Members and the like are provided.

集光部材52としては、光検出手段44に蛍光シグナルを効率よく集光することを目的とするものであれば、任意の集光光学系で良い。簡易な集光光学系としては、顕微鏡などで使用されている市販の対物レンズ及び接眼レンズを転用してもよい。対物レンズの倍率としては、10〜100倍が好ましい。集光部材は1つのレンズでもよく、複数のレンズで構成されていてもよい。2枚の非球面コリメートレンズをタンデム配置して構成した集光光学系であってもよい。このとき、各レンズの間に波長選択機能部材43を配置することで、波長選択機能部材43には略コリメートされた励起光及び蛍光が入射するため、入射角度依存性の高い波長選択機能部材を使用しても効率よく励起光をカットし蛍光を透過することができる。   As the light-collecting member 52, any light-collecting optical system may be used as long as the light-collecting member 52 aims to efficiently collect the fluorescent signal on the light detecting means 44. As a simple condensing optical system, a commercially available objective lens and eyepiece used in a microscope or the like may be diverted. The magnification of the objective lens is preferably 10 to 100 times. The light collecting member may be a single lens or may be composed of a plurality of lenses. A condensing optical system in which two aspherical collimating lenses are arranged in tandem may be used. At this time, by disposing the wavelength selection function member 43 between the lenses, the substantially collimated excitation light and fluorescence enter the wavelength selection function member 43, so that the wavelength selection function member having high incident angle dependency is used. Even if used, the excitation light can be efficiently cut and the fluorescence can be transmitted.

上記波長選択機能部材43としては、バンドバスフィルタやロングパスフィルタやダイクロイックミラーなどの干渉フィルタまたは色ガラスフィルタなどが挙げられる。   Examples of the wavelength selection function member 43 include an interference filter such as a band-pass filter, a long-pass filter, and a dichroic mirror, and a color glass filter.

そして、SPFSシステム70では、誘電体部材34の上面の金属膜32に照射された励起光L2によって、金属膜32の表面に表面プラズモン光(疎密波)を発生させることによって、投光ユニット48の光源より照射した励起光L2が有する光密度を数十倍〜数百倍に上げて、表面プラズモン光の電場増強効果を得るようになっている。   Then, in the SPFS system 70, the excitation light L2 applied to the metal film 32 on the upper surface of the dielectric member 34 generates surface plasmon light (compression waves) on the surface of the metal film 32, so that the light projection unit 48 The light density of the excitation light L2 emitted from the light source is increased to several tens to several hundreds of times to obtain an electric field enhancement effect of surface plasmon light.

このような電場増強効果により、金属膜32に固定化されたリガンドによって、金属膜32の表面近傍に捕捉したアナライトと結合(標識)した蛍光物質を効率良く励起させ、この蛍光を観察することによって、極微量、極低濃度のアナライトを検出するようになっている。   Due to such an electric field enhancing effect, the ligand immobilized on the metal film 32 efficiently excites the fluorescent substance bonded (labeled) to the analyte captured near the surface of the metal film 32, and observes this fluorescence. Thereby, an extremely small amount and an extremely low concentration of the analyte are detected.

なお、センサーチップ30では、投光ユニット48から金属膜32に入射された励起光L1のうち、誘電体部材34の入射面34aから反射された入射面反射光と、誘電体部材34側から金属膜32に向かって出射された励起光L1のうち、金属膜32で反射されてさらに出射面34bで反射された出射面反射光とが、それぞれ流路蓋部材38内に入射されることもある。   In the sensor chip 30, of the excitation light L 1 incident on the metal film 32 from the light projecting unit 48, the incident surface reflected light reflected from the incident surface 34 a of the dielectric member 34 and the metal from the dielectric member 34 side Of the excitation light L1 emitted toward the film 32, the emission surface reflected light reflected by the metal film 32 and further reflected by the emission surface 34b may enter the flow path cover member 38, respectively. .

しかしながら、これらの光のうち流路蓋部材38の立ち上がり部Xに入射されてきた光L3は、立ち上がり部Xから斜め上方に立ち上がるように反射されるので、流路蓋部材38の外部に出射させることができる。   However, of these lights, the light L3 incident on the rising portion X of the flow path cover member 38 is reflected so as to rise obliquely upward from the rising portion X, and is emitted to the outside of the flow path cover member 38. be able to.

また、本実施例では、流路蓋部材38における測定領域Sの外方に遮光部材42が流路蓋部材38の上面38bに一体的に配置される事が好ましい。この遮光部材42は、光を吸収する部材であれば、いかなるものでも良い。このような遮光部材42が流路蓋部材38の上面38aに一体に設けられていれば、測定領域Sの外方からノイズとなる迷光が測定領域Sに向かって出射されることを防止することができる。   Further, in this embodiment, it is preferable that the light shielding member 42 is disposed integrally with the upper surface 38 b of the flow path cover member 38 outside the measurement region S in the flow path cover member 38. The light-shielding member 42 may be any member as long as it absorbs light. If such a light shielding member 42 is integrally provided on the upper surface 38a of the flow path cover member 38, it is possible to prevent stray light serving as noise from being emitted from outside the measurement region S toward the measurement region S. Can be.

さらに、本実施例では、流路蓋部材38の端面38c、38dが平滑面に形成されている。したがって、流路蓋部材38の端面38c、38dから乱反射が発生しないので、流路蓋部材38内を導光する方向に光を反射させることを効果的に防止することができる。   Further, in this embodiment, the end surfaces 38c and 38d of the flow path cover member 38 are formed to be smooth surfaces. Therefore, irregular reflection does not occur from the end surfaces 38 c and 38 d of the flow path cover member 38, so that it is possible to effectively prevent light from being reflected in a direction in which light is guided in the flow path cover member 38.

また、本実施例では、流路蓋部材38の上面38bのうち、測定領域Sの外方に位置する部分が散乱面である。
すなわち、より具体的には、図6に示したように、流路蓋部材38の上面38aであり、かつ測定領域Sの外方と仮想断面40とが交差する交差領域の少なくとも一部を含む範囲T、Tが散乱面に形成されている。このように散乱面とする範囲は、上面38aの全ての面である必要はなく、不要な励起光が当たる可能性のある一部範囲だけでもよい。
In the present embodiment, a portion of the upper surface 38b of the flow path cover member 38 that is located outside the measurement region S is a scattering surface.
That is, more specifically, as shown in FIG. 6, the upper surface 38 a of the flow path cover member 38 and at least a part of the intersection area where the outside of the measurement area S intersects the virtual cross section 40 are included. Ranges T, T are formed on the scattering surface. The range of the scattering surface need not be the entire surface of the upper surface 38a, but may be only a partial range to which unnecessary excitation light may be applied.

また、上記のセンサーチップ30が採用されたSPFSシステム70では、センサーチップ30と、受光ユニット71との間において、不要光を受光ユニット71内の光検出手段44へ入射させるのを防止するために配置された遮蔽部材47は、測定領域Sの外方に配置され、かつ流路蓋部材38に一体化されていない。   Further, in the SPFS system 70 in which the sensor chip 30 is employed, between the sensor chip 30 and the light receiving unit 71, in order to prevent unnecessary light from being incident on the light detecting means 44 in the light receiving unit 71. The disposed shielding member 47 is disposed outside the measurement region S and is not integrated with the flow path cover member 38.

このような位置に遮光部材47が設けられたSPFSシステム70では、仮に流路蓋部材38のうち、測定領域Sの外方から受光ユニット71に向かって光が出射されたとしても、その迷光を遮光部材47で遮ることができる。   In the SPFS system 70 in which the light shielding member 47 is provided at such a position, even if light is emitted from the outside of the measurement area S to the light receiving unit 71 in the flow path cover member 38, the stray light is generated. The light can be blocked by the light blocking member 47.

以上、説明したように、本実施例に係るセンサーチップ30およびこのセンサーチップ30が採用されたSPFSシステム70によれば、誘電体部材34の入射面34aあるいは誘電体部材34の出射面34bから反射した光の一部が流路蓋部材38内の立ち上がり部X、Yに入射したとしても、流路蓋部材38内を全反射で導光する光を発生させることなく、その光を斜め上方に立ち上げて反射させ、その光を流路蓋部材38の外部に出射することができる。よって、その光もしくはその光によって発生した蛍光が光検出手段44に迷光として検出されてしまうことを防止することができる。これにより、高精度・高感度にアナライトを測定することができる。   As described above, according to the sensor chip 30 and the SPFS system 70 employing the sensor chip 30 according to the present embodiment, the light is reflected from the incident surface 34a of the dielectric member 34 or the output surface 34b of the dielectric member 34. Even if part of the light that has entered the rising portions X and Y in the flow path cover member 38, the light is directed obliquely upward without generating light that guides the inside of the flow path cover member 38 by total reflection. The light can be raised and reflected, and the light can be emitted to the outside of the flow path cover member 38. Therefore, it is possible to prevent the light or the fluorescence generated by the light from being detected as stray light by the light detection unit 44. Thus, the analyte can be measured with high accuracy and high sensitivity.

なお、以上の実施例では、センサーチップをSPFSシステムに適用して説明したが、本発明のセンサーチップはSPFSシステムに限定されず、SPRシステムのセンサーチップとして適用可能であることは勿論である。
なお、SPRシステムでは、誘電体部材34の下方の他方の側面側に配置された受光ユニットによって、金属膜32により反射された反射光を受光するようになっている。
In the above embodiment, the sensor chip is applied to the SPFS system. However, the sensor chip of the present invention is not limited to the SPFS system, but can be applied to the SPR system.
In the SPR system, the light reflected by the metal film 32 is received by a light receiving unit disposed on the other side surface below the dielectric member 34.

SPRシステムの場合には、金属膜32からの反射光がアナライト物質量に相関する光である。そのため、受光ユニットには波長選択機能部材は有しておらず、投光ユニットから出射した励起光L1と同等の波長を光検出手段で検出するようになっている。   In the case of the SPR system, light reflected from the metal film 32 is light correlated with the amount of the analyte substance. Therefore, the light receiving unit does not have a wavelength selection function member, and the light detecting unit detects a wavelength equivalent to the excitation light L1 emitted from the light projecting unit.

本発明に係る光学式検体検出システムによれば、センサーチップと、励起光を照射する投光ユニットと、金属膜に誘電体部材を介して励起光を照射したときに発生するアナライト物質量に相関する光(SPFSの場合は蛍光、SPRの場合は金属膜からの反射光)を検出する受光ユニットとを備え、さらにセンサーチップの端面が鈍角に形成されていることから、迷光を大幅に低減して、アナライト物質量に相関する光を、高精度・高感度に測定することが可能となる。   According to the optical sample detection system according to the present invention, the sensor chip, the light projecting unit for irradiating the excitation light, and the amount of the analyte substance generated when the metal film is irradiated with the excitation light via the dielectric member. A light receiving unit that detects correlated light (fluorescence in the case of SPFS, light reflected from a metal film in the case of SPR) is provided, and the end surface of the sensor chip is formed at an obtuse angle, so that stray light is significantly reduced. As a result, it is possible to measure light correlated with the amount of the analyte substance with high accuracy and high sensitivity.

30 センサーチップ
32 金属膜
33 流路
34 誘電体部材
34a 入射面
34b 出射面
36 反応層
38 流路蓋部材
38a 下面
38b 上面
38c 側端面
38d 側端面
40 仮想断面
42 遮光部材
43 波長選択機能部材
44 光検出手段
45 試薬ウェル
47 遮光部材
48 投光ユニット
50 流路形成部材
52 集光部材
57 検体排出口
58 検体注入口部材
59 液溜部材
60 蛍光
68 SPFS装置
70 SPFSシステム
71 受光ユニット
73 絞り
101 SPFS装置
Reference Signs List 30 sensor chip 32 metal film 33 flow path 34 dielectric member 34a incident surface 34b emission surface 36 reaction layer 38 flow path cover member 38a lower surface 38b upper surface 38c side end surface 38d side end surface 40 virtual cross section 42 light shielding member 43 wavelength selection function member 44 light Detecting means 45 Reagent well 47 Light blocking member 48 Light emitting unit 50 Flow path forming member 52 Light collecting member 57 Sample outlet 58 Sample inlet member 59 Liquid reservoir member 60 Fluorescent 68 SPFS device 70 SPFS system 71 Light receiving unit 73 Aperture 101 SPFS device

Claims (10)

金属膜と、
前記金属膜の一方側に隣接し、励起光を入射する入射面を有する誘電体部材と、
前記金属膜の他方側に位置する反応層と、
前記反応層の上方に隣接する板状の流路蓋部材と、を備えたセンサーチップであって、
前記入射面の垂線と、前記金属膜平面の垂線とを含み、且つ前記金属膜平面に垂直な仮想断面において、
前記流路蓋部材の横方向の長さが、前記誘電体部材の横方向の長さよりも大きく、
前記流路蓋部材の前記誘電体部材側の下面と、前記流路蓋部材の一対の横方向端面のうち前記入射面側の端面とのなす角度が、鈍角に形成されているセンサーチップ。
A metal film,
A dielectric member that is adjacent to one side of the metal film and has an incident surface on which excitation light is incident;
A reaction layer located on the other side of the metal film,
A plate-shaped flow channel cover member adjacent above the reaction layer, and a sensor chip comprising:
And the perpendicular of the entrance surface, and a perpendicular line of the metal Makutaira surface, and the vertical virtual cross section to the metal film plane,
The lateral length of the channel cover member is greater than the lateral length of the dielectric member,
A sensor chip, wherein an angle formed between a lower surface of the flow path cover member on the side of the dielectric member and an end face of the pair of lateral end faces of the flow path cover member on the incident surface side is obtuse.
前記誘電体部材は、前記金属膜で前記励起光が反射した金属膜反射光が出射する出射面を有し、
前記誘電体部材側から前記金属膜に向かって出射された前記励起光のうち、前記誘電体部材の前記入射面から反射された入射面反射光と、
前記誘電体部材側から前記金属膜に向かって出射された前記励起光のうち、前記金属膜で反射されてさらに前記出射面で反射された出射面反射光とが、
それぞれ前記流路蓋部材の前記入射面側の端面に入射される請求項1に記載のセンサーチップ。
The dielectric member has an emission surface from which the metal film reflected light from which the excitation light is reflected by the metal film is emitted,
Of the excitation light emitted toward the metal film from the dielectric member side, incident surface reflected light reflected from the incident surface of the dielectric member,
Of the excitation light emitted toward the metal film from the dielectric member side, the emission surface reflected light reflected on the metal film and further reflected on the emission surface,
2. The sensor chip according to claim 1, wherein each of the sensor chips is incident on an end surface on the incident surface side of the flow path cover member. 3.
前記流路蓋部材の前記誘電体部材側の下面と、前記流路蓋部材の前記一対の横方向端面のうち前記入射面側の端面と反対側に位置する他方の端面とのなす角度が、鈍角に形成されている請求項1または2に記載のセンサーチップ。   The lower surface of the flow path cover member on the dielectric member side, the angle between the other end face of the pair of lateral end faces of the flow path cover member opposite to the end face on the incident surface side, 3. The sensor chip according to claim 1, wherein the sensor chip is formed at an obtuse angle. 前記流路蓋部材の前記仮想断面における、互いに対向する一対の端面が、それぞれ平滑面である請求項1〜のいずれか一項に記載のセンサーチップ。 The sensor chip according to any one of claims 1 to 3 , wherein a pair of end surfaces facing each other in the virtual cross section of the flow path cover member are smooth surfaces. 前記流路蓋部材における、測定領域の外方に遮光部材が配置され、この遮光部材は前記流路蓋部材に一体的に設けられている請求項1〜4のいずれか一項に記載のセンサーチップ。 The sensor according to any one of claims 1 to 4, wherein a light-shielding member is disposed outside the measurement region in the flow path cover member, and the light-shielding member is provided integrally with the flow path cover member. Chips. 前記流路蓋部材における前記誘電体部材に対向しない上面のうち、測定領域の外方に位置する部分が、散乱面である請求項1〜5のいずれか一項に記載のセンサーチップ。 The sensor chip according to any one of claims 1 to 5, wherein a portion of the upper surface of the flow path cover member that is not opposed to the dielectric member and that is located outside the measurement region is a scattering surface. 前記流路蓋部材の前記上面であり、かつ前記測定領域の外方と前記仮想断面とが交差する交差領域の少なくとも一部を含む範囲が散乱面である請求項6に記載のセンサーチップ。   The sensor chip according to claim 6, wherein a range including the upper surface of the flow path cover member and including at least a part of an intersection region where the outside of the measurement region intersects the virtual cross section is a scattering surface. 前記流路蓋部材には、アナライトを含む検体液を流路に送液するための検体流入口および検体排出口が形成されているとともに、前記検体流入口上には検体注入口部材が立設され、前記検体排出口上には、液溜部材が立設され、
前記検体注入口部材及び前記液溜部材は、前記流路蓋部材と別体で形成された後に、前記流路蓋部材と一体化されている請求項1〜7のいずれか一項に記載のセンサーチップ。
A sample inlet and a sample outlet for supplying a sample liquid containing an analyte to the flow channel are formed in the channel cover member, and a sample inlet member stands on the sample inlet. A liquid storage member is provided upright on the sample outlet,
The sample injection port member and the liquid storage member are formed separately from the flow path cover member, and then integrated with the flow path cover member according to any one of claims 1 to 7. Sensor chip.
請求項1〜8のいずれか一項に記載のセンサーチップと、
前記励起光を照射する投光ユニットと、
前記金属膜に前記誘電体部材を介して前記励起光を照射したときに発生するアナライト物質量に相関する光を検出する受光ユニットとを備え、前記アナライト物質量を検出する光学検体検出システム。
A sensor chip according to any one of claims 1 to 8,
A light emitting unit for irradiating the excitation light,
Through said dielectric member and a light receiving unit for detecting light to correlate the analyte substance amount generated when irradiated with the excitation light, the analyte substance amount detecting an optical analyte detection on the metal film system.
前記センサーチップと、前記受光ユニットとの間において、測定領域の外方かつ前記測定領域から発する光を前記受光ユニット内の光検出手段へ入射させる光路の外方に、遮光部材が配置されている請求項9に記載の光学式検体検出システム。 Between the sensor chip and the light receiving unit, a light blocking member is disposed outside the measurement region and outside a light path for causing light emitted from the measurement region to enter light detection means in the light receiving unit. An optical sample detection system according to claim 9.
JP2015223371A 2015-11-13 2015-11-13 Sensor chip and optical sample detection system equipped with the sensor chip Expired - Fee Related JP6638343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015223371A JP6638343B2 (en) 2015-11-13 2015-11-13 Sensor chip and optical sample detection system equipped with the sensor chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015223371A JP6638343B2 (en) 2015-11-13 2015-11-13 Sensor chip and optical sample detection system equipped with the sensor chip

Publications (2)

Publication Number Publication Date
JP2017090349A JP2017090349A (en) 2017-05-25
JP6638343B2 true JP6638343B2 (en) 2020-01-29

Family

ID=58767940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015223371A Expired - Fee Related JP6638343B2 (en) 2015-11-13 2015-11-13 Sensor chip and optical sample detection system equipped with the sensor chip

Country Status (1)

Country Link
JP (1) JP6638343B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030047567A (en) * 2001-12-11 2003-06-18 한국전자통신연구원 Surface plasmon resonance sensor system
WO2011027851A1 (en) * 2009-09-07 2011-03-10 コニカミノルタホールディングス株式会社 Liquid feeding system for microchip, sample detection device, and liquid feeding method for liquid feeding system for microchip
JP5487127B2 (en) * 2011-01-14 2014-05-07 富士フイルム株式会社 Measuring device and sensor chip
WO2013027544A1 (en) * 2011-08-25 2013-02-28 コニカミノルタホールディングス株式会社 Measurement device and sensor chip
EP3104168B1 (en) * 2014-02-05 2019-01-16 Konica Minolta, Inc. Surface plasmon resonance fluorescence analysis device and surface plasmon resonance fluorescence analysis method

Also Published As

Publication number Publication date
JP2017090349A (en) 2017-05-25

Similar Documents

Publication Publication Date Title
US8102533B2 (en) Total reflection illuminated sensor chip
US10018563B2 (en) Sample plate and analyzing method
JP6991972B2 (en) Detection chip, detection system and detection method
EP2726852B1 (en) Multiple examinations of a sample
WO2013011831A1 (en) Target substance detection chip, target substance detection plate, target substance detection device and target substance detection method
JP6098523B2 (en) SPFS measurement sensor chip, SPFS measurement method using SPFS measurement sensor chip, and SPFS measurement apparatus equipped with SPFS measurement sensor chip
US8570518B2 (en) Methods and materials for detection of target species
JP6766820B2 (en) Optical sample detection system
US20220113254A1 (en) An apparatus and method for detecting photoluminescent light emitted from a sample
JP2014032148A (en) Surface plasmon excitation enhanced fluorescence acquisition structure and surface plasmon excitation enhanced fluorescence measurement system
EP3376206A1 (en) Inspection chip and inspection system
JP7050776B2 (en) Specimen detection device and sample detection method
JP6638343B2 (en) Sensor chip and optical sample detection system equipped with the sensor chip
JP6885458B2 (en) Sensor chip for sample detection system
US10775307B2 (en) Optical fiber fluorescence detection device
US11169090B2 (en) Diffracted light removal slit and optical sample detection system using same
JPWO2019221040A1 (en) Specimen detection chip and sample detection device using it
US20130094019A1 (en) Sample carrier with light refracting structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R150 Certificate of patent or registration of utility model

Ref document number: 6638343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees