JP6632506B2 - air conditioner - Google Patents

air conditioner Download PDF

Info

Publication number
JP6632506B2
JP6632506B2 JP2016202404A JP2016202404A JP6632506B2 JP 6632506 B2 JP6632506 B2 JP 6632506B2 JP 2016202404 A JP2016202404 A JP 2016202404A JP 2016202404 A JP2016202404 A JP 2016202404A JP 6632506 B2 JP6632506 B2 JP 6632506B2
Authority
JP
Japan
Prior art keywords
heat treatment
treatment system
air
latent heat
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016202404A
Other languages
Japanese (ja)
Other versions
JP2018063086A (en
Inventor
福村 貴司
貴司 福村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Jitsugyo Co Ltd
Original Assignee
Ebara Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Jitsugyo Co Ltd filed Critical Ebara Jitsugyo Co Ltd
Priority to JP2016202404A priority Critical patent/JP6632506B2/en
Priority to PCT/JP2017/036809 priority patent/WO2018070421A1/en
Publication of JP2018063086A publication Critical patent/JP2018063086A/en
Application granted granted Critical
Publication of JP6632506B2 publication Critical patent/JP6632506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification

Description

本発明は、潜熱処理と顕熱処理を分離して行う潜熱顕熱分離用の空調機に関する。   The present invention relates to an air conditioner for latent heat / sensible heat separation in which latent heat treatment and sensible heat treatment are performed separately.

従来、潜熱顕熱分離用空調機として、デシカントローター等を用いずに外調機だけで室内潜熱負荷を処理することは、外気導入量と外調機の除湿能力の点から困難であった。そこで、2次側空調機でコイルを2つに分けて潜熱と顕熱を分離処理する方法が開示されている(特許文献1)。また、2つのコイルを直線上に並べ、高温冷水でできるだけ除湿し、低温冷水で最終的に必要な除湿量を確保する方法が開示されている(特許文献2)。   Conventionally, as an air conditioner for latent heat / sensible heat separation, it has been difficult to treat an indoor latent heat load only with an external controller without using a desiccant rotor or the like in view of the amount of outside air introduced and the dehumidifying ability of the external controller. Therefore, a method of separating the latent heat and the sensible heat by dividing the coil into two in the secondary side air conditioner is disclosed (Patent Document 1). In addition, a method is disclosed in which two coils are arranged in a straight line, dehumidified as much as possible with high-temperature cold water, and a finally required amount of dehumidification is secured with low-temperature cold water (Patent Document 2).

特開2008−070097号公報JP 2008-070097 A 特開2015−007484号公報JP 2015-007484 A

特許文献1に記載の技術は、室内設定条件を変えることで、負荷を減らし、省エネルギーを実現しているが、同一条件での負荷は同じであり、消費エネルギーを減らすことはできない。   The technology described in Patent Literature 1 realizes energy saving by reducing the load by changing indoor setting conditions. However, the load under the same condition is the same, and the energy consumption cannot be reduced.

特許文献2に記載の技術は、2つのコイルを使用しているが、全風量を直線的に配置された2段コイルで処理しているので、最終的な出口の空気状態は、1つのコイルで冷却除湿したものと同じである。そのため、梅雨期等の外気が高湿度で室内負荷が小さい低顕熱負荷の場合、除湿を優先すると吹き出し温度が低下し、室温が低下してしまう。したがって、快適性を損ない、部屋の顕熱負荷を大きくすることになり、負荷が大きくなり、全体の効率が低下する。   Although the technology described in Patent Document 2 uses two coils, since the total air volume is processed by two-stage coils arranged linearly, the final air condition at the outlet is one coil. Is the same as that cooled and dehumidified. For this reason, in the case of a low sensible heat load where the outside air is high humidity and the indoor load is small in the rainy season or the like, if the dehumidification is prioritized, the blowing temperature decreases, and the room temperature decreases. Therefore, the comfort is impaired and the sensible heat load of the room is increased, the load is increased, and the overall efficiency is reduced.

本発明は上記課題を解決し、省エネルギーを確保しつつ潜熱と顕熱の分離処理を行い、室内温湿度条件を快適に保持する空調機を提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide an air conditioner that separates latent heat and sensible heat while ensuring energy saving, and that comfortably maintains indoor temperature and humidity conditions.

本発明にかかる空調機は、
上流から送風される外気及び室内の還気を除湿冷却し、下流から給気として室内に送風する空調機であって、
潜熱処理系統と顕熱処理系統を有するケーシングと、
前記ケーシングに前記外気を取り入れる外気取入部と、
前記ケーシングに前記還気を取り入れる還気取入部と、
前記潜熱処理系統と前記顕熱処理系統で除湿冷却された前記外気及び前記還気を混合して前記給気を送風する送風部と、
前記ケーシングから前記送風部によって送風された前記給気を前記室内に供給する給気部と、
を備え、
前記潜熱処理系統は、
前記外気及び前記還気を冷却除湿可能な潜熱処理系統高温冷水部と、
前記潜熱処理系統高温冷水部の下流で前記潜熱処理系統高温冷水部よりも低温な冷水を使用して前記外気及び前記還気を冷却除湿可能な潜熱処理系統低温冷水部と、
を有し、
前記顕熱処理系統は、前記潜熱処理系統低温冷水部よりも高温な冷水を使用して前記還気を冷却除湿可能な顕熱処理系統高温冷水部を有し、
前記潜熱処理系統の前記潜熱処理系統高温冷水部と前記潜熱処理系統低温冷水部の間と、前記顕熱処理系統の前記顕熱処理系統高温冷水部の下流側と、を開放、閉鎖又は通過風量を調整可能な連通部をさらに備える
ことを特徴とする。
The air conditioner according to the present invention
An air conditioner that dehumidifies and cools outside air and indoor return air blown from upstream, and blows air into the room as air supply from downstream,
A casing having a latent heat treatment system and a sensible heat treatment system,
An outside air intake for taking the outside air into the casing,
A return air intake unit for introducing the return air into the casing;
A blower that blows the supply air by mixing the outside air and the return air that has been dehumidified and cooled in the latent heat treatment system and the sensible heat treatment system,
An air supply unit that supplies the air supplied from the casing to the room by the air supply unit,
With
The latent heat treatment system,
A latent heat treatment system high-temperature cold water section capable of cooling and dehumidifying the outside air and the return air,
A latent heat treatment system capable of cooling and dehumidifying the outside air and the return air using chilled water lower than the latent heat treatment system high temperature chilled water unit downstream of the latent heat treatment system high temperature chilled water unit,
Has,
The sensible heat treatment system has a sensible heat treatment system high-temperature chilled water unit capable of cooling and dehumidifying the return air using chilled water higher than the latent heat treatment system low-temperature chilled water unit,
The latent heat treatment system between the high-temperature chilled water section and the latent heat treatment system low-temperature chilled water section of the latent heat treatment system, and the downstream side of the sensible heat treatment system high-temperature chilled water section of the sensible heat treatment system are opened, closed, or adjusted for the amount of passing air. It is characterized by further comprising a possible communication part.

本発明にかかる空調機は、
前記潜熱処理系統高温冷水部に対して前記外気及び前記還気を迂回させる通路を開放、閉鎖又は通過風量を調整可能なバイパス部を備える
ことを特徴とする。
The air conditioner according to the present invention
The latent heat treatment system may further include a bypass portion that opens and closes a passage that bypasses the outside air and the return air with respect to the high-temperature and cold water portion of the latent heat treatment system, or that can adjust an amount of air passing therethrough.

本発明にかかる空調機では、
前記還気取入部は、
前記顕熱処理系統に前記還気を取り入れる第1還気取入部と、
前記潜熱処理系統に前記還気を取り入れる第2還気取入部と、
を有し、
前記第1還気取入部には、前記顕熱処理系統に取り入れる前記還気の量を調整する第1取入量調整部が設けられ、
前記第2還気取入部には、前記潜熱処理系統に取り入れる前記還気の量を調整する第2取入量調整部が設けられる
ことを特徴とする。
In the air conditioner according to the present invention,
The return air intake section,
A first return air intake unit for introducing the return air into the sensible heat treatment system;
A second return air intake unit for introducing the return air into the latent heat treatment system;
Has,
The first return air intake unit is provided with a first intake amount adjustment unit that adjusts an amount of the return air to be taken into the sensible heat treatment system,
The second return air intake unit is provided with a second intake amount adjustment unit that adjusts an amount of the return air to be introduced into the latent heat treatment system.

本発明にかかる空調機では、
ピーク負荷時、前記第1取入量調整部及び前記第2取入量調整部は開放又は通過風量を調整し、前記バイパス部及び前記連通部は閉鎖する
ことを特徴とする。
In the air conditioner according to the present invention,
At the time of peak load, the first intake amount adjustment unit and the second intake amount adjustment unit adjust the opening or the passing air volume, and the bypass unit and the communication unit are closed.

本発明にかかる空調機では、
高負荷時、前記第1取入量調整部及び前記第2取入量調整部は開放又は通過風量を調整し、前記バイパス部は閉鎖し、前記連通部は開放又は通過風量を調整する
ことを特徴とする
In the air conditioner according to the present invention,
At the time of high load, the first intake amount adjustment unit and the second intake amount adjustment unit adjust the opening or passing air volume, the bypass unit closes, and the communication unit opens or adjusts the passing air volume. Feature

本発明にかかる空調機では、
低負荷時、前記第1取入量調整部及び前記第2取入量調整部は開放又は通過風量を調整し、前記バイパス部は閉鎖し、前記連通部は開放又は通過風量を調整し、前記潜熱処理系統低温冷水部の冷水の循環を停止する
ことを特徴とする。
In the air conditioner according to the present invention,
At the time of low load, the first intake amount adjustment unit and the second intake amount adjustment unit adjust the opening or passing air flow, the bypass unit closes, the communication unit opens or adjusts the passing air flow, The latent heat treatment system is characterized in that circulation of cold water in the low-temperature cold water section is stopped.

本発明にかかる空調機では、
外気冷房時、前記第1取入量調整部及び前記第2取入量調整部は開放又は通過風量を調整し、前記バイパス部及び前記連通部は開放又は通過風量を調整し、前記潜熱処理系統高温冷水部及び前記潜熱処理系統低温冷水部の冷水の循環を停止する
ことを特徴とする。
In the air conditioner according to the present invention,
At the time of outside air cooling, the first intake amount adjustment unit and the second intake amount adjustment unit adjust the opening or passing airflow, the bypass unit and the communication unit adjust the opening or passing airflow, and the latent heat treatment system The circulation of the cold water in the high-temperature cold water section and the low-temperature cold water section in the latent heat treatment system is stopped.

本発明にかかる空調機は、
前記潜熱処理系統と前記顕熱処理系統の下流それぞれに前記送風部を備える
ことを特徴とする。
The air conditioner according to the present invention
The air blower is provided downstream of each of the latent heat treatment system and the sensible heat treatment system.

本発明にかかる空調機は、
前記顕熱処理系統の前記顕熱処理系統高温冷水部の下流に流量調整部を備える
ことを特徴とする。
The air conditioner according to the present invention
The sensible heat treatment system further includes a flow rate adjustment unit downstream of the high-temperature chilled water unit in the sensible heat treatment system.

本発明にかかる空調機は、
前記潜熱処理系統高温冷水部から前記顕熱処理系統高温冷水部へ高温冷水をカスケード利用する
ことを特徴とする。
The air conditioner according to the present invention
High temperature cold water is cascaded from the latent heat treatment system high temperature cold water section to the sensible heat treatment system high temperature cold water section.

本発明にかかる空調機によれば、省エネルギーで潜熱と顕熱の分離処理を行い、室内温湿度条件を快適に保持することが可能となる。   ADVANTAGE OF THE INVENTION According to the air conditioner concerning this invention, it becomes possible to perform the separation process of a latent heat and a sensible heat with energy saving, and to maintain indoor temperature and humidity conditions comfortably.

第1実施形態の空調機を示す。1 shows an air conditioner according to a first embodiment. ピーク時の第1実施形態の空調機の状態を示す。The state of the air conditioner of the first embodiment at the peak time is shown. 高負荷時の第1実施形態の空調機の状態を示す。The state of the air conditioner of the first embodiment at the time of high load is shown. 低負荷時の第1実施形態の空調機の状態を示す。The state of the air conditioner of the first embodiment at the time of low load is shown. 外気冷房時の第1実施形態の空調機の状態を示す。2 shows the state of the air conditioner of the first embodiment during outdoor air cooling. 一般的な空調機の各ポイントを示す。Each point of a general air conditioner is shown. 一般的な空調機の空気線図を示す。The psychrometric chart of a general air conditioner is shown. 第1実施形態の空調機の各ポイントを示す。The points of the air conditioner of the first embodiment are shown. 第1実施形態の空調機の空気線図を示す。FIG. 2 shows an air line diagram of the air conditioner of the first embodiment. 潜熱負荷100%、顕熱負荷52%の場合の第1実施形態の空調機の空気線図を示す。The psychrometric diagram of the air conditioner of the first embodiment when the latent heat load is 100% and the sensible heat load is 52% is shown. 潜熱負荷100%、顕熱負荷52%の場合の一般的な空調機の空気線図を示す。The psychrometric chart of a general air conditioner when the latent heat load is 100% and the sensible heat load is 52% is shown. 本実施形態の空調機の冷却除湿のイメージを示す。3 shows an image of cooling and dehumidification of the air conditioner of the present embodiment. 第2実施形態の空調機を示す。2 shows an air conditioner according to a second embodiment. 第3実施形態の空調機を示す。9 shows an air conditioner according to a third embodiment. 第4実施形態の空調機を示す。9 shows an air conditioner according to a fourth embodiment.

以下、図面を参照して本発明にかかる空調機1の実施形態を説明する。   Hereinafter, an embodiment of an air conditioner 1 according to the present invention will be described with reference to the drawings.

図1は、第1実施形態の空調機1を示す。   FIG. 1 shows an air conditioner 1 according to the first embodiment.

第1実施形態の空調機1は、潜熱処理系統3と顕熱処理系統4を有するケーシング2と、ケーシング2に外気OAを取り入れる外気取入部21と、ケーシング2に室内からの還気RAを取り入れる還気取入部22と、空気を冷却除湿可能な潜熱処理系統高温冷水コイル11と、空気を冷却可能な顕熱処理系統高温冷水コイル12と、通過する空気を冷却除湿可能な潜熱処理系統低温冷水コイル13と、潜熱通路3内で潜熱処理系統高温冷水コイル11を空気が迂回する通路を形成可能なバイパスダンパ32と、潜熱処理系統3と顕熱処理系統4を連通可能な連通ダンパ33と、各コイルで冷却及び除湿された空気を室内に送風する送風機40と、ケーシング2から給気を室内に供給する給気部23と、を備える。   The air conditioner 1 of the first embodiment includes a casing 2 having a latent heat treatment system 3 and a sensible heat treatment system 4, an outside air intake 21 for taking outside air OA into the casing 2, and a return for taking return air RA from the room into the casing 2. Air intake section 22, latent heat treatment system high-temperature chilled water coil 11 capable of cooling and dehumidifying air, sensible heat treatment system high-temperature chilled water coil 12 capable of cooling air, and latent heat treatment system low-temperature chilled water coil 13 capable of cooling and dehumidifying air passing therethrough A bypass damper 32 capable of forming a passage for air to bypass the latent heat treatment system high-temperature chilled water coil 11 in the latent heat passage 3; a communication damper 33 capable of communicating the latent heat treatment system 3 with the sensible heat treatment system 4; The air conditioner includes a blower 40 that blows the cooled and dehumidified air into the room, and an air supply unit 23 that supplies air from the casing 2 to the room.

ケーシング2は、外気取入部21と還気取入部22を有する側で分離され、給気部23を有する側で連結される潜熱処理系統3と顕熱処理系統4を有する。潜熱処理系統3には、潜熱処理系統高温冷水コイル11と潜熱処理系統低温冷水コイル13とが設けられる。顕熱処理系統4には、顕熱処理系統高温冷水コイル12が設けられる。潜熱処理系統3と
顕熱処理系統4は、最終的に混合され、その位置に送風機40が設けられる。
The casing 2 has a latent heat treatment system 3 and a sensible heat treatment system 4 which are separated on the side having the outside air intake 21 and the return air intake 22 and are connected on the side having the air supply 23. The latent heat treatment system 3 includes a latent heat treatment system high-temperature chilled water coil 11 and a latent heat treatment system low-temperature chilled water coil 13. The sensible heat treatment system 4 is provided with a sensible heat treatment system high-temperature chilled water coil 12. The latent heat treatment system 3 and the sensible heat treatment system 4 are finally mixed, and a blower 40 is provided at that position.

外気取入部21は、ケーシング2の潜熱処理系統3に外気OAを取り入れる部分である。還気取入部22は、ケーシング2に還気RAを取り入れる部分である。第1還気取入部22aは、ケーシング2の顕熱処理系統4に第1還気RA1を取り入れる部分である。第2還気取入部22bは、ケーシング2の潜熱処理系統3に第2還気RA2を取り入れる部分である。   The outside air intake part 21 is a part for taking outside air OA into the latent heat treatment system 3 of the casing 2. The return air intake part 22 is a part that takes the return air RA into the casing 2. The first return air intake part 22a is a part that takes the first return air RA1 into the sensible heat treatment system 4 of the casing 2. The second return air intake part 22b is a part that takes the second return air RA2 into the latent heat treatment system 3 of the casing 2.

第1還気取入部22aには、ケーシング2の顕熱処理系統4に取り入れる第1還気RA1の量を調整する第1調整バンパ31aが設けられる。第2還気取入部22bには、ケーシング2の潜熱処理系統3に取り入れる第2還気RA2の量を調整する第2調整バンパ31bが設けられる。   The first return air intake part 22a is provided with a first adjustment bumper 31a for adjusting the amount of the first return air RA1 to be taken into the sensible heat treatment system 4 of the casing 2. The second return air intake part 22b is provided with a second adjustment bumper 31b for adjusting the amount of the second return air RA2 to be taken into the latent heat treatment system 3 of the casing 2.

潜熱処理系統高温冷水コイル11は、約14℃の水又は冷媒が流れるコイルを有し、潜熱処理系統3に設けられる。潜熱処理系統高温冷水コイル11は、コイルの隙間を通過する外気OA又は第2還気RA2を冷却除湿する熱交換器である。潜熱処理系統高温冷水コイル11に冷水を流さない場合、通過する外気OA又は第2還気RA2は、冷却除湿されない。   The latent heat treatment system high-temperature chilled water coil 11 has a coil through which water or a refrigerant at about 14 ° C. flows, and is provided in the latent heat treatment system 3. The latent heat treatment system high temperature chilled water coil 11 is a heat exchanger that cools and dehumidifies the outside air OA or the second return air RA2 passing through the gap between the coils. When cold water is not supplied to the high-temperature cold water coil 11 of the latent heat treatment system, the passing outside air OA or the second return air RA2 is not cooled and dehumidified.

顕熱処理系統高温冷水コイル12は、約14℃の水又は冷媒が流れるコイルを有し、顕熱処理系統4に設けられる。顕熱処理系統高温冷水コイル12は、コイルの隙間を通過する還気RAを冷却する熱交換器である。顕熱処理系統高温冷水コイル12に冷水を流さない場合、通過する外気OA又は第1還気RA1は、冷却されない。   The sensible heat treatment system high-temperature chilled water coil 12 has a coil through which water or a refrigerant at about 14 ° C. flows, and is provided in the sensible heat treatment system 4. The sensible heat treatment system hot / cold water coil 12 is a heat exchanger that cools the return air RA passing through the gap between the coils. When chilled water is not supplied to the sensible heat treatment system high temperature chilled water coil 12, the passing outside air OA or the first return air RA1 is not cooled.

潜熱処理系統低温冷水コイル13は、約5〜7℃の水又は冷媒が流れるコイルを有し、潜熱処理系統3に設けられる。潜熱処理系統低温冷水コイル13は、コイルの隙間を通過する外気OA又は還気RAを冷却除湿(主に除湿)する熱交換器である。潜熱処理系統低温冷水コイル13に冷水を流さない場合、通過する外気OA又は還気RAは、冷却除湿されない。   The latent heat treatment system low-temperature chilled water coil 13 has a coil through which water or a refrigerant at about 5 to 7 ° C. flows, and is provided in the latent heat treatment system 3. The latent heat treatment system low-temperature chilled water coil 13 is a heat exchanger that cools and dehumidifies (mainly dehumidifies) the outside air OA or the return air RA that passes through the gap between the coils. When chilled water is not supplied to the latent heat treatment system low-temperature chilled water coil 13, the passing outside air OA or return air RA is not cooled and dehumidified.

バイパスダンパ32は、開閉可能であって、開放状態において、潜熱通路3内の潜熱処理系統高温冷水コイル11を迂回させる外気又は還気の通路を形成する。連通ダンパ33は、開閉可能であって、開放状態において、潜熱処理系統3の潜熱処理系統高温冷水コイル11と潜熱処理系統低温冷水コイル13の間と顕熱処理系統4の顕熱処理系統高温冷水コイル12の送風機40側とを連通し、潜熱処理系統高温冷水コイルコイル11を通過した気流の一部を顕熱処理系統4へバイパスさせる。   The bypass damper 32 is openable and closable, and forms an outside air or return air passage that bypasses the latent heat treatment system high temperature chilled water coil 11 in the latent heat passage 3 in the open state. The communication damper 33 can be opened and closed, and in the open state, between the latent heat treatment system high-temperature chilled water coil 11 and the latent heat treatment system low-temperature chilled water coil 13 of the latent heat treatment system 3 and the sensible heat treatment system high-temperature chilled water coil 12 of the sensible heat treatment system 4. And a part of the airflow that has passed through the latent heat treatment system high-temperature and cold water coil coil 11 is bypassed to the sensible heat treatment system 4.

送風機40は、各コイルで冷却及び除湿された空気を室内に送風する。送風機40が送風した給気SAは、ケーシング2の給気部23から室内に送風される。   The blower 40 blows the air cooled and dehumidified by each coil into the room. The air supply SA blown by the blower 40 is blown into the room from the air supply section 23 of the casing 2.

次に、第1実施形態の空調機1の各部の制御について説明する。   Next, control of each unit of the air conditioner 1 according to the first embodiment will be described.

本実施形態では、空調機1のエネルギー消費効率(COP:Coefficient of Performance)を向上させることを目的とする。エネルギー消費効率は、冷水の温度が上がれば向上する。したがって、潜熱の負荷に応じて以下の表1のように各部を制御する(「開」は流量調整を含む。)。

Figure 0006632506
The present embodiment aims to improve the energy consumption efficiency (COP: Coefficient of Performance) of the air conditioner 1. Energy consumption efficiency improves as the temperature of the cold water rises. Therefore, each part is controlled according to the latent heat load as shown in Table 1 below ("open" includes flow rate adjustment).
Figure 0006632506

図2は、ピーク時の第1実施形態の空調機1の状態を示す。   FIG. 2 shows a state of the air conditioner 1 according to the first embodiment at a peak time.

ピーク負荷時、空調機1は、第1還気取入部22aの第1取入量調整ダンパ31a及び第2還気取入部22bの第2取入量調整ダンパ31bを開放して通過風量を最大とし、顕熱処理系統4に第1還気RA1を取り入れ、潜熱処理系統3に第2還気RA2を取り入れる。バイパスダンパ32と連通ダンパ33は、閉鎖状態とする。   At the time of peak load, the air conditioner 1 opens the first intake amount adjustment damper 31a of the first return air intake part 22a and the second intake amount adjustment damper 31b of the second return air intake part 22b to maximize the passing air volume. Then, the first return air RA1 is introduced into the sensible heat treatment system 4, and the second return air RA2 is introduced into the latent heat treatment system 3. The bypass damper 32 and the communication damper 33 are closed.

室内の潜熱負荷が大きい場合、外気OAの風量だけでは潜熱処理能力が不足するため、合計の除湿量と潜熱負荷が合致するまで、第2還気取入部22bの第2取入量調整ダンパ31bを開放して通過風量を調整し、室内の還気RAを外気OAに混合する。空調機1の潜熱処理系統3では、まず潜熱処理系統高温冷水コイル11の高温冷水で、外気OAと還気RAをできるだけ除湿する。続いて、外気OAと還気RAを潜熱処理系統低温冷水コイル13の低温冷水で最終の除湿量となる温度まで下げる。顕熱処理系統4の顕熱処理系統高温冷水コイル12は、必要な温度差となるように、流れる冷水の量が制御される。   When the latent heat load in the room is large, the latent heat treatment capacity is insufficient only with the flow rate of the outside air OA. Therefore, the second intake amount adjustment damper 31b of the second return air intake part 22b is used until the total dehumidification amount and the latent heat load match. Is released to adjust the passing air volume, and the return air RA in the room is mixed with the outside air OA. In the latent heat treatment system 3 of the air conditioner 1, the outside air OA and the return air RA are first dehumidified by high-temperature cold water of the latent heat treatment system high-temperature cold water coil 11 as much as possible. Subsequently, the outside air OA and the return air RA are lowered to the final dehumidification amount by the low-temperature chilled water of the latent heat treatment system low-temperature chilled water coil 13. In the sensible heat treatment system 4 of the sensible heat treatment system 4, the amount of cold water flowing is controlled so that a required temperature difference is obtained.

図3は、高負荷時の第1実施形態の空調機1の状態を示す。   FIG. 3 shows a state of the air conditioner 1 according to the first embodiment under a high load.

高負荷時、空調機1は、第2還気取入部22bの第2取入量調整ダンパ31bを開放して通過風量を調整し、潜熱処理系統3に第2還気RA2を取り入れる。バイパスダンパ32は閉鎖状態、連通ダンパ33は開放して、潜熱負荷に合致した通過風量に調整する。   When the load is high, the air conditioner 1 opens the second intake amount adjustment damper 31b of the second return air intake section 22b to adjust the amount of air passing therethrough, and takes the second return air RA2 into the latent heat treatment system 3. The bypass damper 32 is closed, and the communication damper 33 is opened to adjust the passing airflow to match the latent heat load.

高負荷時の空調機1は、潜熱処理系統3に、外気取入部21から外気OAを取り入れ、第2還気取入部22bから室内の還気RAを取り入れ、外気OAと第2還気RA2を混合する。混合された外気OAと第2還気RA2は、まず潜熱処理系統高温冷水コイル11の高温冷水で冷却除湿される。冷却除湿された外気OAと第2還気RA2の潜熱負荷に見合う風量分は、潜熱処理系統低温冷水コイル13を通過する。残りの冷却除湿された外気OAと第2還気RA2の一部は、連通ダンパ33を通過し、顕熱処理系統4に流れる。潜熱処理系統低温冷水コイル13を通過する外気OAと第2還気RA2は、さらに冷却除湿される。   The air conditioner 1 at the time of high load takes the outside air OA from the outside air intake unit 21 into the latent heat treatment system 3, takes in the room return air RA from the second return air intake unit 22b, and converts the outside air OA and the second return air RA2. Mix. The mixed outside air OA and the second return air RA2 are first cooled and dehumidified by the high-temperature cold water of the latent heat treatment system high-temperature cold water coil 11. The amount of air corresponding to the latent heat load of the cooled and dehumidified outside air OA and the second return air RA2 passes through the latent heat treatment system low-temperature chilled water coil 13. The remaining part of the cooled and dehumidified outside air OA and the second return air RA2 passes through the communication damper 33 and flows to the sensible heat treatment system 4. The outside air OA and the second return air RA2 passing through the latent heat treatment system low-temperature chilled water coil 13 are further cooled and dehumidified.

高負荷時の空調機1は、顕熱処理系統4に第1還気取入部22aから室内の第1還気RA1を取り入れる。第1還気取入部22aから取り入れられた第1還気RA1は、顕熱処理系統高温冷水コイル12の高温冷水で冷却除湿(主に冷却)される。顕熱処理系統高温冷水コイル12は、必要な温度差となるように、流れる冷水の量が制御される。冷却除湿された(主に冷却)第1還気RA1は、連通ダンパ33を通過した外気OAと第2還気RA2と混合される。   The air conditioner 1 under a high load takes the first return air RA1 in the room into the sensible heat treatment system 4 from the first return air intake 22a. The first return air RA1 taken in from the first return air intake part 22a is cooled and dehumidified (mainly cooled) by high-temperature cold water of the sensible heat treatment system high-temperature cold water coil 12. In the sensible heat treatment system high temperature chilled water coil 12, the amount of flowing chilled water is controlled so as to have a required temperature difference. The first return air RA1 that has been cooled and dehumidified (mainly cooled) is mixed with the outside air OA that has passed through the communication damper 33 and the second return air RA2.

その後、潜熱処理系統3で潜熱処理系統低温冷水コイル13を通過した外気OAと第2還気RA2及び顕熱処理系統4で顕熱処理系統高温冷水コイル12を通過した第1還気RA1は、送風機40によって、給気SAとして室内に送風される。   Thereafter, the outside air OA and the second return air RA2 passing through the latent heat treatment system low-temperature chilled water coil 13 in the latent heat treatment system 3 and the first return air RA1 passing through the sensible heat treatment system high-temperature chilled water coil 12 in the sensible heat treatment system 4 are supplied to the blower 40. As a result, air is blown into the room as air supply SA.

図4は、低負荷時の第1実施形態の空調機1の状態を示す。   FIG. 4 shows a state of the air conditioner 1 according to the first embodiment when the load is low.

低負荷時、空調機1は、第2還気取入部22bの第2取入量調整ダンパ31bを開放状態とし、潜熱処理系統3に第2還気RA2を取り入れる。バイパスダンパ32は閉鎖状態、連通ダンパ33は開放状態とする。外気が十分低湿度の場合、潜熱処理系統低温冷水コイル13には冷水を循環させない。   When the load is low, the air conditioner 1 opens the second intake amount adjustment damper 31b of the second return air intake section 22b, and takes the second return air RA2 into the latent heat treatment system 3. The bypass damper 32 is closed, and the communication damper 33 is open. When the outside air has a sufficiently low humidity, cold water is not circulated through the latent heat treatment system low-temperature chilled water coil 13.

低負荷時の空調機1は、潜熱処理系統3に、外気取入部21から外気OAを取り入れ、第2還気取入部22bから室内の第2還気RA2を取り入れ、外気OAと第2還気RA2を混合する。混合された外気OAと第2還気RA2は、潜熱処理系統高温冷水コイル11の高温冷水で冷却除湿される。冷却除湿された外気OAと第2還気RA2の一部は、潜熱処理系統低温冷水コイル13を通過する。残りの冷却除湿された外気OAと第2還気RA2の一部は、連通ダンパ33を通過し、顕熱処理系統4に流れる。潜熱処理系統低温冷水コイル13には、冷水が流されていないので、混合された外気OAと第2還気RA2は、冷却除湿されないが、潜熱処理系統低温冷水コイル13を通過することで、ファン静圧を低くすることが可能となる。   The air conditioner 1 at a low load takes in the outside air OA from the outside air intake section 21 and the second return air RA2 in the room from the second return air intake section 22b into the latent heat treatment system 3, and the outside air OA and the second return air. Mix RA2. The mixed outside air OA and the second return air RA2 are cooled and dehumidified by the high-temperature cold water of the latent heat treatment system high-temperature cold water coil 11. Part of the cooled and dehumidified outside air OA and the second return air RA2 pass through the latent heat treatment system low-temperature chilled water coil 13. The remaining part of the cooled and dehumidified outside air OA and the second return air RA2 passes through the communication damper 33 and flows to the sensible heat treatment system 4. Since cold water is not flowing through the latent heat treatment system low-temperature chilled water coil 13, the mixed outside air OA and the second return air RA2 are not cooled and dehumidified. It is possible to reduce the static pressure.

低負荷時の空調機1は、顕熱処理系統4に第1還気取入部22aから室内の第1還気RA1を取り入れる。第1還気取入部22aから取り入れられた第1還気RA1は、顕熱処理系統高温冷水コイル12の高温冷水で冷却除湿される。顕熱処理系統高温冷水コイル12は、必要な温度差となるように、流れる冷水の量が制御される。冷却除湿された第1還気RA1は、連通ダンパ33を通過した外気OAと第2還気RA2と混合される。   The air conditioner 1 at low load takes the first return air RA1 in the room into the sensible heat treatment system 4 from the first return air intake part 22a. The first return air RA1 taken in from the first return air intake part 22a is cooled and dehumidified by the high-temperature cold water of the sensible heat treatment system high-temperature cold water coil 12. In the sensible heat treatment system high temperature chilled water coil 12, the amount of flowing chilled water is controlled so as to have a required temperature difference. The cooled and dehumidified first return air RA1 is mixed with the outside air OA that has passed through the communication damper 33 and the second return air RA2.

その後、潜熱処理系統3で潜熱処理系統低温冷水コイル13を通過した外気OAと還気RA及び顕熱処理系統4で顕熱処理系統高温冷水コイル12を通過した還気RAは、送風機40によって、給気SAとして室内に送風される。   Thereafter, the outside air OA and the return air RA passing through the latent heat treatment system low-temperature chilled water coil 13 in the latent heat treatment system 3 and the return air RA passing through the sensible heat treatment system high-temperature chilled water coil 12 in the sensible heat treatment system 4 are supplied by the blower 40. It is blown indoors as SA.

図5は、外気冷房時の第1実施形態の空調機1の状態を示す。   FIG. 5 shows a state of the air conditioner 1 according to the first embodiment at the time of outside air cooling.

外気冷房時、空調機1は、第2還気取入部22bの第2取入量調整ダンパ31bを開放状態とし、潜熱処理系統3に第2還気RA2を取り入れる。バイパスダンパ32及び連通ダンパ33は開放状態とする。外気が十分低湿度の場合、潜熱処理系統高温冷水コイル11及び潜熱処理系統低温冷水コイル13には冷水を流さない。   At the time of outside air cooling, the air conditioner 1 opens the second intake amount adjustment damper 31b of the second return air intake section 22b and takes the second return air RA2 into the latent heat treatment system 3. The bypass damper 32 and the communication damper 33 are opened. When the outside air has a sufficiently low humidity, no cold water flows through the latent heat treatment system high-temperature chilled water coil 11 and the latent heat treatment system low-temperature chilled water coil 13.

外気冷房時の空調機1は、潜熱処理系統3に、外気取入部21から外気OAを取り入れ、第2還気取入部22bから室内の第2還気RA2を取り入れ、外気OAと第2還気RA2を混合する。混合された外気OAと第2還気RA2は、潜熱処理系統高温冷水コイル11又はバイパスダンパ32を通過する。潜熱処理系統高温冷水コイル11又はバイパスダンパ32を通過した外気OAと第2還気RA2の一部は、潜熱処理系統低温冷水コイル13を通過する。残りの外気OAと第2還気RA2の一部は、連通ダンパ33を通過し、顕熱処理系統4に流れる。空調機内の全通過経路を開放することで、圧力損失を最小化し、ファン静圧を低くすることが可能となる。   The air conditioner 1 at the time of outside air cooling takes in the outside air OA from the outside air intake 21 and the second return air RA2 in the room from the second return air intake 22b to the latent heat treatment system 3, and takes the outside air OA and the second return air. Mix RA2. The mixed outside air OA and the second return air RA2 pass through the latent heat treatment system hot / cold water coil 11 or the bypass damper 32. The outside air OA and a part of the second return air RA2 that have passed through the latent heat treatment system high-temperature chilled water coil 11 or the bypass damper 32 pass through the latent heat treatment system low-temperature chilled water coil 13. The remaining outside air OA and a part of the second return air RA2 pass through the communication damper 33 and flow to the sensible heat treatment system 4. By opening all the passages in the air conditioner, pressure loss can be minimized and the fan static pressure can be reduced.

次に、第1実施形態の空調機1と一般的な空調機10と従来技術とを比較する。   Next, the air conditioner 1 of the first embodiment, a general air conditioner 10, and a conventional technology will be compared.

図6は、一般的な空調機10の各ポイントを示す。図7は、一般的な空調機10の空気線図を示す。図8は、第1実施形態の空調機1の各ポイントを示す。図9は、第1実施形態の空調機1の空気線図を示す。なお、図6及び図8に示す空調機1,10は、外気OAを熱交換器5で熱交換してケース2に送風する。図6に示した一般的な空調機10は、潜熱処理低温冷水コイル13のみで冷却除湿する。   FIG. 6 shows each point of the general air conditioner 10. FIG. 7 shows an air line diagram of a general air conditioner 10. FIG. 8 shows points of the air conditioner 1 according to the first embodiment. FIG. 9 shows an air line diagram of the air conditioner 1 of the first embodiment. The air conditioners 1 and 10 shown in FIGS. 6 and 8 exchange heat with outside air OA in the heat exchanger 5 and blow air to the case 2. The general air conditioner 10 shown in FIG. 6 cools and dehumidifies only with the latent heat treatment low-temperature chilled water coil 13.

表2は、第1実施形態の空調機1の各ポイントにおける温度、絶対湿度、及びエンタルピーを示す。表3は、一般的な空調機10、第1実施形態の空調機1、及び特許文献2に記載の空調機の省エネルギー率の比較を示す。

Figure 0006632506
Figure 0006632506
Table 2 shows the temperature, the absolute humidity, and the enthalpy at each point of the air conditioner 1 of the first embodiment. Table 3 shows a comparison of the energy saving rates of the general air conditioner 10, the air conditioner 1 of the first embodiment, and the air conditioner described in Patent Document 2.
Figure 0006632506
Figure 0006632506

表3に示すように、特許文献2の空調機のように潜熱処理を低温冷水でおこなった場合、7%の省エネルギーとなる。これに対して、第1実施形態の空調機1のように、潜熱処理系統高温冷水コイル11と潜熱処理系統低温冷水コイル13をカスケードに配置した場合、12.9%の省エネルギーとなる。これは、高温冷水の冷凍機の成績係数(COP:Coefficient Of Performance)が高いためであり、カスケードに配置することで、高温冷水
を最大限利用できるからである。
As shown in Table 3, when the latent heat treatment is performed with low-temperature cold water as in the air conditioner of Patent Document 2, the energy saving is 7%. On the other hand, when the latent heat treatment system high-temperature chilled water coil 11 and the latent heat treatment system low-temperature chilled water coil 13 are arranged in a cascade like the air conditioner 1 of the first embodiment, the energy saving is 12.9%. This is because the coefficient of performance (COP) of the refrigerator of the high-temperature and cold water is high, and by arranging them in a cascade, the high-temperature and cold water can be used to the maximum.

ここで、外気OAのみで室内潜熱負荷を処理しようとすると、一般的な冷水温度(5〜7℃)では、十分に除湿することができない。そのため、第1実施形態の空調機1は、還気RAを外気OAに混合し、全体風量を増加させることで、外気OAを除湿するだけでは処理しきれない潜熱負荷を処理することができる。そして、潜熱処理系統高温冷水コイル11と潜熱処理系統低温冷水コイル13をカスケードに配置することで、高温冷水を最大限利用することができ、COPを向上させることが可能となる。   Here, if an attempt is made to treat the indoor latent heat load only with the outside air OA, the dehumidification cannot be performed sufficiently at a general cold water temperature (5 to 7 ° C.). Therefore, the air conditioner 1 of the first embodiment can process a latent heat load that cannot be processed by simply dehumidifying the outside air OA by mixing the return air RA with the outside air OA and increasing the total air volume. By arranging the latent heat treatment system high-temperature chilled water coil 11 and the latent heat treatment system low-temperature chilled water coil 13 in a cascade, the high-temperature chilled water can be used to the maximum and the COP can be improved.

また、潜熱処理系統3と顕熱処理系統4の間に連通ダンパ33を設けることで、潜熱処理系統高温冷水コイル11を通過した空気を潜熱処理系統3と顕熱処理系統4のそれぞれに分配することができる。   Further, by providing the communication damper 33 between the latent heat treatment system 3 and the sensible heat treatment system 4, the air that has passed through the latent heat treatment system high-temperature / cold water coil 11 can be distributed to the latent heat treatment system 3 and the sensible heat treatment system 4, respectively. it can.

もし、連通ダンパ33がない場合、潜熱負荷が小さく潜熱処理系統3に還気RAを混合する必要がないと、混合しない還気RAを含めたすべての還気は、顕熱処理系統高温冷水コイル12で処理することになる。この場合、顕熱処理系統高温冷水コイル12のコイル面積は、還気RAの量にあわせて設計される。したがって、顕熱処理系統高温冷水コイル12のコイル面積が大きくなり、空調機1全体を大きくしなければならず、コストが増加する要因となる。   If the communication damper 33 is not provided, and the latent heat load is small and it is not necessary to mix the return air RA into the latent heat treatment system 3, all the return air including the unreacted return air RA is supplied to the sensible heat treatment system Will be processed. In this case, the coil area of the sensible heat treatment system hot / cold water coil 12 is designed according to the amount of return air RA. Therefore, the coil area of the sensible heat treatment system high temperature chilled water coil 12 becomes large, and the entire air conditioner 1 must be made large, which causes a cost increase.

例えば、一般的な事務所ビルの設計条件の場合、外気OAの風量(6m3/h/m2)に混合する還気RAの風量はほぼ同等であるため、給気SAの風量(26m3/h/m2)から計算した還気R
Aの風量((26-6-6=)14m3/h/m2)の増加割合は、43%((14+6)/14=1.43)となる。この場合、
顕熱処理系統高温冷水コイル12のコイル面積を43%大きくしなければならない。
For example, in the case of a general office building design condition, since the air volume of the return air RA mixed with the air volume of the outside air OA (6 m 3 / h / m 2 ) is almost the same, the air volume of the supply air SA (26 m 3 / h / m 2 )
The increase rate of the air volume of A ((26-6-6 =) 14m 3 / h / m 2 ) is 43% ((14 + 6) /14=1.43). in this case,
The coil area of the sensible heat treatment system hot / cold water coil 12 must be increased by 43%.

これに対して、連通ダンパ33を設けることによって、除湿不要な空気をバイパスすることで、顕熱処理系統高温冷水コイル12のコイル面積を最小化することが可能となる。その結果、空調機1全体を小さくすることが可能となる。また、潜熱負荷が外気OA同量
分より小さい場合は、除湿不要な空気をバイパスすることで除湿量を制御し、低温冷水負荷を減らすことで冷凍機全体の効率を上げることができる。また、潜熱処理系統低温冷水コイル13の通過風量を小さくすることで、コイル除湿能力を向上させることができる。
On the other hand, by providing the communication damper 33, it is possible to minimize the coil area of the sensible heat treatment system high temperature chilled water coil 12 by bypassing the air that does not need to be dehumidified. As a result, the entire air conditioner 1 can be reduced. Further, when the latent heat load is smaller than the same amount of the outside air OA, the dehumidifying amount can be controlled by bypassing the air that does not need to be dehumidified, and the efficiency of the entire refrigerator can be increased by reducing the low-temperature chilled water load. In addition, by reducing the amount of air passing through the latent heat treatment system low-temperature chilled water coil 13, the coil dehumidifying ability can be improved.

さらに、第1実施形態の空調機1は、外気OA及び第2還気RA2の混合気の一部を冷却除湿し、残りの第1還気RA1は、顕熱処理する。したがって、第1実施形態の空調機1は、従来の空調機よりも低顕熱負荷除湿時に室内が過冷却となる可能性が少なくなり、梅雨期等の外気多湿低顕熱負荷時の除湿能力に優れている。   Furthermore, the air conditioner 1 of the first embodiment cools and dehumidifies a part of the mixture of the outside air OA and the second return air RA2, and performs the sensible heat treatment on the remaining first return air RA1. Therefore, the air conditioner 1 of the first embodiment has a lower possibility of the room being supercooled at the time of low sensible heat load dehumidification than the conventional air conditioner, and has a dehumidifying ability at the time of outside air humid low sensible heat load such as during the rainy season. Is excellent.

従来の空調機は、顕熱負荷が小さくなると、コイル出口湿度が高くなり、コイル表面が露点温度まで達しないため、除湿が効かず、室内湿度が上昇していた。そのため、除湿するためには設定温度を下げて給気温度(コイル出口温度)が空調機入口空気の露点以下となるようにしなければならない。   In a conventional air conditioner, when the sensible heat load decreases, the coil outlet humidity increases, and the coil surface does not reach the dew point temperature, so that dehumidification is not effective and the room humidity increases. Therefore, in order to dehumidify, it is necessary to lower the set temperature so that the supply air temperature (coil outlet temperature) becomes equal to or lower than the dew point of the air at the air conditioner inlet.

図10は、潜熱負荷100%、顕熱負荷52%の場合の第1実施形態の空調機1の空気線図を
示す。図11は、潜熱負荷100%、顕熱負荷52%の場合の一般的な空調機10の空気線図を
示す。
FIG. 10 shows an air line diagram of the air conditioner 1 of the first embodiment when the latent heat load is 100% and the sensible heat load is 52%. FIG. 11 shows a psychrometric diagram of a general air conditioner 10 when the latent heat load is 100% and the sensible heat load is 52%.

例えば、以下の表4は、潜熱負荷100%、顕熱負荷52%の場合の第1実施形態の空調機1
の各ポイントにおける温度、絶対湿度、及びエンタルピーを示す。表5は、潜熱負荷100%、顕熱負荷52%で室温を26℃とした場合の一般的な空調機10の各ポイントにおける温度
、絶対湿度、相対湿度、及びエンタルピーを示す。表6は、潜熱負荷100%、顕熱負荷52%
で室内湿度を10.5g/kgとした場合の一般的な空調機10の各ポイントにおける温度、絶対湿度、相対湿度、及びエンタルピーを示す。

Figure 0006632506
Figure 0006632506
Figure 0006632506
For example, Table 4 below shows the air conditioner 1 of the first embodiment in the case of a latent heat load of 100% and a sensible heat load of 52%.
Temperature, absolute humidity, and enthalpy at each point in FIG. Table 5 shows the temperature, the absolute humidity, the relative humidity, and the enthalpy at each point of the general air conditioner 10 when the room temperature is 26 ° C. with the latent heat load of 100% and the sensible heat load of 52%. Table 6 shows 100% latent heat load and 52% sensible heat load.
Shows the temperature, the absolute humidity, the relative humidity, and the enthalpy at each point of the general air conditioner 10 when the indoor humidity is 10.5 g / kg.
Figure 0006632506
Figure 0006632506
Figure 0006632506

一般の空調機では、表5に示すように、室温を設定値にあわせると、固定風量の場合に相対湿度69.7%となり、建築物環境衛生管理基準の上限70%をクリアするが、快適とはいえない。また、表6に示すように、一般の空調機で絶対湿度を設定値にあわせると、室温20.96℃、相対湿度67.8%となり、同じく建築物環境衛生管理基準をクリアするが、一般的な設計条件である室温26℃、相対湿度50%からは大きくはずれてしまう。これに対して、表
4に示すように、第1実施形態の空調機1は、ほぼ室温26℃、相対湿度50%を達成するこ
とができる。すなわち、潜熱処理系統低温冷水コイル13の風量を調整することで、室内環境の制御性能を向上させることができる。
In general air conditioners, as shown in Table 5, when the room temperature is adjusted to the set value, the relative humidity is 69.7% in the case of a fixed air flow, which clears the upper limit of 70% of the building environmental hygiene management standard, but it is not comfortable. I can't say. Also, as shown in Table 6, when the absolute humidity is adjusted to the set value with a general air conditioner, the room temperature is 20.96 ° C and the relative humidity is 67.8%, which also meets the building environmental hygiene management standards. , A room temperature of 26 ° C and a relative humidity of 50%. On the other hand, as shown in Table 4, the air conditioner 1 of the first embodiment can achieve a room temperature of 26 ° C. and a relative humidity of 50%. That is, by adjusting the air volume of the latent heat treatment system low-temperature chilled water coil 13, the controllability of the indoor environment can be improved.

図12は、本実施形態の空調機1の冷却除湿のイメージを示す。   FIG. 12 shows an image of cooling and dehumidification of the air conditioner 1 of the present embodiment.

本実施形態の空調機1は、外気OA及び還気RAの混合気を潜熱処理系統高温冷水コイル11で下げられる温度まで下げ、潜熱負荷に見合う除湿量となるように潜熱処理系統低温冷水コイル13で最も低温となる状態で冷却除湿を行いつつコイル通過風量を調整することで、一般空調機のように、一定風量でコイル出口温度を上げて全体除湿量を制御するよりも少ない低温冷水量とすることができる。これは、空気の性質上、露点まで達しないと除湿が始まらないためである。これにより、最も少ない低温冷水で除湿が行える。すなわち、高温冷水を最も利用できることになり、潜熱処理系統高温冷水コイル11の高い効率が最大限利用することができ、システム効率が向上する。   The air conditioner 1 of the present embodiment lowers the mixture of the outside air OA and the return air RA to a temperature that can be lowered by the latent heat treatment system high-temperature chilled water coil 11, so that the dehumidification amount matches the latent heat load. By adjusting the amount of air passing through the coil while performing cooling and dehumidification at the lowest temperature, the amount of low-temperature chilled water is smaller than controlling the overall dehumidification amount by raising the coil outlet temperature at a constant air volume as in a general air conditioner. can do. This is because, due to the nature of air, dehumidification does not start until the dew point is reached. Thereby, dehumidification can be performed with the least amount of low-temperature cold water. That is, high-temperature cold water can be used most, and the high efficiency of the latent heat treatment system high-temperature cold water coil 11 can be used to the maximum, thereby improving system efficiency.

図12に示すように、湿度差(1)の2倍の湿度差である湿度差(2)まで除湿する場合、高温冷水での冷却後に必要な低温冷水の必要エネルギー差(2)は、湿度差(1)まで除湿するエネルギー差(1)の2倍より少なくなり、その分、低温冷水を使用しなくてよく、より効率の高い高温冷水を使用できるため、省エネルギーとなる。   As shown in FIG. 12, when dehumidifying to a humidity difference (2) that is twice as large as the humidity difference (1), the required energy difference (2) of the low-temperature cold water required after cooling with the high-temperature cold water is the humidity. Energy is reduced to less than twice the energy difference (1) for dehumidifying up to the difference (1), and accordingly, low-temperature cold water does not need to be used, and more efficient high-temperature cold water can be used, thereby saving energy.

また、本実施形態の空調機1は、外気OA及び室内負荷の状態に応じて、ダンパ切替を行い、コイル圧力損失を小さくし、送風機40の動力を低減できる。また、外気冷房の場合は連通ダンパ33を全開とすることで、設計外気量以上の外気を導入でき、一層の省エネルギーを図ることができる。   In addition, the air conditioner 1 of the present embodiment can perform damper switching according to the state of the outside air OA and the indoor load, reduce the coil pressure loss, and reduce the power of the blower 40. Further, in the case of the outside air cooling, by opening the communication damper 33 fully, outside air of a design outside air amount or more can be introduced, and further energy saving can be achieved.

図13は、第2実施形態の空調機1を示す。   FIG. 13 shows an air conditioner 1 according to the second embodiment.

第2実施形態の空調機1は、潜熱処理系統3に第1送風機40aを設け、顕熱処理系統4に第2送風機40bを設ける。このように、潜熱処理系統3と顕熱処理系統4のそれぞれに送風機40を設けることによって、各送風機40a,40bは各々の圧力損失分を負担するため、潜熱処理系統3の大きな圧力損失を補うことができ、結果的にファン動力の省エネルギーとなる。   In the air conditioner 1 of the second embodiment, a first blower 40a is provided in the latent heat treatment system 3, and a second blower 40b is provided in the sensible heat treatment system 4. By providing the blower 40 in each of the latent heat treatment system 3 and the sensible heat treatment system 4 as described above, each of the blowers 40a and 40b bears its own pressure loss, so that the large pressure loss in the latent heat treatment system 3 is compensated. As a result, fan power is saved.

図14は、第3実施形態の空調機1を示す。   FIG. 14 shows an air conditioner 1 according to the third embodiment.

第3実施形態の空調機1は、第2還気取入部22b及びバイパスダンパ32を設けず、顕熱処理系統4の顕熱処理系統高温冷水コイル12の下流側に流量調整ダンパ34を設ける。流量調整ダンパ34は、顕熱処理系統高温冷水コイル12から送風機40に送られる還気の風量を絞り、還気の一部を、連通ダンパ33を通して、顕熱処理系統4から潜熱処理系統3へ通過させる。そして、潜熱処理系統3へ通過された還気は、外気OAと混合し、潜熱処理系統低温冷水コイル13を通過し、冷却除湿される。なお、第2還気取入部22bの第1取入量調整ダンパ31b及びバイパスダンパ32を設け、閉鎖しておいてもよい。   The air conditioner 1 of the third embodiment does not include the second return air intake part 22b and the bypass damper 32, and provides the flow rate adjustment damper 34 downstream of the sensible heat treatment system high-temperature and cold water coil 12 of the sensible heat treatment system 4. The flow control damper 34 reduces the amount of return air sent from the sensible heat treatment system high-temperature chilled water coil 12 to the blower 40, and allows a part of the return air to pass from the sensible heat treatment system 4 to the latent heat treatment system 3 through the communication damper 33. . Then, the return air passed to the latent heat treatment system 3 is mixed with the outside air OA, passes through the latent heat treatment system low-temperature chilled water coil 13, and is cooled and dehumidified. Note that the first intake amount adjustment damper 31b and the bypass damper 32 of the second return air intake section 22b may be provided and closed.

外気OAと還気RAの系路が分離できるため、吹き出し湿度が高く、外気OAのみの処理で除湿が充分な場合、外気OAのみ潜熱処理系統高温冷水コイル11でぎりぎりまで冷却除湿し、さらに必要な除湿負荷まで除湿できる。このため、第1実施形態のように、還気RAの一部を必要以上に冷却することがないため、より省エネルギーとなる。また、還気ダクトの接続を一箇所にできるため、機器周りのスペース効率向上と、ダクト材コストを低減できる。   Since the system of the outside air OA and the return air RA can be separated, the blowing humidity is high and if only the outside air OA is enough for dehumidification, only the outside air OA is cooled and dehumidified by the latent heat treatment system high-temperature chilled water coil 11 and further required. Dehumidification can be performed up to a dehumidification load. For this reason, unlike the first embodiment, since part of the return air RA is not cooled more than necessary, more energy is saved. Also, since the connection of the return air duct can be made at one place, the space efficiency around the equipment can be improved and the cost of the duct material can be reduced.

図15は、第4実施形態の空調機1を示す。   FIG. 15 shows an air conditioner 1 according to the fourth embodiment.

第4実施形態の空調機1は、高温冷水を潜熱処理系統高温冷水コイル11から顕熱処理系統高温冷水コイル12へカスケードする例である。このように、高温冷水を潜熱処理系統高温冷水コイル11から顕熱処理系統高温冷水コイル12へカスケードすることで、潜熱処理系統高温冷水コイル11が低温度差で冷水を利用できるため、一般設計の温度差よりも除湿能力を高めることができる。   The air conditioner 1 of the fourth embodiment is an example in which high-temperature chilled water is cascaded from a latent heat treatment system high-temperature chilled water coil 11 to a sensible heat treatment system high-temperature chilled water coil 12. By cascading high-temperature cold water from the latent heat treatment system high-temperature chilled water coil 11 to the sensible heat treatment system high-temperature chilled water coil 12, the latent heat treatment system high-temperature chilled water coil 11 can use chilled water with a low temperature difference. The dehumidifying ability can be increased more than the difference.

以上、本実施形態の空調機1は、上流から送風される外気OA及び室内の還気RAを除湿冷却し、下流から給気SAとして室内に送風する空調機1であって、潜熱処理系統3と顕熱処理系統4を有するケーシング2と、ケーシング2に外気OAを取り入れる外気取入部21と、ケーシング2に還気RAを取り入れる還気取入部22と、潜熱処理系統3と顕熱処理系統4で除湿冷却された外気OA及び還気RAを混合して給気SAを送風する送風部40と、ケーシング2から送風部40によって送風された給気SAを室内に供給する給気部23と、を備え、潜熱処理系統3は、外気OA及び還気RAを冷却除湿可能な潜熱処理系統高温冷水部11と、潜熱処理系統高温冷水部11の下流で潜熱処理系統高温冷水部11よりも低温な冷水を使用して外気OA及び還気RAを冷却除湿可能な潜熱処理系統低温冷水部13と、を有し、顕熱処理系統4は、潜熱処理系統低温冷水部13よりも高温な冷水を使用して還気を冷却除湿可能な顕熱処理系統高温冷水部12を有し、潜熱処理系統3の潜熱処理系統高温冷水部11と潜熱処理系統低温冷水部13の間と、顕熱処理系統4の顕熱処理系統高温冷水部12の下流側と、を開放又は閉鎖又は通過風量を調整可能な連通部33をさらに備える。   As described above, the air conditioner 1 of the present embodiment is the air conditioner 1 that dehumidifies and cools the outside air OA and the return air RA in the room that are blown from the upstream, and blows the room as the air supply SA from the downstream. And a casing 2 having a sensible heat treatment system 4, an outside air intake 21 for taking outside air OA into the casing 2, a return air intake 22 for taking return air RA into the casing 2, and dehumidification by the latent heat treatment system 3 and the sensible heat treatment system 4. An air supply unit 40 that mixes the cooled outside air OA and the return air RA to blow the air supply SA, and an air supply unit 23 that supplies the air supply SA blown from the casing 2 by the air blowing unit 40 to the room. The latent heat treatment system 3 includes a latent heat treatment system high-temperature chilled water unit 11 capable of cooling and dehumidifying the outside air OA and the return air RA, and cold water lower than the latent heat treatment system high-temperature chilled water unit 11 downstream of the latent heat treatment system high-temperature chilled water unit 11. use A latent heat treatment system low-temperature chilled water section 13 capable of cooling and dehumidifying the outside air OA and the return air RA, and the sensible heat treatment system 4 cools the return air using chilled water higher in temperature than the latent heat treatment system low-temperature chilled water section 13 It has a sensible heat treatment system hot / cold water section 12 capable of dehumidifying, between the latent heat treatment system high temperature chilled water section 11 and the latent heat treatment system low temperature chilled water section 13 of the latent heat treatment system 3, and between the sensible heat treatment system high temperature chilled water section 12 of the sensible heat treatment system 4. And a communication portion 33 that can be opened or closed or can adjust the amount of air passing therethrough.

したがって、空調機1は、潜熱と顕熱の分離処理を行うことで、効率の良い高温冷水の利用が可能となり、冷凍機の効率を高め、省エネルギーとなり、且つ、室内温湿度条件を快適に保持することが可能となる。また、空調機1は、還気RAを外気OAに混合し、全体風量を増加させることで、外気OAを除湿するだけでは処理しきれない潜熱負荷を処理することができる。そして、潜熱処理系統高温冷水コイル11と潜熱処理系統低温冷水コイル13をカスケードに配置することで、高温冷水を最大限利用することができ、COPを向上させることが可能となる。さらに、潜熱処理系統3と顕熱処理系統4の間に連通ダンパ33を設けることで、潜熱処理系統低温冷水部13を通過する風速が下がり、除湿性能が上がる。また、顕熱処理系統高温冷水コイル12のコイル面積を最小化することが可能となる。その結果、空調機1全体を小さくすることが可能となる。   Therefore, the air conditioner 1 performs efficient separation of latent heat and sensible heat, thereby enabling efficient use of high-temperature chilled water, increasing the efficiency of the refrigerator, saving energy, and comfortably maintaining indoor temperature and humidity conditions. It is possible to do. In addition, the air conditioner 1 can process the latent heat load that cannot be processed only by dehumidifying the outside air OA by mixing the return air RA with the outside air OA and increasing the total air volume. By arranging the latent heat treatment system high-temperature chilled water coil 11 and the latent heat treatment system low-temperature chilled water coil 13 in a cascade, the high-temperature chilled water can be used to the maximum and the COP can be improved. Further, by providing the communication damper 33 between the latent heat treatment system 3 and the sensible heat treatment system 4, the wind speed passing through the latent heat treatment system low-temperature chilled water section 13 is reduced, and the dehumidification performance is improved. Further, it is possible to minimize the coil area of the sensible heat treatment system high temperature cold water coil 12. As a result, the entire air conditioner 1 can be made smaller.

本実施形態の空調機1は、潜熱処理系統高温冷水部11に対して外気OA及び還気RAを迂回させる通路を開放又は閉鎖又は通過風量を調整可能なバイパス部32を備える。したがって、空調機1は、外気冷却時などでファン動力を下げることができ、より省エネルギーとすることが可能となる。   The air conditioner 1 of the present embodiment includes a bypass portion 32 that can open or close a passage that bypasses the outside air OA and the return air RA with respect to the latent heat treatment system high-temperature chilled water portion 11 or adjust the amount of air passing therethrough. Therefore, the air conditioner 1 can reduce the fan power at the time of cooling the outside air or the like, and can save more energy.

本実施形態の空調機1では、還気取入部22は、顕熱処理系統4に還気RAを取り入れる第1還気取入部22aと、潜熱処理系統3に還気RAを取り入れる第2還気取入部22bと、を有し、第1還気取入部22aには、顕熱処理系統4に取り入れる還気RAの量を調整する第1取入量調整部31aが設けられ、第2還気取入部22bには、潜熱処理系統3に取り入れる還気RAの量を調整する第2取入量調整部31bが設けられる。したがって、顕熱処理系統高温冷水コイル12のコイル面積を最小化することが可能となり、コストを下げることが可能となる。   In the air conditioner 1 of the present embodiment, the return air intake unit 22 includes a first return air intake unit 22a for introducing the return air RA to the sensible heat treatment system 4 and a second return air intake for introducing the return air RA to the latent heat treatment system 3. An inlet 22b, and the first return air intake 22a is provided with a first intake amount adjuster 31a for adjusting the amount of return air RA to be taken into the sensible heat treatment system 4, and a second return air intake is provided. The second intake amount adjustment unit 31b that adjusts the amount of the return air RA to be taken into the latent heat treatment system 3 is provided at 22b. Therefore, the coil area of the sensible heat treatment system high-temperature and cold water coil 12 can be minimized, and the cost can be reduced.

本実施形態の空調機1では、ピーク負荷時、第1取入量調整部22a及び第2取入量調整部22bは開放して通過風量を調整し、バイパス部32及び連通部33は閉鎖する。したがって、除湿に必要な空気が潜熱処理系統高温冷水部11と潜熱処理系統低温冷水部1
3を順に通過し、高温冷水を使用する潜熱処理系統高温冷水部11を最大限に活用することができ、且つ、顕熱処理系統高温冷水コイル12の高温冷水により顕熱を処理することができるので、低温冷水による処理を最小にすることが可能となる。
In the air conditioner 1 of the present embodiment, at the time of peak load, the first intake amount adjustment unit 22a and the second intake amount adjustment unit 22b are opened to adjust the passing air volume, and the bypass unit 32 and the communication unit 33 are closed. . Therefore, the air required for dehumidification consists of the latent heat treatment system high-temperature chilled water section 11 and the latent heat treatment system low-temperature chilled water section 1.
3 in order, the latent heat treatment system high temperature chilled water section 11 using high temperature cold water can be used to the maximum, and the sensible heat can be treated by the high temperature cold water of the sensible heat treatment system high temperature chilled water coil 12. In addition, it is possible to minimize the treatment with low-temperature cold water.

本実施形態の空調機1では、高負荷時、第1取入量調整部及び第2取入量調整部は開放して通過風量を調整し、バイパス部は閉鎖し、連通部は開放して通過風量を調整する。第1還気RA1の風量は最大負荷にあわせることができる。したがって、潜熱負荷にあわせた場合に不要な外気OA及び還気RAを連通部33によって潜熱処理系統低温冷水コイル13を通過させないことができる。また、顕熱は、顕熱処理系統高温冷水コイル12によって調整される。そのため、潜熱と顕熱を分離して制御することができ、より快適な空調が可能となる。また、効率の高い高温冷水を最大限利用することができ、省エネルギーとすることができる。さらに、連通部33によって潜熱処理系統低温冷水コイル13の通過風量が減り、抵抗が減るため、ファン動力が下がり、省エネルギーとすることができる。   In the air conditioner 1 of the present embodiment, when the load is high, the first intake amount adjustment unit and the second intake amount adjustment unit are opened to adjust the passing air flow, the bypass unit is closed, and the communication unit is opened. Adjust the passing air volume. The air volume of the first return air RA1 can be adjusted to the maximum load. Therefore, unnecessary external air OA and return air RA can be prevented from passing through the latent heat treatment system low-temperature chilled water coil 13 by the communication portion 33 when the temperature is adjusted to the latent heat load. The sensible heat is adjusted by the sensible heat treatment system high-temperature cold water coil 12. Therefore, latent heat and sensible heat can be controlled separately, and more comfortable air conditioning can be achieved. In addition, highly efficient high-temperature cold water can be used to the maximum and energy can be saved. Further, the communication section 33 reduces the amount of air flowing through the latent heat treatment system low-temperature chilled water coil 13 and reduces resistance, so that fan power is reduced and energy can be saved.

本実施形態の空調機1では、低負荷時、第1取入量調整部及び第2取入量調整部は開放して通過風量を調整し、バイパス部は閉鎖し、連通部は開放して通過風量を調整し、潜熱処理系統低温冷水部の冷水の循環を停止する。第1還気RA1の風量は最大負荷にあわせることができる。また、顕熱は、顕熱処理系統高温冷水コイル12によって調整される。そのため、潜熱と顕熱を分離して制御することができ、より快適な空調が可能となる。また、効率の高い高温冷水を最大限利用することができ、省エネルギーとすることができる。さらに、潜熱処理系統低温冷水コイル13と連通部33を通過する抵抗が同じになり、圧力損失が最小となって、ファン動力が下がり、省エネルギーとすることができる。   In the air conditioner 1 of the present embodiment, when the load is low, the first intake amount adjustment unit and the second intake amount adjustment unit are opened to adjust the passing air volume, the bypass unit is closed, and the communication unit is opened. Adjust the passing air volume and stop the circulation of cold water in the low-temperature cold water section of the latent heat treatment system. The air volume of the first return air RA1 can be adjusted to the maximum load. The sensible heat is adjusted by the sensible heat treatment system high-temperature cold water coil 12. Therefore, latent heat and sensible heat can be controlled separately, and more comfortable air conditioning can be achieved. In addition, highly efficient high-temperature cold water can be used to the maximum and energy can be saved. Further, the resistance passing through the low-temperature chilled water coil 13 and the communicating portion 33 of the latent heat treatment system becomes the same, the pressure loss is minimized, the fan power is reduced, and energy can be saved.

本実施形態の空調機1では、外気冷房時、第1取入量調整部及び第2取入量調整部は開放して通過風量を調整し、バイパス部及び連通部は開放して通過風量を調整し、潜熱処理系統高温冷水部及び潜熱処理系統低温冷水部の冷水の循環を停止する。したがって、空調機1の圧力損失が最小となって、ファン動力が下がり、省エネルギーとすることができる。   In the air conditioner 1 of the present embodiment, at the time of outside air cooling, the first intake amount adjustment unit and the second intake amount adjustment unit are opened to adjust the passing air volume, and the bypass unit and the communication unit are opened to reduce the passing air volume. Adjust and stop the circulation of cold water in the high-temperature cold water section of the latent heat treatment system and the low-temperature cold water section of the latent heat treatment system. Therefore, the pressure loss of the air conditioner 1 is minimized, the fan power is reduced, and energy can be saved.

本実施形態の空調機1は、潜熱処理系統3と顕熱処理系統4の下流それぞれに送風部40a,40bを備える。したがって、各送風機40a,40bは各々の圧力損失分を負担するため、潜熱処理系統3の大きな圧力損失を送風機40aのみが負担するため、結果的に全体として省エネルギーとなる。   The air conditioner 1 of the present embodiment includes blowers 40a and 40b downstream of the latent heat treatment system 3 and the sensible heat treatment system 4, respectively. Therefore, since each of the blowers 40a and 40b bears the corresponding pressure loss, only the blower 40a bears the large pressure loss of the latent heat treatment system 3, resulting in energy saving as a whole.

本実施形態の空調機1は、顕熱処理系統の顕熱処理系統高温冷水部の下流に流量調整部を備える。したがって、外気OAと還気RAの系路が分離できるため、吹き出し湿度が高く、外気OAのみの処理で除湿が充分な場合、外気OAのみ潜熱処理系統高温冷水コイル11でぎりぎりまで冷却除湿し、さらに必要な除湿負荷まで除湿できる。このため、第1実施形態のように、還気RAの一部を必要以上に冷却することがないため、より省エネルギーとなる。また、還気ダクトの接続を一箇所にできるため、機器周りのスペース効率向上と、ダクト材コストを低減できる。   The air conditioner 1 of the present embodiment includes a flow rate adjustment unit downstream of the sensible heat treatment system high-temperature and cold water unit of the sensible heat treatment system. Therefore, since the system of the outside air OA and the return air RA can be separated, the blow-out humidity is high, and if the dehumidification is sufficient by the processing of only the outside air OA, only the outside air OA is cooled and dehumidified by the latent heat treatment system high-temperature cold water coil 11 to the last, Further, it can be dehumidified to a required dehumidification load. For this reason, unlike the first embodiment, since part of the return air RA is not cooled more than necessary, more energy is saved. Also, since the connection of the return air duct can be made at one place, the space efficiency around the equipment can be improved and the cost of the duct material can be reduced.

本実施形態の空調機1は、潜熱処理系統高温冷水部から顕熱処理系統高温冷水部へ高温冷水をカスケード利用する。したがって、潜熱処理系統高温冷水コイル11が低温度差で冷水を利用できるため、一般設計の温度差よりも除湿能力を高めることができる。   The air conditioner 1 of the present embodiment cascade uses hot and cold water from a latent heat treatment system hot and cold water section to a sensible heat treatment system hot and cold water section. Therefore, since the latent heat treatment system high-temperature chilled water coil 11 can use the chilled water with a low temperature difference, the dehumidifying ability can be enhanced as compared with the temperature difference of the general design.

なお、この実施形態によって本発明は限定されるものではない。すなわち、実施形態の説明に当たって、例示のために特定の詳細な内容が多く含まれるが、当業者であれば、これらの詳細な内容に色々なバリエーションや変更を加えてもよい。   The present invention is not limited by the embodiment. That is, in describing the embodiments, a lot of specific details are included for illustrative purposes, but those skilled in the art may add various variations and changes to these details.

例えば、第1取入量調整ダンパ31a及び第2取入量調整ダンパ31bは手動としてもよく、バイパスダンパ32は無くても除湿は可能である。また、床吹出し空調との組み合わせにより、高温冷水の温度を16℃とすることも可能である。   For example, the first intake amount adjustment damper 31a and the second intake amount adjustment damper 31b may be manually operated, and dehumidification is possible without the bypass damper 32. In addition, the temperature of the high-temperature chilled water can be set to 16 ° C. in combination with floor blowing air conditioning.

1…空調機
2…ケーシング
3…潜熱処理系統
4…顕熱処理系統
11…潜熱処理系統高温冷水コイル(潜熱処理系統高温冷水部)
12…顕熱処理系統高温冷水コイル(顕熱処理系統高温冷水部)
13…潜熱処理系統低温冷水コイル(潜熱処理系統低温冷水部)
21…外気取入部
22…還気取入部
22a…第1還気取入部
22b…第2還気取入部
23…給気部
31a…第1取入量調整ダンパ(第1取入量調整部)
31b…第2取入量調整ダンパ(第2取入量調整部)
32…バイパスダンパ(バイパス部)
33…連通ダンパ(連通部)
34…流量調整ダンパ(流量調整部)
40…送風機(送風部)
DESCRIPTION OF SYMBOLS 1 ... Air conditioner 2 ... Casing 3 ... Latent heat treatment system 4 ... Sensible heat treatment system 11 ... Latent heat treatment system High-temperature chilled water coil (latent heat treatment system high-temperature chilled water part)
12: Sensible heat treatment system high-temperature chilled water coil (sensible heat treatment system high-temperature chilled water part)
13: Latent heat treatment system low-temperature chilled water coil (latent heat treatment system low-temperature chilled water part)
21 ... outside air intake section 22 ... return air intake section 22a ... first return air intake section 22b ... second return air intake section 23 ... air supply section 31a ... first intake amount adjustment damper (first intake amount adjustment section)
31b: second intake amount adjustment damper (second intake amount adjustment unit)
32 ... Bypass damper (bypass section)
33… Communication damper (communication part)
34 ... Flow adjustment damper (flow adjustment unit)
40 ... Blower (Blower)

Claims (10)

上流から送風される外気及び室内の還気を除湿冷却し、下流から給気として室内に送風する空調機であって、
潜熱処理系統と顕熱処理系統を有するケーシングと、
前記ケーシングに前記外気を取り入れる外気取入部と、
前記ケーシングに前記還気を取り入れる還気取入部と、
前記潜熱処理系統と前記顕熱処理系統で除湿冷却された前記外気及び前記還気を混合して前記給気を送風する送風部と、
前記ケーシングから前記送風部によって送風された前記給気を前記室内に供給する給気部と、
を備え、
前記潜熱処理系統は、
前記外気及び前記還気を冷却除湿可能な潜熱処理系統高温冷水部と、
前記潜熱処理系統高温冷水部の下流で前記潜熱処理系統高温冷水部よりも低温な冷水を使用して前記外気及び前記還気を冷却除湿可能な潜熱処理系統低温冷水部と、
を有し、
前記顕熱処理系統は、前記潜熱処理系統低温冷水部よりも高温な冷水を使用して前記還気を冷却除湿可能な顕熱処理系統高温冷水部を有し、
前記潜熱処理系統の前記潜熱処理系統高温冷水部と前記潜熱処理系統低温冷水部の間と、前記顕熱処理系統の前記顕熱処理系統高温冷水部の下流側と、を開放、閉鎖又は通過風量を調整可能な連通部をさらに備える
ことを特徴とする空調機。
An air conditioner that dehumidifies and cools outside air and indoor return air blown from upstream, and blows air into the room as air supply from downstream,
A casing having a latent heat treatment system and a sensible heat treatment system,
An outside air intake for taking the outside air into the casing,
A return air intake unit for introducing the return air into the casing;
A blower that blows the supply air by mixing the outside air and the return air that has been dehumidified and cooled in the latent heat treatment system and the sensible heat treatment system,
An air supply unit that supplies the air supplied from the casing to the room by the air supply unit,
With
The latent heat treatment system,
A latent heat treatment system high-temperature cold water section capable of cooling and dehumidifying the outside air and the return air,
A latent heat treatment system capable of cooling and dehumidifying the outside air and the return air using chilled water lower than the latent heat treatment system high temperature chilled water unit downstream of the latent heat treatment system high temperature chilled water unit,
Has,
The sensible heat treatment system has a sensible heat treatment system high-temperature chilled water unit capable of cooling and dehumidifying the return air using chilled water higher than the latent heat treatment system low-temperature chilled water unit,
The latent heat treatment system between the high-temperature chilled water section and the latent heat treatment system low-temperature chilled water section of the latent heat treatment system, and the downstream side of the sensible heat treatment system high-temperature chilled water section of the sensible heat treatment system are opened, closed, or adjusted for the amount of passing air. An air conditioner further comprising a possible communication part.
前記潜熱処理系統高温冷水部に対して前記外気及び前記還気を迂回させる通路を開放、閉鎖又は通過風量を調整可能なバイパス部を備える
ことを特徴とする請求項1に記載の空調機。
2. The air conditioner according to claim 1, further comprising a bypass unit that opens, closes, or adjusts an amount of air passing through the passage that bypasses the outside air and the return air with respect to the latent heat treatment system high-temperature and cold water unit. 3.
前記還気取入部は、
前記顕熱処理系統に前記還気を取り入れる第1還気取入部と、
前記潜熱処理系統に前記還気を取り入れる第2還気取入部と、
を有し、
前記第1還気取入部には、前記顕熱処理系統に取り入れる前記還気の量を調整する第1取入量調整部が設けられ、
前記第2還気取入部には、前記潜熱処理系統に取り入れる前記還気の量を調整する第2取入量調整部が設けられる
ことを特徴とする請求項1又は2に記載の空調機。
The return air intake section,
A first return air intake unit for introducing the return air into the sensible heat treatment system;
A second return air intake unit for introducing the return air into the latent heat treatment system;
Has,
The first return air intake unit is provided with a first intake amount adjustment unit that adjusts an amount of the return air to be taken into the sensible heat treatment system,
3. The air conditioner according to claim 1, wherein the second return air intake unit is provided with a second intake amount adjustment unit that adjusts an amount of the return air to be introduced into the latent heat treatment system. 4.
ピーク負荷時、前記第1取入量調整部及び前記第2取入量調整部は開放又は通過風量を調整し、前記バイパス部及び前記連通部は閉鎖する
ことを特徴とする請求項3に記載の空調機。
4. The peak intake load adjuster and the second intake adjuster adjust the opening or the passing airflow during a peak load, and the bypass unit and the communication unit are closed. 5. Air conditioner.
高負荷時、前記第1取入量調整部及び前記第2取入量調整部は開放又は通過風量を調整し、前記バイパス部は閉鎖し、前記連通部は開放又は通過風量を調整する
ことを特徴とする請求項3又は4に記載の空調機。
At the time of high load, the first intake amount adjustment unit and the second intake amount adjustment unit adjust the opening or passing air volume, the bypass unit closes, and the communication unit opens or adjusts the passing air volume. The air conditioner according to claim 3 or 4, wherein:
低負荷時、前記第1取入量調整部及び前記第2取入量調整部は開放又は通過風量を調整し、前記バイパス部は閉鎖し、前記連通部は開放又は通過風量を調整し、前記潜熱処理系統低温冷水部の冷水の循環を停止する
ことを特徴とする請求項3乃至5のいずれか1項に記載の空調機。
At the time of low load, the first intake amount adjustment unit and the second intake amount adjustment unit adjust the opening or passing air flow, the bypass unit closes, the communication unit opens or adjusts the passing air flow, The air conditioner according to any one of claims 3 to 5, wherein the circulation of the cold water in the low-temperature cold water section of the latent heat treatment system is stopped.
外気冷房時、前記第1取入量調整部及び前記第2取入量調整部は開放又は通過風量を調整し、前記バイパス部及び前記連通部は開放又は通過風量を調整し、前記潜熱処理系統高温冷水部及び前記潜熱処理系統低温冷水部の冷水の循環を停止する
ことを特徴とする請求項3乃至6のいずれか1項に記載の空調機。
At the time of outside air cooling, the first intake amount adjustment unit and the second intake amount adjustment unit adjust the opening or passing airflow, the bypass unit and the communication unit adjust the opening or passing airflow, and the latent heat treatment system The air conditioner according to any one of claims 3 to 6, wherein circulation of the cold water in the high-temperature cold water section and the low-temperature cold water section in the latent heat treatment system is stopped.
前記潜熱処理系統と前記顕熱処理系統の下流それぞれに前記送風部を備える
ことを特徴とする請求項1乃至7のいずれか1項に記載の空調機。
The air conditioner according to any one of claims 1 to 7, wherein the air blower is provided downstream of each of the latent heat treatment system and the sensible heat treatment system.
前記顕熱処理系統の前記顕熱処理系統高温冷水部の下流に流量調整部を備える
ことを特徴とする請求項1乃至8のいずれか1項に記載の空調機。
The air conditioner according to any one of claims 1 to 8, further comprising a flow rate adjustment unit downstream of the high-temperature chilled water unit of the sensible heat treatment system in the sensible heat treatment system.
前記潜熱処理系統高温冷水部から前記顕熱処理系統高温冷水部へ高温冷水をカスケード利用する
ことを特徴とする請求項1乃至9のいずれか1項に記載の空調機。
The air conditioner according to any one of claims 1 to 9, wherein high-temperature cold water is cascaded from the high-temperature cold water section of the latent heat treatment system to the high-temperature cold water section of the sensible heat treatment system.
JP2016202404A 2016-10-14 2016-10-14 air conditioner Active JP6632506B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016202404A JP6632506B2 (en) 2016-10-14 2016-10-14 air conditioner
PCT/JP2017/036809 WO2018070421A1 (en) 2016-10-14 2017-10-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202404A JP6632506B2 (en) 2016-10-14 2016-10-14 air conditioner

Publications (2)

Publication Number Publication Date
JP2018063086A JP2018063086A (en) 2018-04-19
JP6632506B2 true JP6632506B2 (en) 2020-01-22

Family

ID=61906303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202404A Active JP6632506B2 (en) 2016-10-14 2016-10-14 air conditioner

Country Status (2)

Country Link
JP (1) JP6632506B2 (en)
WO (1) WO2018070421A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217172A1 (en) * 2017-05-24 2018-11-29 Singapore Power Limited Method and system for managing cooling load
JP7041596B2 (en) * 2018-06-26 2022-03-24 株式会社竹中工務店 Air conditioning system
JP7467814B2 (en) * 2018-12-19 2024-04-16 株式会社竹中工務店 Air Conditioning System
US20210116140A1 (en) * 2019-08-13 2021-04-22 Eric V Dickinson Method and system for configuring hvac systems
JP7469025B2 (en) 2019-11-12 2024-04-16 荏原実業株式会社 Air conditioners and air conditioning systems
JP7317687B2 (en) 2019-12-12 2023-07-31 株式会社竹中工務店 Air conditioner
JP6901643B1 (en) * 2021-01-06 2021-07-14 東京瓦斯株式会社 Air conditioning system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2776111B2 (en) * 1992-02-12 1998-07-16 三菱電機株式会社 Dehumidifier
US5531800A (en) * 1994-02-08 1996-07-02 Sewell; Frederic D. Liquid spray air purification and controlled humidification apparatus
US6018953A (en) * 1996-02-12 2000-02-01 Novelaire Technologies, L.L.C. Air conditioning system having indirect evaporative cooler
JPH11287475A (en) * 1998-04-03 1999-10-19 Daikin Ind Ltd Air conditioner
JP2001041495A (en) * 1999-08-03 2001-02-13 Komatsu Electronics Inc Constant temperature and constant humidity air supplying device
JP2006292300A (en) * 2005-04-12 2006-10-26 Hiromi Komine Outside air introduction type air conditioner, and air-conditioning system
CN101484757B (en) * 2006-11-20 2011-10-12 Smac技术有限责任公司 Improved air conditioning system
US8689580B2 (en) * 2011-03-30 2014-04-08 Ness Lakdawala Air conditioning/dehumidifying unit
JP2015059692A (en) * 2013-09-18 2015-03-30 新晃工業株式会社 Air conditioning system

Also Published As

Publication number Publication date
WO2018070421A1 (en) 2018-04-19
JP2018063086A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP6632506B2 (en) air conditioner
JP4207166B2 (en) Dehumidifying air conditioner
KR102047754B1 (en) Multi-function smart air conditioning system
WO2015173909A1 (en) Outside air processor and air conditioner
US8393549B2 (en) System and method for controlling temperature and humidity of a controlled space
JP2015059692A (en) Air conditioning system
CN201740130U (en) Temperature and humidity independent control type air-conditioning unit
JP6425750B2 (en) Air conditioning system
JP2668637B2 (en) Energy saving control method of air conditioner in amusement arcade
CN104197417B (en) Household type science and technology system and control method thereof
JP2007263527A (en) Optimum operation control system for dehumidification machine combined type air-conditioning device
JP2003294274A (en) Constant temperature and humidity air-conditioning system
KR101407435B1 (en) Out Air Bypass Apparatus of Air Conditioner
CN207649152U (en) Air-conditioning system and air conditioner with the air-conditioning system
JP6057789B2 (en) Air conditioning system and air conditioner
JP7058250B2 (en) Air conditioner with dehumidifying function and its control method
JP7469025B2 (en) Air conditioners and air conditioning systems
CN208967930U (en) A kind of dehumidifier and air-conditioning system
CN208419105U (en) Air-conditioning and its temp and humidity regulator
JP2007232290A (en) Air conditioning system in case of large fluctuation width of latent heat load
JPH03164647A (en) Air conditioner
JP6548901B2 (en) Air conditioning system and air conditioning method
KR102408395B1 (en) Apparatus for cooling server room indirectly using outside air
US10989422B1 (en) Efficient air processing system with heat pipe
JP3873218B2 (en) Constant temperature and humidity air conditioning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191210

R150 Certificate of patent or registration of utility model

Ref document number: 6632506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250