JP6632274B2 - Valve with actuator - Google Patents

Valve with actuator Download PDF

Info

Publication number
JP6632274B2
JP6632274B2 JP2015176867A JP2015176867A JP6632274B2 JP 6632274 B2 JP6632274 B2 JP 6632274B2 JP 2015176867 A JP2015176867 A JP 2015176867A JP 2015176867 A JP2015176867 A JP 2015176867A JP 6632274 B2 JP6632274 B2 JP 6632274B2
Authority
JP
Japan
Prior art keywords
valve
valve seat
actuator
stem
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015176867A
Other languages
Japanese (ja)
Other versions
JP2017053405A (en
Inventor
岩渕 俊昭
俊昭 岩渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz SCT Corp
Original Assignee
Kitz SCT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz SCT Corp filed Critical Kitz SCT Corp
Priority to JP2015176867A priority Critical patent/JP6632274B2/en
Publication of JP2017053405A publication Critical patent/JP2017053405A/en
Application granted granted Critical
Publication of JP6632274B2 publication Critical patent/JP6632274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Driven Valves (AREA)

Description

本発明は、アクチュエータ付きバルブに関し、特に、原子層堆積法(ALD法)を用いた半導体製造装置で使用するのに好適なアクチュエータ付きバルブに関するものである。   The present invention relates to a valve with an actuator, and more particularly to a valve with an actuator suitable for use in a semiconductor manufacturing apparatus using an atomic layer deposition method (ALD method).

近年、半導体素子の小型化及び素子構造の微細化が進み、原子層堆積(ALD:atomic layer deposition)法と呼ばれる成膜手法が製造プロセスにおいて主流になってきている。ALD法では、高温に加熱された半導体製造ガス(原料ガス)を供給配管に取り付けた供給バルブを介して半導体製造装置のプロセスチャンバへ供給し、「原料ガス原子の基板表面へ吸着」、「反応による成膜」、「パージによる余剰分子の取り除き」のサイクルを繰り返し行うことによって、チャンバ内に設置した基板上に原子層又は分子層を1層毎に積み上げることを成層の原理としている。このため、成膜の均一性に優れ、しかも高品質の膜の形成が可能であり、このサイクルを数十回から数千回繰り返すことにより、基板上に所望の厚さの薄膜を形成することができる。   2. Description of the Related Art In recent years, miniaturization of semiconductor elements and miniaturization of element structures have progressed, and a film formation technique called atomic layer deposition (ALD) has become mainstream in a manufacturing process. In the ALD method, a semiconductor manufacturing gas (source gas) heated to a high temperature is supplied to a process chamber of a semiconductor manufacturing apparatus through a supply valve attached to a supply pipe, and “adsorption of source gas atoms to a substrate surface”, “reaction” The principle of stratification is to repeatedly stack the atomic layers or molecular layers on the substrate installed in the chamber by repeatedly performing the cycle of “deposition by film formation” and “removal of excess molecules by purging”. For this reason, it is possible to form a high-quality film with excellent uniformity of film formation, and to form a thin film of a desired thickness on a substrate by repeating this cycle several tens to several thousand times. Can be.

このため、ALD法を用いた半導体製造装置に原料ガスを供給するバルブには、高速開閉動作が可能なこと、開閉動作回数の大幅な増加に耐えられることと、並びに安定した流量特性で原料ガスを供給できることが求められる。   For this reason, a valve for supplying a source gas to a semiconductor manufacturing apparatus using the ALD method is capable of performing a high-speed opening / closing operation, being able to withstand a large increase in the number of opening / closing operations, and having a stable flow rate characteristic. Is required.

このALD法を用いた半導体製造装置用のバルブとしては、メタルダイヤフラムバルブが使用されることが多い。従来の半導体製造装置に比べ、ALD法を採用した半導体製造装置では、弁の開閉動作回数が大幅に増加するため、メタルダイヤフラムバルブではダイヤフラムに金属疲労によるクラックが生じ易く、耐久性に劣る問題がある。また、バルブを構成する部品の加工精度や組付け精度等のバラツキにより、同一規格のバルブ間でも流量特性に差異が生じ、バルブの流量特性が安定しないという問題があり、特に、流体が高温である半導体製造装置においては、流量特性(Cv値)のバルブによるバラツキは影響が大きい。   As a valve for a semiconductor manufacturing apparatus using the ALD method, a metal diaphragm valve is often used. Compared with conventional semiconductor manufacturing equipment, semiconductor manufacturing equipment employing the ALD method greatly increases the number of opening and closing operations of the valve. Therefore, metal diaphragm valves have a problem that cracks are liable to occur in the diaphragm due to metal fatigue, resulting in poor durability. is there. In addition, due to variations in processing accuracy and assembly accuracy of parts constituting the valve, there is a problem that flow characteristics are different between valves of the same standard, and the flow characteristics of the valve are not stable. In a certain semiconductor manufacturing apparatus, the variation in the flow rate characteristic (Cv value) due to the valve has a great influence.

そこで、この様な問題の解決策として、ダイヤフラムの耐久性を向上させるとともに、バルブの流量特性のバラツキを少なくしたダイレクトタッチ型メタルダイヤフラム弁が提案されている(例えば、特許文献1参照)。   Therefore, as a solution to such a problem, there has been proposed a direct touch type metal diaphragm valve in which the durability of the diaphragm is improved and the variation in the flow characteristics of the valve is reduced (for example, see Patent Document 1).

特許文献1においては、従来と同一の構成のメタルダイヤフラムバルブのボンネット部の外側にストローク調整機構を設け、最大バルブストロークをメタルダイヤフラムの最大膨出高さよりも小さく(最大膨出高さの55〜70%の寸法)制限することにより、バルブの開閉操作時にメタルダイヤフラムにかかる歪量や歪応力をより小さくし、メタルダイヤフラムの耐久性を向上させている。具体的には、流体通路内径が6.35〜9.52mm、メタルダイヤフラムの外径が20mm〜26mmのダイレクトタッチ型メタルダイヤフラムバルブにおいて、バルブストロークを最大値の0.65〜0.7(メタルダイヤフラムの外径が26mmのバルブで0.7mm程度)に制限することにより、所要のCv値である0.5〜0.6を得ながら、約5000万回の連続開閉作動回数を達成した実施例が記載されている。   In Patent Literature 1, a stroke adjusting mechanism is provided outside a bonnet portion of a metal diaphragm valve having the same configuration as a conventional one, and the maximum valve stroke is smaller than the maximum bulging height of the metal diaphragm (55 to the maximum bulging height). By limiting the size (70%), the amount of strain and strain stress applied to the metal diaphragm at the time of opening and closing the valve is reduced, and the durability of the metal diaphragm is improved. Specifically, in a direct touch type metal diaphragm valve having a fluid passage inner diameter of 6.35 to 9.52 mm and an outer diameter of a metal diaphragm of 20 to 26 mm, the valve stroke is set to a maximum value of 0.65 to 0.7 (metal By limiting the outer diameter of the diaphragm to about 0.7 mm with a 26 mm valve, the number of continuous opening / closing operations of about 50 million was achieved while obtaining the required Cv value of 0.5 to 0.6. An example is provided.

また、このストローク調整機構は、ボンネットの上面にねじ込み固定したアクチュエータの支持用筒部に螺着したロックナットと、支持筒部の外周面に設けたロックナットの螺着用ネジ等から構成されており、支持用筒部のボンネット内へのねじ込み高さ位置を調整することにより、バルブストロークの大きさを調整するとともに、バルブによるCv値のバラツキを解消しようとするものである。   The stroke adjusting mechanism includes a lock nut screwed on a support cylinder of the actuator screwed and fixed to the upper surface of the bonnet, a screw for screwing a lock nut provided on an outer peripheral surface of the support cylinder, and the like. By adjusting the height of the support cylinder screwed into the bonnet, the valve stroke can be adjusted and the variation in the Cv value due to the valve can be eliminated.

特開2007−64333号公報JP 2007-64333 A

しかしながら、特許文献1に記載されたダイレクトタッチ型メタルダイヤフラム弁では、ストローク調整機構によりバルブストロークを最大値の0.65〜0.7位に制限して所要のCv値(0.5〜0.6)を得ながら、バルブの開閉操作時にメタルダイヤフラムにかかる歪量や歪応力をより小さくすることにより、メタルダイヤフラムの耐久性を獲得しているが、半導体製造装置に供給する原料ガスの量が多量である場合には、よりCv値が大きいバルブを使用する必要が生じ、バルブ及びアクチュエータの大型化を招くことになる。   However, in the direct touch type metal diaphragm valve described in Patent Literature 1, the stroke adjustment mechanism limits the valve stroke to the maximum value of 0.65 to 0.7, and the required Cv value (0.5 to 0.0). 6) While obtaining the durability of the metal diaphragm by reducing the amount of strain and the strain stress applied to the metal diaphragm during the opening and closing operation of the valve, the amount of the raw material gas supplied to the semiconductor manufacturing apparatus is reduced. When the amount is large, it is necessary to use a valve having a larger Cv value, which leads to an increase in the size of the valve and the actuator.

また、特許文献1に記載された構造の様に、ボンネットの上面にねじ込み固定したアクチュエータの支持用筒部に螺着したロックナットにより支持用筒部のボンネット内へのねじ込み高さ位置を調整し、支持用筒部のボンネット内へのねじ込み高さ位置を調整する構造では、アクチュエータの取付け高さがネジ部の加工精度等のバラツキによって微妙に変化するため、バルブ毎に流量を調べながらアクチュエータ取付け高さを調整する必要があるので作業性が悪い。   Further, as in the structure described in Patent Document 1, the height of the support cylinder portion screwed into the bonnet is adjusted by a lock nut screwed onto the support cylinder portion of the actuator screwed and fixed to the upper surface of the bonnet. In the structure that adjusts the screwing height of the support tube into the bonnet, the mounting height of the actuator varies slightly due to variations in the processing accuracy of the threaded portion. Workability is poor because the height needs to be adjusted.

これに加え、従来、半導体製造装置に供給する原料ガスの加温温度は200℃程度であったが、近年は300℃程度に加温した大容量の原料ガスを流せるALD用バルブへの要求があり、大流量が流せ、かつ流量が安定し、更に小型、高耐久化、高速動作できるバルブと、高温対策を施したアクチュエータとから成るアクチュエータ付きバルブの新規な構造が求められていた。   In addition, the heating temperature of the source gas supplied to the semiconductor manufacturing apparatus has been about 200 ° C. In recent years, there has been a demand for an ALD valve capable of flowing a large-capacity source gas heated to about 300 ° C. In addition, there has been a demand for a novel structure of a valve with an actuator, which includes a valve capable of flowing a large flow rate, stabilizing the flow rate, and being compact, highly durable, and capable of operating at high speed, and an actuator having a high-temperature countermeasure.

そこで、本発明は上記問題点を解決するために開発されたものであり、その目的とするところは、高Cv値で高耐久化、高速動作に優れ、弁体のリフト量の調整が容易に行えるバルブと、小型で高温対策、高耐久性に優れたアクチュエータとから成り、ALD法を用いた半導体製造装置で使用するのに好適なアクチュエータ付きバルブを提供することにある。   Therefore, the present invention has been developed to solve the above-mentioned problems, and the object of the present invention is to achieve high durability with a high Cv value, excellent high-speed operation, and easy adjustment of the valve lift amount. An object of the present invention is to provide a valve with an actuator, which is composed of a valve that can be performed and an actuator that is small and has excellent measures against high temperatures and high durability, and is suitable for use in a semiconductor manufacturing apparatus using the ALD method.

上記目的を達成するため、請求項1に係る発明は、出入口の流路に連通するボデーの内部に設けた弁室内に下方側に向けて環状で水平面状の弁座と、この弁座の下方位置にアクチュエータで昇降動するステムの下端に設けた弁体と、この弁体に上方側に向けて前記弁座と対向させた位置に環状で水平面状の弁座シールとを備えた逆座シール構造であり、前記弁座シールと弁座との間には、上下が水平面状で、かつ垂直状態の円筒形状で形成されるカーテン面積を有した弁座開口面積が形成され、この弁座開口面積を前記ボデー内の流路の最小流路面積と同等又は同等以下に設定し、前記弁座の弁座シール径を前記最小流路面積から求めた最小径の1.5倍から2倍の範囲に設定し、かつ前記弁体のリフト量を最小に設定するようにしたアクチュエータ付きバルブである。 In order to achieve the above object, the invention according to claim 1 is a valve seat provided in the body communicating with the flow passage of the entrance and exit, having an annular horizontal horizontal surface-like valve seat facing downward and a valve seat below the valve seat. Inverted seat seal provided with a valve body provided at the lower end of a stem which is moved up and down by an actuator at a position, and an annular and horizontal valve seat seal at a position facing the valve seat toward the upper side of the valve body A valve seat opening area having a curtain area formed in a vertical cylindrical shape with a horizontal plane at the top and bottom, between the valve seat seal and the valve seat. The area is set equal to or less than the minimum flow path area of the flow path in the body, and the valve seat seal diameter of the valve seat is 1.5 to 2 times the minimum diameter obtained from the minimum flow path area. Actuator set to a range and the lift amount of the valve body is set to a minimum. It is a mediator with a valve.

請求項に係る発明は、前記弁体と一体に連結されたステムの上部に規制部材を螺着するとともに、その下方に前記規制部材を係止して前記弁体のリフト量を制限する弁開ストッパーを配し、前記弁体の着座時に前記規制部材の前記ステムに対するねじ込み高さ位置を調整することにより、前記規制部材と前記弁開ストッパーとの間隔を調整し、前記弁体のリフト量を設定するようにしたアクチュエータ付きバルブである。 The invention according to claim 2 is a valve for restricting a lift amount of the valve element by screwing a restriction member on an upper portion of a stem integrally connected to the valve element and locking the restriction member below the restriction member. By disposing an opening stopper and adjusting a screwing height position of the regulating member with respect to the stem when the valve body is seated, an interval between the regulating member and the valve opening stopper is adjusted, and a lift amount of the valve body is adjusted. Is a valve with an actuator.

請求項に係る発明は、アクチュエータに樹脂製ベローズを用いた請求項1又は2に記載のアクチュエータ付きバルブである。 The invention according to claim 3 is the valve with an actuator according to claim 1 or 2, wherein a resin bellows is used for the actuator.

請求項1に係る発明によると、弁座シールと弁座との間に、上下が水平面状で、かつ垂直状態の円筒形状によるカーテン面積を有する弁座開口面積を形成し、この弁座開口面積をボデー内流路の最小流路面積と同等又は同等以下に設定し、弁座シール径を最小流路面積から求めた最小径の所定の範囲内に設定することにより、同一のCv値のバルブと比較して弁体のリフト量を最小にすることができる。このとき、弁室内に下方側に向けて設けた弁座と、弁座の下方位置でステムの下端に設けた弁体と、弁体の上方側に向けて弁座と対向させた弁座シールとを備えた逆座シール構造としていることで、弁開閉のための作動時間が短くなって高速動作が可能となり、バルブの高耐久性化にも寄与する。これらのことから、例えば、ALD法を用いた半導体製造装置用のバルブに好適となる。さらに、逆座シール構造により、流体をバルブのどちらの側から流しても弁閉用スプリングの荷重が小さくて済むので、弁閉用スプリングに小型のスプリングを使用することもでき、もってアクチュエータの小型化も可能になる。 According to the invention according to claim 1, a valve seat opening area having a curtain area formed by a cylindrical shape in a vertical plane and a vertical state is formed between the valve seat seal and the valve seat. Is set to be equal to or less than the minimum flow path area of the flow path in the body, and the valve seat seal diameter is set within a predetermined range of the minimum diameter obtained from the minimum flow path area, thereby providing a valve having the same Cv value. , The lift amount of the valve body can be minimized. At this time, a valve seat provided in the valve chamber toward the lower side, a valve body provided at the lower end of the stem at a position below the valve seat, and a valve seat seal facing the valve seat toward the upper side of the valve body. With the inverted seat seal structure provided with the above, the operation time for opening and closing the valve is shortened, enabling high-speed operation, and contributing to high durability of the valve. For these reasons, for example, it is suitable for a valve for a semiconductor manufacturing apparatus using the ALD method. In addition, the inverted seat seal structure allows a small load to be applied to the valve closing spring regardless of the flow of fluid from either side of the valve, so that a small spring can be used for the valve closing spring. It becomes possible.

請求項に係る発明によると、弁体着座時に規制部材のステムに対するねじ込み高さ位置を調整することにより、規制部材と弁開ストッパーとの間の間隔を調整するだけで弁体のリフト量を一定に設定することができるため、ボデーやボンネットの寸法に加工精度等のバラツキがあっても、バルブ毎に簡単な作業で弁体のリフト量を一定に設定して所期のCv値を得ることができる。このため、流量確認などの複雑な作業によりバルブのCv値を設定する必要がないので、作業性が大幅に向上するとともに、流量の安定化を図ることができる。 According to the invention according to claim 2 , by adjusting the screw height position of the regulating member with respect to the stem when the valve body is seated, the lift amount of the valve body can be reduced only by adjusting the interval between the regulating member and the valve opening stopper. Since it can be set to a constant value, even if there is variation in the processing accuracy and the like in the dimensions of the body and hood, the lift amount of the valve body is set to a constant value by a simple operation for each valve to obtain the desired Cv value. be able to. Therefore, it is not necessary to set the Cv value of the valve by a complicated operation such as checking the flow rate, so that the workability is greatly improved and the flow rate can be stabilized.

請求項に係る発明によると、アクチュエータに樹脂製ベローズを用いているため、ベローズに疲労破壊が起きにくく、アクチュエータの耐久性が大幅に向上する。また、合成樹脂製のベローズは安価であるため、耐高温性、高耐久性に優れたアクチュエータを安価に得ることができる。 According to the third aspect of the present invention, since the resin bellows is used for the actuator, the bellows hardly suffers from fatigue failure, and the durability of the actuator is greatly improved. Further, since the bellows made of synthetic resin are inexpensive, an actuator excellent in high temperature resistance and high durability can be obtained at low cost.

本発明のアクチュエータ付きバルブの一実施形態の全開状態を示した正面縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the front longitudinal cross-sectional view which showed the fully opened state of one Embodiment of the valve with an actuator of this invention. (a)は、キャップの断面図である。(b)は、樹脂ベローズの断面図である。(c)は、キャップ、樹脂ベローズを取り外した状態のアクチュエータ付きバルブの正面縦断面である。(A) is sectional drawing of a cap. (B) is a sectional view of the resin bellows. (C) is a front vertical sectional view of the valve with the actuator with the cap and the resin bellows removed. 弁開状態の弁座付近の部分拡大断面図である。It is a partial expanded sectional view near the valve seat of a valve open state. 本発明のアクチュエータ付きバルブの他の実施形態の全閉状態を示した正面縦断面図である。It is the front longitudinal section showing the fully closed state of other embodiments of the valve with an actuator of the present invention.

以下に、本発明におけるアクチュエータ付きバルブの常時閉構造とした場合の実施形態の一例を図面に基づいて詳細に説明する。図1は本実施形態のアクチュエータ付きバルブの全開状態を示した正面縦断面図であり、図2の(a)はキャップの正面断面図、(b)は樹脂ベローズの正面断面図、(c)はキャップ、樹脂ベローズを取り外した状態のアクチュエータ付きバルブの正面縦断面である。   Hereinafter, an example of an embodiment in a case where a normally closed structure of a valve with an actuator according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a front vertical sectional view showing a fully opened state of a valve with an actuator according to the present embodiment. FIG. 2A is a front sectional view of a cap, FIG. 2B is a front sectional view of a resin bellows, and FIG. Is a front vertical cross section of the valve with the actuator with the cap and the resin bellows removed.

図1において、アクチュエータ付きバルブ1は、バルブ2と、バルブ2の上部に搭載されたアクチュエータ3とから構成されている。   In FIG. 1, a valve 1 with an actuator includes a valve 2 and an actuator 3 mounted on the valve 2.

先ず、バルブ2の構成について説明する。バルブ2は、ボデー21、弁体22、ステム23、閉鎖部材24、環状部材25、ガスケット26から構成されている。なお、ステム23は、後述するアクチュエータ3の構成にも含まれる。   First, the configuration of the valve 2 will be described. The valve 2 includes a body 21, a valve body 22, a stem 23, a closing member 24, an annular member 25, and a gasket 26. Note that the stem 23 is also included in the configuration of the actuator 3 described later.

バルブ2のボデー21は、例えば、高耐食性を有するSUS316L等のステンレス鋼からなり、ボデー21の両側面からは出入口である流路27及び流路28が水平方向に形成されるとともに、ボデー21内部には、これら流路27、28に連通する弁室29が設けられる。ボデー21の上部には鉛直方向にアクチュエータ挿入孔30が形成され、下部には鉛直方向に弁体取付け孔31が形成されている。流路27とアクチュエータ挿入孔30とは、アクチュエータ挿入孔30の底面30aの中心に垂直に形成された垂直連通路32を介して連通しており、この垂直連通路32の下端の弁室29内には下方側に向けて環状で水平面状の弁座33が形成されている。また、流路28とアクチュエータ挿入孔30とは、斜めに形成された傾斜連通路34により連通している。以上の通り、流路27と流路28とは、弁室29、垂直連通路32、アクチュエータ挿入孔30、傾斜連通路34を介して連通しており、ステム23により昇降動可能に設けた弁体22を弁座33と対向させた位置とし、この弁体22の弁座シール41を弁座33に着座又は離座させて垂直連通路32を開閉することにより、流路27と流路28との間の流体の流れを制御することができる。 Body 21 of valve 2, for example, made of stainless steel SUS316L or the like having a high corrosion resistance, together with the flow passage 27 and the flow path 28 is a doorway from both sides of the body 21 is formed in the horizontal direction, the body 21 internal Is provided with a valve chamber 29 communicating with these flow paths 27 and 28. An actuator insertion hole 30 is formed in the upper part of the body 21 in the vertical direction, and a valve element mounting hole 31 is formed in the lower part in the vertical direction. The flow path 27 and the actuator insertion hole 30 communicate with each other through a vertical communication path 32 formed perpendicularly to the center of the bottom surface 30 a of the actuator insertion hole 30 . Is formed with an annular horizontal horizontal valve seat 33 toward the lower side . In addition, the flow path 28 and the actuator insertion hole 30 communicate with each other by an inclined communication path 34 formed obliquely. As described above, the flow path 27 and the flow path 28, the valve chamber 29, the vertical communicating path 32, the actuator insertion hole 30 communicates with through the inclined connecting passage 34, is provided so as to be more moved up and down to the stem 23 The valve body 22 is positioned so as to face the valve seat 33, and the valve seat seal 41 of the valve body 22 is seated or unseated on the valve seat 33 to open and close the vertical communication passage 32, whereby the flow path 27 and the flow path 28 can be controlled.

ボデー21上部に鉛直方向に形成されたアクチュエータ挿入孔30の上方には、アクチュエータ挿入孔30よりも拡径された収容孔35が形成され、アクチュエータ挿入孔30と収容孔35の間には段部36が形成されている。また、収容孔35の上方には、収容孔35よりも拡径されたアクチュエータ取付孔37が形成され、このアクチュエータ取付孔37の内周には、ボデー21にアクチュエータ3を取り付けるためのメネジ部37aが形成されている。   Above the actuator insertion hole 30 formed vertically in the upper part of the body 21, an accommodation hole 35 having a diameter larger than that of the actuator insertion hole 30 is formed, and a stepped portion is provided between the actuator insertion hole 30 and the accommodation hole 35. 36 are formed. An actuator mounting hole 37 having a diameter larger than that of the housing hole 35 is formed above the housing hole 35, and a female screw portion 37 a for mounting the actuator 3 to the body 21 is formed on the inner periphery of the actuator mounting hole 37. Are formed.

ボデー21下部に鉛直方向に形成された弁体取付孔31の下方には、弁体取付孔31よりも拡径された閉鎖部材装着孔38が形成され、弁体取付孔31と閉鎖部材装着孔38の間には段部39が形成されている。また、閉鎖部材装着孔38の下方には、閉鎖部材装着孔38よりも拡径された環状部材装着孔40が形成され、この環状部材装着孔40の内周には環状部材25を取付けるためのメネジ部40aが形成されている。   Below the valve body mounting hole 31 formed in the lower part of the body 21, a closing member mounting hole 38 having a diameter larger than that of the valve body mounting hole 31 is formed, and the valve body mounting hole 31 and the closing member mounting hole are formed. A step portion 39 is formed between 38. An annular member mounting hole 40 having a diameter larger than that of the closing member mounting hole 38 is formed below the closing member mounting hole 38, and an inner periphery of the annular member mounting hole 40 for mounting the annular member 25. A female thread portion 40a is formed.

弁体22は、例えば、高耐食性を有するSUS316L等のステンレス鋼からなり、ボデー21の垂直連通路32の下端に形成された弁座33面の下方側に配設され、アクチュエータ3の駆動源で昇降動可能な逆座シール構造となっている。このため、流体が弁体22側から流れる場合には、流体圧力が弁体22の背面に加わって弁座シール圧力として作用するので、弁閉用スプリングの荷重を最小に設定することができるとともに、弁体22が弁座33に着座するまでの時間を短縮し、高速動作させることができる。また、その反対側(ベローズ54側)から流体が流れる場合には、後述するように、弁体22、ステム23、ベローズ54は一体に連結されているため、弁体シール面積とベローズの有効面積が略同等であれば、流体圧力による弁体とベローズが受ける流体からの荷重は略バランスされ、流体圧力による荷重は増えないので、やはり弁閉用スプリングの荷重は小さくて済む。従って、逆座シール構造としたことにより、バルブのどちらの側から流体が流れても、弁閉用スプリングの荷重が小さくて済むため、小型のスプリングを使用することができるので、アクチュエータを小型化することができる。 The valve body 22 is made of, for example, stainless steel such as SUS316L having high corrosion resistance, is disposed below the surface of the valve seat 33 formed at the lower end of the vertical communication passage 32 of the body 21, and is a driving source of the actuator 3. It has a reverse seat seal structure that can move up and down. For this reason, when the fluid flows from the valve body 22 side, the fluid pressure is applied to the back surface of the valve body 22 and acts as a valve seat seal pressure, so that the load of the valve closing spring can be set to a minimum. In addition, the time required for the valve body 22 to be seated on the valve seat 33 can be shortened, and high-speed operation can be performed. When the fluid flows from the opposite side (the bellows 54 side), the valve body 22, the stem 23 and the bellows 54 are integrally connected as described later, so that the valve body seal area and the effective area of the bellows are provided. Are substantially equal, the load from the fluid received by the valve body and the bellows due to the fluid pressure is substantially balanced, and the load due to the fluid pressure does not increase, so that the load of the valve closing spring can be small. Therefore, the inverted seat seal structure allows the valve closing spring to have a small load regardless of the flow of the fluid from either side of the valve, so that a small spring can be used. can do.

弁体22の上面22aには環状の弁座シール41を装着するための溝22bを形成されるとともに、上面22aの中央部にはステム23を装着するためのステム装着孔22cが穿孔され、その内周にはメネジ部22dが形成されている。   A groove 22b for mounting an annular valve seat seal 41 is formed in an upper surface 22a of the valve body 22, and a stem mounting hole 22c for mounting a stem 23 is formed in the center of the upper surface 22a. A female screw portion 22d is formed on the inner periphery.

弁座シール41は、耐食性、シール性、耐熱性及び耐摩耗性に優れるとともに、熱変形が小さい樹脂により形成される。200℃仕様では、例えば、PFA(ポリテトラフルオロエチレン)樹脂、300℃仕様では、例えば、PI樹脂(ポリイミド樹脂)又はPEEK(ポリエーテルエーテルケトン)樹脂により形成することが好ましい。
弁座シール41は、弁座シール径Sをボデー21内に形成した流路の最小流路面積Aから求めた最小流路径Dの1.5倍以上に設定され、弁体22の上面22aに形成された溝22bに加締めて装着される。一般に、大きなCv値を得るために弁座シール径Sを大きくすると流体圧力により荷重が大きくなり、弁体の締め切りに必要な荷重が増えてアクチュエータが大型化するが、本発明におけるアクチュエータ付きバルブでは、前述のとおり逆座シール構造としたことにより、バルブのどちらの側から流体が流れても、弁閉用スプリングの荷重が小さくて済むため、弁座シール径Sを大きくしてもアクチュエータを小型化することができる。
The valve seat seal 41 is formed of a resin that is excellent in corrosion resistance, sealability, heat resistance, and abrasion resistance and has small thermal deformation. In the 200 ° C specification, for example, it is preferable to use a PFA (polytetrafluoroethylene) resin, and in the 300 ° C specification, it is preferable to use a PI resin (polyimide resin) or a PEEK (polyetheretherketone) resin.
The valve seat seal 41 has a valve seat seal diameter S set to 1.5 times or more the minimum flow path diameter D obtained from the minimum flow area A of the flow path formed in the body 21, and is provided on the upper surface 22 a of the valve body 22. It is attached by crimping to the formed groove 22b. Generally, when the valve seat seal diameter S is increased to obtain a large Cv value, the load increases due to the fluid pressure, the load required for closing the valve element increases, and the actuator increases in size. However, as described above, the reverse seat seal structure allows the valve closing spring to have a small load even if fluid flows from either side of the valve. Can be

また、本発明におけるアクチュエータ付きバルブにおいて、弁座シール41の弁座シール径Sをボデー内に形成した流路の最小流路面積Aから求めた最小流路径Dの1.5倍以上に設定する理由は、バルブのCv値を決める最大の要素はバルブの最小流路面積であるところ、弁体の高速動作を可能とするために弁体のリフト量を最小に設定しても、弁体を開位置とした際に弁体と弁座との間に形成される弁座開口面積をボデー内の流路の最小流路面積Aと同等又は同等以下に設定することにより、バルブのCv値が大きく損なわれることがないようにするためである。   In the valve with an actuator according to the present invention, the valve seat seal diameter S of the valve seat seal 41 is set to be at least 1.5 times the minimum flow path diameter D obtained from the minimum flow area A of the flow path formed in the body. The reason is that the largest element that determines the Cv value of the valve is the minimum flow path area of the valve, and even if the lift amount of the valve element is set to the minimum to enable high-speed operation of the valve element, By setting the valve seat opening area formed between the valve element and the valve seat when the valve is in the open position to be equal to or less than the minimum flow area A of the flow path in the body, the Cv value of the valve is reduced. This is in order not to be greatly damaged.

最小流路面積Aと最小流路径Dの関係は、以下の数1として表わせる。   The relationship between the minimum flow path area A and the minimum flow path diameter D can be expressed as Equation 1 below.

Figure 0006632274
Figure 0006632274

また、弁座シール径をSとし、弁体のリフト量をLとした時の弁座開口面積Vは、図3に示す様に、弁座33の下方に形成される直径Sで高さがLである円柱の側面部面積(カーテン面積)となるので、V=πSLとなる。弁座開口面積Vが最小流路面積Aと等しくなる弁体のリフト量Lは、最小流路面積AはA=π(D/2)で表せることから、πSL=π(D/2)の関係となり、最終的にはL=D/4Sとなる。ここで、弁座シール径Sを最小流路径Dのn倍に設定すると、S=nDであり、弁体のリフト量Lは、L=D/4nとなる。
従って、nの値を大きく設定して弁座シール径Sを最小流路径Dよりも大きくすると、弁座開口面積Vをボデー内に形成した流路の最小流路面積Aと同等又は同等以下に設定し、弁体22のリフト量Lを小さくすることができる。例えば、n=1.5に設定した場合には、弁体22のリフト量は最小流路径Dの1/6となる。弁体22のリフト量Lを小さく設定すると、弁体22の開閉動作を高速化することができるとともに、弁体動作量(リフト量L)が最小化されるのでバルブの耐久性を向上させることができる。このため、弁体のリフト量Lを小さくするためには、弁座開口面積Vはボデー内の流路の最小流路面積Aの同等以下であることが好ましいが、同等であっても良い。
When the valve seat seal diameter is S and the lift amount of the valve body is L, the valve seat opening area V is a diameter S formed below the valve seat 33 and has a height as shown in FIG. Since L is the side surface area (curtain area) of the cylinder, V = πSL. The lift amount L of the valve body at which the valve seat opening area V is equal to the minimum flow path area A is πSL = π (D / 2) because the minimum flow path area A can be expressed by A = π (D / 2) 2. 2 and finally L = D 2 / 4S. Here, if the valve seat seal diameter S is set to n times the minimum flow path diameter D, S = nD, and the lift amount L of the valve body is L = D / 4n.
Therefore, when the value of n is set large and the valve seat seal diameter S is made larger than the minimum flow path diameter D, the valve seat opening area V becomes equal to or less than the minimum flow area A of the flow path formed in the body. By setting, the lift amount L of the valve body 22 can be reduced. For example, when n = 1.5, the lift amount of the valve body 22 is 6 of the minimum flow path diameter D. When the lift amount L of the valve body 22 is set small, the opening and closing operation of the valve body 22 can be accelerated, and the valve body operation amount (lift amount L) is minimized, so that the durability of the valve is improved. Can be. For this reason, in order to reduce the lift amount L of the valve body, the valve seat opening area V is preferably equal to or smaller than the minimum flow path area A of the flow path in the body, but may be equal.

なお、弁体の開閉動作の高速化を図るため、リフト量Lを小さくして弁座開口面積Vを最小流路面積Aよりも極端に小さく設定すると、バルブのCv値を低下させてしまうので、リフト量の設定にあたっては、Cv値の確保とバルブ開閉動作の高速化とのトレードオフが必要となる。また、弁座シール径Sの設定にあたっても、バルブの内部構造による制約、弁体のリフト量の最小化のトレードオフが必要であり、実際のバルブへの適用においては、弁座シール径Sは、最小流路径Dの1.5倍から2倍程度の範囲とすることが適当である。   If the lift amount L is reduced and the valve seat opening area V is set to be extremely smaller than the minimum flow path area A in order to speed up the opening and closing operation of the valve body, the Cv value of the valve is reduced. In setting the lift amount, it is necessary to make a trade-off between securing the Cv value and increasing the speed of the valve opening / closing operation. Also, in setting the valve seat seal diameter S, restrictions due to the internal structure of the valve and a trade-off of minimizing the lift amount of the valve body are necessary. In application to an actual valve, the valve seat seal diameter S is It is appropriate to set the range to be about 1.5 to 2 times the minimum flow path diameter D.

ステム23は、例えば、高耐食性を有するSUS316L等のステンレス鋼からなり、アクチュエータ3から垂直連通路32の下方に垂設され、その下端部にオネジ部23aが形成されており、このオネジ部23aを弁体22のステム装着孔22cの内周に形成したメネジ部22dに螺合させて弁体22と一体とし、弁体22を昇降動可能にしている。 The stem 23 is made of, for example, stainless steel having high corrosion resistance, such as SUS316L, is vertically provided below the vertical communication passage 32 from the actuator 3, and has a male screw portion 23a formed at a lower end thereof. The valve 22 is screwed into a female thread 22d formed on the inner periphery of the stem mounting hole 22c of the valve 22 to be integrated with the valve 22 so that the valve 22 can be moved up and down.

閉鎖部材24は、例えば、高耐食性を有するSUS316L等のステンレス鋼からなり、上端が開口した略円筒状に形成され、上端部外周には鍔部24aを有している。鍔部24aの上面24bの外周側にはガスケット収容溝24cが形成されている。   The closing member 24 is made of, for example, stainless steel such as SUS316L having high corrosion resistance, is formed in a substantially cylindrical shape with an open upper end, and has a flange 24a on the outer periphery of the upper end. A gasket accommodating groove 24c is formed on the outer peripheral side of the upper surface 24b of the flange portion 24a.

環状部材25は、例えば、SUS304等のステンレス鋼からなり、中央に前記閉鎖部材24を収納する収納孔25aを備えた環状に形成され、下端部にはスパナかけ部25bが形成されている。また、環状部材25の上面25cの外周部には環状の突設部25dが形成され、側面25eの略上半分には前記環状部材装着孔40に設けたメネジ部40aと螺合させるオネジ部25fが形成されている。   The annular member 25 is made of, for example, stainless steel such as SUS304, and is formed in an annular shape having a storage hole 25a for storing the closing member 24 in the center, and a spanner hooking portion 25b is formed at a lower end portion. An annular projecting portion 25d is formed on the outer peripheral portion of the upper surface 25c of the annular member 25, and a male screw portion 25f to be screwed with a female screw portion 40a provided in the annular member mounting hole 40 is provided on a substantially upper half of the side surface 25e. Are formed.

ガスケット26は、例えば、耐熱性、高耐食性を有するステンレス鋼、ニッケル鋼などからなり、閉鎖部材24の鍔部24aの上面24b外周に形成されたガスケット収容溝24cに装着される。   The gasket 26 is made of, for example, stainless steel, nickel steel, or the like having heat resistance and high corrosion resistance, and is mounted in a gasket accommodating groove 24 c formed on the outer periphery of the upper surface 24 b of the flange 24 a of the closing member 24.

以上のように形成されているボデー21内に挿入したステム23に弁体22を取付けて一体にした後、ガスケット収容溝24cにガスケット26を装着した閉塞部材24を閉鎖部材装着孔38内に装着する。その後、環状部材25を環状部材装着孔40に螺着してトルクをかけると、環状部材25の上面25c外周部に形成された環状の突設部25dにより閉鎖部材24の鍔部24aを介してガスケット26が強く段部39に押圧され、ボデー21と閉鎖部材24との間を確実にシールすることができる。   After attaching the valve body 22 to the stem 23 inserted into the body 21 formed as described above and integrating it, the closing member 24 with the gasket 26 mounted in the gasket accommodating groove 24c is mounted in the closing member mounting hole 38. I do. After that, when the annular member 25 is screwed into the annular member mounting hole 40 and torque is applied, the annular protrusion 25 d formed on the outer peripheral portion of the upper surface 25 c of the annular member 25 passes through the flange 24 a of the closing member 24. The gasket 26 is strongly pressed by the step portion 39, so that the space between the body 21 and the closing member 24 can be reliably sealed.

次に、アクチュエータ3の構成について説明する。図1、図2において、アクチュエータ3は、キャップ45、ハウジング46、樹脂ベローズ47、ピストンアジャスタ48、バネ機構49、ボンネット50、軸受51、弁閉用スプリング52、ステム23、ベローズ54を有し、バルブ2の上部に搭載される。   Next, the configuration of the actuator 3 will be described. 1 and 2, the actuator 3 has a cap 45, a housing 46, a resin bellows 47, a piston adjuster 48, a spring mechanism 49, a bonnet 50, a bearing 51, a valve closing spring 52, a stem 23, and a bellows 54. Mounted on top of valve 2.

キャップ45は、例えば、ステンレス鋼(SUS304等)やアルミ、樹脂等の適宜な材質からなり、下端が開口した略円筒状に成形され、内部には樹脂ベローズ47等を収納可能に設けられる。キャップ45の上面45aの中央には継手56が設けられ、この継手56に設けられた吸排気孔56aを介してエアーが吸排気される。キャップ45の内周面45bの下方には、樹脂ベローズ47を圧接するための段部45cが形成されるとともに、下端開口部の内周には、ハウジング46と螺合させるためのメネジ部45dが形成されている。   The cap 45 is made of a suitable material such as stainless steel (SUS304 or the like), aluminum, resin, or the like, is formed in a substantially cylindrical shape having an open lower end, and is provided so as to be capable of housing the resin bellows 47 and the like. A joint 56 is provided at the center of the upper surface 45a of the cap 45, and air is sucked and exhausted through a suction hole 56a provided in the joint 56. A step 45c for pressing the resin bellows 47 is formed below the inner peripheral surface 45b of the cap 45, and a female thread 45d for screwing with the housing 46 is formed on the inner periphery of the lower end opening. Is formed.

ハウジング46は、例えば、高耐食性を有するSUS316L等のステンレス鋼からなり、略円筒状の上部ハウジング57と上部ハウジング57よりも径が細い略円筒状の下部ハウジング58を上下に連結した形状に形成され、上下端が開口している。このハウジング46の上端面46aは弁開ストッパーとしての機能を有しており、弁体22のリフト量を設定する際に用いられる。   The housing 46 is made of, for example, stainless steel such as SUS316L having high corrosion resistance, and is formed in a shape in which a substantially cylindrical upper housing 57 and a substantially cylindrical lower housing 58 smaller in diameter than the upper housing 57 are vertically connected. The upper and lower ends are open. The upper end surface 46a of the housing 46 has a function as a valve opening stopper, and is used when setting the lift amount of the valve body 22.

上部ハウジング57は、略円筒状に形成され、内部には弁閉用スプリング52等を収納可能に設けられる。上部ハウジング57の外周面57aには、鍔部57bが形成され、この鍔部57bの上面には、バネ機構49を収容する収容溝57cが形成されている。この鍔部57bの外周には、キャップ45の下端開口部の内周に形成されたメネジ部45dと螺合させるためのオネジ部57dが形成されている。   The upper housing 57 is formed in a substantially cylindrical shape, and is provided so that the valve closing spring 52 and the like can be housed therein. A flange portion 57b is formed on an outer peripheral surface 57a of the upper housing 57, and an accommodation groove 57c for accommodating the spring mechanism 49 is formed on an upper surface of the flange portion 57b. On the outer periphery of the flange portion 57b, a male screw portion 57d for screwing with a female screw portion 45d formed on the inner periphery of the lower end opening of the cap 45 is formed.

下部ハウジング58は、略円筒状に形成され、内部中央にはボンネット50挿入用の貫通孔58aが形成されている。下部ハウジング58の外周面58bには、弁本体2のボデー21上部に形成されたアクチュエータ取付け孔37内周に形成されたメネジ部37aと螺合させるためのオネジ部58cが形成されている。また、下部ハウジング58の下面58dの外周部には環状の突設部58eが形成されている。   The lower housing 58 is formed in a substantially cylindrical shape, and a through hole 58a for inserting the bonnet 50 is formed in the center of the inside. On the outer peripheral surface 58b of the lower housing 58, a male screw portion 58c for screwing with a female screw portion 37a formed on the inner periphery of the actuator mounting hole 37 formed on the body 21 of the valve body 2 is formed. An annular projecting portion 58e is formed on the outer periphery of the lower surface 58d of the lower housing 58.

樹脂ベローズ47は、例えば、耐熱性、耐食性を有するPTFE、PFA等のフッ素樹脂からなり、内部にはピストンアジャスタ48等を収納可能に設けられる。樹脂ベローズ47は伸縮可能に設けられ、一般的な圧縮バネと同様に、圧縮された時の元の状態に戻ろうとする力を発揮可能に設けられる。樹脂ベローズ47の下端にはフランジ部47aが設けられ、このフランジ部47aの上面47bにはOリング61を装着可能になっている。フッ素樹脂製のベローズは、金属製溶接ベローズに比較して疲労破壊を起こしにくいため、安価に耐高温、高耐久性を備えたアクチュエータを構成することができる。   The resin bellows 47 is made of, for example, a fluororesin such as PTFE and PFA having heat resistance and corrosion resistance, and is provided so that the piston adjuster 48 and the like can be housed inside. The resin bellows 47 is provided so as to be extendable and contractable, and is provided so as to exert a force for returning to the original state when compressed, like a general compression spring. A flange 47a is provided at a lower end of the resin bellows 47, and an O-ring 61 can be mounted on an upper surface 47b of the flange 47a. Since the bellows made of fluororesin are less likely to cause fatigue failure than the metal welded bellows, an actuator having high temperature resistance and high durability can be formed at low cost.

ピストンアジャスタ48は、例えば、高耐食性を有するSUS304等のステンレス鋼からなり、略円柱状に成形され、下面側から弁閉用スプリング52を収容する円周状の収容溝48aが上面近くまで穿設されるとともに、中央には下面側からステム23の上端部と螺合するネジ孔48bが形成され、このネジ孔48bの内周にはメネジ部48cが形成されている。また、ピストンアジャスタ48の上面48dの中央には、このピストンアジャスタ48とステム23とを固定するボルト62の頭部を収納する収納孔48eが形成されるとともに、この収納孔48eの底面48f中央には、このボルト62を挿入するための貫通孔48gが穿孔されている。また、ステム23の上端部に取付けられた状態のピストンアジャスタ48の下端面48hは、ハウジング46の上端面46a(弁開ストッパー)に係止されるとステム23の下方向への作動(弁開動作)を制限し、弁体22のリフト量を一定に制限する規制部材としての機能を有している。   The piston adjuster 48 is made of, for example, stainless steel such as SUS304 having high corrosion resistance, is formed in a substantially columnar shape, and is provided with a circumferential housing groove 48a for housing the valve closing spring 52 from the lower surface to the vicinity of the upper surface. At the same time, a screw hole 48b is formed at the center from the lower surface side to be screwed with the upper end of the stem 23, and a female screw portion 48c is formed on the inner periphery of the screw hole 48b. In the center of the upper surface 48d of the piston adjuster 48, a storage hole 48e for storing the head of the bolt 62 for fixing the piston adjuster 48 and the stem 23 is formed, and in the center of the bottom surface 48f of the storage hole 48e. Has a through hole 48g for inserting the bolt 62. When the lower end surface 48h of the piston adjuster 48 attached to the upper end portion of the stem 23 is locked to the upper end surface 46a (valve opening stopper) of the housing 46, the stem 23 operates downward (valve opening). Operation), and has a function as a regulating member for limiting the lift amount of the valve body 22 to a constant value.

バネ機構49は、金属バネ49aとリテーナ部材49bを有し、ハウジング46の上部ハウジング57の鍔部57bに形成された収容溝57c内に収容される。金属バネ49aは、高荷重を発揮しつつコンパクト化を図るため、本実施例では皿バネにより設けられ、その材質は、高温でも使用可能な例えばSUS304−CSP等のバネ用ステンレス鋼からなり、へたりを考慮した上で形成される。金属バネ49aは本実施例の皿バネに限定されるものではなく、コイルスプリングを収容溝57c内に等間隔に配置するものであって良い。バネ機構49は、金属バネ49aの上部にリテーナ部材49bを配置し、金属バネ49aの荷重を樹脂ベローズ47のフランジ部47aの下面47cに均等に負荷できるようにしている。また、このリテーナ部材49bも耐熱性、耐食性を有するSUS304等のステンレス鋼から形成される。   The spring mechanism 49 has a metal spring 49a and a retainer member 49b, and is housed in a housing groove 57c formed in a flange 57b of an upper housing 57 of the housing 46. The metal spring 49a is provided by a disc spring in this embodiment in order to achieve compactness while exerting a high load, and is made of a spring stainless steel such as SUS304-CSP which can be used even at a high temperature. It is formed in consideration of slippage. The metal spring 49a is not limited to the disc spring of the present embodiment, but may be one in which coil springs are arranged at equal intervals in the accommodation groove 57c. The spring mechanism 49 has a retainer member 49b disposed above the metal spring 49a so that the load of the metal spring 49a can be uniformly applied to the lower surface 47c of the flange portion 47a of the resin bellows 47. The retainer member 49b is also made of stainless steel such as SUS304 having heat resistance and corrosion resistance.

ボンネット50は、例えば、高耐食性を有するSUS316L等のステンレス鋼からなり、上下端が開口した略円筒状に形成され、内部に軸受51、ステム23が装着可能に設けられる。ボンネット50の下端部には鍔部50aが形成され、鍔部50aの下面50bの外周にはガスケット収容部50cが形成されている。ボンネット50の内部には、軸受51を収容する収容孔63とステムのストッパー部23dを収容する収容孔64が形成され、両収容孔63、64は中央にステム23の挿入孔を有するストッパー部65により隔てられている。   The bonnet 50 is made of, for example, stainless steel such as SUS316L having high corrosion resistance, is formed in a substantially cylindrical shape with upper and lower ends opened, and is provided with a bearing 51 and a stem 23 so that it can be mounted inside. A flange 50a is formed at the lower end of the bonnet 50, and a gasket accommodating portion 50c is formed on the outer periphery of the lower surface 50b of the flange 50a. An accommodation hole 63 for accommodating the bearing 51 and an accommodation hole 64 for accommodating the stopper portion 23d of the stem are formed inside the bonnet 50. The accommodation holes 63 and 64 are stopper portions 65 having an insertion hole for the stem 23 at the center. Are separated by

軸受51は、例えば、低摩擦性、耐摩耗性を有するとともに耐熱性に優れるバネ用ベリリウム銅又はPEEK(ポリエーテルエーテルケトン)樹脂からなり、略円筒状に形成されている。軸受51の内部には、ステム挿入用の貫通孔51aが形成され、この貫通孔51aに対してステム23が昇降自在に設けられる。このように簡単な構成により形成された軸受51は、300℃の高温でも無給油でスムーズにステム23を支持して摺動させること可能となるので、シンプルな構造で高耐久性を有するアクチュエータを構成することができる。   The bearing 51 is made of, for example, beryllium copper for a spring or PEEK (polyether ether ketone) resin having low friction and wear resistance and excellent heat resistance, and is formed in a substantially cylindrical shape. Inside the bearing 51, a through hole 51a for inserting a stem is formed, and the stem 23 is provided in the through hole 51a so as to be movable up and down. Since the bearing 51 formed by such a simple structure can smoothly support and slide the stem 23 without lubrication even at a high temperature of 300 ° C., an actuator having a simple structure and high durability can be provided. Can be configured.

弁閉用スプリング52は、例えば、SUS631−WPCやSWOSC−Vからなり、上部ハウジング57とピストンアジャスタ48の間に圧縮された状態で収納されるため、常にピストンアジャスタ48を上方向に弾発付勢している。この結果、ピストンアジャスタ48、ステム23と一体になっている弁体22は常に弁座33方向に向けて付勢され、弁座シール41が弁座33に当接しているため、バルブ2は常時閉状態に維持される。   The valve closing spring 52 is made of, for example, SUS631-WPC or SWOSC-V, and is stored in a compressed state between the upper housing 57 and the piston adjuster 48, so that the piston adjuster 48 is always elastically pushed upward. I'm going. As a result, the valve body 22 integrated with the piston adjuster 48 and the stem 23 is constantly urged toward the valve seat 33, and the valve seat seal 41 is in contact with the valve seat 33. It is kept closed.

ステム23の上端部には、ピストンアジャスタ48とステム23を固定するボルト62をねじ込むためのネジ穴23bが形成され、ステム23の上部外周には、ピストンアジャスタ48のネジ孔48bの内周に形成されたメネジ部48cと螺合させるためのオネジ部23cが形成されている。このオネジ部23cにピストンアジャスタ48のメネジ部48cを螺合させることにより隙間調整ネジが構成され、ステム23上部へのピストンアジャスタ48の上下方向の取付け位置(取付高さ)を調整することができる。ピストンアジャスタ48の取付け位置を調整した後、ネジ穴23bにボルト62を締め込むことにより、ステム23とピストンアジャスタ48との位置関係を固定することができる。   A screw hole 23 b for screwing a piston adjuster 48 and a bolt 62 for fixing the stem 23 is formed at an upper end portion of the stem 23, and an inner periphery of a screw hole 48 b of the piston adjuster 48 is formed on an upper outer periphery of the stem 23. The male screw portion 23c for screwing with the female screw portion 48c formed is formed. By screwing the female thread portion 48c of the piston adjuster 48 into the male screw portion 23c, a gap adjusting screw is formed, and the vertical mounting position (mounting height) of the piston adjuster 48 on the stem 23 can be adjusted. . After adjusting the mounting position of the piston adjuster 48, the bolt 62 is screwed into the screw hole 23b, whereby the positional relationship between the stem 23 and the piston adjuster 48 can be fixed.

ステム23の中程にはストッパー23dが設けられており、ストッパー23dがボンネット50の収容部64の上部に設けられたストッパー部65に当接し、ステム23の上方への動作が規制されることで、弁座シール41に必要以上の荷重が作用することを防止している。また、ステム23の下端部には、前述のとおりオネジ部23aが形成され、弁体22のステム装着孔22cの内周に形成したメネジ部22dに螺着することで、ステム23を弁体22に取付け一体とすることができる。   A stopper 23d is provided in the middle of the stem 23, and the stopper 23d abuts against a stopper 65 provided on the upper part of the housing portion 64 of the bonnet 50, so that the upward movement of the stem 23 is regulated. This prevents an excessive load from acting on the valve seat seal 41. The male screw portion 23a is formed at the lower end portion of the stem 23 as described above, and the stem 23 is screwed into a female screw portion 22d formed on the inner periphery of the stem mounting hole 22c of the valve body 22. And can be integrated into one.

ベローズ54は、例えば、使用温度300℃の耐熱性を有するコバルト合金で形成され、伸縮可能に設けられている。ベローズ54は、ステム23に溶接され、弁体22、ステム23、ベローズ54は一体に構成されることになる。このため、前述したように、流体がベローズ54側から流れる場合には、弁体22とステム23とベローズ54は一体に連結されているため、弁体シール面積とベローズの有効面積が略同等であれば、流体圧力による荷重はバランスがとれ、流体圧力による荷重は増えないため、弁閉用のスプリング荷重は小さくて済み、アクチュエータを小型化することができる。   The bellows 54 is formed of, for example, a heat-resistant cobalt alloy having a use temperature of 300 ° C., and is provided so as to be able to expand and contract. The bellows 54 is welded to the stem 23, and the valve body 22, the stem 23, and the bellows 54 are integrally formed. For this reason, as described above, when the fluid flows from the bellows 54 side, the valve body 22, the stem 23, and the bellows 54 are integrally connected, so that the valve body seal area and the effective area of the bellows are substantially equal. If so, the load due to the fluid pressure is balanced, and the load due to the fluid pressure does not increase. Therefore, the spring load for closing the valve can be reduced, and the actuator can be downsized.

以上のように構成されたアクチュエータ付きバルブ1を組み立てるにあたっては、ベローズ54を溶接したステム23を上端側からボンネット50の内部に装着された軸受51の貫通孔51aに挿入し、ステム23のストッパー23dがボンネット50の収容部64の上部に設けられたストッパー部65に当接するまで挿入する。   In assembling the valve 1 with an actuator configured as described above, the stem 23 to which the bellows 54 has been welded is inserted into the through hole 51a of the bearing 51 mounted inside the bonnet 50 from the upper end side, and the stopper 23d of the stem 23 is inserted. Until it comes into contact with a stopper portion 65 provided on the upper portion of the accommodation portion 64 of the bonnet 50.

次いで、ボンネット50の鍔部50aのガスケット収容部50cに、ガスケット26と同様にステンレス鋼、ニッケル鋼などにより形成されたガスケット66を装着した後、ステム23の下端側からボデー21のアクチュエータ挿入孔30に挿入し、ボンネット50の鍔部50aを収容孔35内に挿入するとともに、ガスケット66を段部36に当接させる。この後、下部ハウジング58の貫通孔58aにボンネット50を挿通させながらハウジング46をアクチュエータ取付け孔37内周のメネジ部37aに螺着する。このとき、ハウジング46は一定のトルクを掛けて確実にボデー21に螺着させるため、ボデー21の弁座33面からハウジング46の上端面46aまでの距離Hは固定される。   Next, a gasket 66 made of stainless steel, nickel steel or the like is attached to the gasket accommodating portion 50c of the flange portion 50a of the bonnet 50 similarly to the gasket 26, and then the actuator insertion hole 30 of the body 21 is inserted from the lower end side of the stem 23. And the flange 50a of the hood 50 is inserted into the accommodation hole 35, and the gasket 66 is brought into contact with the step 36. Thereafter, the housing 46 is screwed into the female screw portion 37a on the inner periphery of the actuator mounting hole 37 while the bonnet 50 is inserted through the through hole 58a of the lower housing 58. At this time, the distance H from the valve seat 33 surface of the body 21 to the upper end surface 46a of the housing 46 is fixed so that the housing 46 is securely screwed to the body 21 by applying a constant torque.

次に、ボデー21下部の弁体取付け孔31から弁体22を挿入し、ステム23下端部に形成されたオネジ部23aに弁体22を螺着した後、ガスケット26を装着した閉鎖部材24を閉鎖部材装着孔38に挿入し、環状部材25を環状部材装着孔40に螺着する。   Next, the valve body 22 is inserted from the valve body mounting hole 31 below the body 21, and the valve body 22 is screwed into the male screw portion 23 a formed at the lower end of the stem 23, and then the closing member 24 with the gasket 26 attached thereto is removed. The annular member 25 is inserted into the closing member mounting hole 38 and the annular member 25 is screwed into the annular member mounting hole 40.

その後、ハウジング46の内部に開閉用スプリング52の下端部を収納し、開閉用スプリング52の上端部をピストンアジャスタ48の収容溝48aに収納しながらピストンアジャスタ48のネジ孔48b内周に形成されたメネジ部48cをステム23の上端部外周に形成されたオネジ部23cに螺合させる。ピストンアジャスタ48のメネジ部48cとステム23のオネジ部23cを螺合させると隙間調整ネジが構成されるので、この段階で、弁体22のリフト量Lを調整することができる。   Thereafter, the lower end of the opening / closing spring 52 is accommodated in the housing 46, and the upper end of the opening / closing spring 52 is accommodated in the accommodation groove 48a of the piston adjuster 48, and is formed in the inner periphery of the screw hole 48b of the piston adjuster 48. The female screw portion 48c is screwed into the male screw portion 23c formed on the outer periphery of the upper end of the stem 23. When the female screw portion 48c of the piston adjuster 48 and the male screw portion 23c of the stem 23 are screwed together, a gap adjusting screw is formed. At this stage, the lift amount L of the valve body 22 can be adjusted.

リフト量Lの調整にあたっては、図2(c)に示す様に、ハウジング46の上端面46a(弁開ストッパー)とピストンアジャスタ48の下端面48h(規制部材)との間に隙間ゲージ68を挿入し、ハウジング46の上端面46aとピストンアジャスタ48の下端面48hが各々隙間ゲージ(リフト設定用シム)68に当接するまでピストンアジャスタ48をステム23のオネジ部23cにねじ込み、その係合を維持した状態でボルト62を締め込んでステム23に対するピストンアジャスタ48のねじ込み高さ位置を固定した後、隙間ゲージ68を抜き取るだけで良い。図に示されているように、ピストンアジャスタ48の下端面48hの径はハウジング46の上端面46aの径と略同一であるため、弁体22を離座させる方向(弁開方向)に動作するステム23の動きは、ピストンアジャスタ48の下端面48hがハウジング46の上端面46aに当接すると、ハウジング46の上端面46aが弁開ストッパーとして作用して係止されるので、隙間ゲージ(リフト設定用シム)68の厚みがそのまま弁体22のリフト量Lとなる。この調整方法によると、バルブのボデーやボンネットの寸法に加工精度等によるバラツキがあっても、ピストンアジャスタ48の下端面48h(規制部材)とハウジング46の上端面46a(弁開ストッパー)との隙間を調整し、バルブ毎にリフト量を一定に設定するだけで所定のCv値を得ることができるため、従来のバルブのように流量を調べてリフト量を調整するなどの複雑な作業によりバルブのCv値の設定をする必要がないので、作業性が大幅に向上するだけでなく、流量の安定化を図ることもできる。また、各Cv値に対応して厚さの異なる隙間ゲージ(例えば、0.8mm〜1.2mm程度)を事前に準備しておけば、バルブのCv値を所要の値に簡単に設定することも可能である。
なお、ハウジング46の上端面46aとピストンアジャスタ48の下端面48hとの間の隙間(間隔)の調整は、上記の隙間ゲージ(リフト設定用シム)を使用する方法が一番簡単かつ確実ではあるが、この他にもノギス等を使用して隙間を計測して隙間を調整することもできる。
In adjusting the lift amount L, as shown in FIG. 2C, a gap gauge 68 is inserted between the upper end surface 46a of the housing 46 (valve opening stopper) and the lower end surface 48h of the piston adjuster 48 (restriction member). Then, the piston adjuster 48 is screwed into the male screw portion 23c of the stem 23 until the upper end surface 46a of the housing 46 and the lower end surface 48h of the piston adjuster 48 abut against the clearance gauge (lift setting shim) 68, and the engagement is maintained. After the bolt 62 is tightened in this state to fix the screwing height position of the piston adjuster 48 with respect to the stem 23, it is only necessary to remove the clearance gauge 68. As shown in the drawing, since the diameter of the lower end surface 48h of the piston adjuster 48 is substantially the same as the diameter of the upper end surface 46a of the housing 46, the piston adjuster 48 operates in the direction to separate the valve body 22 (the valve opening direction). When the lower end surface 48h of the piston adjuster 48 comes into contact with the upper end surface 46a of the housing 46, the upper end surface 46a of the housing 46 acts as a valve opening stopper and is locked. The thickness of the shim 68 becomes the lift amount L of the valve body 22 as it is. According to this adjustment method, even if the dimensions of the valve body and the bonnet vary due to processing accuracy and the like, the gap between the lower end surface 48h (the regulating member) of the piston adjuster 48 and the upper end surface 46a (the valve opening stopper) of the housing 46. The Cv value can be obtained by simply adjusting the lift amount and setting the lift amount to a constant value for each valve. Since there is no need to set the Cv value, not only the workability is greatly improved, but also the flow rate can be stabilized. If gap gauges having different thicknesses (for example, about 0.8 mm to 1.2 mm) are prepared in advance corresponding to each Cv value, the Cv value of the valve can be easily set to a required value. Is also possible.
Adjustment of the gap (interval) between the upper end surface 46a of the housing 46 and the lower end surface 48h of the piston adjuster 48 is the simplest and most reliable method using the above-described gap gauge (lift setting shim). However, besides this, the gap can be adjusted by measuring the gap using a caliper or the like.

次に、ハウジング46の上部ハウジング57の鍔部57bに形成された収容溝57cにバネ機構49を収容し、ピストンアジャスタ48の外部に樹脂ベローズ47を被せた後、キャップ45をハウジング46の鍔部57b外周に形成されたオネジ部57dに螺着すると、キャップ45の内側と樹脂ベローズ47との間は樹脂ベローズ47の外側に装着されたOリング61によりシールされるとともに、樹脂ベローズ47のフランジ部47aとバネ機構49とリテーナ部材49bと間は、バネ機構49の金属バネ49aの弾発力によりリテーナ部材49bが樹脂ベローズ47のフランジ部47aの下面47cを押圧することによりシールされる。この結果、キャップ45の内側と樹脂ベローズ47の外側には密閉された空間Bが形成される。   Next, the spring mechanism 49 is housed in the housing groove 57c formed in the flange portion 57b of the upper housing 57 of the housing 46, and the resin bellows 47 is put on the outside of the piston adjuster 48. When screwed into a male screw portion 57d formed on the outer periphery of the resin bellows 47, the space between the inside of the cap 45 and the resin bellows 47 is sealed by an O-ring 61 mounted on the outside of the resin bellows 47, and the flange portion of the resin bellows 47 is formed. The space between 47a, the spring mechanism 49 and the retainer member 49b is sealed by the retainer member 49b pressing the lower surface 47c of the flange portion 47a of the resin bellows 47 by the elastic force of the metal spring 49a of the spring mechanism 49. As a result, a closed space B is formed inside the cap 45 and outside the resin bellows 47.

継手56を介して図示しないエアー源から空間B内にエアーが供給されると、空間B内の気圧が上昇して樹脂ベローズ47の上面を下方に押圧する。このエアーの押圧力がピストンアジャスタ48を介してピストンアジャスタ48を内側から押圧する弁閉用スプリング52の弾発力に打ち勝つと、ピストンアジャスタ48にボルト62により固定されたステム23は、ピストンアジャスタ48の下端面48hが弁開ストッパー部として機能するハウジング46の上端面46aに当接するまで押し下げられ、図3において、弁体22が弁座33から所定のリフト量だけ離座してカーテン面積を有する円筒状の弁座開口面積Vを破線に示すように形成し、所定のCv値で流体を供給することができる。エアー源からのエアーの供給を停止すると、弁閉用スプリング52の弾発力がピストンアジャスタ48を介して弁体22を押し上げ、弁座シール41が弁座33に着座する。 When air is supplied into the space B from an air source (not shown) via the joint 56, the air pressure in the space B rises and presses the upper surface of the resin bellows 47 downward. When the pressing force of the air overcomes the resilience of the valve closing spring 52 which presses the piston adjuster 48 from the inside via the piston adjuster 48, the stem 23 fixed to the piston adjuster 48 by the bolt 62 causes the piston adjuster 48 to move. 3 is pushed down until the lower end face 48h of the housing abuts on the upper end face 46a of the housing 46 functioning as a valve opening stopper . In FIG. 3, the valve body 22 is separated from the valve seat 33 by a predetermined lift amount L to reduce the curtain area. A cylindrical valve seat opening area V is formed as shown by a broken line, and a fluid can be supplied at a predetermined Cv value. When the supply of air from the air source is stopped, the resiliency of the valve closing spring 52 pushes up the valve body 22 via the piston adjuster 48, and the valve seat seal 41 is seated on the valve seat 33.

高温の原料ガスを供給した結果アクチュエータが高温になると、金属製のキャップ45と合成樹脂製の樹脂ベローズ47とでは熱膨張率が異なるため、キャップ45と樹脂ベローズ47との間をシールするOリング61によるシール効果は200〜250℃が限界であるが、それ以上の高温では、樹脂ベローズ47のフランジ部47aの下面47cをバネ機構49の金属バネ49aの弾発力を受けたリテーナ部材49bが押圧することによりシール性を維持することができる。   When the temperature of the actuator becomes high as a result of supplying the high-temperature raw material gas, the metal cap 45 and the synthetic resin resin bellows 47 have different coefficients of thermal expansion. Therefore, an O-ring for sealing between the cap 45 and the resin bellows 47. The sealing effect of 61 is limited to 200 to 250 ° C., but at a higher temperature, the lower surface 47 c of the flange portion 47 a of the resin bellows 47 is pressed by the retainer member 49 b receiving the elastic force of the metal spring 49 a of the spring mechanism 49. By pressing, the sealing property can be maintained.

次に他の実施形態について図4に基づいて説明する。なお、図1に示した実施形態と共通する部分については同一の符号を使用し、説明を省略する。
他の実施形態においては、樹脂ベローズに変えて、コバルト合金ベローズ69を使用している。コバルト合金ベローズ69は、板厚0.2mm〜0.3mmのコバルト合金で形成され、キャップ45の内周面45bの下端に溶接シール構造で取り付ける構成としているため、極めて耐熱性に優れ、300℃までの高温状態で使用可能であるとともに、外部リークの心配がない利点があるが、樹脂ベローズよりも高コストとなる。
なお、この他の実施形態では、樹脂ベローズに変えてコバルト合金ベローズ69を使用し、コバルト合金ベローズ69をキャップ45の内周面45bの下端に溶接する構成とした以外は図1に示した実施形態と同じであるため、それ以外の部分の構成、作用、効果は、図1に示した実施形態と同じである。
Next, another embodiment will be described with reference to FIG. The same parts as those in the embodiment shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
In another embodiment, a cobalt alloy bellows 69 is used instead of the resin bellows. The cobalt alloy bellows 69 is formed of a cobalt alloy having a thickness of 0.2 mm to 0.3 mm and is attached to the lower end of the inner peripheral surface 45b of the cap 45 by a welded seal structure. It has the advantage of being able to be used in high temperature conditions up to this point and of having no fear of external leakage, but it is more expensive than resin bellows.
In this other embodiment, a cobalt alloy bellows 69 is used instead of the resin bellows, and the cobalt alloy bellows 69 is welded to the lower end of the inner peripheral surface 45b of the cap 45, except that the embodiment shown in FIG. Since the configuration is the same as that of the embodiment, the configuration, operation, and effect of the other portions are the same as those of the embodiment shown in FIG.

〔実施例〕
次に、実施例により本発明におけるアクチュエータ付きバルブの効果を説明する。実施例では、図1に示した実施形態と同一の構造のバルブを使用したので、本説明においては、図1〜3の符号をそのまま使用する。実施例の流路26、27の径は10.2mm、垂直連通路32の径は10.9mm、傾斜連通路34の径は8.5mmであるため、最小流路面積となるのは傾斜連通路34の部分であり、最小流路径は8.5mm、最小流路面積は56.7mmとなる。
〔Example〕
Next, the effects of the valve with actuator of the present invention will be described with reference to examples. In the example, a valve having the same structure as that of the embodiment shown in FIG. 1 was used, and therefore, in this description, the reference numerals in FIGS. In the embodiment, the diameters of the flow paths 26 and 27 are 10.2 mm, the diameter of the vertical communication path 32 is 10.9 mm, and the diameter of the inclined communication path 34 is 8.5 mm. This is the portion of the passage 34, the minimum flow path diameter is 8.5 mm, and the minimum flow path area is 56.7 mm 2 .

本発明におけるアクチュエータ付きバルブでは、弁座シール径は最小流路径の1.5倍以上に設定するが、本実施例ではバルブの内部構造も考慮し、弁座シール径を最小流路径の1.5倍である12.75mmより若干大きい値である14mmに設定した。弁座シール径を14mmとしたときに、弁座開口面積が最小流路面積と同等又は同等以下となる弁体リフト量を求めるにあたり、弁座開口面積は、弁座シール径にπ(円周率)と弁体リフト量を乗じたものであり、また、最小流路面積と同等又は同等以下であるから、最小流路面積(56.7mm)を弁座シール径(14mm)とπで除した値である1.29mmよりも小さな値の1.2mmをリフト量とし、弁座開口面積を最小流路面積の同等以下の52.8mmになるようにした。 In the valve with an actuator according to the present invention, the valve seat seal diameter is set to 1.5 times or more of the minimum flow path diameter. However, in this embodiment, the valve seat seal diameter is set to 1. It was set to 14 mm which is a value slightly larger than 12.75 mm which is five times. When the valve seat lift diameter at which the valve seat opening area is equal to or less than the minimum flow path area when the valve seat seal diameter is 14 mm is obtained, the valve seat opening area is determined by the following equation. Rate) multiplied by the valve lift amount, and is equal to or less than the minimum flow passage area. Therefore, the minimum flow passage area (56.7 mm 2 ) is determined by the valve seat seal diameter (14 mm) and π. The lift amount was set to 1.2 mm which was smaller than the divided value of 1.29 mm, and the valve seat opening area was set to 52.8 mm 2 which was equal to or less than the minimum flow path area.

以上の通り設定した本実施例において、弁体リフト量1.2mmにおけるバルブのCv値を計測した結果、Cv値は1.2であった。従来のメタルダイヤフラムバルブでは、メタルダイヤフラムのリフト量を制限してメタルダイヤフラムの耐久性を確保しているため、Cv値は最大でも0.6程度である。これに対し、本実施例のCv値は1.2であるから、本発明におけるアクチュエータ付きバルブは、従来のメタルダイヤフラムバルブに比して約2倍の大流量を供給可能である。また、同時にバルブの動作速度を計測した結果、弁体の開閉動作は約10msという短時間に高速で行われており、弁体リフト量を最小に設定した効果が顕著に表れている。   In this example set as described above, the Cv value of the valve at a valve body lift amount of 1.2 mm was measured, and as a result, the Cv value was 1.2. In the conventional metal diaphragm valve, the lift amount of the metal diaphragm is limited to secure the durability of the metal diaphragm, and therefore, the Cv value is about 0.6 at the maximum. On the other hand, since the Cv value of the present embodiment is 1.2, the valve with an actuator according to the present invention can supply a flow rate about twice as large as that of a conventional metal diaphragm valve. Further, as a result of simultaneously measuring the operation speed of the valve, the opening and closing operation of the valve element is performed at a high speed in a short time of about 10 ms, and the effect of setting the valve element lift amount to a minimum is remarkable.

以上説明したように、本発明におけるアクチュエータ付きバルブでは、ボデー内の流路の最小流路面積と同等又は同等以下に弁座開口面積を設定した弁体において、弁座シール面積を最小流路径から求めた最小径の1.5倍以上に設定することにより、弁体のリフト量を最小化することができ、高いCv値を確保しながら弁体の高速開閉動作を可能とするとともに、バルブの耐久性を向上させることができる。また、バルブのボデーやボンネットの寸法にバラツキがあっても、隙間ゲージを使用してバルブ毎にリフト量を一定値に調整することにより所期のCv値に容易に設定することができるために極めて作業性に優れるとともに、流量の安定化を図ることができる。   As described above, in the valve with an actuator according to the present invention, in the valve body in which the valve seat opening area is set equal to or less than the minimum flow passage area of the flow passage in the body, the valve seat seal area is changed from the minimum flow passage diameter. By setting the minimum diameter to 1.5 times or more of the obtained minimum diameter, the lift amount of the valve body can be minimized, and a high-speed opening and closing operation of the valve body can be performed while securing a high Cv value. Durability can be improved. In addition, even if the dimensions of the valve body and bonnet vary, the desired Cv value can be easily set by adjusting the lift amount to a constant value for each valve using a clearance gauge. The workability is extremely excellent, and the flow rate can be stabilized.

本発明におけるアクチュエータ付きバルブは、ALD法を用いた半導体製造装置用に好適であるだけでなく、化学産業や薬品産業においても適用できるものである。   The valve with an actuator according to the present invention is suitable not only for a semiconductor manufacturing apparatus using the ALD method but also for the chemical industry and the pharmaceutical industry.

1 アクチュエータ付きバルブ
2 バルブ
3 アクチュエータ
21 ボデー
22 弁体
23 ステム
33 弁座
41 弁座シール
46 ハウジング
46a 上端面(弁開ストッパー)
47 樹脂ベローズ
47a フランジ部
48 ピストンアジャスタ
48h 下端面(規制部材)
49a 金属バネ
51 軸受
68 隙間ゲージ(リフト設定用シム)
A 最小流路面積
B 空間
D 最小流路径
L リフト量
S 弁座シール径
V 弁座開口面積
1 Valve with actuator 2 Valve
3 Actuator 21 Body 22 Valve Body 23 Stem 33 Valve Seat 41 Valve Seat Seal 46 Housing 46a Upper End (Valve Opening Stopper)
47 Resin bellows 47a Flange part 48 Piston adjuster 48h Lower end surface (restriction member)
49a Metal spring
51 Bearing 68 Clearance gauge (lift setting shim)
A Minimum flow area B Space D Minimum flow path diameter L Lift amount S Valve seat seal diameter V Valve seat opening area

Claims (3)

出入口の流路に連通するボデーの内部に設けた弁室内に下方側に向けて環状で水平面状の弁座と、この弁座の下方位置にアクチュエータで昇降動するステムの下端に設けた弁体と、この弁体に上方側に向けて前記弁座と対向させた位置に環状で水平面状の弁座シールとを備えた逆座シール構造であり、前記弁座シールと弁座との間には、上下が水平面状で、かつ垂直状態の円筒形状で形成されるカーテン面積を有した弁座開口面積が形成され、この弁座開口面積を前記ボデー内の流路の最小流路面積と同等又は同等以下に設定し、前記弁座の弁座シール径を前記最小流路面積から求めた最小径の1.5倍から2倍の範囲に設定し、かつ前記弁体のリフト量を最小に設定するようにしたことを特徴とするアクチュエータ付きバルブ。  A valve seat provided in a valve chamber provided inside a body communicating with the flow passage of the entrance and exit, having an annular horizontal horizontal surface facing downward, and a valve body provided at a lower end of a stem which is moved up and down by an actuator below the valve seat. And an inverted horizontal seat seal structure provided with an annular and horizontal valve seat seal at a position facing the valve seat toward the upper side of the valve body, and between the valve seat seal and the valve seat. A valve seat opening area having a curtain area that is formed in a cylindrical shape in which the upper and lower surfaces are horizontal and vertical is formed, and the valve seat opening area is equivalent to the minimum flow path area of the flow path in the body. Or less than or equal to, the valve seat seal diameter of the valve seat is set in the range of 1.5 to 2 times the minimum diameter obtained from the minimum flow area, and the lift amount of the valve body is minimized A valve with an actuator, characterized in that it is set. 前記弁体と一体に連結されたステムの上部に規制部材を螺着するとともに、その下方に前記規制部材を係止して前記弁体のリフト量を制限する弁開ストッパーを配し、前記弁体の着座時に前記規制部材の前記ステムに対するねじ込み高さ位置を調整することにより、前記規制部材と前記弁開ストッパーとの間隔を調整し、前記弁体のリフト量を設定するようにした請求項1に記載のアクチュエータ付きバルブ。 A regulating member is screwed onto an upper portion of a stem integrally connected to the valve body, and a valve opening stopper for locking the regulating member and limiting a lift amount of the valve body is disposed below the regulating member, by adjusting the screwing height position relative to the stem of the body the regulating member during seating, by adjusting the distance between the valve open stopper and the regulating member, the claims and to set the lift amount of the valve body 2. The valve with an actuator according to 1 . アクチュエータに樹脂製ベローズを用いた請求項1又は2に記載のアクチュエータ付きバルブ。 The valve with an actuator according to claim 1 or 2, wherein a resin bellows is used for the actuator.
JP2015176867A 2015-09-08 2015-09-08 Valve with actuator Active JP6632274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015176867A JP6632274B2 (en) 2015-09-08 2015-09-08 Valve with actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015176867A JP6632274B2 (en) 2015-09-08 2015-09-08 Valve with actuator

Publications (2)

Publication Number Publication Date
JP2017053405A JP2017053405A (en) 2017-03-16
JP6632274B2 true JP6632274B2 (en) 2020-01-22

Family

ID=58320594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015176867A Active JP6632274B2 (en) 2015-09-08 2015-09-08 Valve with actuator

Country Status (1)

Country Link
JP (1) JP6632274B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124172A (en) * 2018-01-17 2019-07-25 愛三工業株式会社 Exhaust recirculation valve
JP6858145B2 (en) * 2018-02-13 2021-04-14 太平洋工業株式会社 Electric valve
CN114382896B (en) * 2022-01-12 2023-10-27 合肥通用机械研究院有限公司 Spring direct load type safety valve for low-temperature medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH071381U (en) * 1993-06-10 1995-01-10 シーケーディ株式会社 Directional control valve
JPH074534A (en) * 1993-06-18 1995-01-10 Hitachi Metals Ltd Automatic regulating balve
JP3368518B2 (en) * 1995-06-30 2003-01-20 三菱自動車工業株式会社 Multi-stage opening valve device

Also Published As

Publication number Publication date
JP2017053405A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5243513B2 (en) Valve seat structure of fluid control valve
TWI662216B (en) Fluid controller
RU2315348C2 (en) Fluid pressure regulator
US10883615B2 (en) Metal diaphragm valve
JP6632274B2 (en) Valve with actuator
TWI795473B (en) Fluid control valve
TWI740968B (en) Manufacturing method of fluid control valve
KR20090080474A (en) Constant flow rate valve
US11306830B2 (en) Valve device
US11448623B2 (en) Valve assembly for a gas chromatograph
KR20190015568A (en) Fluid control valve
JP4190866B2 (en) Flow control device
US11174949B2 (en) Actuator and valve device using the same
JPWO2020021911A1 (en) Valve device, fluid control device, fluid control method, semiconductor manufacturing device and semiconductor manufacturing method
JP6286558B2 (en) High cycle high speed valve
KR102361101B1 (en) Valve Units and Fluid Control Units
JP2005321061A (en) Valve for high temperature
WO2015052863A1 (en) Pressure reducing valve
JP2020056430A (en) Diaphragm valve and flow rate control device
JP6261426B2 (en) Check valve
JP7440276B2 (en) diaphragm valve
US20220290764A1 (en) Valve device, fluid control device, and manufacturing method of valve device
RU2232327C2 (en) Shut-off adjusting valve
JP2020165476A (en) Diaphragm valve
JP4181025B2 (en) Orifice member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191210

R150 Certificate of patent or registration of utility model

Ref document number: 6632274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250