JP6632957B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6632957B2
JP6632957B2 JP2016214319A JP2016214319A JP6632957B2 JP 6632957 B2 JP6632957 B2 JP 6632957B2 JP 2016214319 A JP2016214319 A JP 2016214319A JP 2016214319 A JP2016214319 A JP 2016214319A JP 6632957 B2 JP6632957 B2 JP 6632957B2
Authority
JP
Japan
Prior art keywords
negative electrode
mass
mixture layer
silicon oxide
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016214319A
Other languages
Japanese (ja)
Other versions
JP2017022145A (en
Inventor
茂樹 山手
山手  茂樹
実希 安富
実希 安富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2016214319A priority Critical patent/JP6632957B2/en
Publication of JP2017022145A publication Critical patent/JP2017022145A/en
Application granted granted Critical
Publication of JP6632957B2 publication Critical patent/JP6632957B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ケイ素酸化物及び黒鉛を含む負極を備えた非水電解液二次電池に関する。   The present invention relates to a nonaqueous electrolyte secondary battery provided with a negative electrode containing silicon oxide and graphite.

非水電解質二次電池用負極として、ケイ素やケイ素酸化物等のケイ素材料が知られている。   Silicon materials such as silicon and silicon oxide are known as negative electrodes for nonaqueous electrolyte secondary batteries.

特許文献1の実施例2には、微結晶質のSiとアモルファスのSiO2とに分相しているSiO粒子と鱗片状人造黒鉛とを1:1の重量混合比でボールミル機を使って複合粒子とした後、該複合粒子の表面にCVD法によって20重量%の炭素を被覆させた数平均粒径10μmの炭素被覆複合粒子を作製し、前記炭素被覆複合粒子10重量%と、炭素材料としてMCMB40重量%と天然黒鉛30重量%と人造黒鉛20重量%とからなる炭素混合材料とを混合したものを負極活物質とし、前記負極活物質97重量%と結着剤(SBR及びCMC)3重量%からなる負極合剤層を備えた負極を備えた非水電解質二次電池を作製したことが記載されている。 In Example 2 of Patent Literature 1, there is disclosed a method in which SiO particles which are phase-separated into microcrystalline Si and amorphous SiO 2 and flaky artificial graphite are mixed at a weight mixing ratio of 1: 1 using a ball mill. After forming the particles, the surface of the composite particles is coated with 20% by weight of carbon by a CVD method to prepare carbon-coated composite particles having a number average particle diameter of 10 μm, and 10% by weight of the carbon-coated composite particles as a carbon material. A mixture of 40% by weight of MCMB, 30% by weight of natural graphite and 20% by weight of artificial graphite was used as a negative electrode active material, and 97% by weight of the negative electrode active material and 3% by weight of binders (SBR and CMC) were used. It is described that a non-aqueous electrolyte secondary battery provided with a negative electrode provided with a negative electrode mixture layer composed of

特許文献2には、「負極活物質層の空孔率が10%以上、60%以下であり」、かつ、「負極活物質層に対する電解液量」が「負極活物質層の空孔体積(cm3)の1倍以上、35倍以下」とすることが記載され、負極活物質が黒鉛を含まずケイ素のみからなる実施例が記載され、実施例25〜36では非晶質Siが負極合剤層の70質量%を占めている。 Patent Literature 2 discloses that “the porosity of the negative electrode active material layer is 10% or more and 60% or less” and that “the amount of the electrolytic solution with respect to the negative electrode active material layer” is “the porosity of the negative electrode active material layer ( cm 3) 1 times or more, it is described that a 35-fold or less ", examples where the anode active material consists only of silicon free of graphite is described, amorphous Si in examples 25 to 36 is the negative electrode It accounts for 70% by mass of the agent layer.

特許第4965790号Patent No. 4965790 特開2008−262768号公報JP 2008-262768 A

一般に、非水電解質二次電池は、電極合剤層の空孔内が常に非水電解質で満たされていることが望まれ、このために十分な量の非水電解質(電解液)を注液する必要がある。電極合剤層の空孔体積は、充放電に伴う負極活物質の膨張収縮に伴って増減するため、非水電解質の注液量が不十分であると、充放電の過程において非水電解質が前記空孔内を十分に満たすことができず、容量低下を引き起こす。ところが、リチウムイオンの吸蔵に伴う負極活物質体積膨張率は、黒鉛においては約10%であるのに対し、酸化ケイ素においては約300%と著しく大きい。従って、ケイ素酸化物を一定以上含有する非水電解質二次電池に対して、一般的な黒鉛負極や、ケイ素材料の含有量が低い負極を用いた非水電解質二次電池において適正とされる注液量を適用しても、充放電による負極活物質の膨張収縮に伴って負極合剤の空孔体積が繰り返し変化することによって、空孔中の非水電解質が枯渇しやすく、十分なサイクル性能が得られないことになる。   Generally, in a non-aqueous electrolyte secondary battery, it is desired that the pores of the electrode mixture layer are always filled with the non-aqueous electrolyte, and a sufficient amount of the non-aqueous electrolyte (electrolyte) is injected for this purpose. There is a need to. Since the pore volume of the electrode mixture layer increases and decreases with the expansion and contraction of the negative electrode active material due to charge and discharge, if the injection amount of the nonaqueous electrolyte is insufficient, the nonaqueous electrolyte is charged during the charge and discharge process. It is not possible to sufficiently fill the pores, causing a reduction in capacity. However, the volume expansion coefficient of the negative electrode active material due to occlusion of lithium ions is about 10% in graphite, and about 300% in silicon oxide. Therefore, it is considered appropriate for a non-aqueous electrolyte secondary battery using a general graphite negative electrode or a negative electrode having a low silicon material content with respect to a non-aqueous electrolyte secondary battery containing a certain amount of silicon oxide. Even when the liquid volume is applied, the pore volume of the negative electrode mixture repeatedly changes with the expansion and contraction of the negative electrode active material due to charge and discharge, so that the nonaqueous electrolyte in the holes is easily depleted, and sufficient cycle performance Will not be obtained.

低結晶性炭素を備えたケイ素酸化物と黒鉛とを30:70〜60:40の質量比率で含む負極合剤層を備える非水電解質二次電池に対して例えば特許文献2記載の技術を適用しても、適正な注液量を定めることが困難であり、採用することができないという問題があった。   For example, a technique described in Patent Document 2 is applied to a nonaqueous electrolyte secondary battery including a negative electrode mixture layer including a silicon oxide having low crystalline carbon and graphite in a mass ratio of 30:70 to 60:40. However, there is a problem that it is difficult to determine an appropriate injection amount, and it cannot be adopted.

低結晶性炭素を備えたケイ素酸化物と黒鉛とを30:70〜60:40の質量比率で含む負極合剤層を備える負極を備えた非水電解質二次電池に対する非水電解質の注液量を適正なものとする技術が求められていた。   Amount of nonaqueous electrolyte injected into a nonaqueous electrolyte secondary battery including a negative electrode including a negative electrode mixture layer including a silicon oxide having low crystalline carbon and graphite in a mass ratio of 30:70 to 60:40. There has been a demand for a technique for making the appropriate.

本発明の構成及び作用効果について、技術思想を交えて説明する。但し、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。なお、本発明は、その精神又は主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、後述の実施の形態若しくは実験例は、あらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、すべて本発明の範囲内のものである。   The configuration, operation and effect of the present invention will be described together with technical ideas. However, the mechanism of action includes an estimation, and its correctness is not intended to limit the present invention. Note that the present invention can be embodied in various other forms without departing from the spirit or main characteristics thereof. Therefore, the following embodiments or experimental examples are merely examples in all aspects and should not be interpreted in a limited manner. Furthermore, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

本発明は、低結晶性炭素を備えたケイ素酸化物と黒鉛とを30:70〜60:40の質量比率で含み、充放電に伴う前記ケイ素酸化物の体積変化を吸収できる多孔度の負極合剤層を備える負極と、正極と、非水電解液と、を備え、前記ケイ素酸化物は、SiO x (0.8≦x≦1.2)で表される材料であり、前記低結晶性炭素を備えたケイ素酸化物は、ケイ素酸化物を70質量%以上含有し、前記負極合剤層が含有する原子量換算したケイ素の質量に対する前記非水電解液の質量比率が10.5以上であり、容量維持率が75%以上であることを特徴とする非水電解液二次電池である。(なお、本願明細書では、「非水電解液」を「非水電解質」、「非水電解液二次電池」を「非水電解質二次電池」ともいう。) The present invention provides a negative electrode composite having a porosity capable of absorbing a volume change of the silicon oxide caused by charging and discharging, comprising a silicon oxide having low crystalline carbon and graphite in a mass ratio of 30:70 to 60:40. A negative electrode provided with an agent layer, a positive electrode, and a non-aqueous electrolyte, wherein the silicon oxide is a material represented by SiO x (0.8 ≦ x ≦ 1.2), The silicon oxide with carbon contains silicon oxide in an amount of 70% by mass or more, and the mass ratio of the nonaqueous electrolyte to the mass of silicon in atomic weight contained in the negative electrode mixture layer is 10.5 or more. Ri is a non-aqueous electrolyte secondary battery capacity retention rate, characterized in der Rukoto more than 75%. (In the specification of the present application, the “non-aqueous electrolyte” is also referred to as “non-aqueous electrolyte”, and the “non-aqueous electrolyte secondary battery” is also referred to as “non-aqueous electrolyte secondary battery”.)

低結晶性炭素とは、ラマン分光法で得られる1360±40cm-1のDbandに帰属されるピークの強度IDと1580±20cm-1のGbandに帰属されるピークの強度IGとの比の値、すなわち、炭素六角網面の乱れの指標となるR値(=ID/IG)が、0.18≧Rである炭素質材料をいう。 The low-crystalline carbon, a peak attributed to Dband of 1360 ± 40 cm -1 obtained by Raman spectroscopy intensity I D and 1580 between the intensity I G of the peak attributed to the Gband of ± 20 cm -1 ratio Value, that is, a carbonaceous material whose R value (= I D / I G ), which is an index of the disorder of the carbon hexagonal mesh plane, is 0.18 ≧ R.

本発明において、ケイ素酸化物とは、SiOx0.8≦x≦1.2)で表される材料であり、ケイ素と酸化ケイ素の混合物又は共晶体であってもよく、結晶性(非晶質性)の如何を問わない。 In the present invention, the silicon oxide is a material represented by SiO x ( 0.8 ≦ x ≦ 1.2 ), which may be a mixture or eutectic of silicon and silicon oxide, Crystallinity).

低結晶性炭素を備えたケイ素酸化物とは、低結晶性炭素とケイ素酸化物との複合粒子からなる材料、ケイ素酸化物粒子の表面に低結晶性炭素が被覆されている材料、低結晶性炭素とケイ素酸化物との複合粒子の表面に低結晶性炭素が被覆されている材料のいずれであってもよい。本発明において、低結晶性炭素を備えたケイ素酸化物は、ケイ素酸化物を70質量%以上含有する。 Silicon oxide with low crystalline carbon refers to a material composed of composite particles of low crystalline carbon and silicon oxide, a material in which the surface of silicon oxide particles is coated with low crystalline carbon, Any material may be used in which the surface of the composite particles of carbon and silicon oxide is coated with low-crystalline carbon. In the present invention, the silicon oxide having low crystalline carbon contains the silicon oxide in an amount of 70% by mass or more.

負極合剤層が備える黒鉛の質量と、負極合剤層が備える低結晶性炭素の質量とは、示差走査熱量分析(TG)によって、それぞれ区別して定量できる。   The mass of the graphite included in the negative electrode mixture layer and the mass of the low crystalline carbon included in the negative electrode mixture layer can be separately determined by differential scanning calorimetry (TG).

負極が負極集電体と負極合剤層からなるとき、負極合剤層の多孔度の値を定義するにあたって、負極集電体が、板状、箔状等、空孔部を有さない部材からなる場合は、該負極集電体は負極合剤層から除外され、負極集電体がメッシュ状、繊維状等、空孔部を形成している場合は、該負極集電体は負極合剤層に含まれるものとする。また、負極合剤層の多孔度の値を定義するにあたって、負極合剤層は非水電解質を含まないものとする。   When the negative electrode is composed of the negative electrode current collector and the negative electrode mixture layer, in defining the value of the porosity of the negative electrode mixture layer, the negative electrode current collector is a member having no pore portion, such as a plate shape, a foil shape, or the like. , The negative electrode current collector is excluded from the negative electrode mixture layer, and when the negative electrode current collector has a pore portion such as a mesh shape, a fibrous shape, or the like, the negative electrode current collector is Shall be included in the agent layer. In defining the value of the porosity of the negative electrode mixture layer, the negative electrode mixture layer does not contain a nonaqueous electrolyte.

負極合剤層が含有する原子量換算したケイ素の質量とは、負極が備える負極合剤層全体が含有するケイ素酸化物について原子量換算したケイ素の質量であり、例えば負極合剤層の全体に化学組成式SiOx(x=1.00)で表されるケイ素酸化物が10g含まれている場合、原子量換算したケイ素の質量は、10g×[Si/SiO]=6.37gとなる。Si元素量は、ICP発光分光分析によって定量することができる。 The mass of silicon in terms of atomic weight contained in the negative electrode mixture layer is the mass of silicon in terms of atomic weight with respect to the silicon oxide contained in the entire negative electrode mixture layer provided in the negative electrode. When 10 g of the silicon oxide represented by the formula SiO x (x = 1.00) is contained, the mass of silicon in terms of atomic weight is 10 g × [Si / SiO] = 6.37 g. The Si element amount can be quantified by ICP emission spectroscopy.

負極合剤層が含有する原子量換算したケイ素の質量に対する非水電解質の質量比率を計算するにあたって用いる非水電解質の質量は、電池の電槽内に収納されている全ての非水電解液の質量をいい、負極、正極、セパレータ等、電槽内の全ての部材において含有又は付着している非水電解液を含む。   The mass of the non-aqueous electrolyte used to calculate the mass ratio of the non-aqueous electrolyte to the mass of the atomic weight-converted silicon contained in the negative electrode mixture layer is the mass of all the non-aqueous electrolytes contained in the battery case of the battery. And includes a non-aqueous electrolyte contained or adhered to all members in a battery case, such as a negative electrode, a positive electrode, and a separator.

本発明によれば、低結晶性炭素を備えたケイ素酸化物と黒鉛とを30:70〜60:40の質量比率で含む負極合剤層を備える負極を備えた非水電解質二次電池における非水電解質の量を適正なものとすることができるので、充放電サイクル性能が優れた非水電解質二次電池を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the non-aqueous electrolyte secondary battery provided with the negative electrode provided with the negative electrode mixture layer containing the silicon oxide provided with low crystalline carbon and graphite in a mass ratio of 30: 70-60: 40 is provided. Since the amount of the water electrolyte can be made appropriate, a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle performance can be provided.

実施例及び比較例について、負極合剤層が含有する原子量換算したケイ素の質量に対する非水電解質の質量比率と容量維持率との関係を示すグラフである。4 is a graph showing a relationship between a mass ratio of a nonaqueous electrolyte to a mass of silicon in terms of an atomic weight contained in a negative electrode mixture layer and a capacity retention ratio in Examples and Comparative Examples. 実施例及び比較例について、特許文献2記載の指標に従ってプロットしたグラフである。9 is a graph plotted according to an index described in Patent Document 2 for Examples and Comparative Examples.

本発明に係る非水電解質二次電池の負極が備える負極合剤層は、40質量%以上の黒鉛を含むことにより、黒鉛によるネットワークが形成され、形状保持作用が奏される結果、充放電が繰り返されても、合剤作成時の空孔の形状及び大きさをある程度保持することができる。 The negative electrode mixture layer included in the negative electrode of the nonaqueous electrolyte secondary battery according to the present invention contains a graphite of 40 % by mass or more, so that a network of graphite is formed, and a shape maintaining action is exhibited, so that charging and discharging are performed. Even if it is repeated, the shape and size of the holes at the time of preparing the mixture can be maintained to some extent.

前記負極合剤層は、放電末状態における多孔度が38%以上であることが好ましく、このような多孔度であることにより、充放電に伴うケイ素酸化物の体積変化を吸収できるため、負極合剤層の体積変化を抑制でき、繰り返し充放電サイクルに伴う容量維持率が十分な非水電解質二次電池とすることができる。前記多孔度は、40%以上がより好ましく、また、68%以下が好ましい。   The negative electrode mixture layer preferably has a porosity of 38% or more in a discharge end state, and since such a porosity can absorb a volume change of silicon oxide due to charge and discharge, the negative electrode mixture layer has a porosity of 38% or more. The nonaqueous electrolyte secondary battery can suppress the change in the volume of the agent layer and have a sufficient capacity retention ratio with repeated charge / discharge cycles. The porosity is more preferably 40% or more, and further preferably 68% or less.

本発明において、負極合剤層の多孔度は、放電末状態で測定するものとする。電解液が注液される前の状態の負極は、放電末状態であるといえるから、このまま測定に供することができる。完成された電池が備える負極については、0.1C以下の放電電流にて電池を十分に放電末状態としてから負極を取り出し、さらに電解液を十分に除去した状態で測定することが必要である。電解液を十分に除去する方法としては、遠心分離機等による物理的除去、低粘度有機溶媒(エタノール、ジエチルカーボネート等)による洗浄、減圧乾燥といった手法を組み合わせて行うことができる。但し、例えばポリフッ化ビニリデン(PVdF)を含む負極のように、結着剤が低粘度有機溶媒によって膨潤することによって多孔度の状態に影響を与えることが懸念される場合には、洗浄に用いる低粘度有機溶媒の選択に留意するか、低粘度有機溶媒による洗浄を行わないことが求められる。   In the present invention, the porosity of the negative electrode mixture layer is measured in a state of a discharge end. The negative electrode in a state before the electrolyte solution is injected can be said to be in a discharged state, and thus can be used for measurement as it is. Regarding the negative electrode included in the completed battery, it is necessary to take out the negative electrode after the battery is sufficiently discharged at a discharge current of 0.1 C or less, and then take out the negative electrode, and then perform measurement in a state where the electrolyte is sufficiently removed. As a method for sufficiently removing the electrolytic solution, a combination of techniques such as physical removal by a centrifuge, washing with a low-viscosity organic solvent (ethanol, diethyl carbonate, etc.), and drying under reduced pressure can be used. However, if there is a concern that the swelling of the binder with a low-viscosity organic solvent will affect the porosity state, as in the case of a negative electrode containing polyvinylidene fluoride (PVdF), for example, It is required to pay attention to the selection of the organic solvent having a high viscosity or not to perform the washing with the organic solvent having a low viscosity.

負極合剤の多孔度の測定は、次の条件及び手順に沿って行う。以下の実施例においても同様である。
装置名:Micrometrics社製、水銀ポロシメータ(型番:WIN9400)
細孔径測定範囲:0.005〜20μm
測定原理:D=−4σcosθ/P
(D:細孔直径、P:水銀圧、σ:表面張力、θ:接触角)
但し、θ=130°、σ=484mN/cmを用いる。
The porosity of the negative electrode mixture is measured according to the following conditions and procedures. The same applies to the following embodiments.
Device name: Micrometrics, mercury porosimeter (model number: WIN9400)
Pore diameter measurement range: 0.005 to 20 μm
Measurement principle: D = -4σcosθ / P
(D: pore diameter, P: mercury pressure, σ: surface tension, θ: contact angle)
However, θ = 130 ° and σ = 484 mN / cm are used.

上記測定において、合剤体積はサンプル管体積(Vstem)と水銀投入体積(VHg)との差であるから、見かけ体積をVappとし、真の体積をVtrueとすると、Vappは水銀圧入前の合剤体積であり、VtrueはD=0.005μm(P=230MPa)まで水銀圧入したとき合剤体積である。ここで、あらかじめ測定しておいた合剤重量をwとすると、見かけ密度dapp=w/Vapp、真密度dtrue=w/Vtrueで表され、多孔度p(%)は、p(%)=(1−dapp/dtrue)×100で表される。 In the above measurement, since the mixture volume is the difference between the sample tube volume (V stem ) and the mercury input volume (V Hg ), if the apparent volume is V app and the true volume is V true , V app is mercury V true is the volume of the mixture before the injection, and V true is the volume of the mixture when mercury is injected to D = 0.005 μm (P = 230 MPa). Here, assuming that the mixture weight measured in advance is w, the apparent density d app = w / V app and the true density d true = w / V true , and the porosity p (%) is p (%). %) = (1−d app / d true ) × 100.

前記負極合剤層が含有する原子量換算したケイ素の質量に対する前記非水電解質の質量比率を10.5以上とすることにより、負極合剤層の空孔内に含まれる非水電解質の量を十分なものとすることができるため、充放電サイクル性能が優れた非水電解質二次電池を提供できる。前記質量比率は12.5以上がより好ましい。また、15.5以下が好ましい。   By setting the mass ratio of the nonaqueous electrolyte to the mass of the silicon in terms of atomic weight contained in the negative electrode mixture layer to 10.5 or more, the amount of the nonaqueous electrolyte contained in the pores of the negative electrode mixture layer can be sufficiently increased. Therefore, a nonaqueous electrolyte secondary battery having excellent charge / discharge cycle performance can be provided. The mass ratio is more preferably 12.5 or more. Moreover, 15.5 or less is preferable.

低結晶性炭素を備えたケイ素酸化物の粒径は0.3〜8μmが好ましく、2〜6μmがより好ましい。   The particle diameter of the silicon oxide having low crystalline carbon is preferably 0.3 to 8 μm, more preferably 2 to 6 μm.

(粒子径の測定)
以下の実施例において、粒度分布の測定は次の条件及び手順に沿って行った。測定装置には日機装社製Microtrac(型番:MT3000)を用いた。前記測定装置は、光学台、試料供給部及び制御ソフトを搭載したコンピューターを備えており、光学台にはレーザー光透過窓を有する湿式セルが設置される。測定原理は、測定対象試料が分散溶媒中に分散している分散液が循環している湿式セルにレーザー光を照射し、測定試料からの散乱光分布を粒度分布に変換する方式である。前記分散液は試料供給部に蓄えられ、ポンプによって湿式セルに循環供給される。前記試料供給部は、常に超音波振動が加えられている。今回の測定では、分散溶媒として水を用いた。又、測定制御ソフトにはMicrotrac DHS for Win98(MT3000)を使用した。前記測定装置に設定入力する「物質情報」については、溶媒の「屈折率」として1.33を設定し、「透明度」として「透過(TRANSPARENT)」を選択し、「球形粒子」として「非球形」を選択した。試料の測定に先立ち、「Set Zero」操作を行う。「Set zero」操作は、粒子からの散乱光以外の外乱要素(ガラス、ガラス壁面の汚れ、ガラス凹凸など)が後の測定に与える影響を差し引くための操作であり、試料供給部に分散溶媒である水のみを入れ、湿式セルに分散溶媒である水のみが循環している状態でバックグラウンド操作を行い、バックグラウンドデータをコンピューターに記憶させる。続いて「Sample LD (Sample Loading)」操作を行う。Sample LD操作は、測定時に湿式セルに循環供給される分散液中の試料濃度を最適化するための操作であり、測定制御ソフトの指示に従って試料供給部に測定対象試料を手動で最適量に達するまで投入する操作である。続いて、「測定」ボタンを押すことで測定操作が行われる。前記測定操作を2回繰り返し、その平均値として測定結果がコンピューターから出力される。測定結果は、粒度分布ヒストグラム、並びに、D10、D50及びD90の各値(D10、D50及びD90は、二次粒子の粒度分布における累積体積がそれぞれ10%、50%及び90%となる粒度)として取得される。このうち、D50の値を「粒径」として採用する。
(Measurement of particle size)
In the following Examples, the particle size distribution was measured according to the following conditions and procedures. Microtrac (model number: MT3000) manufactured by Nikkiso Co., Ltd. was used as a measuring device. The measuring device includes an optical bench, a sample supply unit, and a computer on which control software is mounted. The optical bench is provided with a wet cell having a laser light transmission window. The measurement principle is a method of irradiating a wet cell in which a dispersion liquid in which a sample to be measured is dispersed in a dispersion solvent is circulated with laser light, and converting a scattered light distribution from the measurement sample into a particle size distribution. The dispersion is stored in the sample supply unit and circulated and supplied to the wet cell by a pump. Ultrasonic vibration is always applied to the sample supply unit. In this measurement, water was used as a dispersion solvent. Microtrac DHS for Win98 (MT3000) was used as measurement control software. As for the “substance information” to be set and input to the measuring device, 1.33 is set as the “refractive index” of the solvent, “TRANSPARENT” is selected as the “transparency”, and “non-spherical” is set as the “spherical particle”. Was selected. Perform “Set Zero” operation before measuring the sample. The “Set zero” operation is an operation to subtract the influence of disturbance elements other than the scattered light from the particles (glass, stain on the glass wall surface, glass irregularities, etc.) on the subsequent measurement. A background operation is performed in a state where only certain water is charged and only water as a dispersion solvent circulates in the wet cell, and the background data is stored in a computer. Then, perform “Sample LD (Sample Loading)” operation. The Sample LD operation is an operation for optimizing the sample concentration in the dispersion liquid that is circulated and supplied to the wet cell during measurement, and reaches the optimal amount of the sample to be measured manually to the sample supply unit according to the instruction of the measurement control software. This is the operation to enter. Subsequently, a measurement operation is performed by pressing a “measure” button. The measurement operation is repeated twice, and the measurement result is output from the computer as an average value. The measurement result is a particle size distribution histogram, and each value of D10, D50, and D90 (D10, D50, and D90 are particle sizes at which the cumulative volume in the particle size distribution of the secondary particles is 10%, 50%, and 90%, respectively). Is obtained. Among them, the value of D50 is adopted as “particle size”.

負極合剤層が備える黒鉛は、粒径が8〜25μmのものが好ましく、10〜15μmがより好ましい。形態は、特に限定されないが、負極合剤の形状保持作用が好適に奏される観点から、鱗片状、繊維状、針状の黒鉛が好ましい。黒鉛は、結晶性が高いものであればどのようなものでも良いが、充放電容量が大きく、導電性に優れる点で、X線回折法で得られる002面の面間隔d002が3.35〜3.40Å、ラマン分光法によるR値がR≦0.17であることが好ましい。 The graphite included in the negative electrode mixture layer preferably has a particle size of 8 to 25 μm, more preferably 10 to 15 μm. The form is not particularly limited, but scaly, fibrous, or acicular graphite is preferable from the viewpoint that the shape-retaining action of the negative electrode mixture is suitably exhibited. Any graphite may be used as long as it has high crystallinity. However, in view of a large charge / discharge capacity and excellent conductivity, the 002 plane spacing d 002 obtained by the X-ray diffraction method is 3.35. It is preferable that the R value by Raman spectroscopy is R ≦ 0.17.

本発明においては、正極、セパレータ、電槽等、負極以外の体積等について規定していないが、電池が備える正極の量は負極の量に対応して設計的に定まるものであり、電槽の内容積もエネルギー密度の観点からほぼ設計的に定まるから、負極が含有するケイ素の質量と、電池の電槽内に収納されている全ての非水電解液の質量との関係を規定することにより、本発明の効果が確実に奏される。   In the present invention, the positive electrode, the separator, the container, etc., the volume and the like other than the negative electrode is not specified, but the amount of the positive electrode provided in the battery is determined by design corresponding to the amount of the negative electrode, the battery case, Since the internal volume is also almost determined by design from the viewpoint of energy density, by defining the relationship between the mass of silicon contained in the negative electrode and the mass of all non-aqueous electrolyte solutions contained in the battery case of the battery. Thus, the effects of the present invention are reliably achieved.

負極に用いる結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)、フッ化ビニリデン‐ヘキサフルオロプロピレン共重合体P(VdF−HFP)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアクリル酸、ポリアクリル酸メチル、ポリメタクリル酸メチル(PMMA)、ポリアクリロニトリル(PAN)など、を単独または併用して用いることができる。この中でも、ポリイミド(PI)やポリアミドイミド(PAI)を用いると、ケイ素酸化物の大きな体積変化に耐久することができるので好適である。   Examples of the binder used for the negative electrode include polyvinylidene fluoride (PVdF), carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), vinylidene fluoride-hexafluoropropylene copolymer P (VdF-HFP), polyimide ( PI), polyamide imide (PAI), polyacrylic acid, polymethyl acrylate, polymethyl methacrylate (PMMA), polyacrylonitrile (PAN) and the like can be used alone or in combination. Among these, polyimide (PI) and polyamideimide (PAI) are preferable because they can withstand a large volume change of silicon oxide.

結着剤の添加量は電池特性を保持できればいくらであっても良いが、好ましくは負極合剤全体の1〜30質量%であり、2〜20質量%がより好ましい。   The amount of the binder added may be any as long as the battery characteristics can be maintained, but is preferably 1 to 30% by mass, more preferably 2 to 20% by mass of the whole negative electrode mixture.

負極合剤を集電体上に担持する方法としては、低結晶性炭素を備えたケイ素酸化物と、黒鉛と、結着剤とを、分散媒中で混合してペーストを得て、これを集電体上に塗布したのち、分散媒を乾燥させて合剤を備えた集電体を得て、さらに、プレスすることで厚みを調整し、設定した多孔度することができる。また、結着剤として、上記に挙げたもののモノマーやオリゴマーなどを用いることもできる。この場合には、加熱や紫外線照射などにより、適宜、硬化処理を行うことができる。   As a method of supporting the negative electrode mixture on the current collector, a silicon oxide having low crystalline carbon, graphite, and a binder are mixed in a dispersion medium to obtain a paste, and this is obtained. After being applied on the current collector, the dispersion medium is dried to obtain a current collector provided with the mixture, and the thickness is adjusted by pressing, so that the porosity can be set. Further, as the binder, monomers or oligomers of the above-mentioned ones can also be used. In this case, a curing treatment can be appropriately performed by heating, irradiation with ultraviolet light, or the like.

分散媒の種類は、結着剤またはそのモノマーやオリゴマーなどを溶解または分散できればどのようなものであっても良い。たとえば、ポリフッ化ビニリデン(PVdF)、フッ化ビニリデン‐ヘキサフルオロプロピレン共重合体P(VdF−HFP)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアクリロニトリル(PAN)などを用いる場合には、N−メチルピロリドンを、カルボキシメチルセルロース(CMC)、スチレンブタジエンゴム(SBR)、ポリアクリル酸などを用いる場合には水を用いることができる。   The type of the dispersion medium may be any as long as the binder or its monomer or oligomer can be dissolved or dispersed. For example, when using polyvinylidene fluoride (PVdF), vinylidene fluoride-hexafluoropropylene copolymer P (VdF-HFP), polyimide (PI), polyamideimide (PAI), polyacrylonitrile (PAN), or the like, N -When carboxymethyl cellulose (CMC), styrene butadiene rubber (SBR), polyacrylic acid, or the like is used as methylpyrrolidone, water can be used.

ペーストを得るときに用いる混合器としては、均一混合できるものであれば何でも良い。たとえば、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Any mixer can be used for obtaining the paste as long as it can be uniformly mixed. For example, a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, and a planetary ball mill can be mixed in a dry or wet manner.

正極は、負極に対応する容量を持つものであれば限定されない。正極活物質としては、限定されるものではなく、例えば、リン酸鉄リチウム(LiFePO4)、リン酸鉄マンガンリチウム(例えばLiFe0.9Mn0.1PO4)、チタン酸リチウム(Li4Ti512)、タングステン酸(WO3)、リチウム遷移金属複合酸化物としては、LiMn24等で表されるスピネル型リチウムマンガン酸化物、LiNi1.5Mn054等で表されるスピネル型リチウムニッケルマンガン酸化物等に代表されるスピネル型結晶構造を有するリチウム遷移金属酸化物や、LiCoO2、LiNiO2、LiCo1/3Ni1/3Mn1/32、Li1.1Co2/3Ni1/6Mn1/62、LiNi0.8Co0.15Al0.052等に代表されるα−NaFeO2構造を有するLiMeO2型(Meは遷移金属)リチウム遷移金属複合酸化物、LiMePO4(MeはCo又はMnを含む遷移金属)、Li32(PO43等のリン酸遷移金属リチウム化合物、等が挙げられる。また、Li1+αMe1-αO2(α>0)と表記可能ないわゆる「リチウム過剰型」リチウム遷移金属複合酸化物を用いてもよい。ここで、Li/Me比は1.25〜1.6が好ましい。なお、Li/Me比をβとすると、β=(1+α)/(1−α)であるから、例えば、Li/Meが1.5のとき、α=0.2である。また、これらの酸化物において、遷移金属の一部を典型金属で置換することもできる。チタン酸リチウムやタングステン酸などの充電状態の正極活物質を用いる場合には、適宜、負極または正極のいずれかにあらかじめリチウムを吸蔵させておくことができる。 The positive electrode is not limited as long as it has a capacity corresponding to the negative electrode. The positive electrode active material is not limited. For example, lithium iron phosphate (LiFePO 4 ), lithium manganese iron phosphate (eg, LiFe 0.9 Mn 0.1 PO 4 ), lithium titanate (Li 4 Ti 5 O 12 ) , Tungstic acid (WO 3 ), and lithium transition metal composite oxides include spinel-type lithium manganese oxide represented by LiMn 2 O 4 and the like, and spinel-type lithium nickel manganese oxide represented by LiNi 1.5 Mn 05 O 4 and the like Transition metal oxide having a spinel-type crystal structure typified by a material, LiCoO 2 , LiNiO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1.1 Co 2/3 Ni 1/6 Mn 1/6 O 2, LiNi 0.8 Co 0.15 Al 0.05 O 2 , etc. LiMeO 2 type with alpha-NaFeO 2 structure represented by (Me is a transition metal) lithium transition metal composite Product, LiMePO 4 (transition metal Me is containing Co or Mn), Li 3 V 2 ( PO 4) transition metal phosphate lithium compound such as 3, and the like. Further, a so-called “lithium-excess type” lithium transition metal composite oxide that can be expressed as Li 1+ αMe 1− αO 2 (α> 0) may be used. Here, the Li / Me ratio is preferably from 1.25 to 1.6. When the Li / Me ratio is β, β = (1 + α) / (1−α). For example, when Li / Me is 1.5, α = 0.2. In these oxides, a part of the transition metal can be replaced with a typical metal. When a charged positive electrode active material such as lithium titanate or tungstic acid is used, lithium can be stored in advance in either the negative electrode or the positive electrode as appropriate.

正極合剤層の多孔度は20〜40%が好ましく、26〜34%がより好ましい。正極合剤層が備える空孔体積は、負極合剤層が含有する原子量換算したケイ素の質量1g当たり、1.7〜3.4ccが好ましく、2.2〜2.9ccがより好ましい。   The porosity of the positive electrode mixture layer is preferably from 20 to 40%, more preferably from 26 to 34%. The pore volume of the positive electrode mixture layer is preferably from 1.7 to 3.4 cc, more preferably from 2.2 to 2.9 cc, per gram of the atomic weight of silicon contained in the negative electrode mixture layer.

正極活物質の粉体は、平均粒子サイズ100μm以下であることが好ましい。特に、非水電解質電池の高出力特性を優れたものとする目的で30μm以下がより好ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。   The powder of the positive electrode active material preferably has an average particle size of 100 μm or less. In particular, the thickness is preferably 30 μm or less for the purpose of improving the high output characteristics of the nonaqueous electrolyte battery. In order to obtain the powder in a predetermined shape, a pulverizer or a classifier is used. For example, a mortar, a ball mill, a sand mill, a vibration ball mill, a planetary ball mill, a jet mill, a counter jet mill, a swirling air jet mill, a sieve, and the like are used. At the time of pulverization, wet pulverization in which an organic solvent such as water or hexane coexists can be used. The classification method is not particularly limited, and a sieve, an air classifier, or the like is used as needed in both dry and wet methods.

正極には、前記主要構成成分の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されてもよい。   The positive electrode may contain, as other components, a conductive agent, a binder, a thickener, a filler, and the like, in addition to the main components.

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛,鱗片状黒鉛,土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、導電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect the battery performance. Usually, natural graphite (scale graphite, flake graphite, earth graphite, etc.), artificial graphite, carbon black, acetylene black, Conductive materials such as Ketjen black, carbon whiskers, carbon fibers, and conductive ceramic materials can be included as one type or a mixture thereof.

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極または負極の総質量に対して0.1質量%〜50質量%が好ましく、特に0.5質量%〜30質量%が好ましいこれらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。   Among these, acetylene black is preferable as the conductive agent from the viewpoints of electron conductivity and coatability. The amount of the conductive agent to be added is preferably 0.1% by mass to 50% by mass, particularly preferably 0.5% by mass to 30% by mass based on the total mass of the positive electrode or the negative electrode. Where the ideal is homogeneous mixing. Therefore, a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, and a planetary ball mill can be mixed in a dry or wet manner.

前記結着剤としては、通常、ポリテトラフルオロエチレン(PTFE),ポリフッ化ビニリデン(PVDF),ポリエチレン、ポリプロピレン、ポリアクリロニトリル(PAN)等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM),スルホン化EPDM,スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極の総質量に対して1〜50質量%が好ましく、特に2〜30質量%が好ましい。   Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, polypropylene, and polyacrylonitrile (PAN); ethylene-propylene-diene terpolymer (EPDM); Polymers having rubber elasticity such as sulfonated EPDM, styrene butadiene rubber (SBR), and fluororubber can be used as one kind or as a mixture of two or more kinds. The addition amount of the binder is preferably from 1 to 50% by mass, and particularly preferably from 2 to 30% by mass, based on the total mass of the positive electrode.

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポリプロピレン,ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、正極または負極の総質量に対して添加量は30質量%以下が好ましい。   Any filler may be used as long as it does not adversely affect battery performance. Usually, olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, glass, carbon and the like are used. The addition amount of the filler is preferably 30% by mass or less based on the total mass of the positive electrode or the negative electrode.

正極は、前記主要構成成分(正極においては正極活物質、負極においては負極材料)、およびその他の材料を混練し合剤とし、N−メチルピロリドン,トルエン等の有機溶媒又は水に混合させた後、得られた混合液を下記に詳述する集電体の上に塗布し、または圧着して50℃〜250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、グラビアロールコーティング、ダイコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さ及び任意の形状に塗布することが望ましいが、これらに限定されるものではない。   The positive electrode is prepared by kneading the main components (a positive electrode active material in the positive electrode, a negative electrode material in the negative electrode) and other materials to form a mixture, and mixing the mixture with water or an organic solvent such as N-methylpyrrolidone or toluene or water. The obtained liquid mixture is applied onto a current collector described in detail below, or is pressed and heat-treated at a temperature of about 50 ° C. to 250 ° C. for about 2 hours to be suitably prepared. For the application method, for example, using a means such as roller coating such as an applicator roll, gravure roll coating, die coating, screen coating, a doctor blade method, spin coating, a bar coater, and the like, apply to an arbitrary thickness and an arbitrary shape. However, the present invention is not limited thereto.

セパレータとしては、優れた高率放電性能を示す多孔膜や不織布等を、単独あるいは併用することが好ましい。非水電解質電池用セパレータを構成する材料としては、例えばポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。エチレン−プロピレン共重合体製微多孔膜等にアルミナ等の絶縁性粉末を塗布したものも好適に使用できる。   As the separator, it is preferable to use a porous film or a nonwoven fabric exhibiting excellent high-rate discharge performance alone or in combination. Examples of the material constituting the separator for a non-aqueous electrolyte battery include, for example, polyethylene, a polyolefin resin represented by polypropylene, a polyester resin represented by polyethylene terephthalate, polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexa. Fluoropropylene copolymer, vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, fluorine Vinylidene fluoride-hexafluoroacetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride - tetrafluoroethylene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer. A material obtained by applying an insulating powder such as alumina to a microporous film made of an ethylene-propylene copolymer or the like can also be suitably used.

セパレータの厚さは、16〜30μmが好ましく、より好ましくは、20〜27μmである。これは、十分な絶縁性を持たせるためには、16μm以上であることが望ましく、また、電池のエネルギー密度を損なわないためには、30μm以下であることが望ましいからである。   The thickness of the separator is preferably from 16 to 30 μm, more preferably from 20 to 27 μm. This is because the thickness is desirably 16 μm or more in order to provide sufficient insulating properties, and is desirably 30 μm or less in order not to impair the energy density of the battery.

セパレータの空隙率は0.4〜0.7が好ましく、0.5〜0.6がより好ましい。セパレータの空隙率は0.4〜0.7(好ましくは0.5〜0.6)のとき、セパレータが有する空孔体積は、負極合剤層が含有する原子量換算したケイ素の質量1g当たり、1.3〜3.4cc(好ましくは2.0〜2.5cc)となる。   The porosity of the separator is preferably from 0.4 to 0.7, more preferably from 0.5 to 0.6. When the porosity of the separator is 0.4 to 0.7 (preferably 0.5 to 0.6), the pore volume of the separator is as follows: per 1 g of atomic mass-converted silicon contained in the negative electrode mixture layer, 1.3 to 3.4 cc (preferably 2.0 to 2.5 cc).

本発明に係る非水電解質二次電池に用いる非水電解質は、限定されるものではなく、一般にリチウム電池等への使用が提案されているものが使用可能である。非水電解質に用いる非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   The non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery according to the present invention is not limited, and those generally proposed for use in lithium batteries and the like can be used. Examples of the non-aqueous solvent used for the non-aqueous electrolyte include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, cyclic carbonates such as vinylene carbonate; γ-butyrolactone, cyclic esters such as γ-valerolactone; dimethyl carbonate; Chain carbonates such as diethyl carbonate and ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxy Ethers such as ethane, 1,4-dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sultone or derivatives thereof. Examples of the conductor include a single conductor or a mixture of two or more conductors, but are not limited thereto.

非水電解質に用いる電解質塩としては、例えば、LiClO4,LiBF4,LiAsF6,LiPF6,LiSCN,LiBr,LiI,Li2SO4,Li210Cl10,NaClO4,NaI,NaSCN,NaBr,KClO4,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCF3SO3,LiN(CF3SO22,LiN(C25SO22,LiN(CF3SO2)(C49SO2),LiC(CF3SO23,LiC(C25SO23,(CH34NBF4,(CH34NBr,(C254NClO4,(C254NI,(C374NBr,(n−C494、NClO4,(n−C494NI,(C254N−maleate,(C254N−benzoate,(C254N−phtalate、ステアリルスルホン酸リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウム等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。 Examples of the electrolyte salt used for the non-aqueous electrolyte include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, and NaBr. , KClO 4 , KSCN, etc., inorganic ion salts containing one kind of lithium (Li), sodium (Na) or potassium (K), LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5) SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , (CH 3 ) 4 NBF 4 , ( CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 , NClO 4 , (n- C 4 H 9) 4 NI, (C 2 H 5) 4 N-ma eATE, include (C 2 H 5) 4 N -benzoate, (C 2 H 5) 4 N-pht h alate, lithium stearyl sulfonate, lithium octyl sulfonate, organic ion salts such as lithium dodecylbenzenesulfonate These ionic compounds can be used alone or in combination of two or more.

非水電解質における電解質塩の濃度としては、高い電池特性を有する非水電解質電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、0.5mol/l〜2.5mol/lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably from 0.1 mol / l to 5 mol / l, more preferably from 0.5 mol / l to 2 mol / l in order to reliably obtain a non-aqueous electrolyte battery having high battery characteristics. 0.5 mol / l.

正極、負極及びセパレータを備えた発電要素と、これを収納する電槽との隙間の体積は、電解液を十分に電槽内に保持するために十分であり、且つ、負極の最大限の体積膨張を許容できるものであれば、特に制限されないが、エネルギー密度の観点から必要以上に大きいものであってはならない。電池組み立て時における発電要素と電槽との隙間の体積は、負極合剤層が含有する原子量換算したケイ素の質量1g当たり、3.5〜7.5ccが好ましく、より好ましくは4.5〜6.5ccである。   The volume of the gap between the power generating element including the positive electrode, the negative electrode, and the separator, and the battery case housing the power generating element is sufficient to hold the electrolyte sufficiently in the battery case, and the maximum volume of the negative electrode There is no particular limitation as long as expansion is permissible, but it should not be unnecessarily large from the viewpoint of energy density. The volume of the gap between the power generating element and the battery case at the time of assembling the battery is preferably 3.5 to 7.5 cc, more preferably 4.5 to 6 cc, per gram of the atomic weight of silicon contained in the negative electrode mixture layer. 0.5 cc.

非水電解質二次電池の構成については特に限定されるものではなく、正極、負極及びロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が一例として挙げられる。   The configuration of the nonaqueous electrolyte secondary battery is not particularly limited, and examples thereof include a cylindrical battery, a square battery, and a flat battery having a positive electrode, a negative electrode, and a roll-shaped separator.

以下に、実施例を例示して本発明をさらに詳細に説明するが、本発明は、以下の実施の形態に限定されるものではない。   Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following embodiments.

(実施例1)
(低結晶性炭素を備えたケイ素酸化物の作成)
アルゴン雰囲気中、ベンゼンガスを1000℃で熱分解する方法(CVD)によって、SiO粒子の表面に低結晶性炭素を被覆させて、低結晶性炭素を備えたケイ素酸化物(以下「SiO−C」ともいう)を得た。低結晶性炭素の被覆量は、SiO−Cの質量に対して5質量%とした。SiO−Cの数平均粒径は5μmであった。本実施例に用いたSiO−Cにおいて、SiO粒子は微結晶質のSiとアモルファスのSiO2とに分相しており、CuKα線を用いたX線回折パターンから、回折角(2θ)が46°〜49°の範囲にSiの主回折ピークを示し、この回折ピークの半値幅は3°未満であった。また、ラマン分光法によるR値は0.21であった。
(Example 1)
(Preparation of silicon oxide with low crystalline carbon)
The surface of SiO particles is coated with low-crystalline carbon by a method of thermally decomposing benzene gas at 1000 ° C. in an argon atmosphere, and silicon oxide having low-crystalline carbon (hereinafter “SiO-C”) is coated. ). The coating amount of low crystalline carbon was 5% by mass with respect to the mass of SiO-C. The number average particle diameter of SiO-C was 5 μm. In the SiO-C used in this example, the SiO particles were phase-separated into microcrystalline Si and amorphous SiO 2, and the diffraction angle (2θ) was 46 from the X-ray diffraction pattern using CuKα radiation. The main diffraction peak of Si was shown in the range of ° to 49 °, and the half value width of this diffraction peak was less than 3 °. The R value measured by Raman spectroscopy was 0.21.

(負極の作成)
黒鉛として、粒径10μmの鱗片状人造黒鉛(TIMCAL社製)を用いた。前記「SiO−C」と前記黒鉛とを40:60の質量比で秤量し、混合釜の中で均一になるまで手動混合した。さらに、溶媒であるN−メチルピロリドン(NMP)と結着剤であるポリアミドイミド樹脂とを94:6の質量比となるように秤取し、ダルトンミキサーで十分に混合して負極ペーストを作製した。負極集電体である厚さ10μmの電解銅箔の両面に、前記負極ペーストを塗布後、乾燥工程及びプレス工程を経たのち硬化処理を300℃で12時間真空下の条件で実施し、負極合剤層が負極集電体の両面に形成されてなる負極板を作製した。負極集電体の片方の面に形成された負極合剤層の質量は2.8mg/cm2であり、負極合剤層の多孔度は40%である。
(Preparation of negative electrode)
As graphite, flaky artificial graphite having a particle size of 10 μm (manufactured by TIMCAL) was used. The "SiO-C" and the graphite were weighed at a mass ratio of 40:60, and were manually mixed in a mixing pot until uniform. Further, N-methylpyrrolidone (NMP) as a solvent and a polyamideimide resin as a binder were weighed so as to have a mass ratio of 94: 6, and sufficiently mixed with a Dalton mixer to prepare a negative electrode paste. . After applying the negative electrode paste on both sides of a 10 μm-thick electrolytic copper foil serving as a negative electrode current collector, a drying process and a pressing process are performed, and then a curing process is performed at 300 ° C. for 12 hours under vacuum to obtain a negative electrode composite. A negative electrode plate was prepared in which the agent layer was formed on both surfaces of the negative electrode current collector. The mass of the negative electrode mixture layer formed on one surface of the negative electrode current collector was 2.8 mg / cm 2 , and the porosity of the negative electrode mixture layer was 40%.

(正極の作成)
NMPを溶媒とし、組成式LiCo1/3Ni1/3Mn1/32で表される正極活物質、導電材であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVdF)を93:3:4の質量比率で含有する正極ペーストを作製した。正極集電体である厚さ15μmのアルミニウム箔の両面に、前記正極ペーストを塗布後、乾燥工程及びプレス工程を経て、正極合剤層が正極集電体の両面に形成されてなる正極板を作製した。正極集電体の片方の面に形成された正極合剤層の質量は17.4mg/cm2であり、正極集電体及び両面に形成された正極合剤層を含む正極板の厚みは134μmである。正極合剤層の多孔度は34%である。このとき、正極合剤層の空孔体積は、負極合剤層が含有する原子量換算したケイ素の質量1g当たり2.77ccである。
(Creation of positive electrode)
Using NMP as a solvent, 93: a positive electrode active material represented by a composition formula of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , acetylene black as a conductive material, and polyvinylidene fluoride (PVdF) as a binder 93: A positive electrode paste containing at a mass ratio of 3: 4 was prepared. After applying the positive electrode paste on both sides of a 15 μm thick aluminum foil that is a positive electrode current collector, through a drying step and a pressing step, a positive electrode plate having a positive electrode mixture layer formed on both surfaces of the positive electrode current collector is formed. Produced. The mass of the positive electrode mixture layer formed on one surface of the positive electrode current collector was 17.4 mg / cm 2 , and the thickness of the positive electrode plate including the positive electrode current collector and the positive electrode mixture layers formed on both surfaces was 134 μm. It is. The porosity of the positive electrode mixture layer is 34%. At this time, the pore volume of the positive electrode mixture layer is 2.77 cc per 1 g of atomic mass of silicon contained in the negative electrode mixture layer.

(セパレータ)
セパレータとして、空隙率0.5、厚さ27μmのポリエチレン製微多孔膜を用いた。このとき、セパレータが有する空孔体積は、負極合剤層が含有する原子量換算したケイ素の質量1g当たり2.25ccである。
(Separator)
As the separator, a microporous polyethylene membrane having a porosity of 0.5 and a thickness of 27 μm was used. At this time, the pore volume of the separator is 2.25 cc per 1 g of atomic mass of silicon contained in the negative electrode mixture layer.

(電槽)
電槽には、アルミニウム製電槽を用いた。上記正極、負極及びセパレータからなる発電要素と電槽内部との隙間の体積は、負極合剤層が含有する原子量換算したケイ素の質量1g当たり、6.0ccである。(但し、前記隙間の体積は、負極合剤層の多孔度が大きいほど小さく、後述する実施例7、8及び比較例3では前記隙間の体積は4.5である。)
(Battery case)
As the battery case, an aluminum battery case was used. The volume of the gap between the power generation element including the positive electrode, the negative electrode, and the separator and the inside of the battery case is 6.0 cc per 1 g of the atomic weight of silicon contained in the negative electrode mixture layer. (However, the volume of the gap is smaller as the porosity of the negative electrode mixture layer is larger, and the volume of the gap is 4.5 in Examples 7 and 8 and Comparative Example 3 described later.)

(非水電解質)
前記非水電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)の体積比3:7の混合溶媒に1mol/lのLiPF6を溶解したものに、さらにビニレンカーボネート(VC)2質量%を添加したものを用いた。発電要素を収納した前記電槽内に前記非水電解質を注液し、最後に注液口を封止した。ここで、非水電解質の注液量は、前記負極合剤層が含有する原子量換算したケイ素の質量に対する前記非水電解質の質量比率が10.5である。このようにして、実施例1に係る非水電解質電池を組み立てた。
(Non-aqueous electrolyte)
The non-aqueous electrolyte was prepared by dissolving 1 mol / l LiPF 6 in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in a volume ratio of 3: 7, and further 2% by mass of vinylene carbonate (VC). Was used. The non-aqueous electrolyte was injected into the battery case containing the power generating element, and the injection port was sealed at last. Here, as for the injection amount of the non-aqueous electrolyte, the mass ratio of the non-aqueous electrolyte to the mass of the atomic weight-converted silicon contained in the negative electrode mixture layer is 10.5. Thus, the nonaqueous electrolyte battery according to Example 1 was assembled.

(実施例2,3及び比較例1,2)
非水電解質の注液量を変更し、負極合剤層が含有する原子量換算したケイ素の質量に対する非水電解質の質量比率を表1に示すように相違させたことを除いては実施例1と同様にして実施例2,3及び比較例1,2に係る非水電解質電池を組み立てた。
(Examples 2 and 3 and Comparative Examples 1 and 2)
Example 1 except that the injection amount of the non-aqueous electrolyte was changed, and the mass ratio of the non-aqueous electrolyte to the mass of silicon in terms of atomic weight contained in the negative electrode mixture layer was changed as shown in Table 1. Similarly, non-aqueous electrolyte batteries according to Examples 2 and 3 and Comparative Examples 1 and 2 were assembled.

(実施例4〜8及び比較例3)
負極の作製において、プレス工程の条件を変えることで負極合剤層の多孔度を表1に示すように変化させ、注液量を同じく表1に示す値としたことを除いては実施例1と同様にして実施例4〜8及び比較例3に係る非水電解質電池を組み立てた。
(Examples 4 to 8 and Comparative Example 3)
In the preparation of the negative electrode, Example 1 was repeated except that the porosity of the negative electrode mixture layer was changed as shown in Table 1 by changing the conditions of the pressing step, and the injection amount was also the value shown in Table 1. In the same manner as in the above, non-aqueous electrolyte batteries according to Examples 4 to 8 and Comparative Example 3 were assembled.

(充放電サイクル試験)
このようにして組み立てた実施例1〜7及び比較例1,2に係る非水電解質電池について、充放電サイクル試験を行った。充電は、電流1CA、電圧4.2Vの定電流定電圧充電とし、充電時間は3時間とした。放電は、電流1CA、終止電圧2.75Vの定電流放電とした。充電と放電の間、及び、放電と充電の間には、それぞれ10分間の休止過程を設けた。このような条件での充放電を150サイクル繰り返した。それぞれの非水電解質電池について、1サイクル目の放電容量(mAh)に対する150サイクル目の放電容量(mAh)の百分率を求め、容量維持率(%)として表1、2に併せて記載した。
請求項1に特定した「容量維持率」は、上記の方法で求めた容量維持率(%)を意味する。
(Charge / discharge cycle test)
The non-aqueous electrolyte batteries according to Examples 1 to 7 and Comparative Examples 1 and 2 assembled in this manner were subjected to a charge / discharge cycle test. The charging was performed at a constant current and constant voltage with a current of 1 CA and a voltage of 4.2 V, and the charging time was 3 hours. The discharge was a constant current discharge at a current of 1 CA and a cutoff voltage of 2.75 V. Between the charge and the discharge, and between the discharge and the charge, a pause process of 10 minutes was provided. The charge and discharge under such conditions were repeated for 150 cycles. For each of the nonaqueous electrolyte batteries, the percentage of the discharge capacity (mAh) at the 150th cycle relative to the discharge capacity (mAh) at the first cycle was determined, and the results are shown in Tables 1 and 2 as the capacity retention rate (%).
The “capacity maintenance rate” specified in claim 1 means the capacity maintenance rate (%) obtained by the above method.

Figure 0006632957
Figure 0006632957

図1は、表1に示された容量保持率の結果について、負極合剤層が含有する原子量換算したケイ素の質量に対する非水電解質の質量比率との関係でプロットした図である。負極合剤層が含有する原子量換算したケイ素の質量に対する非水電解質の質量比率を10.5以上とすることにより、容量維持率が75%以上と優れる非水電解質二次電池が提供できることが判る。   FIG. 1 is a diagram plotting the results of the capacity retention shown in Table 1 in relation to the mass ratio of the nonaqueous electrolyte to the mass of silicon in the negative electrode mixture layer in terms of atomic weight. It can be seen that by setting the mass ratio of the nonaqueous electrolyte to the atomic mass of silicon contained in the negative electrode mixture layer to 10.5 or more, a nonaqueous electrolyte secondary battery having an excellent capacity retention of 75% or more can be provided. .

特許文献2には、「負極活物質層に対する電解液量」が「負極活物質層の空孔体積(cm3)の1倍以上、35倍以下」とすることが記載されているので、それぞれの実施例及び比較例について、負極合剤層に対する非水電解質の量を負極合剤層の空孔体積で除した値を求め、表1に併記すると共に、容量保持率の結果についてこれとの関係でプロットして図2に示した。図2から、低結晶性炭素を備えたケイ素酸化物と黒鉛とを30:70〜60:40の質量比率で含む負極合剤層を備える負極を備えた非水電解質二次電池においては、負極合剤層に対する非水電解質の量を負極合剤層の空孔体積で除した値との相関が認められないことから、前記値が1〜35の範囲であっても、必ずしも良好な性能の非水電解質二次電池を提供できないことがわかる。 Patent Literature 2 describes that “the amount of the electrolytic solution with respect to the negative electrode active material layer” is “1 to 35 times the pore volume (cm 3 ) of the negative electrode active material layer”. For Examples and Comparative Examples, the value obtained by dividing the amount of the nonaqueous electrolyte with respect to the negative electrode mixture layer by the pore volume of the negative electrode mixture layer was obtained, and the results are shown in Table 1 together with the results of the capacity retention. The relationship was plotted and shown in FIG. From FIG. 2, in the nonaqueous electrolyte secondary battery including the negative electrode including the negative electrode mixture layer including the silicon oxide having low crystalline carbon and graphite at a mass ratio of 30:70 to 60:40, the negative electrode Since there is no correlation with the value obtained by dividing the amount of the non-aqueous electrolyte with respect to the mixture layer by the pore volume of the negative electrode mixture layer, even if the value is in the range of 1 to 35, it is not necessarily required to obtain good performance. It turns out that a nonaqueous electrolyte secondary battery cannot be provided.

Claims (1)

低結晶性炭素を備えたケイ素酸化物と黒鉛とを30:70〜60:40の質量比率で含み、充放電に伴う前記ケイ素酸化物の体積変化を吸収できる多孔度の負極合剤層を備える負極と、正極と、非水電解液と、を備え、前記ケイ素酸化物は、SiO x (0.8≦x≦1.2)で表される材料であり、前記低結晶性炭素を備えたケイ素酸化物は、ケイ素酸化物を70質量%以上含有し、前記負極合剤層が含有する原子量換算したケイ素の質量に対する前記非水電解液の質量比率が10.5以上であり、容量維持率が75%以上であることを特徴とする非水電解液二次電池。 A silicon oxide having low crystalline carbon and graphite in a mass ratio of 30:70 to 60:40, and a negative electrode mixture layer having a porosity capable of absorbing a volume change of the silicon oxide due to charge and discharge. A negative electrode, a positive electrode, and a non-aqueous electrolyte, wherein the silicon oxide is a material represented by SiO x (0.8 ≦ x ≦ 1.2), and includes the low-crystalline carbon. The silicon oxide contains the silicon oxide in an amount of 70% by mass or more, and the mass ratio of the nonaqueous electrolyte to the mass of the atomic weight-converted silicon contained in the negative electrode mixture layer is 10.5 or more; Is 75% or more.
JP2016214319A 2016-11-01 2016-11-01 Non-aqueous electrolyte secondary battery Active JP6632957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016214319A JP6632957B2 (en) 2016-11-01 2016-11-01 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016214319A JP6632957B2 (en) 2016-11-01 2016-11-01 Non-aqueous electrolyte secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012208894A Division JP6040459B2 (en) 2012-09-21 2012-09-21 Non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018146659A Division JP6874744B2 (en) 2018-08-03 2018-08-03 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2017022145A JP2017022145A (en) 2017-01-26
JP6632957B2 true JP6632957B2 (en) 2020-01-22

Family

ID=57889715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016214319A Active JP6632957B2 (en) 2016-11-01 2016-11-01 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP6632957B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102241465B1 (en) 2017-11-30 2021-04-16 주식회사 엘지화학 Multiple layer electrode and preparing method of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5060010B2 (en) * 2002-10-18 2012-10-31 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP4965790B2 (en) * 2002-10-28 2012-07-04 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2005243431A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP4623283B2 (en) * 2004-03-26 2011-02-02 信越化学工業株式会社 Silicon composite particles, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery
JP2008262768A (en) * 2007-04-11 2008-10-30 Nec Tokin Corp Lithium ion secondary battery

Also Published As

Publication number Publication date
JP2017022145A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
JP6264291B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP6040459B2 (en) Non-aqueous electrolyte secondary battery
JP6660581B2 (en) Electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2017057123A1 (en) Negative electrode for lithium ion secondary batteries and lithium ion secondary battery
WO2017158961A1 (en) Positive electrode mixture for secondary batteries, manufacturing method for positive electrodes for secondary batteries, and manufacturing method for secondary batteries
WO2013099263A1 (en) Nonaqueous electrolyte secondary cell
JP5250948B2 (en) Nonaqueous electrolyte secondary battery
JP6995738B2 (en) Positive electrode for lithium-ion secondary battery and lithium-ion secondary battery
JPWO2017082083A1 (en) Lithium ion secondary battery and manufacturing method thereof
JP6874744B2 (en) Non-aqueous electrolyte secondary battery
JP2013062099A (en) Lithium ion secondary battery electrode and lithium ion secondary battery
JP6632957B2 (en) Non-aqueous electrolyte secondary battery
JP6244623B2 (en) Non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
CN110521030B (en) Nonaqueous electrolyte storage element
JP2017126488A (en) Nonaqueous electrolyte solution for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016192272A (en) Negative electrode for power storage element, power storage element and power storage device
JP2011049096A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2020140895A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP5375482B2 (en) Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2015032419A (en) Electrode for nonaqueous electrolyte storage device use
JP6699268B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP6699267B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries
JP2016072035A (en) Nonaqueous electrolyte power storage device
JP2012028177A (en) Lithium ion secondary battery
JP2001006671A (en) Aging method for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180803

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180814

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191211

R150 Certificate of patent or registration of utility model

Ref document number: 6632957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150