JP6632093B2 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
JP6632093B2
JP6632093B2 JP2018542031A JP2018542031A JP6632093B2 JP 6632093 B2 JP6632093 B2 JP 6632093B2 JP 2018542031 A JP2018542031 A JP 2018542031A JP 2018542031 A JP2018542031 A JP 2018542031A JP 6632093 B2 JP6632093 B2 JP 6632093B2
Authority
JP
Japan
Prior art keywords
signal
color
pixel
image signal
median value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018542031A
Other languages
Japanese (ja)
Other versions
JPWO2018061615A1 (en
Inventor
中村 和彦
和彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Publication of JPWO2018061615A1 publication Critical patent/JPWO2018061615A1/en
Application granted granted Critical
Publication of JP6632093B2 publication Critical patent/JP6632093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/12Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with one sensor only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/67Circuits for processing colour signals for matrixing

Description

本発明は、撮像装置に関するものである。   The present invention relates to an imaging device.

テレビジョンカメラは、6色独立マスキングや12色マスキングと称される、画素ごとに特定の色相を検出し、画素ごとに特定の色相を補正する機能を有している(特許文献1参照)。
ところで、単板カラーカメラでは、RGBゲインおよびリニアマトリックス等を用いて、電気的に色調補正を行っている(特許文献4参照)。
A television camera has a function of detecting a specific hue for each pixel and correcting a specific hue for each pixel, referred to as 6-color independent masking or 12-color masking (see Patent Document 1).
Meanwhile, in a single-chip color camera, color tone correction is performed electrically using an RGB gain, a linear matrix, and the like (see Patent Document 4).

そして、RGBゲインから被写体の照明の色温度を算出し、ビューファインダやモニター映像等に色温度を表示している(特許文献6参照)。
さらに、被写体の照明の色温度に比例してRGBゲインおよびリニアマトリクスを可変している(特許文献5参照)。
Then, the color temperature of the illumination of the subject is calculated from the RGB gain, and the color temperature is displayed on a viewfinder, a monitor image, or the like (see Patent Document 6).
Further, the RGB gain and the linear matrix are changed in proportion to the color temperature of the illumination of the subject (see Patent Document 5).

赤、緑、青の3原色成分からなる入力映像信号に対して、リニアマトリックス変換を行うリニアマトリックス変換部と、前記3原色成分の入力映像信号同士の差分値の大きさに応じて、前記リニアマトリックス変換部で用いる係数を設定する。無彩色に近い被写体に対するリニアマトリクス係数を小さくし、無彩色に近い被写体の色を必要以上に変えないようにでき、さらに彩度の高い被写体に対しては従来どおりの色補正を行うことができる。
しかしながら、RGBゲインおよびリニアマトリックスでは、画素ごとに特定の色相を検出し、画素ごとに特定の色相を補正する12色マスキングの様に、細かい調整が困難である。
A linear matrix conversion unit that performs a linear matrix conversion on an input video signal including three primary color components of red, green, and blue; and a linear matrix conversion unit that performs linear matrix conversion on the basis of a difference value between the input video signals of the three primary color components. Set the coefficients used in the matrix conversion unit. The linear matrix coefficient for objects that are close to achromatic can be reduced so that the colors of objects that are close to achromatic are not changed unnecessarily, and color correction can be performed as usual for objects that have high saturation. .
However, with the RGB gain and the linear matrix, it is difficult to make fine adjustments such as 12-color masking for detecting a specific hue for each pixel and correcting the specific hue for each pixel.

さらに、リニアマトリックスでも、画素ごとに特定の色相を検出し画素ごとに特定の色相を補正する12色マスキングでも、色補正を行うと、低色温度照明下では雑音の多いBの雑音が、RやGにも混入し、実行S/Nが低下する。高色温度照明下で電気的に色温度補正を行うと雑音の多いRの雑音が、BやGにも混入し、実行S/Nが低下する。そのため、LPF信号からリニアマトリックスを生成している(特許文献2、特許文献3参照)。   Furthermore, in linear matrix, or in 12-color masking in which a specific hue is detected for each pixel and a specific hue is corrected for each pixel, when the color correction is performed, B noise that is noisy under low color temperature illumination becomes R noise. And G, and the execution S / N decreases. When color temperature correction is performed electrically under high color temperature illumination, the noisy R noise is mixed into B and G, and the execution S / N is reduced. Therefore, a linear matrix is generated from the LPF signal (see Patent Literature 2 and Patent Literature 3).

また、視特性色帯域は輝度YやGは広く、RやBやR−YやB−Yは狭い(非特許文献1参照)。しかし、クロマキー処理等で、RやBやR−YやB−Yの映像信号はY同等の帯域いわゆる4:4:4が要求される。妥協点として、RやBやR−YやB−Yの映像信号の帯域は輝度YやGの映像信号の帯域の半分のいわゆる4:2:2の伝送や記録が一般的である。   In the visual characteristic color band, luminances Y and G are wide, and R, B, RY, and BY are narrow (see Non-Patent Document 1). However, video signals of R, B, RY, and BY require a band equivalent to Y, so-called 4: 4: 4, due to chroma key processing or the like. As a compromise, the so-called 4: 2: 2 transmission or recording of the band of the video signal of R, B, RY or BY is half of the band of the video signal of luminance Y or G in general.

特開平9−247701号公報JP-A-9-247701 特開2007−180893号公報JP 2007-180893 A 特開2008−118373号公報JP 2008-118373 A 特開2010−171844号公報JP 2010-171844 A 特開2004−320148号公報JP-A-2004-320148 特開2008−199207号公報JP 2008-199207 A

テレビジョン学会誌 33(12), 1008-1013, 1979-11-01 4-2 色にじみの知覚とクロミナンス信号帯域(NHK)The Journal of the Institute of Television Engineers of Japan 33 (12), 1008-1013, 1979-11-01 4-2 Color blur perception and chrominance signal band (NHK)

本発明では、(リニアマトリックスでも、画素ごとに特定の色相を検出し画素ごとに特定の色相を補正する12色マスキングでも、)色調補正を行うと、雑音の多いB又はRの雑音が、他の色にも混入し、実行S/Nが低下することを防止し、本線信号の色帯域維持と、色補正の改善と実行S/Nの維持とを両立することを目的とする。   According to the present invention, when tone correction is performed (either in a linear matrix, or in 12-color masking in which a specific hue is detected for each pixel and a specific hue is corrected for each pixel), the noisy B or R noise becomes It is also an object of the present invention to prevent the execution S / N from lowering and prevent the reduction of the execution S / N, and at the same time maintain the color band of the main line signal, improve the color correction, and maintain the execution S / N.

本発明は、固体撮像素子を有する撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、又はG映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、等のG映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、少なくとも明部もR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間し、少なくとも明部もB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間した信号から色調補正信号を生成する色調補正手段を有することを特徴とする撮像装置である。
The present invention relates to an imaging device having a solid-state imaging device,
R, G1, G2, B imagers with color filters in a Bayer array and means for processing their signals, or R, G1, G2, B four-plate imagers, color separation optical system and means for processing their signals, Or a means for processing a G video signal and a means for processing a video signal of an RB pixel having an interval twice as long as the interval between G pixels, or a means for transmitting a G video signal and an image of an RB pixel having an interval twice as long as the interval between G pixels Means for transmitting signals, such as means for halving the band of the R image signal and the band of the B image signal with respect to the band of the G image signal. Interpolation is performed using a weighted average (including the median value or the average of the median value and the central pixel) of the central pixel image signal, and at least the bright portion also converts the B image signal into the median value of the peripheral B pixel image signal and the central pixel image. Weighted average with the signal (the median Rui is an image pickup apparatus characterized in that it comprises a color correction means for generating a color correction signal from the signal interpolated by including the average of the said median and the center pixel).

また、固体撮像素子を有する撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段を有し、少なくとも明部もR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部もB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はB撮像信号を周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段を有することを特徴とする撮像装置である。
Further, in an imaging device having a solid-state imaging device,
An image sensor with color filters of Bayer array of R, G1, G2, and B and means for processing signals thereof, or a four-plate image sensor of R, G1, G2, and B, a color separation optical system, and means for processing signals thereof are provided. Then, at least in the bright portion, the R image signal is interpolated by the weighted average of the median value of the peripheral R pixel image signal and the central pixel image signal or the R image signal is calculated by dividing the median value of the peripheral R pixel image signal and the central pixel image signal. A signal obtained by interpolating on average, and interpolating the B image signal at least in the bright part by weighted average of the median value of the peripheral B pixel image signal and the central pixel image signal, or interpolating the B image signal by the median value of the peripheral B pixel image signal. An image pickup apparatus comprising a color tone correction means for generating a color tone correction signal from the image data.

さらに、上記撮像装置において、
RG1G2Bと4系統の色ごとの伝送(いわゆるDG伝送)する手段あるいはR−(G1+G2),G1,G2,B−(G1+G2)又はR−(Y1+Y2),Y1,Y2,B−(Y1+Y2)又はR−G1,G1,G2,B−G2又はR−Y1,Y1,Y2,B−Y2又はR−G2,G1,G2,B−G1又はR−Y2,Y1,Y2,B−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送する手段を有することを特徴とする撮像装置である。
Further, in the above imaging device,
RG1G2B and means for transmission (so-called DG transmission) for each color of four systems or R- (G1 + G2), G1, G2, B- (G1 + G2) or R- (Y1 + Y2), Y1, Y2, B- (Y1 + Y2) or R -G1, G1, G2, BG2 or RY1, Y1, Y2, BY2 or RG2, G1, G2, BG1 or RY2, Y1, Y2, BY1 etc. An image pickup apparatus comprising means for transmitting a signal whose luminance is mainly and a signal whose color is mainly.

さらに、上記の撮像装置において、
G映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、又はG映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、の少なくとも一方の手段を有し、
色温度を検出(算出)する手段と、少なくとも明部もR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に正に相関した重みづけ平均で補間し、少なくとも明部もB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に負に相関した重みづけ平均で補間した信号から色調補正信号を生成する色調補正手段と、
RGB映像信号の増幅度を可変する手段と、少なくとも明部もR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該R映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間し、少なくとも明部もB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該RGB映像信号の増幅度に相関(増幅度小では中心R画素撮像信号が主で増幅度大では周囲R画素撮像信号の中央値が主と)した重みづけ平均で補間した信号から色調補正信号を生成する色調補正手段と、のいずれか一方を有することを特徴とする撮像装置である。
Further, in the above imaging device,
Means for processing the G video signal and means for processing the video signal of the RB pixel at an interval twice the interval of the G pixel, or means for transmitting the G video signal and the video signal of the RB pixel at an interval twice the interval of the G pixel Transmitting at least one of:
A means for detecting (calculating) a color temperature, and a weighted average of at least a bright portion of the R image signal which is positively correlated with the detected (calculated) color temperature of the median value of the peripheral R pixel image signal and the center pixel image signal. At least in the bright portion, color correction from a signal obtained by interpolating the B image signal with a weighted average negatively correlated with the detected (calculated) color temperature of the median value of the peripheral B pixel image signal and the center pixel image signal. Color tone correction means for generating a signal;
Means for varying the amplification degree of the RGB video signal, and at least the bright portion correlates the R imaging signal with the amplification degree of the R video signal between the median value of the surrounding R pixel imaging signal and the center pixel imaging signal (the center is smaller when the amplification degree is small). When the image signal of the R pixel is main and the amplification degree is large, the median value of the image signals of the surrounding R pixels is mainly interpolated. Interpolated by a weighted average correlated with the amplification degree of the RGB video signal with the center pixel imaging signal (for a small amplification degree, the center R pixel imaging signal is mainly, and for a large amplification degree, the central value of surrounding R pixel imaging signals is mainly). And a color tone correcting means for generating a color tone correction signal from the obtained signal.

また、本発明は、上記撮像装置において、RG1G2Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はRG1G2Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、又はG映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、等のG映像信号に対しR映像信号とB映像信号との帯域を半減させる手段を有し R撮像信号をG画素で一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、B撮像信号をG画素で一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段を有することを特徴とする撮像装置である。   Also, the present invention provides the image pickup device, wherein an image pickup device with a color filter of RG1G2B array and a signal processing means thereof, or a four-plate image pickup device of RG1G2B and a color separation optical system and means for processing the signal thereof, or Means for processing the G video signal and means for processing the video signal of the RB pixel at an interval twice the interval of the G pixel, or means for transmitting the G video signal and the video signal of the RB pixel at an interval twice the interval of the G pixel Means for reducing the bandwidth of the R video signal and the B video signal to half of the G video signal, such as a means for transmitting the R video signal. The image processing apparatus further includes a color tone correction unit configured to generate a color tone correction signal from a signal obtained by interpolating the average of the B image signal with the pixel image signal and interpolating the B image signal with the median value of every other peripheral B pixel image signal by G pixels. Imaging It is the location.

また、本発明は、固体撮像素子を有する撮像装置において、
RGBの3板と色分解光学系からのRGBの信号を信号処理する手段を有し、少なくとも明部もR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部もB撮像信号を一つ置きの周囲B画素撮像信号の中央値と中心画素との重みづけ平均で補間又はB撮像信号を一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段を有し、
R−(G1+G2),G1,G2,B−(G1+G2)又はR−(Y1+Y2),Y1,Y2,B−(Y1+Y2)又はR−G1,G1,G2,B−G2又はR−Y1,Y1,Y2,B−Y2又はR−G2,G1,G2,B−G1又はR−Y2,Y1,Y2,B−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送する手段を有することを特徴とする撮像装置。
Further, the present invention provides an imaging device having a solid-state imaging device,
Means for signal processing of RGB signals from the three RGB plates and the color separation optical system, and at least the bright portion is provided with a median value and a central pixel image signal of the surrounding R pixel image signals every other R image signal. Interpolation by weighted average or interpolation of R imaging signals by the average of the median value of center R imaging signals and the center pixel imaging signal of every other surrounding R pixel, and at least the bright part also captures every other B imaging signal of surrounding B pixel. Color tone correction means for generating a color tone correction signal from a signal obtained by interpolating with a weighted average of the median value of the signal and the central pixel or interpolating the B image signal with the median value of every other surrounding B pixel image signal,
R- (G1 + G2), G1, G2, B- (G1 + G2) or R- (Y1 + Y2), Y1, Y2, B- (Y1 + Y2) or R-G1, G1, G2, B-G2 or R-Y1, Y1, Means for transmitting two main signals such as Y2, BY2 or RG2, G1, G2, BG1 or RY2, Y1, Y2, BY1 as a signal whose main luminance is and a main signal of color. An imaging device comprising:

また、本発明は、固体撮像素子を有する撮像装置において、RGBの3板と色分解光学系からのRGBの信号を信号処理する手段を有し、暗部も明部も、R撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部もB撮像信号を一つ置きの周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はB撮像信号を一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段、又は 少なくとも明部もR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部もB撮像信号を一つ置きの周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はB撮像信号を一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段のいずれか一つの色調補正手段を有することを特徴とする撮像装置である。   Further, the present invention provides an image pickup apparatus having a solid-state image pickup device, wherein the image pickup apparatus has three RGB plates and means for signal processing of RGB signals from a color separation optical system. Interpolate by weighted average of the median value of every other surrounding R pixel image signal and the center pixel image signal or interpolate the R image signal by the average of the median value of every other surrounding R pixel image signal and the center pixel image signal , At least in the bright part, the weighted average of the median value of the central B pixel imaging signal and the median value of the peripheral B pixel imaging signal of every other B imaging signal or the median value of the peripheral B pixel imaging signal of every other B imaging signal Color tone correction means for generating a color tone correction signal from the signal interpolated in (1), or at least the bright portion also interpolates or R Surrounding R every other imaging signal Interpolation is performed by the average of the median value of the raw imaging signal and the center pixel imaging signal, and at least the bright portion is also interpolated by the weighted average of the median of the surrounding B pixel imaging signals and every other B imaging signal. An image pickup apparatus comprising: any one of color tone correction means for generating a color tone correction signal from a signal obtained by interpolating a B image pickup signal with a median value of every other peripheral B pixel image pickup signal. .

また本発明は、固体撮像素子を有する撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、又はG映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、等のG映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、
明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間した信号を本線の映像信号とする雑音低減手段を有することを特徴とする撮像装置である。
Further, the present invention provides an imaging apparatus having a solid-state imaging device,
R, G1, G2, B imagers with color filters in a Bayer array and means for processing their signals, or R, G1, G2, B four-plate imagers, color separation optical system and means for processing their signals, Or a means for processing a G video signal and a means for processing a video signal of an RB pixel having an interval twice as long as the interval between G pixels, or a means for transmitting a G video signal and an image of an RB pixel having an interval twice as long as the interval between G pixels Means for transmitting a signal, a means for halving the band of the R video signal and the B video signal with respect to the band of the G video signal,
The bright portion interpolates the R image signal with a weighted average of the median value of the peripheral R pixel image signal and the center pixel image signal (including the median value or the average of the median value and the central pixel). A noise which is a signal obtained by interpolating an image pickup signal with a weighted average of the median value of the surrounding B pixel image pickup signal and the center pixel image pickup signal (including the median value or the average of the median value and the center pixel) as a main line video signal An imaging apparatus comprising a reduction unit.

また本発明は、固体撮像素子を有する撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、又はG映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、等のG映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、
色温度を検出(算出)する手段と、明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に正に相関した重みづけ平均で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に負に相関した重みづけ平均で重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間した信号を本線の映像信号とする雑音低減手段と、
RGB映像信号の増幅度を可変する手段と、明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該R映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該RGB映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間した信号を本線の映像信号とする雑音低減手段と、のいずれか一方を有することを特徴とする撮像装置。
G映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、のいずれか一方を有することを特徴とする撮像装置である。
Further, the present invention provides an imaging apparatus having a solid-state imaging device,
R, G1, G2, B imagers with color filters in a Bayer array and means for processing their signals, or R, G1, G2, B four-plate imagers, color separation optical system and means for processing their signals, Or a means for processing a G video signal and a means for processing a video signal of an RB pixel having an interval twice as long as the interval between G pixels, or a means for transmitting a G video signal and an image of an RB pixel having an interval twice as long as the interval between G pixels Means for transmitting a signal, a means for halving the band of the R video signal and the B video signal with respect to the band of the G video signal,
The means for detecting (calculating) the color temperature, and the bright portion calculates the R image signal by a weighted average that is positively correlated with the detected (calculated) color temperature of the median value of the peripheral R pixel image signal and the center pixel image signal. The interpolation is performed, and the bright portion is obtained by weighting the B image signal with a weighted average that is negatively correlated with the detected (calculated) color temperature of the median value of the surrounding B pixel image signal and the center pixel image signal (the median value or the median value). A noise reduction unit that uses a signal interpolated by using the average of the median value and the central pixel) as a main line video signal;
The means for varying the amplification degree of the RGB video signal and the bright portion correlate the R imaging signal with the amplification degree of the R video signal between the median value of the surrounding R pixel imaging signal and the center pixel imaging signal (for small amplification degree, the central R When the image signal of the pixel is main and the amplification degree is large, the median value of the image signals of the surrounding R pixels is mainly interpolated), and the bright portion is obtained by interpolating the B image signal with the median value of the peripheral B pixel image signal and the central pixel. Interpolation by weighted average correlated with the amplification degree of the RGB video signal with the imaging signal (when the amplification degree is small, the imaging signal of the center R pixel is mainly, and when the amplification degree is large, the median value of the imaging signals of surrounding R pixels is mainly) An image pickup apparatus comprising: a noise reduction unit that converts the converted signal into a main line video signal.
An imaging apparatus comprising: means for halving the band of the R video signal and the band of the B video signal by half with respect to the band of the G video signal.

本発明によれば、リニアマトリックスでも、画素ごとに特定の色相を検出し画素ごとに特定の色相を補正する12色マスキングでも、色調補正を行うと、雑音の多いB又はRの雑音が、他の色にも混入し、実行S/Nが低下することを周囲画素の中央値又は周囲画素の中央値と中心画素との平均又は周囲画素の中央値と中心画素との重みづけ平均で補間という雑音低減した信号で色相を補正することで防止し、クロマキー処理等で、RやBやR−YやB−Yの映像信号はY同等の帯域いわゆる4:4:4が要求されても、本線信号の色帯域維持と、色調補正の改善と実行S/Nの維持とを両立することが実現できる。   According to the present invention, even in a linear matrix, even in 12-color masking in which a specific hue is detected for each pixel and a specific hue is corrected for each pixel, noisy B or R noise becomes And the decrease in the execution S / N is referred to as interpolation using the median value of the surrounding pixels, the average of the median value of the surrounding pixels and the center pixel, or the weighted average of the median value of the surrounding pixels and the center pixel. The hue is corrected by correcting the hue with the noise-reduced signal, and even if a video signal of R, B, RY, or BY is required to have a Y-equivalent band, so-called 4: 4: 4, in chroma key processing or the like, It is possible to realize both the maintenance of the color band of the main line signal, the improvement of the color tone correction, and the maintenance of the execution S / N.

本発明のテレビジョンカメラの一実施例を示すブロック図である。FIG. 2 is a block diagram showing one embodiment of the television camera of the present invention. 本発明のテレビジョンカメラの一実施例を示すブロック図である。FIG. 2 is a block diagram showing one embodiment of the television camera of the present invention. 本発明のテレビジョンカメラの一実施例を示すブロック図である。FIG. 2 is a block diagram showing one embodiment of the television camera of the present invention. 本発明のテレビジョンカメラの一実施例を示すブロック図である。FIG. 2 is a block diagram showing one embodiment of the television camera of the present invention. 本発明のテレビジョンカメラの一実施例を示すブロック図である。FIG. 2 is a block diagram showing one embodiment of the television camera of the present invention. R/G/Bの大小関係と対応する色相範囲を示す模式図である。FIG. 4 is a schematic diagram illustrating a hue range corresponding to a magnitude relationship of R / G / B. 本発明の一実施例の色相検出補正部の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a hue detection correction unit according to one embodiment of the present invention. 本発明の他の一実施例の色相検出補正部の構成を示すブロック図である。FIG. 11 is a block diagram illustrating a configuration of a hue detection / correction unit according to another embodiment of the present invention. 本発明の一実施例の色相検出補正部の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of a hue detection correction unit according to one embodiment of the present invention. 本発明の一実施例の色調補正における色相領域の説明図である。FIG. 4 is an explanatory diagram of a hue region in color tone correction according to one embodiment of the present invention. 本発明の一実施例の色相領域の概念図である。FIG. 3 is a conceptual diagram of a hue region according to one embodiment of the present invention. 本発明の一実施例の原色成分と補色成分と彩度成分の算定原理の説明図である。FIG. 4 is an explanatory diagram of a principle of calculating a primary color component, a complementary color component, and a saturation component according to an embodiment of the present invention. 本発明の一実施例の色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。FIG. 4 is a block diagram illustrating a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process according to an embodiment of the present invention. 本発明の他の一実施例の色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。FIG. 13 is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process according to another embodiment of the present invention. 本発明の他の一実施例の色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。FIG. 13 is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process according to another embodiment of the present invention. 本発明の一実施例の色温度検出手段と加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。FIG. 4 is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method in which a color temperature detection unit and an addition weight variable unit are added according to an embodiment of the present invention. 本発明の一実施例の色温度検出手段と加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。FIG. 4 is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method in which a color temperature detection unit and an addition weight variable unit are added according to an embodiment of the present invention. 本発明の一実施例の加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。FIG. 5 is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method to which an addition weight variable means is added according to an embodiment of the present invention. 本発明の一実施例の補正特性図である。FIG. 4 is a correction characteristic diagram according to the embodiment of the present invention. 本発明の他の一実施例の色相彩度検出補正部の構成を示すブロック図である。FIG. 11 is a block diagram illustrating a configuration of a hue / saturation detection correction unit according to another embodiment of the present invention. 本発明の他の一実施例の色相彩度検出補正部の構成を示すブロック図である。FIG. 11 is a block diagram illustrating a configuration of a hue / saturation detection correction unit according to another embodiment of the present invention. 本発明の他の一実施例の色相彩度検出補正部の構成を示すブロック図FIG. 6 is a block diagram illustrating a configuration of a hue / saturation detection / correction unit according to another embodiment of the present invention. 本発明の他の一実施例の色調補正における色相領域の説明図である。FIG. 14 is an explanatory diagram of a hue region in color tone correction according to another embodiment of the present invention. 本発明の他の一実施例の色相領域の概念図である。FIG. 10 is a conceptual diagram of a hue region according to another embodiment of the present invention. 本発明の他の一実施例の原色成分と補色成分の算定原理の説明図である。FIG. 11 is an explanatory diagram of a principle of calculating a primary color component and a complementary color component according to another embodiment of the present invention. 本発明の他の一実施例の補正特性図である。FIG. 11 is a correction characteristic diagram according to another embodiment of the present invention. 従来の6色独立色調補正の動作を示す模式図である。It is a schematic diagram which shows the operation | movement of the conventional 6-color independent color correction. 本発明の一実施例の6色内外独立色調補正のカラーベクトル波形上の動作を示す模式図である。FIG. 6 is a schematic diagram showing an operation on a color vector waveform of six color inside / outside independent tone correction according to one embodiment of the present invention. 本発明の他の一実施例の12色内外独立色調補正のカラーベクトル波形上の動作を示す模式図である。It is a schematic diagram which shows operation | movement on the color vector waveform of 12 colors inside / outside independent color tone correction of another Example of this invention. 本発明の他の一実施例の24色内外独立色調補正のカラーベクトル波形上の動作を示す模式図である。It is a schematic diagram which shows the operation | movement on the color vector waveform of 24 color inside / outside independent color tone correction of another Example of this invention. 本発明の他の一実施例の6色独立色調補正のカラーベクトル波形上の動作を示す模式図 彩度で階段状に異なる方向の色調補正である。FIG. 7 is a schematic diagram showing an operation on a color vector waveform of six-color independent tone correction according to another embodiment of the present invention. 本発明の他の一実施例のベクトルチャートの6色ポイントの彩度に対応する6色独立色調補正のカラーベクトル波形上の動作を示す模式図である。It is a schematic diagram which shows operation | movement on the color vector waveform of 6 color independent tone correction corresponding to the saturation of 6 color points of the vector chart of another Example of this invention. 本発明の他の一実施例のベクトルチャートの6色ポイントの彩度に対応する12色独立色調補正のカラーベクトル波形上の動作を示す模式図である。It is a schematic diagram which shows operation | movement on the color vector waveform of 12 independent color tone correction | amendment corresponding to the saturation of 6 color points of the vector chart of another Example of this invention. 本発明の他の一実施例の6色独立彩度連続可変色調補正のカラーベクトル波形上の動作を示す模式図である。It is a schematic diagram which shows the operation | movement on the color vector waveform of 6 color independent saturation continuous variable tone correction of another Example of this invention. 本発明の他の一実施例の12色独立彩度連続可変色調補正のカラーベクトル波形上の動作を示す模式図である。It is a schematic diagram which shows the operation | movement on the color vector waveform of 12 colors independent saturation continuous variable tone correction of another Example of this invention. 本発明の他の一実施例の24色彩度独立連続可変色調補正のカラーベクトル波形上の動作を示す模式図である。It is a schematic diagram which shows the operation | movement on the color vector waveform of 24 color saturation independent continuous variable tone correction of another Example of this invention. 本発明の一実施例の中央画素を周囲画素中央値で補間の動作を示す模式図である。It is a schematic diagram which shows the operation | movement of the interpolation of the center pixel of one Example of this invention with a surrounding pixel median. 本発明の他の一実施例の中央画素を中央画素と周囲画素中央値との平均で補間の動作を示す模式図であるIt is a schematic diagram which shows the operation | movement of the interpolation of the center pixel of another Example of this invention with the average of a center pixel and a surrounding pixel. 本発明の他の一実施例の中央画素を中央画素と周囲画素中央値との1:3の加重平均で補間の動作を示す模式図である。It is a schematic diagram which shows the interpolation operation | movement of the center pixel of another Example of this invention with the weighted average of the center pixel and the surrounding pixel of 1: 3. 本発明の他の一実施例の中央画素を中央画素と周囲画素中央値との3:1の加重平均で補間の動作を示す模式図である。It is a schematic diagram which shows the operation | movement of interpolation of the center pixel of another Example of this invention with a 3: 1 weighted average of a center pixel and a surrounding pixel median.

以下、本発明の実施形態について図面を参照して詳細に説明する。
以下、彩度により色調補正方向を可変させる独立色調補正を図1Aと図1Bと図2を用いて説明する。
図1Aと図1Bは本発明のテレビジョンカメラの一実施例を示すブロック図である。
図1Aはガンマ前マトリクスであり、図1Bはガンマ後マトリクスである。
被写体からの入射光はレンズ部31で結像され、結像された入射光はテレビジョンカメラ30のプリズム(色分解光学系)部32で赤色光と緑色光および青色光に分解され、各々CCD(Charge Coupled Device/電荷結合素子)33R,33G,33B,33G1,33G2+AFE(アナログフロントエンドプロセッサ)又はCMOS(Complementary Metal Oxide Semiconductor)撮像素子で光電変換される。光電変換されたR/G/Bの信号はCCDではAFE(アナログフロントエンドプロセッサ)でCMOS撮像素子では内部で、相関二重サンプリング、ゲイン補正、およびアナログ−デジタル変換を行い、色相彩度検出補正機能付きの映像信号処理部の35に送られ、色調補正、輪郭補正、ガンマ補正、ニー補正等の各種映像信号処理が行われる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Hereinafter, the independent color tone correction in which the color tone correction direction is changed according to the saturation will be described with reference to FIGS. 1A, 1B, and 2. FIG.
1A and 1B are block diagrams showing one embodiment of the television camera of the present invention.
1A is a pre-gamma matrix, and FIG. 1B is a post-gamma matrix.
Incident light from a subject is formed into an image by a lens unit 31, and the formed incident light is separated into red light, green light, and blue light by a prism (color separation optical system) unit 32 of the television camera 30. (Charge Coupled Device) 33R, 33G, 33B, 33G1, 33G2 + AFE (Analog Front End Processor) or a CMOS (Complementary Metal Oxide Semiconductor) image sensor performs photoelectric conversion. The photoelectrically converted R / G / B signals are subjected to correlated double sampling, gain correction, and analog-digital conversion internally by an AFE (analog front end processor) in a CCD and in a CMOS image sensor, thereby correcting hue and saturation detection. The video signal is sent to a video signal processing unit 35 having a function, and various video signal processes such as color tone correction, contour correction, gamma correction, and knee correction are performed.

デジタル信号処理部5では各種映像信号処理などが施された後、
Y=0.2126R+0.7152G+0.0722B Pb=0.5389(B−Y) Pr=0.6350(R−Y)のBT.709の計算式等により、R/G/Bから輝度信号(Y)と色差信号(Pb/Pr)に変換する。そしてパラレル−シリアル変換部7でシリアル映像信号に変換され、外部に出力される。記載しないITU/BT.2020の計算式でYとPb/Prに変換しても構わない。
After various kinds of video signal processing are performed in the digital signal processing unit 5,
Y = 0.2126R + 0.7152G + 0.0722B Pb = 0.5389 (BY) BT of Pr = 0.6350 (RY). R / G / B is converted into a luminance signal (Y) and a color difference signal (Pb / Pr) by the calculation formula 709 or the like. Then, it is converted into a serial video signal by the parallel-serial converter 7 and output to the outside. ITU / BT. Y and Pb / Pr may be converted by the calculation formula of 2020.

CPU(Central Processing Unit)39は、テレビジョンカメラ1の各部を制御する。また、ビューファインダまたはモニタディスプレイの画像表示部40は撮像装置の設定用メニューや前記特定の色相の内の任意の色相彩度領域を表示する。   A CPU (Central Processing Unit) 39 controls each unit of the television camera 1. Further, the image display unit 40 of the viewfinder or the monitor display displays a setting menu of the image pickup apparatus and an arbitrary hue / saturation area in the specific hue.

ここで、本発明の一実施例の色相彩度検出補正部の構成を示すブロック図の図3に示す、色相彩度検出補正機能付き映像信号処理部35内の色相彩度検出補正部38は、R/G/Bの各信号レベルの大小関係から、被写体の色がどの色相彩度範囲にあるかを検出する。図2にR/G/Bの大小関係と対応する色相範囲を示す。なお、ここでは色相を6分割で表示しているが、R/G/Bの各信号レベルの大小関係をさらに細分化すれば、12色独立又は16色独立又は18色独立又は24色独立等もっと色相を再分化することも可能である。   Here, the hue / saturation detection / correction unit 38 in the video signal processing unit 35 with the hue / saturation detection / correction function shown in FIG. 3 of the block diagram showing the configuration of the hue / saturation detection / correction unit according to one embodiment of the present invention , R / G / B, the hue / saturation range of the color of the subject is detected from the magnitude relationship between the signal levels. FIG. 2 shows a hue range corresponding to the magnitude relationship of R / G / B. Here, the hue is displayed in six divisions. However, if the magnitude relationship between the R / G / B signal levels is further subdivided, twelve independent colors, sixteen independent colors, eighteen independent colors, twenty-four independent colors, etc. More hues can be redifferentiated.

CPU9では、ユーザーが設定した任意の色相範囲の情報を色相検出補正機能付き映像信号処理部35内の色相検出補正部38へ渡し、色相検出補正機能付き映像信号処理部35内の色相検出補正部38は、ユーザー設定の色相範囲と一致した画素の色相情報と画素の彩度情報とをCPU9へ渡す。CPU9ではその画素の色相情報と画素の彩度情報に基づき、色相彩度検出補正機能付き映像信号処理部35内の色相彩度の補正算出に制御をかけ、彩度の異なる色を独立に色調補正し、より忠実に色域変換することを容易な調整で実現できる。   The CPU 9 passes information on an arbitrary hue range set by the user to the hue detection / correction unit 38 in the video signal processing unit 35 with the hue detection / correction function, and sends the information to the hue detection / correction unit in the video signal processing unit 35 with the hue detection / correction function. 38 passes to the CPU 9 the hue information of the pixel matching the hue range set by the user and the saturation information of the pixel. Based on the hue information of the pixel and the saturation information of the pixel, the CPU 9 controls the hue / saturation correction calculation in the video signal processing unit 35 having the hue / saturation detection / correction function, and independently adjusts the colors having different saturations. Correction and more accurate color gamut conversion can be realized with easy adjustment.

ビューファインダまたはモニタディスプレイの40では被写体の映像にメニュー画面を重畳し、ユーザーはメニュー画面を見ながら色相範囲や彩度範囲や輝度信号レベルを設定する。また、ユーザーが設定した色相範囲が目的とする被写体の色に合致しているかを確認できるように、ビューファインダまたはモニタディスプレイの40の被写体映像に重ねて、設定した色相範囲と彩度範囲と一致している箇所のエリアにマーカーを表示するようにしてもよい。   In the viewfinder or monitor display 40, the menu screen is superimposed on the image of the subject, and the user sets the hue range, the saturation range, and the luminance signal level while watching the menu screen. In order to confirm whether the hue range set by the user matches the color of the target object, the hue range and the saturation range set in the viewfinder or the monitor display are superimposed on the subject image of 40. A marker may be displayed in the area of the matching position.

以上のように、BT.709の原色点より広色域のITU/BT.2020等の原色点の第1の色信号を、BT.709の原色に基づく色域の異なる第2の色信号に変換し、また簡易には、BT.709の原色に基づく原色点の第3の色信号を、BT.709の原色点より広色域のITU/BT.2020等の原色点の第4の色信号に変換して、補正する際に、画素ごとに彩度に相関させて色調補正の量と方向を可変させる又は彩度内外独立に色調補正の量と方向を可変する等の画素単位に彩度により色調補正の量と方向を可変させる6色以上の独立色調補正機能を有することにより、より忠実に色域変換することを容易な調整で実現できる。   As described above, the first color signal of the primary color point such as ITU / BT.2020 having a wider color gamut than the primary color point of BT.709 is converted into the second color signal having a different color gamut based on the primary color of BT.709. Convert and simply convert the third color signal of the primary color point based on the primary color point of BT.709 to the fourth color signal of the primary color point such as ITU / BT.2020 in a wider color gamut than the primary color point of BT.709. When converting to a signal and correcting it, the amount and direction of color tone correction can be varied by correlating with the saturation for each pixel, or the amount and direction of color tone correction can be changed independently inside and outside of saturation. By having an independent color tone correction function for six or more colors that varies the amount and direction of color tone correction depending on the degree, color gamut conversion with higher fidelity can be realized with easy adjustment.

以下、彩度により色調補正方向を可変させる独立色調補正を図3A〜図8と図14〜図17Cを用いて説明する。
図3Aは、まず、減算器1、2、3により、入力映像信号R、G、Bから色差信号R−G、R−B、G−Bの演算を行ない、その結果を色相領域の判定回路4と、彩度成分量と原色成分量及び補色成分量判定回路5に供給し、彩度成分量と原色成分量及び補色成分量とを判定する。
そこで、この減算器1、2、3による演算結果により、まず色相領域の判定回路4では、図5に示すようにして、色相領域の判定を行なう。図5は、この色相領域の概念図で、中心点から各色方向に向かう直線を基準線として、これにより6個の色相領域に区切ったものである。
Hereinafter, independent color tone correction in which the color tone correction direction is changed according to the saturation will be described with reference to FIGS. 3A to 8 and FIGS. 14 to 17C.
In FIG. 3A, first, color difference signals RG, RB, and GB are calculated from input video signals R, G, and B by subtracters 1, 2, and 3, and the result is used as a hue area determination circuit. 4 and a chroma component amount, a primary color component amount, and a complementary color component amount determination circuit 5 to determine the chroma component amount, the primary color component amount, and the complementary color component amount.
Therefore, based on the operation results of the subtracters 1, 2, and 3, the hue region determination circuit 4 first determines the hue region as shown in FIG. FIG. 5 is a conceptual diagram of the hue region, in which a straight line extending from the center point in each color direction is used as a reference line, thereby dividing the hue region into six hue regions.

また、彩度成分量と原色成分量及び補色成分量判定回路5では、信号R、G、Bのレベル比較を行ない、図6に示すようにして最大レベル、中間レベル、最小レベルを判定する。そして、この比較判定の過程で、最大レベルと中間レベルのレベル差を求め、これを原色成分量とし、さらに中間レベルと最小レベルのレベル差を求め、これを補色成分量とする。最大レベルと最小レベルのレベル差を求め、これを彩度成分量とする。ここで、最大レベルの色が原色に相当し、最小レベルの成分が白成分に相当する。そして、最大レベルの色と最小レベルの色の情報から補色が判定でき、この結果、図4に示すように、原色成分と補色成分を判定することができる。
つまり、本発明の他の一実施例の6色独立彩度連続可変色調補正のカラーベクトル波形上の動作を示す模式図の図17の彩度で方向連続可変の色調補正の色調補正を実現する詳細構成を示すブロック図が本発明の一実施例の色相検出補正部の構成を示すブロック図の図3Aである。
The saturation component amount, primary color component amount, and complementary color component amount determination circuit 5 compares the levels of the signals R, G, and B, and determines the maximum level, intermediate level, and minimum level as shown in FIG. Then, in the course of the comparison judgment, the level difference between the maximum level and the intermediate level is obtained, and this is used as the primary color component amount. Further, the level difference between the intermediate level and the minimum level is obtained, and this is used as the complementary color component amount. The level difference between the maximum level and the minimum level is obtained, and this is defined as the saturation component amount. Here, the maximum level color corresponds to the primary color, and the minimum level component corresponds to the white component. Then, the complementary color can be determined from the information of the maximum level color and the minimum level color. As a result, as shown in FIG. 4, the primary color component and the complementary color component can be determined.
That is, the color tone correction of the color tone correction in which the direction is continuously variable with the saturation shown in FIG. 17 of a schematic diagram showing the operation on the color vector waveform of the six-color independent color saturation continuously variable color correction of another embodiment of the present invention is realized. FIG. 3A is a block diagram illustrating a detailed configuration of the hue detection / correction unit according to the embodiment of the present invention.

図6の例では、最大レベルがRで、中間レベルはGになっているので、原色成分はRで、補色成分は、RとGの中間の色相であるYe(黄)になる。そして、原色成分量はR−Gで、補色成分量はG−B、そして最小レベルBの量が白成分量となる。従って、この図8の場合は、図4の下から2番目に示す結果となる。R−Bが彩度成分量となる。
判定回路4による色相領域の判定結果は定数選択回路6に供給され、判定結果に応じて特定の利得定数が選択され、それが乗算器7、8に供給されることにより、彩度成分量と原色成分量及び補色成分量判定回路5で判定された原色成分量及び補色成分量にそれぞれ乗算されることにより補正が行なわれる。このため、定数選択回路6には、予め領域1から領域6までのそれぞれの色相領域に対応した特定の利得定数が設定してある。
こうして乗算器7、8により利得定数が乗算された原色成分量及び補色成分量は、加算・減算の選択及び映像信号R、G、Bに対する接続選択を行なうためのデータ選択加算回路11に、一方では直接、他方では補数器(−1倍乗算器)9、10を介して、それぞれ供給される。そして、このデータ選択加算回路11により加算先が選択された上で各加算器12、13、14に供給され、映像信号R、G、Bに加算されることになる。
色差を全て算出してから判定し、係数を算出しても良いし、判定しながら、色差を算出しても良く、順番は不問である。
In the example of FIG. 6, since the maximum level is R and the intermediate level is G, the primary color component is R and the complementary color component is Ye (yellow) which is an intermediate hue between R and G. The primary color component amount is RGB, the complementary color component amount is GB, and the minimum level B amount is the white component amount. Therefore, in the case of FIG. 8, the result shown in the second from the bottom in FIG. 4 is obtained. RB is the saturation component amount.
The determination result of the hue region by the determination circuit 4 is supplied to a constant selection circuit 6, a specific gain constant is selected according to the determination result, and is supplied to the multipliers 7 and 8, so that the saturation component amount and The correction is performed by multiplying the primary color component amount and the complementary color component amount determined by the primary color component amount and the complementary color component amount determination circuit 5, respectively. For this reason, a specific gain constant corresponding to each of the hue regions from region 1 to region 6 is set in the constant selection circuit 6 in advance.
The primary color component amount and the complementary color component amount multiplied by the gain constants by the multipliers 7 and 8 are added to a data selection / addition circuit 11 for selecting addition / subtraction and selecting connection for video signals R, G, and B. , Respectively, and on the other hand via complementers (-1 multipliers) 9, 10. Then, after an addition destination is selected by the data selection and addition circuit 11, the data is supplied to each of the adders 12, 13, and 14, and is added to the video signals R, G, and B.
The determination may be made after all the color differences have been calculated, and the coefficient may be calculated. Alternatively, the color difference may be calculated while making the determination, and the order does not matter.

そこで、いま、信号Rの色調補正を行なう場合、例えば彩度方向の補正であれば原色成分量R−Gに特定の定数Krを乗じてから映像信号Rに加算することになる。このとき、定数Krによる比率が−1倍から1倍の範囲であれば、この補正によっても、中間レベルと最小レベルのレベル差(補色成分量)、及び最小レベルの量(白成分量)は変化しない。
また、信号Yeの彩度方向の補正を行なう場合、補色成分量G−Bに特定の定数Kyを乗じてからRとGにそれぞれ加算することになる。このときも、定数Kyによる比率が−1倍から1倍の範囲であれば、この補正によっても、最大レベルと中間レベルのレベル差(原色成分量)、及び最小レベルの量(白成分量)は変化しない。
Therefore, when performing color tone correction of the signal R, for example, in the case of correction in the saturation direction, the primary color component amount RG is multiplied by a specific constant Kr and then added to the video signal R. At this time, if the ratio based on the constant Kr is in the range of -1 to 1 times, even with this correction, the level difference between the intermediate level and the minimum level (complementary color component amount) and the minimum level amount (white component amount) are obtained. It does not change.
When correcting the signal Ye in the saturation direction, the complementary color component amount GB is multiplied by a specific constant Ky and then added to R and G, respectively. Also at this time, if the ratio based on the constant Ky is in the range of -1 to 1 times, even with this correction, the level difference between the maximum level and the intermediate level (primary color component amount) and the minimum level amount (white component amount) Does not change.

従って、この場合には、定数Kr及びKyを操作すれば、白バランスを保ちながら原色Rと補色Yeの彩度方向の補正を独立して行なうことができる。なお、以上の6色独立色調補正方式では、同様に色度方向の補正も独立に行なえ、さらには入力映像信号が別の色相にある場合も同様に独立補正が可能であるが、詳細な説明は省略する。
さらに本発明では、最大値と最小値判定後原色(最大値)と白(最小値)との差の彩度を算出し、彩度に応じて係数を算出する。
図17A及びと図17A及びとと図16Aの様に、彩度に応じて係数を算出は、直線変化となる。
図15Dの様に、彩度に応じて係数を選択は、階段変化となる。
Therefore, in this case, by operating the constants Kr and Ky, it is possible to independently correct the saturation direction of the primary color R and the complementary color Ye while maintaining the white balance. In the above-described six-color independent tone correction method, the correction in the chromaticity direction can be similarly performed independently, and the independent correction can be similarly performed even when the input video signal is in another hue. Is omitted.
Further, in the present invention, the saturation of the difference between the primary color (maximum value) and white (minimum value) after the maximum value and minimum value determination is calculated, and a coefficient is calculated according to the saturation.
As shown in FIG. 17A, FIG. 17A, and FIG. 16A, the calculation of the coefficient according to the saturation is a linear change.
As shown in FIG. 15D, selecting a coefficient according to the saturation is a step change.

図14は従来の6色独立色調補正の動作を示す模式図であり、図15Aは本発明の一実施例の6色内外独立色調補正のカラーベクトル波形上の動作を示す模式図であり、図16Aは本発明の他の一実施例の6色内外独立色調補正のカラーベクトル波形上の動作を示す模式図である。図17Aは本発明の他の一実施例の6色独立彩度連続可変色調補正のカラーベクトル波形上の動作を示す模式図である。
本発明の一実施例の6色内外独立色調補正のカラーベクトル波形上の動作を示す模式図の図15A、図16A、図17Aでは、色域周辺の純色周辺の色相彩度の変換と色域中心部の白周辺の色相彩度の保持とが独立に調整できるため、色域の変換時の色調補正の自由度が高くなる。
FIG. 14 is a schematic diagram showing the operation of the conventional six-color independent tone correction, and FIG. 15A is a schematic diagram showing the operation on the color vector waveform of the six-color inside / outside independent tone correction of one embodiment of the present invention. FIG. 16A is a schematic diagram showing an operation on a color vector waveform of 6-color internal / external independent tone correction according to another embodiment of the present invention. FIG. 17A is a schematic diagram showing an operation on a color vector waveform of six-color independent saturation continuous variable tone correction according to another embodiment of the present invention.
FIGS. 15A, 16A and 17A are schematic diagrams showing the operation on the color vector waveform of the 6-color inside / outside independent tone correction of one embodiment of the present invention. Since the holding of the hue and saturation around the white portion at the center can be adjusted independently, the degree of freedom of color tone correction at the time of color gamut conversion is increased.

本発明の他の一実施例の6色内外独立色調補正のカラーベクトル波形上の動作を示す模式図の図16Aの様に、内外の彩度への相関はベクトルチャートの6色ポイントの彩度に対応して可変する方が、広色域と狭色域の変換時の色調補正において、色域周辺の純色周辺の色相彩度の変換と色域中心部の白周辺の色相彩度の保持との調整がより自然に調整できるため自由度が高くなる。
図3Bは、本発明の他の一実施例の色相検出補正部の構成を示すブロック図である。図3Bは、図15Aの内側と外側で異なる方向の色調補正と図16Aの内外の彩度への相関はベクトルチャートの6色ポイントの彩度に対応して可変する色調補正とを実現する詳細構成を示すブロック図である。
図3Bは、図3Aから定数選択回路24が変更されている。定数選択回路24により、図15Dの内側と外側で階段状に異なる方向の色調補正と図16Aの内外の彩度への相関はベクトルチャートの6色ポイントの彩度に対応して可変する色調補正とを実現する。
As shown in FIG. 16A of a schematic diagram showing the operation on the color vector waveform of the six-color inside / outside independent tone correction of another embodiment of the present invention, the correlation with the inside / outside saturation is calculated by the saturation of the six color points of the vector chart. It is possible to change the hue saturation around the pure color around the color gamut and retain the hue saturation around the white at the center of the color gamut in the color tone correction when converting between the wide color gamut and the narrow color gamut. The degree of freedom is increased because the adjustment can be made more naturally.
FIG. 3B is a block diagram illustrating a configuration of a hue detection / correction unit according to another embodiment of the present invention. FIG. 3B is a diagram showing details of realizing a tone correction in different directions between the inside and outside of FIG. 15A and a tone correction in which the correlation between the inside and outside saturation of FIG. 16A is changed corresponding to the saturation of six color points of the vector chart. FIG. 3 is a block diagram showing a configuration.
FIG. 3B is different from FIG. 3A in that the constant selection circuit 24 is changed. By the constant selection circuit 24, the color tone correction in a stepwise different direction between the inside and the outside of FIG. 15D and the correlation with the inside and outside saturation of FIG. 16A are varied in accordance with the saturation of the six color points of the vector chart. And realize.

彩度により階段状に可変の動作では、図15Dの内側と外側で階段状に異なる方向の色調補正を実現する詳細構成を示すブロック図の図3Bの様に、定数選択回路24を設置すれば良い。
彩度により階段状に可変の動作では、図3Bの定数選択回路24の動作である図7Dの彩度係数の処理のように、色差算出し最大値と最小値判定後最大値と最小値と彩度に応じて係数を選択し、彩度により階段状に彩度係数が可変すれば良い。
彩度に応じて係数を算出が曲線変化は後述する。
In the stepwise variable operation according to the saturation, if the constant selection circuit 24 is installed as shown in FIG. 3B of a block diagram showing a detailed configuration for realizing color tone correction in different directions stepwise inside and outside of FIG. 15D. good.
In the stepwise variable operation according to the saturation, as in the processing of the saturation coefficient in FIG. 7D which is the operation of the constant selection circuit 24 in FIG. 3B, the color difference is calculated and the maximum value and the minimum value are determined. A coefficient may be selected according to the saturation, and the saturation coefficient may be varied stepwise according to the saturation.
The coefficient is calculated according to the saturation, but the curve change will be described later.

つまり、BT.709の原色点より広色域のITU/BT.2020等の原色点の第1の色信号を、BT.709の原色に基づく色域の異なる第2の色信号に変換し、また簡易には、BT.709の原色に基づく原色点の第3の色信号を、BT.709の原色点より広色域のITU/BT.2020等の原色点の第4の色信号に変換して、補正する際に、画素ごとに彩度に相関させて色調補正の量と方向を可変させる又は彩度内外独立に色調補正の量と方向を可変する等の画素単位に彩度により色調補正の量と方向を可変させる6色以上の独立色調補正機能を有することにより、より忠実に色域変換することを容易な調整で実現できる。
特に、内外の彩度への相関はベクトルチャートの6色ポイントの彩度に対応して可変する方が、広色域と狭色域の変換時の色調補正において、色域周辺の純色周辺の色相彩度の変換と色域中心部の白周辺の色相彩度の保持との調整がより自然に調整できるため自由度が高くなる。
That is, the first color signal of a primary color point such as ITU / BT.2020 having a wider color gamut than the primary color point of BT.709 is converted into a second color signal having a different color gamut based on the primary color of BT.709, In addition, simply, the third color signal of the primary color point based on the primary color point of BT.709 is converted into the fourth color signal of the primary color point of ITU / BT.2020 etc. having a wider color gamut than the primary color point of BT.709. When making corrections, the amount and direction of color tone correction can be varied by correlating the saturation for each pixel, or the amount and direction of color tone correction can be varied independently inside and outside of saturation, and so on. By having an independent color tone correction function for six or more colors that can change the amount and direction of correction, more accurate color gamut conversion can be realized with easy adjustment.
In particular, it is better to change the correlation to the saturation inside and outside according to the saturation of the six color points of the vector chart, in the color tone correction at the time of conversion between the wide color gamut and the narrow color gamut, around the pure color around the color gamut. Since the adjustment of the conversion of the hue and saturation and the maintenance of the hue and saturation around white in the center of the color gamut can be adjusted more naturally, the degree of freedom is increased.

以下、独立12色や独立24色等の色調検出と補正装置について、図示の実施形態により詳細に説明する。
まず図9Aと図9Bと図9Cは、本発明の一実施形態例で、15は中間色色相設定回路、17はα/β、β/α算出回路、18は定数選択回路、19,20,26は乗算器、21はデータ選択加減算回路であり、その他は図3に示した技術と同じである。
図9Aは、図17Bの独立12色や図17Cの独立24色等の彩度に色調補正の量と方向が線形相関の実施形態のブロック図で、図9Bは、図17Bの独立12色や図17Cの独立24色等の彩度の累乗に色調補正の量と方向が相関の実施形態のブロック図で、図9Cは、図15Bの独立12色や図15Cの独立24色等の内外で方向可変の色調補正の実施形態のブロック図である。
また図15Bは本発明の他の一実施例の12色内外独立色調補正のカラーベクトル波形上の動作を示す模式図であり、図15Cは本発明の他の一実施例の24色内外独立色調補正のカラーベクトル波形上の動作を示す模式図である。
Hereinafter, a device for detecting and correcting color tones such as 12 independent colors and 24 independent colors will be described in detail with reference to the illustrated embodiment.
First, FIGS. 9A, 9B and 9C show an embodiment of the present invention, in which 15 is an intermediate hue setting circuit, 17 is an α / β and β / α calculation circuit, 18 is a constant selection circuit, 19, 20, and 26. Is a multiplier, 21 is a data selection addition / subtraction circuit, and the rest is the same as the technique shown in FIG.
FIG. 9A is a block diagram of an embodiment in which the amount and direction of tone correction are linearly correlated with the saturation such as the independent 12 colors in FIG. 17B and the independent 24 colors in FIG. 17C, and FIG. FIG. 17C is a block diagram of an embodiment in which the amount and direction of color tone correction are correlated to the power of saturation such as 24 independent colors in FIG. 17C, and FIG. 9C shows the inside and outside of 12 independent colors in FIG. 15B and 24 independent colors in FIG. It is a block diagram of an embodiment of color tone correction of variable direction.
FIG. 15B is a schematic diagram showing the operation on the color vector waveform of the 12-color internal / external independent tone correction of another embodiment of the present invention, and FIG. 15C is the 24-color internal / external independent tone of another embodiment of the present invention. It is a schematic diagram which shows the operation | movement on the color vector waveform of correction.

中間色色相設定回路15は、新たに基準色として設定したい中間色の設定を可能にする働きをするもので、例えば、RとYeの中間色である肌色(色相F)が予め設定されるものである。原色/補色領域判定回路16は、色相領域判定回路4からのデータと、中間色色相設定回路15から与えられている色相Fとにより、入力映像信号R、G、Bの色相を判別し、所定の制御信号Sを発生する働きをする。
α/β、β/α算出回路17は、中間色色相設定回路15から与えられるデータにより、所定の定数α/β、β/αを算出する働きをする。なお、これらの定数α/β、β/αについては後述する。定数選択回路18は、制御信号Sに応じて定数α/β、β/αの何れか一方を選択して出力する働きをする。
The intermediate color / hue setting circuit 15 functions to enable setting of an intermediate color to be newly set as a reference color. For example, a skin color (hue F) which is an intermediate color between R and Ye is set in advance. The primary color / complementary color area determination circuit 16 determines the hues of the input video signals R, G, and B based on the data from the hue area determination circuit 4 and the hue F provided from the intermediate hue setting circuit 15, and determines a predetermined hue. It serves to generate a control signal S.
The α / β and β / α calculating circuit 17 has a function of calculating predetermined constants α / β and β / α based on the data supplied from the intermediate hue setting circuit 15. The constants α / β and β / α will be described later. The constant selection circuit 18 functions to select and output one of the constants α / β and β / α according to the control signal S.

乗算器19、20,26は、彩度成分量と原色成分量及び補色成分量判定回路5から出力されてくる彩度成分と原色成分と補色成分に、定数選択回路18で選択された定数α/β、β/αの一方を乗算する働きをする。データ選択加減算回路21は、色相領域判定回路4による判定結果と制御信号Sに応じてデータを選択し、所定の加減算を行なう。なお、この回路の動作の詳細は後述する。   The multipliers 19, 20, and 26 convert the saturation component, the primary color component amount, and the saturation component, the primary color component, and the complementary color component output from the complementary color component amount determination circuit 5 into the constant α selected by the constant selection circuit 18. / Β and β / α. The data selection addition / subtraction circuit 21 selects data according to the result of determination by the hue region determination circuit 4 and the control signal S, and performs predetermined addition / subtraction. The details of the operation of this circuit will be described later.

次に、この実施形態例の動作について説明する。図10、図11は、本発明の動作原理を説明するため彩度(色飽和度)及び色度(色相)を表した図で、これらの図において、原点Oから遠ざかる方向が彩度、彩度に垂直な方向(円を描く方向)が色度を表わしている。
ここで本発明は、6色独立に加え肌色独立あるいは12色独立又は16色独立又は18色独立又は24色独立等の6色より多い内外独立色調補正機能などの、どのような中間色の補正にも適用可能であるが、特に肌色の補正に適用される場合が多いと考えられる。そこで、この実施形態例では、以下、主として、肌色の補正を例に挙げて説明する。そうすると、この肌色の色相はRとYeの間の領域、すなわち、領域6に位置するので、これらの図10、11ではR(赤)からYe(黄)の領域6だけを示し、ここで肌色の色相は点Fで表わされることになる。
そこで、この点を、図示のように、補助基準色Fとし、そのデータを、上記したように、中間色色相設定回路15に設定する。
Next, the operation of this embodiment will be described. FIGS. 10 and 11 are diagrams illustrating saturation (color saturation) and chromaticity (hue) for explaining the operation principle of the present invention. In these figures, the direction away from the origin O is the saturation and saturation. The direction perpendicular to the degree (the direction in which the circle is drawn) represents the chromaticity.
Here, the present invention is applicable to any intermediate color correction such as an inner and outer independent tone correction function of more than six colors such as skin color independent, 12 colors independent, 16 colors independent, 18 colors independent, or 24 colors independent in addition to 6 colors independent. Can be applied, but it is considered that it is often applied particularly to correction of skin color. Therefore, in this embodiment, a description will be given below mainly of correction of skin color as an example. Then, since the hue of this flesh color is located in a region between R and Ye, that is, region 6, these FIGS. 10 and 11 show only region 6 from R (red) to Ye (yellow), Is represented by a point F.
Therefore, this point is set as the auxiliary reference color F as shown in the figure, and the data is set in the intermediate color hue setting circuit 15 as described above.

これにより、領域6は、中心点Oから補助基準色F点を通る軸、つまり補助基準線により、2個の補助領域、すなわち、領域(1)と領域(2)とに分けられることになる。次に、入力映像信号の色相を、原色/補色領域判定回路16により、図2に示すように、RとFの間の領域(1)と、FとYeの間の領域(2)に分割して判定する。そうすると、まず、このときは、何れも色相領域判定回路4の判定結果が領域6になっているときの動作となるので、算出回路5から出力されている原色成分量と補色成分量は、それぞれ以下の通りになっている。
原色成分量=R−G=Rc、補色成分量=G−B=Yc
As a result, the area 6 is divided into two auxiliary areas, that is, the area (1) and the area (2), by an axis passing from the center point O to the auxiliary reference color F point, that is, an auxiliary reference line. . Next, the hue of the input video signal is divided by the primary color / complementary color area determination circuit 16 into an area (1) between R and F and an area (2) between F and Ye as shown in FIG. Is determined. Then, in this case, first, since the operation is performed when the determination result of the hue region determination circuit 4 is the region 6, the primary color component amount and the complementary color component amount output from the calculation circuit 5 are respectively It is as follows.
Primary color component amount = RG = Rc, complementary color component amount = GB = Yc

次に、入力映像信号の色相が、これらの領域(1)と領域(2)の何れにあるかを、原色/補色領域判定回路16の判定により識別し、それぞれ以下に示すように、別個に補正を行なうのである。
<領域(1)での補正処理>このときは、各回路からの出力は以下の通りとなる。まず、定数選択回路18では定数β/αが選択され、この定数β/αが乗算器19、20に出力される。次に、データ選択加減算回路21からは信号〔Rc−Yc×(β/α)〕、信号(−Yc)、それに信号〔Yc×(β/α)〕が出力される。さらに、定数選択回路6では定数Kr、Kfが選択され、これらの定数Kr、Kfが乗算器7、8に出力される。
Next, whether the hue of the input video signal is in the region (1) or the region (2) is identified by the judgment of the primary color / complementary color region judgment circuit 16 and separately as shown below. The correction is made.
<Correction processing in region (1)> At this time, the output from each circuit is as follows. First, the constant selection circuit 18 selects a constant β / α, and outputs the constant β / α to the multipliers 19 and 20. Next, the data selection addition / subtraction circuit 21 outputs a signal [Rc−Yc × (β / α)], a signal (−Yc), and a signal [Yc × (β / α)]. Further, constants Kr and Kf are selected by the constant selection circuit 6, and these constants Kr and Kf are output to the multipliers 7 and 8.

そして、これらの結果、データ選択加算回路11からは、まず、信号〔Rc−Yc×(β/α)〕×Kr+Kf×〔Yc×(β/α)〕が加算器12に出力されて信号Rに加算され、次に、信号〔(−Yc)×Kf〕が加算器14に出力されて信号Bに加算されることになる。   As a result, the data selection / addition circuit 11 first outputs the signal [Rc−Yc × (β / α)] × Kr + Kf × [Yc × (β / α)] to the adder 12 and outputs the signal R Then, the signal [(−Yc) × Kf] is output to the adder 14 and added to the signal B.

そこで、図10において、いま、A点を入力映像信号の座標とし、ベクトルAで表わすと、このベクトルAは、R成分ベクトルR1と肌色成分ベクトルF1の合成で表される。
A=R1+F1次に、Rの彩度方向調整専用の利得定数をKrとし、肌色の彩度方向調整専用の利得定数をKfとすると、Rの彩度方向の色調補正を行なう場合には、|R1|×KrをRの彩度方向に加算、つまりRに加算してやれば良く、肌色の彩度方向の色調補正を行なう場合には、|F1|×Kfを肌色彩度方向に加算してやれば良い。
Therefore, in FIG. 10, when the point A is set as the coordinates of the input video signal and is represented by a vector A, the vector A is represented by a combination of the R component vector R1 and the flesh color component vector F1.
A = R1 + F1 Next, assuming that the gain constant exclusively for adjusting the saturation direction of R is Kr and the gain constant exclusively for adjusting the saturation direction of skin color is Kf, when performing color tone correction in the saturation direction of R, | It suffices to add R1 | × Kr in the saturation direction of R, that is, add it to R. To perform color tone correction in the skin color saturation direction, it is sufficient to add | F1 | × Kf in the skin color saturation direction. .

そこで、これらの量|R1|、|F1|の算出方法及び肌色彩度方向への加算方法について説明すると、このためには、全ての補正を、R、G、B成分への補正として表現してやれば良い。そこで、まずR成分基本ベクトルをR、肌色成分基本ベクトルをF、Ye成分基本ベクトルをY、そしてB成分基本ベクトルをBとし、F=α×Y+β×R=α×(−B)+β×Rとする。   A method of calculating these quantities | R1 | and | F1 | and a method of adding them in the skin color saturation direction will be described. To this end, all corrections can be expressed as corrections to the R, G, and B components. Good. Therefore, first, the R component basic vector is R, the flesh color basic vector is F, the Ye component basic vector is Y, and the B component basic vector is B. F = α × Y + β × R = α × (−B) + β × R And

次に、入力映像信号の座標ベクトルAをR成分とYe成分の合成で表わす。ここで、A=Y×Yc+R×Rcと、Rc及びYcは、従来の色調補正方式で説明したように、簡単に求まる。この場合、R>G>Bであり、従って、図9から明らかなように、Rc=R−G、Yc=G−Bとなる。   Next, the coordinate vector A of the input video signal is represented by combining the R component and the Ye component. Here, A = Y × Yc + R × Rc, and Rc and Yc can be easily obtained as described in the conventional color tone correction method. In this case, R> G> B, so that Rc = RG and Yc = GB, as is apparent from FIG.

そうすると、 A=Y×Yc+R×Rc=(1/α)×(F−β×R)×Yc+R×Rc =F×Yc/α+R×(Rc−β×Yc/α)となり、よって、|R1|=Rc−β×Yc/α|F1|=Yc/αとなる。   Then, A = Y × Yc + R × Rc = (1 / α) × (F−β × R) × Yc + R × Rc = F × Yc / α + R × (Rc−β × Yc / α), and | R1 | = Rc-β × Yc / α | F1 | = Yc / α.

そこで、F×Yc/αをベクトルRとベクトルBで表現すると、F×Yc/α=(α×(−B)+β×R)×Yc/α=B×(−Yc)+R×(β×Yc/α)となる。   Therefore, if F × Yc / α is represented by vector R and vector B, F × Yc / α = (α × (−B) + β × R) × Yc / α = B × (−Yc) + R × (β × Yc / α).

従って、以上の結果をまとめると、以下の通りである。すなわち、まず、Rの彩度方向の色調補正を行なうためには、|R1|Kr=(Rc−β×Yc/α)×KrをRに加算すればよい。次に、肌色の彩度方向の色調補正を行なうためには、|F1|×Kfを肌色彩度方向に加算すればよいが、このことは、−Yc×KfをBに加算し、(β×Yc/α)×KfをRに加算することに等しい。   Therefore, the above results are summarized as follows. That is, first, | R1 | Kr = (Rc−β × Yc / α) × Kr may be added to R to perform color tone correction in the saturation direction of R. Next, in order to perform color tone correction in the skin color saturation direction, it is only necessary to add | F1 | × Kf in the skin color saturation direction. This means that −Yc × Kf is added to B, and (β × Yc / α) × Kf is equivalent to adding R to R.

ここで、いま、Rベクトルと肌色ベクトルの間の角度をθとすると、α×Sin(60°−θ)=β×Sin(θ)であるため、β/α=Sin(60°−θ)/Sin(θ)となる。
従って、θ=20°のときは、β/α=1.8794になるが、これを≒2.0とすると、このときの補正は、Rの彩度方向の色調補正については、(Rc−2×Yc)×KrをRに加算すればよく、肌色の彩度方向の色調補正については、−Yc×KfをBに加算し、2×Yc×KfをRに加算すればよい。そして、β/αを変えることにより、肌色の基準軸を調整することができる。
以上は彩度方向の補正についての説明であるが、色度方向の補正に対しても同様の概念が適用できるため、説明は省略する。
Here, assuming that the angle between the R vector and the flesh color vector is θ, α / Sin (60 ° −θ) = β × Sin (θ), so β / α = Sin (60 ° −θ) / Sin (θ).
Therefore, when θ = 20 °, β / α = 1.8794, but when this is set to ≒ 2.0, the correction at this time is (Rc− 2 × Yc) × Kr may be added to R. For color tone correction in the skin color saturation direction, −Yc × Kf may be added to B, and 2 × Yc × Kf may be added to R. By changing β / α, the reference axis of the flesh color can be adjusted.
The above is the description of the correction in the saturation direction. However, the same concept can be applied to the correction in the chromaticity direction, and a description thereof will be omitted.

<領域(2)での補正処理>このときは、各回路からの出力は以下の通りとなる。まず、定数選択回路18では定数α/βが選択され、この定数α/βが乗算器19、20に出力される。次に、データ選択加減算回路21からは信号〔Yc−Rc×(α/β)〕、信号(Rc)、それに信号〔−Rc×(α/β)〕が出力される。さらに、定数選択回路6では定数Ky、Kfが選択され、これらの定数Ky、Kfが乗算器7、8に出力される。
そして、これらの結果、データ選択加算回路11からは、まず、信号〔Rc×Kf〕が加算器12に出力されて信号Rに加算され、次に、信号−〔Yc−Rc×(α/β)〕×Ky−Kf×〔Rc×(α/β)〕が加算器14に出力されて信号Bに加算されることになる。
<Correction processing in region (2)> At this time, the output from each circuit is as follows. First, a constant α / β is selected by the constant selection circuit 18, and the constant α / β is output to the multipliers 19 and 20. Next, the data selection addition / subtraction circuit 21 outputs a signal [Yc−Rc × (α / β)], a signal (Rc), and a signal [−Rc × (α / β)]. Further, constants Ky and Kf are selected in the constant selection circuit 6, and these constants Ky and Kf are output to the multipliers 7 and 8.
As a result, the data selection / addition circuit 11 first outputs the signal [Rc × Kf] to the adder 12 and adds it to the signal R. Then, the signal − [Yc−Rc × (α / β) )] × Ky−Kf × [Rc × (α / β)] is output to the adder 14 and added to the signal B.

そこで、図3において、今度はC点を入力映像信号の座標とし、これをベクトルCで表わすと、このベクトルCは、Ye成分ベクトルY1と肌色成分ベクトルF2の合成で表される。
C=Y1+F2 次に、Yeの彩度方向調整専用の利得定数をKyとし、肌色の彩度方向調整専用の利得定数をKfとすると、Yeの彩度方向の色調補正には、|Y1|×KyをBから減算してやれば良く、肌色の彩度方向の色調補正には、|F2|×Kfを肌色彩度方向に加算してやれば良い。
Therefore, in FIG. 3, when the point C is set as the coordinates of the input video signal and is represented by a vector C, this vector C is represented by a combination of the Ye component vector Y1 and the skin color component vector F2.
C = Y1 + F2 Next, assuming that the gain constant exclusively for adjusting the saturation direction of Ye is Ky and the gain constant exclusively for adjusting the saturation direction of flesh color is Kf, | Y1 | × Ky may be subtracted from B, and | F2 | × Kf may be added in the skin color saturation direction for color tone correction in the skin color saturation direction.

次に、これら|Y1|、|F2|の算出方法及び肌色彩度方向への加算方法については、上記した領域(1)のときと同じであり、従って、以下のようになる。
C=Y×Yc+R×Rc =Y×Yc+(1/β)×(F−α×Y)×Rc =F×Rc/β+Y×(Yc−α×Rc/β) となり、
よって、|Y1|=Yc−α×Rc/β|F2|=Rc/β となる。
ここで、F×Rc/βをベクトルRとベクトルBで表現すると、F×Rc/β=(α×(−B)+β×R)×Rc/β=−B×(α×Rc/β)+R×Rcとなる。
Next, the method of calculating | Y1 | and | F2 | and the method of addition in the flesh color saturation direction are the same as those in the above-described region (1), and are as follows.
C = Y × Yc + R × Rc = Y × Yc + (1 / β) × (F−α × Y) × Rc = F × Rc / β + Y × (Yc−α × Rc / β)
Therefore, | Y1 | = Yc−α × Rc / β | F2 | = Rc / β.
Here, if F × Rc / β is represented by vector R and vector B, F × Rc / β = (α × (−B) + β × R) × Rc / β = −B × (α × Rc / β) + R × Rc.

従って、以上の結果をまとめると、以下の通りとなる。すなわち、まず、Yeの彩度方向の色調補正を行なう場合には、|Y1|×Ky=(Yc−α×Rc/β)×KyをBから減算すれば良い。
次に、肌色の彩度方向の色調補正を行なう場合には、|F2|×Kfを肌色彩度方向に加算するのであるが、このことは(−α×Rc/β)×KfをBに加算し、Rc×KfをRに加算することに等しい。
Therefore, the above results are summarized as follows. That is, first, when performing color tone correction in the saturation direction of Ye, | Y1 | × Ky = (Yc−α × Rc / β) × Ky may be subtracted from B.
Next, when performing color tone correction in the skin color saturation direction, | F2 | × Kf is added in the skin color saturation direction, which means that (−α × Rc / β) × Kf is changed to B. It is equivalent to adding Rc × Kf to R.

そこで、Rベクトルと肌色ベクトルの間の角度θを、上記した領域(1)のときと同じく20°とすると、α/β=0.5321になるので、これを≒0.5とすると、このときの補正はYeの彩度方向の色調補正を行なう場合、(Yc−0.5Rc)×KyをBから減算すれば良く、肌色の彩度方向の色調補正を行なう場合、−0.5×Rc×KfをBに加算し、Rc×KfをRに加算してやれば良い。
以上は、彩度方向の補正についての説明であるが、色度方向の補正に対しても同様の概念が適用できるため、説明は省略する。
Therefore, if the angle θ between the R vector and the flesh color vector is set to 20 ° as in the above-described region (1), α / β = 0.5321. Therefore, when this is set to ≒ 0.5, When the color tone correction in the saturation direction of Ye is performed, (Yc−0.5Rc) × Ky may be subtracted from B. When the color tone correction in the saturation direction of the skin color is performed, −0.5 × Rc × Kf may be added to B, and Rc × Kf may be added to R.
The above is the description of the correction in the saturation direction. However, the same concept can be applied to the correction in the chromaticity direction, and a description thereof will be omitted.

上記領域(1)及び領域(2)の各項で説明した補正によって得られる特性を示すと、図4の通りになる。この図4の特性は、Rの彩度方向の色調補正、Yeの彩度方向の色調補正、及び肌色の彩度方向の色調補正のそれぞれの利得特性を重ねて示したもので、図示のように、肌色の彩度方向利得定数Kfを制御してやれば、Rの彩度方向利得定数Krと、Yeの彩度方向の利得定数Kyに関係なく、肌色の彩度方向の色調補正を行なえることが判る。
従って、この実施形態例によれば、RとYeへの影響を最小限に押さえ、肌色に対して有効な色調補正を行なうことができ、テレビジョンカメラを切換えたときなどでの違和感を確実に無くすことができる。
FIG. 4 shows characteristics obtained by the correction described in each of the above-mentioned areas (1) and (2). The characteristics shown in FIG. 4 are obtained by superimposing the respective gain characteristics of the color tone correction in the saturation direction of R, the color tone correction in the saturation direction of Ye, and the color tone correction in the saturation direction of the skin color. In addition, if the skin color saturation direction gain constant Kf is controlled, the color tone correction in the skin color saturation direction can be performed regardless of the saturation direction gain constant Kr of R and the gain constant Ky in the saturation direction of Ye. I understand.
Therefore, according to this embodiment, the effect on R and Ye can be suppressed to a minimum, effective color tone correction can be performed for flesh color, and uncomfortable feeling when switching the television camera can be surely obtained. Can be eliminated.

次に、図5は、本発明の他の実施形態例による補正特性を示したもので、この実施形態例では、肌色軸Fを中心とした利得特性を持つ補正関数を生成し、これを取り出す。これを従来の機能に加算したものが、この図5の実施形態例で、この方式によれば、従来方式で補正しきれない領域を補うような形で補正することができる。   Next, FIG. 5 shows a correction characteristic according to another embodiment of the present invention. In this embodiment, a correction function having a gain characteristic centered on the flesh color axis F is generated and extracted. . This is added to the conventional function in the embodiment of FIG. 5, and according to this method, the correction can be made in such a manner as to compensate for the area that cannot be corrected by the conventional method.

さらに本発明では、最大値と最小値判定後原色(最大値)と白(最小値)との差の彩度を算出し、彩度に応じて係数を算出する。
彩度に応じて係数を算出は、直線変化となる。
彩度に応じて係数を選択は、階段変化となる。
つまり、6色独立に加え肌色独立あるいは12色独立又は16色独立又は18色独立又は24色独立等などの6色より多い独立色調補正し、彩度に対応して色調補正の方向と量とを可変する方が、広色域と狭色域の変換時の色調補正において、色域周辺の純色周辺の色相彩度の変換と色域中心部の白周辺の色相彩度の保持との調整がより自然に調整できるため自由度が高くなる。
Further, in the present invention, the saturation of the difference between the primary color (maximum value) and white (minimum value) after the maximum value and minimum value determination is calculated, and a coefficient is calculated according to the saturation.
The calculation of the coefficient according to the saturation is a linear change.
Selecting a coefficient according to the saturation is a step change.
That is, in addition to six independent colors, independent color tone correction of more than six colors such as skin color independent, 12 color independent, 16 color independent, 18 color independent, 24 color independent, etc., and the direction and amount of color tone correction corresponding to saturation. Is to adjust the conversion of the hue and saturation around the pure color around the gamut and the preservation of the hue and saturation around the white at the center of the gamut in the tone correction when converting between the wide gamut and the narrow gamut. Can be adjusted more naturally, thereby increasing the degree of freedom.

本発明の他の一実施例の色相彩度検出補正部の構成を示すブロック図の図9Bを用いて説明する。
図9Bは本発明の他の一実施例の色相彩度検出補正部の構成を示すブロック図であり、図9Aに乗算器21,22,23が追加されている。図9Bでは、彩度により曲線状に可変の動作に対応するため、彩度成分を累乗して、データ選択加減算回路21に印加している。図9Bでは、乗算器21,22,23の3ケであり彩度成分の3乗であるが、図示しない乗算器が2ケの2乗でも、図示しない乗算器が2ケの4乗でも良い。
A description will be given with reference to FIG. 9B of a block diagram showing a configuration of a hue / saturation detection / correction unit according to another embodiment of the present invention.
FIG. 9B is a block diagram showing a configuration of a hue / saturation detection / correction unit according to another embodiment of the present invention. Multipliers 21, 22, and 23 are added to FIG. 9A. In FIG. 9B, the saturation component is raised to the power and applied to the data selection addition / subtraction circuit 21 in order to cope with a curve-variable operation based on the saturation. In FIG. 9B, there are three multipliers 21, 22, and 23, which are the cubes of the saturation components. However, the number of multipliers (not shown) may be two squares, and the number of multipliers (not shown) may be two fourths. .

図7Cは、本発明の他の一実施例の6色内外独立色調補正方式による色調補正処理の説明図であり、彩度の累乗に色調補正の量と方向が相関している。図7Aとの相違は、選択された彩度成分が自然数nヶ累乗される処理が追加されたことである。図9Bでは、図7Cの自然数nヶ分乗算器が追加されることになる。
彩度で方向可変の色調補正により、広色域と狭色域の変換時の色調補正において、色域周辺の純色周辺の色相彩度の変換と色域中心部の白周辺の色相彩度の保持との調整がより自然に調整できるため自由度が高くなる。
FIG. 7C is an explanatory diagram of a color tone correction process according to the six-color inside / outside independent color tone correction method according to another embodiment of the present invention, and the amount and direction of the color tone correction are correlated with the power of saturation. The difference from FIG. 7A is that a process for raising the selected saturation component to the power of n natural numbers has been added. In FIG. 9B, multipliers for n natural numbers in FIG. 7C are added.
By changing the direction of saturation and changing the hue, the hue saturation around the pure color around the color gamut and the hue around the white at the center of the color gamut can be corrected. Since the adjustment with the holding can be adjusted more naturally, the degree of freedom is increased.

図17Aと図17Bと図17Cは、彩度で方向可変の色調補正の内の、彩度により連続可変の動作を示しているが、図15Aから図15Cは彩度に閾値のある動作であり、図15Dは彩度で方向可変の色調補正の内のステップ応答での可変である。彩度に線形相関で方向可変の色調補正の動作に限らず、彩度により階段状に可変の動作でも、彩度により曲線状に可変の動作でも良い。   FIGS. 17A, 17B, and 17C show an operation in which color saturation is continuously variable in the color tone correction in a direction variable, and FIGS. 15A to 15C show operations in which a threshold is set in the saturation. FIG. 15D shows the variation in the step response of the color tone correction in the direction variable with the saturation. The operation is not limited to the color tone correction operation in which the direction is variable by the linear correlation with the saturation. The operation may be a stepwise variable operation based on the saturation or a curved operation variable depending on the saturation.

6色ポイントの彩度に対応の6色内外独立色調補正方式による色調補正処理の説明図の図7E及び本発明の他の一実施例のベクトルチャートの6色ポイントの彩度に対応する6色独立色調補正のカラーベクトル波形上の動作を示す模式図の図16A及び本発明の他の一実施例のベクトルチャートの6色ポイントの彩度に対応する12色独立色調補正のカラーベクトル波形上の動作を示す模式図の図16B並びに、本発明の一実施例の色相彩度検出補正部の構成を示すブロック図の図9A及び本発明の他の一実施例の色相彩度検出補正部の構成を示すブロック図の9Cを用いて6色ポイントの彩度に対応の6色内外独立色調補正方式による色調補正処理を説明する。   FIG. 7E of the explanatory diagram of the color tone correction processing by the six color inside / outside independent color tone correction method corresponding to the color saturation of the six color points and six colors corresponding to the color saturation of the six color points of the vector chart of another embodiment of the present invention. FIG. 16A is a schematic diagram showing the operation on the color vector waveform of the independent tone correction, and FIG. 16A is a schematic diagram showing the operation on the color vector waveform of the 12 independent color correction corresponding to the saturation of the six color points of the vector chart of another embodiment of the present invention. FIG. 16B is a schematic diagram showing the operation, FIG. 9A is a block diagram showing the configuration of a hue / saturation detection / correction unit according to one embodiment of the present invention, and the configuration of the hue / saturation detection / correction unit according to another embodiment of the present invention. The color tone correction processing by the six color inside / outside independent color tone correction method corresponding to the saturation of the six color points will be described with reference to 9C of the block diagram showing FIG.

図16Aは、本発明の他の一実施例のベクトルチャートの色ポイントの彩度に対応する6色独立色調補正のカラーベクトル波形上の動作を示す模式図であり、図16Bは本発明の他の一実施例のベクトルチャートの6色ポイントの彩度に対応する12色独立色調補正のカラーベクトル波形上の動作を示す模式図であり、本発明の他の一実施例のベクトルチャートのR、G、B、Cy、Ye、Mgの6色ポイントの彩度に対応して、画素ごとに内外の彩度への相関を可変する又は彩度内外の閾値を可変する等の画素単位に彩度により色調補正の量と方向を可変させる彩度の影響方法を可変させる6色以上の独立色調補正機能のカラーベクトル波形上の動作を示す。ベクトルチャートの6色ポイントの彩度に対応することにより、広色域と狭色域の変換時の色調補正において、色域周辺の純色周辺の色相彩度の変換と色域中心部の白周辺の色相彩度の保持との調整がより自然に調整できるため自由度が高くなる。   FIG. 16A is a schematic diagram showing an operation on a color vector waveform of six-color independent tone correction corresponding to the saturation of a color point of a vector chart according to another embodiment of the present invention, and FIG. FIG. 10 is a schematic diagram showing an operation on a color vector waveform of 12-color independent tone correction corresponding to the saturation of 6 color points of the vector chart of one embodiment of the present invention. Corresponding to the saturation of the six color points of G, B, Cy, Ye, and Mg, the saturation in pixel units such as varying the correlation between the inside and outside saturation or varying the threshold inside and outside saturation for each pixel. The operation on the color vector waveform of the independent color tone correction function for six or more colors, in which the influence method of the saturation that varies the amount and direction of the color tone correction, is shown. Corresponding to the saturation of the six color points of the vector chart, the conversion of the hue saturation around the pure color around the color gamut and the white around the center of the color gamut in the color tone correction at the time of conversion between the wide color gamut and the narrow color gamut. The degree of freedom can be increased because the adjustment with the hue / saturation can be adjusted more naturally.

図16Aと図16Bは、ベクトルチャートの6色ポイントの彩度に対応して彩度内外の閾値を可変するであるが、画素ごとに内外の彩度への相関を可変するでも良い。
また、図16Aと図16Bは、ベクトルチャートの6色ポイントを固定で表示しているが、広色域と狭色域の変換時のベクトルチャートの6色ポイント移動に対応して、彩度内外の閾値を可変しても良いし、画素ごとに内外の彩度への相関を可変するでも良い。
本発明の一実施例の6色内外独立色調補正方式による色調補正処理では、ベクトルチャートのR、G、B、Cy、Ye、Mgの6色ポイントの彩度に対応して、彩度に色調補正の量と方向が線形相関の係数が、色相により変化する。
In FIGS. 16A and 16B, the thresholds inside and outside the saturation are varied in accordance with the saturations of the six color points in the vector chart, but the correlation between the inside and outside saturations may be varied for each pixel.
Although FIG. 16A and FIG. 16B show the six color points of the vector chart in a fixed manner, corresponding to the movement of the six color points of the vector chart at the time of conversion between the wide color gamut and the narrow color gamut, the inside and outside of the saturation are changed. May be varied, or the correlation between the inside and outside saturation may be varied for each pixel.
In the color tone correction processing using the six color inside / outside independent color tone correction method according to one embodiment of the present invention, the color tone is adjusted to the saturation corresponding to the saturation of the six color points R, G, B, Cy, Ye, and Mg in the vector chart. The coefficient of linear correlation between the amount and direction of correction changes depending on hue.

図3A又は図3Bあるいは図9A又は図9B又は図9Cの本発明の一実施例の色相検出補正部の構成を示すブロック図において、4の色相領域判定の色相により、定数選択6又は18において、彩度に色調補正の量と方向が線形相関の係数が変化する。
彩度で方向可変の色調補正により、広色域と狭色域の変換時の色調補正において、色域周辺の純色周辺の色相彩度の変換と色域中心部の白周辺の色相彩度の保持との調整がより自然に調整できるため自由度が高くなる。
なお、上記実施形態例では、色相の範囲をRとYeに限定して説明したが、本発明は、任意の色相に適用可能なことは、言うまでもなく、また、基準色の種類や数についても任意に設定可能なことは、言うまでもない。
色相の範囲をRとYeに限定は、6色内外独立に加え肌色独立の色調補正の動作であり、6色内外独立に加え肌色独立の色調補正の動作に限らず、12色彩度独立色調補正あるいは16色内外独立色調補正の動作又は18色内外独立色調補正の動作又は24色内外独立色調補正の動作でも良い。
In the block diagram of FIG. 3A or FIG. 3B, FIG. 9A, FIG. 9B, or FIG. 9C, showing the configuration of the hue detection / correction unit according to the embodiment of the present invention, the hue of the hue area determination of 4, The coefficient of the linear correlation between the amount and direction of the color tone correction changes to the saturation.
By changing the direction of saturation and changing the hue, the hue saturation around the pure color around the color gamut and the hue around the white at the center of the color gamut can be corrected. Since the adjustment with the holding can be adjusted more naturally, the degree of freedom is increased.
In the above embodiment, the hue range is limited to R and Ye. However, it is needless to say that the present invention can be applied to any hue, and the type and number of the reference colors are also different. Needless to say, it can be set arbitrarily.
The limitation of the hue range to R and Ye is an operation of tone correction of skin color independent in addition to independent of inside and outside of six colors, and is not limited to an operation of tone correction of skin color in addition to independent of inside and outside of six colors, but also 12 color saturation independent tone correction. Alternatively, an operation of 16-color internal / external independent color correction, an operation of 18-color internal / external independent color correction, or an operation of 24-color internal / external independent color correction may be used.

つまり、6色独立に加え肌色独立あるいは12色独立又は16色独立又は18色独立又は24色独立等などの6色より多い独立色調補正し、特に内外の彩度への相関はベクトルチャートの6色ポイントの彩度に対応して可変する方が、広色域と狭色域の変換時の色調補正において、色域周辺の純色周辺の色相彩度の変換と色域中心部の白周辺の色相彩度の保持との調整がより自然に調整できるため自由度が高くなる。   In other words, independent color tone correction of more than six colors such as skin color independent, 12 color independent, 16 color independent, 18 color independent, 24 color independent, etc., in addition to 6 colors independent, and the correlation with the inner and outer chromas is represented by 6 in the vector chart. It is better to change in accordance with the saturation of the color point in the hue correction at the time of conversion between the wide color gamut and the narrow color gamut, to convert the hue saturation around the pure color around the color gamut and the white around the center of the color gamut. The degree of freedom is increased because the adjustment with the hue / saturation can be adjusted more naturally.

(実施例1) 以下、本発明の一実施例を図1A、図1B、図3C、図7A、図7B、図7C、図7D、図7E、図7F、図18A、図18Bを用いて説明する。
図1Aと図1Bは本発明のテレビジョンカメラの一実施例を示すブロック図である。図1Aはガンマ前マトリクスであり、図1Bはガンマ後マトリクスである。図3Cは本発明の一実施例の色相検出補正部の構成を示すブロック図で、色温度検出と6色独立色調補正の色調補正を実現する詳細構成を示すブロック図である。また、本発明の一実施例として、図1Aと図1Bに色温度検出(算出)が追加されている。色温度検出(算出)は、図3Cの左端に示すゲート部41、過大信号削除部42、ピーク検出部43で構成されている。
Embodiment 1 Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1A, 1B, 3C, 7A, 7B, 7C, 7D, 7E, 7F, 18A, and 18B. I do.
1A and 1B are block diagrams showing one embodiment of the television camera of the present invention. 1A is a pre-gamma matrix, and FIG. 1B is a post-gamma matrix. FIG. 3C is a block diagram showing a configuration of a hue detection and correction unit according to an embodiment of the present invention, and is a block diagram showing a detailed configuration for realizing color temperature detection and color tone correction of six-color independent color tone correction. As one embodiment of the present invention, color temperature detection (calculation) is added to FIGS. 1A and 1B. The color temperature detection (calculation) includes a gate unit 41, an excessive signal deletion unit 42, and a peak detection unit 43 shown at the left end of FIG. 3C.

図1Aと図1Bにおいて、光電変換されたR/G/Bの信号はCCDではAFE(アナログフロントエンドプロセッサ)でゲイン補正を行っており、CMOS撮像素子では内部でゲイン補正を行っており、RGB映像信号の増幅度を可変する手段となっている。
図7Aは、本発明の一実施例の色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。B撮像信号を周囲B画素中央値に補間して色調補正用のB映像信号とし、B撮像信号の中心画素撮像信号を維持と周囲B画素撮像信号の中央値と中心画素撮像信号との平均と周囲B画素撮像信号の中央値とに切替して本線用のB映像信号とする。
In FIGS. 1A and 1B, the R / G / B signal subjected to photoelectric conversion is subjected to gain correction by an AFE (analog front end processor) in a CCD, and is internally corrected in a CMOS image pickup device. This is a means for varying the degree of amplification of the video signal.
FIG. 7A is a block diagram showing a detailed configuration for calculating and interpolating the median of eight pixels around the color tone correction processing according to an embodiment of the present invention. The B image signal is interpolated into the peripheral B pixel median value to obtain a B video signal for color tone correction, the central pixel image signal of the B image signal is maintained, and the average of the median value of the peripheral B pixel image signal and the central pixel image signal is calculated. Switching to the median value of the surrounding B pixel image pickup signal to obtain a main line B video signal.

図7Bは、本発明の他の一実施例の色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。G撮像信号を中心画素撮像信号を維持し色調補正用の映像信号とし、G撮像信号の中心画素撮像信号を維持と周囲G画素撮像信号の中央値と中心画素撮像信号との平均と周囲G画素撮像信号の中央値とに切替して本線用のG映像信号とする。色温度で可変と共通である。   FIG. 7B is a block diagram showing a detailed configuration for calculating and interpolating the median value of eight pixels around the color tone correction processing according to another embodiment of the present invention. The G imaging signal is maintained at the center pixel imaging signal and used as a video signal for color tone correction, the center pixel imaging signal of the G imaging signal is maintained, the median of the surrounding G pixel imaging signals, the average of the center pixel imaging signals, and the surrounding G pixels Switching to the median value of the imaging signal to obtain a G video signal for the main line. It is common with variable in color temperature.

図7Cは、本発明の他の一実施例の色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間して色調補正用のR映像信号とし、R撮像信号の中心画素撮像信号を維持と周囲R画素撮像信号の中央値と中心画素撮像信号との平均と周囲R画素撮像信号の中央値とに切替して本線用のR映像信号とする。   FIG. 7C is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process according to another embodiment of the present invention. The R image signal is interpolated by the average of the median value of the peripheral R pixel image signal and the center pixel image signal to obtain an R image signal for color tone correction, the center image signal of the R image signal is maintained, and the R image signal of the surrounding R pixel image signal is maintained. The average value of the center value and the center pixel image pickup signal and the center value of the surrounding R pixel image pickup signal are switched to obtain an R image signal for the main line.

図7Dは、本発明の一実施例の色温度検出手段と加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。
算出した画面の色温度の逆数を含めたB増幅度により、B撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均で補間して色調補正用のB画素映像信号とする。B撮像信号の中心画素撮像信号を維持と中心画素維持と周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均と周囲B画素撮像信号中央値とに切替して本線用のB画素映像信号とする。算出した画面の色温度の逆数を含めたB増幅度に相関した重みづけ加算平均とする。
FIG. 7D is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method in which a color temperature detection unit and an addition weight variable unit are added according to an embodiment of the present invention. .
The B image signal for color tone correction is obtained by interpolating the B image signal with the weighted averaging of the median value of the peripheral B pixel image signals and the center pixel image signal based on the B amplification degree including the reciprocal of the calculated screen color temperature. Signal. Maintain the center pixel image signal of the B image signal, maintain the center pixel, switch the weighted average of the median value of the peripheral B pixel image signal and the central pixel image signal to the median value of the peripheral B pixel image signal, It is assumed to be a B pixel video signal. The weighted average is correlated with the B amplification degree including the reciprocal of the calculated screen color temperature.

図7Eは、本発明の一実施例の色温度検出手段と加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。
算出した画面の色温度含めたR増幅度により、色調補正用のR画素映像信号は周囲R画素の中央値と中心画素との重みづけ加算平均で補間である。R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均で補間して色調補正用のR画素映像信号とする。R撮像信号の中心画素撮像信号を維持と中心画素維持と周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均と周囲R画素撮像信号中央値とに切替して本線用のR画素映像信号とする。算出した画面の色温度を含めたR増幅度に相関した重みづけ加算平均とする。
FIG. 7E is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method in which a color temperature detection unit and an addition weight variable unit are added according to an embodiment of the present invention. .
Based on the calculated R amplification including the color temperature of the screen, the R pixel video signal for color tone correction is interpolated by the weighted average of the median value of the surrounding R pixels and the central pixel. The R image signal is interpolated by weighted averaging of the median value of the peripheral R pixel image signal and the center pixel image signal to obtain an R pixel image signal for color tone correction. Maintaining the center pixel imaging signal of the R imaging signal, maintaining the center pixel, switching between the weighted averaging of the median value of the surrounding R pixel imaging signal and the center pixel imaging signal, and switching to the center value of the surrounding R pixel imaging signal, Let it be an R pixel video signal. The weighted average is correlated with the R amplification including the calculated color temperature of the screen.

図7Fは、本発明の一実施例の加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。
G増幅度により、色調補正用のG映像信号は周囲G画素の中央値と中心画素との重みづけ加算平均で補間である。G撮像信号を周囲G画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均で補間して色調補正用のR画素映像信号とする。G撮像信号の中心画素撮像信号を維持と中心画素維持と周囲G画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均と周囲G画素撮像信号中央値とに切替して本線用のG画素映像信号とする。G増幅度に相関した重みづけ加算平均とする。
FIG. 7F is a block diagram showing a detailed configuration for calculating and interpolating the median value of eight pixels around the color tone correction processing by the correction method to which the addition weight variable means is added according to the embodiment of the present invention.
According to the G amplification degree, the G video signal for color tone correction is interpolated by weighted averaging of the median value of the peripheral G pixels and the central pixel. The G image signal is interpolated by weighted averaging of the median value of the peripheral G pixel image signal and the center pixel image signal to obtain an R pixel image signal for color tone correction. Maintain the center pixel image signal of the G image signal, maintain the center pixel, switch the weighted average of the median value of the peripheral G pixel image signal and the central pixel image signal to the median value of the peripheral G pixel image signal, It is assumed to be a G pixel video signal. The weighted average is correlated with the G amplification degree.

図7A〜図7Eにおいて、9は周囲画素信号選択部であり、16は白キズの周囲画素での補間、18は黒キズの周囲画素での補間、19は周囲画素中央値検出部、21,22,23,24,25,26,27,28は比較器、29は映像信号切替器、である。
図7Aと図7Bと図7Cと図7Dと図7Eと図7Fの周囲画素信号選択部9において、5と6はラインメモリ、7は映像信号切替器、8は遅延器である。ラインメモリ5と6は0Hの撮像信号から1H2Hの撮像信号を生成し、0Hの白キズ補間信号から1H,2Hの白キズ補間信号を生成する。映像信号切替器7は、0H,1H,2Hの撮像信号を選択して撮像信号の周囲画素信号を生成し、0H,1H,2Hの白キズ補間信号を選択して白キズ補間信号の周囲画素信号を生成する。ラインメモリ5と6の替わりに図示しないフレームメモリでも良い。
7A to 7E, reference numeral 9 denotes a surrounding pixel signal selection unit, 16 denotes interpolation of surrounding pixels of white defects, 18 denotes interpolation of surrounding pixels of black defects, and 19 denotes a peripheral pixel median value detecting unit, 21 and 21. Reference numerals 22, 23, 24, 25, 26, 27, 28 denote comparators, and reference numeral 29 denotes a video signal switch.
7A, 7B, 7C, 7D, 7E, and 7F, reference numerals 5 and 6 denote line memories, 7 denotes a video signal switch, and 8 denotes a delay unit. The line memories 5 and 6 generate a 1H2H image signal from the 0H image signal, and generate 1H and 2H white defect interpolation signals from the 0H white defect interpolation signal. The video signal switch 7 selects the image signals of 0H, 1H, and 2H to generate peripheral pixel signals of the image signals, and selects the white defect interpolation signals of 0H, 1H, and 2H to select the peripheral pixels of the white defect interpolation signal. Generate a signal. Instead of the line memories 5 and 6, a frame memory (not shown) may be used.

図7A〜図7Eにおいて、遅延器8は周囲画素中央値検出部19の遅延分撮像信号を遅延させ、白キズ補間信号を遅延させる。そして、周囲画素中央値検出部は、撮像信号の周囲画素信号から比較器21〜28で撮像信号または白キズ補間信号の周囲画素中央値を検出し、白キズ補間信号の周囲画素信号から比較器21〜28で白キズ補間信号の周囲画素中央値を検出する。
そして、白キズの映像信号タイミング(アドレス)判定と標準撮像時の白キズ補間判定15からの白キズのレベル以下判定時の白キズの映像信号タイミング(アドレス)に応じて白キズの周囲画素での補間部の切替器29で、撮像信号を、撮像信号の周囲画素中央値、中央画素と周囲画素中央値との平均、画素の中央値と中心画素との重みづけ平均のいずれかに補間して本線の映像信号とする。
そして、非特許文献1のY:R−Y:B−Yは3:1:0.7=4.3:1.4:1の視特性色帯域から、本線の映像信号においても、Rは中央画素と周囲画素中央値との平均に補間し、Bは周囲画素中央値に補間しても、視特性では目立たない。本線の映像信号をクロマキーに用いる場合は、本線の映像信号は補間せずに、色調補正信号のみ補間すれば、色調補正による雑音増加が目立たない。
7A to 7E, the delay unit 8 delays the imaging signal by the delay of the surrounding pixel median value detection unit 19 and delays the white spot interpolation signal. Then, the surrounding pixel median value detection unit detects the surrounding pixel median value of the imaging signal or the white flaw interpolation signal from the surrounding pixel signal of the imaging signal using the comparators 21 to 28, and uses the comparator 21 to detect the surrounding pixel median of the white flaw interpolation signal. In steps 21 to 28, the median value of the peripheral pixels of the white defect interpolation signal is detected.
Then, in accordance with the video signal timing (address) of the white flaw and the video signal timing (address) of the white flaw at the time of determining the white flaw level or less from the white flaw interpolation determination 15 at the time of standard imaging, pixels surrounding the white flaw are determined. The interpolation unit 29 interpolates the imaging signal to one of the median value of the surrounding pixels of the imaging signal, the average of the median pixel and the median value of the surrounding pixels, and the weighted average of the median value of the pixel and the median pixel. The main line video signal.
In addition, Y: RY: BY in Non-Patent Document 1 has a visual characteristic color band of 3: 1: 0.7 = 4.3: 1.4: 1. Even if interpolation is performed on the average of the central pixel and the median value of the surrounding pixels, and B is interpolated on the median value of the surrounding pixels, it is not noticeable in visual characteristics. When the main line video signal is used for the chroma key, if only the color tone correction signal is interpolated without interpolating the main line video signal, the noise increase due to the color tone correction is not noticeable.

図18Aは、本発明の一実施例の中央画素を周囲画素中央値で補間の動作を示す模式図で、中央値の雑音大で数値が大きく異なっている場合に有効である。また、図18Bは、本発明の他の一実施例の中央画素を中央画素と周囲画素中央値との平均で補間の動作を示す模式図で、中央値の雑音中で数値が中程度に異なっている場合に有効である。14bitの16384を800%とすると、12bitの4096は200%となり、10bitの1024は50%となり、8bitの256は12.5%となる。   FIG. 18A is a schematic diagram showing the operation of interpolating the central pixel with the median value of surrounding pixels according to the embodiment of the present invention, and is effective when the numerical value is largely different due to the noise of the median value. FIG. 18B is a schematic diagram showing the operation of interpolation of the center pixel of another embodiment of the present invention by averaging the center pixel and the center value of surrounding pixels. It is effective when it is. If 16384 of 14bit is 800%, 4096 of 12bit becomes 200%, 1024 of 10bit becomes 50%, and 256 of 8bit becomes 12.5%.

図18Aにおいて、200%の中央画素の撮像信号1024が、周囲の周囲正常画素撮像信号4096,4300,3800,3900,4000,4200,4100,8192の中央値4096で補間される。50%の中央画素の撮像信号2048が、周囲の周囲正常画素撮像信号1024,1000,976,1090,1000,1048,1100,998の中央値1024で補間される。12.5%の中央画素の撮像信号1024が、周囲の周囲正常画素撮像信号256,260,200,240,270,300,248,220の中央値256で補間される。
図18Bにおいて、
200%の中央画素と周囲画素中央値との平均は、(3328+4096)÷2=3712、となり、
50%の中央画素と周囲画素中央値との平均は、(1280+1024)÷2=1152、となり、
12.5%の中央画素と周囲画素中央値との平均は、(448+256)÷2=352、となる。
In FIG. 18A, the imaging signal 1024 of the 200% central pixel is interpolated by the median 4096 of the surrounding normal pixel imaging signals 4096, 4300, 3800, 3900, 4000, 4200, 4100, 8192. The imaging signal 2048 of the 50% central pixel is interpolated by the median value 1024 of the surrounding normal pixel imaging signals 1024, 1000, 996, 1090, 1000, 1048, 1100, 998. The image signal 1024 of the 12.5% central pixel is interpolated by the median value 256 of the surrounding normal pixel image signals 256, 260, 200, 240, 270, 300, 248 and 220.
In FIG. 18B,
The average of 200% of the central pixel and the peripheral pixel median is (3328 + 4096) ÷ 2 = 3712,
The average of 50% of the central pixel and the peripheral pixel median is (1280 + 1024) / 2 = 1152,
The average of 12.5% of the central pixel and the peripheral pixel median is (448 + 256) / 2 = 352.

固体撮像素子の品種により異なるが、感度が低い分増幅度を上げるため、雑音は感度に反比例し、増幅度に比例する。したがって、増幅度に相関した重みづけ平均で補間した信号から色調補正信号を生成すれば、本線の映像信号の色帯域は低下せずに雑音低減効果が大きい。
また、増幅度に相関した重みづけ平均で補間した信号を本線の映像信号とすれば、より雑音低減効果が大きい。しかし、補間した信号を本線の映像信号とすれば、色帯域も低下してしまうので、色再現よりも、実行感度優先用となる。
Depending on the type of the solid-state imaging device, noise is inversely proportional to the sensitivity and proportional to the amplification in order to increase the amplification by the lower sensitivity. Therefore, if the color tone correction signal is generated from the signal interpolated by the weighted average correlated with the amplification degree, the noise reduction effect is large without reducing the color band of the video signal of the main line.
Further, if the signal interpolated by the weighted average correlated with the amplification degree is used as the video signal of the main line, the noise reduction effect is greater. However, if the interpolated signal is a main line video signal, the color band is also reduced, so that the execution sensitivity is prioritized over color reproduction.

つまり、本発明の1実施例は、固体撮像素子を有する撮像装置において、RGBの3板と色分解光学系からのRGBの信号を信号処理する手段を有し、
非特許文献1のY:R−Y:B−Yは3:1:0.7=4.3:1.4:1の視特性色帯域に合わせて暗部も明部も、R撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部もB撮像信号を一つ置きの周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はB撮像信号を一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段、又は RGB映像信号の増幅度を可変する手段を有し、暗部も明部も、R撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間又はR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部もB撮像信号を一つ置きの周囲B画素撮像信号の中央値と中心画素撮像信号との増幅度に相関(増幅度小では中心B画素の撮像信号が主で増幅度大では周囲B画素の撮像信号の中央値が主と)した重みづけ平均で補間又はB撮像信号を一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段、のいずれか一つの色調補正手段を有することを特徴とする撮像装置である。
That is, one embodiment of the present invention has an image pickup apparatus having a solid-state image pickup device, and has means for performing signal processing on RGB signals from three RGB plates and a color separation optical system.
The Y: RY: BY of Non-Patent Document 1 converts the R image signal of both the dark part and the bright part according to the visual characteristic color band of 3: 1: 0.7 = 4.3: 1.4: 1. Interpolation or weighted average of the median value of every other surrounding R pixel image signal and the center pixel image signal or R image signal is calculated by averaging the median value of every other surrounding R pixel image signal and the center pixel image signal. Interpolation, at least the bright portion also interpolates or weights the B image signal every other B pixel image signal with the median value of the center value and the center pixel image signal of every other B image signal. It has color tone correction means for generating a color tone correction signal from the signal interpolated by the median value, or means for varying the amplification degree of the RGB video signal. Correlation with the amplification between the median value of the signal and the center pixel imaging signal (for small amplification, imaging of the center R pixel When the signal is main and the amplification degree is large, the median value of the imaging signals of the surrounding R pixels is mainly calculated). And at least the bright portion correlates with the median value of every other peripheral B pixel imaging signal and the amplification degree of the central pixel imaging signal in every other B imaging signal. When the amplification degree is large, the median value of the imaging signals of the surrounding B pixels is mainly used). A color tone correction signal is obtained from a signal obtained by interpolating with a weighted average or interpolating the B imaging signal with the median value of every other surrounding B pixel imaging signals. An image pickup apparatus comprising any one of color tone correcting means for generating color tone.

また上記の撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、等のG映像信号に対しR映像信号とB映像信号との帯域を半減させる手段を有し R撮像信号をY画素で一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、B撮像信号をY画素で一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する、色調補正手段とのいずれか一つの色調補正手段を有することを特徴とする撮像装置である。
In the above imaging apparatus,
R, G1, G2, B imagers with color filters in a Bayer array and means for processing their signals, or R, G1, G2, B four-plate imagers, color separation optical system and means for processing their signals, Or a means for processing the G video signal and a means for processing the video signal of the RB pixel having an interval twice as long as the interval of the G pixel, and a means for halving the band between the R video signal and the B video signal with respect to the G video signal. The R image signal is interpolated by the average of the median value and the center pixel image signal of every other peripheral R pixel image signal of every Y pixel, and the B image signal of the every other peripheral B pixel image signal of every Y pixel. An image pickup apparatus comprising any one of color tone correction means for generating a color tone correction signal from a signal interpolated by a median value.

以上のように本発明によれば、リニアマトリックスでも、画素ごとに特定の色相を検出し画素ごとに特定の色相を補正する12色マスキングでも、色調補正を行うと、雑音の多いB又はRの雑音が、他の色にも混入し、実行S/Nが低下することを周囲画素撮像信号の中央値又は周囲画素撮像信号の中央値と中心画素撮像信号との平均又は周囲画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間という雑音低減した信号で色相を補正することで防止し、クロマキー処理等で、RやBやR−YやB−Yの映像信号はY同等の帯域いわゆる4:4:4が要求されても、本線信号の色帯域維持と、色調補正の改善と実行S/Nの維持とを両立することが実現できる。
特に、R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、B撮像信号を周囲B画素撮像信号の中央値で補間すれば、色調補正の色帯域も非特許文献1のY:R−Y:B−Yは3:1:0.7=4.3:1.4:1の視特性色帯域に近似させることができる。
As described above, according to the present invention, even in a linear matrix, even in 12-color masking in which a specific hue is detected for each pixel and a specific hue is corrected for each pixel, when a tone correction is performed, B The fact that noise is mixed in other colors and the execution S / N is reduced is determined by the median value of the peripheral pixel image signal or the average of the median value of the peripheral pixel image signal and the central pixel image signal or the center of the peripheral pixel image signal. It is prevented by correcting the hue with a noise-reduced signal called interpolation using a weighted average of the value and the center pixel imaging signal, and the R, B, RY, and BY video signals are equivalent to Y in chroma key processing and the like. Even if a bandwidth of 4: 4: 4 is required, it is possible to realize both the maintenance of the color band of the main line signal, the improvement of the color tone correction, and the maintenance of the execution S / N.
In particular, if the R image signal is interpolated by the average of the median value of the peripheral R pixel image signal and the central pixel image signal, and the B image signal is interpolated by the median value of the peripheral B pixel image signal, the color band of color tone correction is also Y: RY: BY of Patent Document 1 can be approximated to a visual characteristic color band of 3: 1: 0.7 = 4.3: 1.4: 1.

また本発明は、上記の撮像装置において、
G映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、又はG映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、の少なくとも一方の手段を有し、
RGB映像信号の増幅度を可変する手段と、少なくとも明部もR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該R映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間し、少なくとも明部もB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該RGB映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間した信号から色調補正信号を生成する色調補正手段と、を有することを特徴とする撮像装置である。
つまり、本線信号の色帯域維持と、色調補正の改善と実行S/Nの維持とを両立することにおいて、実行S/Nの維持を優先する発明である。
特に、R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、B撮像信号を周囲B画素撮像信号の中央値で補間すれば、本線信号の色帯域も非特許文献1のY:R−Y:B−Yは3:1:0.7=4.3:1.4:1の視特性色帯域に近似させることができる。
Further, according to the present invention, in the above imaging device,
Means for processing the G video signal and means for processing the video signal of the RB pixel at an interval twice the interval of the G pixel, or means for transmitting the G video signal and the video signal of the RB pixel at an interval twice the interval of the G pixel Transmitting at least one of:
Means for varying the amplification degree of the RGB video signal, and at least the bright portion correlates the R imaging signal with the amplification degree of the R video signal between the median value of the surrounding R pixel imaging signal and the center pixel imaging signal (the center is smaller when the amplification degree is small). When the image signal of the R pixel is main and the amplification degree is large, the median value of the image signals of the surrounding R pixels is mainly interpolated. A weighted average correlated with the amplification degree of the RGB video signal with the imaging signal of the central pixel (the imaging signal of the central R pixel is mainly used when the amplification degree is small, and the median value of the imaging signals of surrounding R pixels is mainly used when the amplification degree is large). And a color tone correction means for generating a color tone correction signal from the signal interpolated in step (1).
In other words, the invention prioritizes the maintenance of the execution S / N in maintaining both the color band maintenance of the main signal and the improvement of the color tone correction and the maintenance of the execution S / N.
In particular, if the R image signal is interpolated by the average of the median value of the peripheral R pixel image signal and the central pixel image signal, and the B image signal is interpolated by the median value of the peripheral B pixel image signal, the color band of the main line signal is also non-interpolated. Y: RY: BY of Patent Document 1 can be approximated to a visual characteristic color band of 3: 1: 0.7 = 4.3: 1.4: 1.

また本発明は、固体撮像素子を有する撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、等のG映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、
RGB映像信号の増幅度を可変する手段と、明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間した信号を本線の映像信号とする雑音低減手段を有することを特徴とする撮像装置である。
Further, the present invention provides an imaging apparatus having a solid-state imaging device,
R, G1, G2, B imagers with color filters in a Bayer array and means for processing their signals, or R, G1, G2, B four-plate imagers, color separation optical system and means for processing their signals, Alternatively, the bandwidth of the R video signal and the bandwidth of the B video signal are reduced by half with respect to the bandwidth of the G video signal, such as a means for processing the G video signal and a means for processing the video signal of the RB pixel at an interval twice the interval between the G pixels. Having means,
Means for varying the degree of amplification of the RGB video signal; and a bright portion for calculating the weighted average of the R image signal between the median value of the peripheral R pixel image signal and the center pixel image signal (the median value or the average value of the median value and the center pixel). Interpolation is performed by using the average, and the bright part is obtained by weighting the B image signal between the median value of the peripheral B pixel image signal and the center pixel image signal (including the median value or the average of the median value and the center pixel). An image pickup apparatus comprising a noise reduction unit that uses a signal interpolated in step (1) as a main line video signal.

また本発明は、固体撮像素子を有する撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、又はG映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、等のG映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、
RGB映像信号の増幅度を可変する手段と、明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該R映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該RGB映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間した信号を本線の映像信号とする雑音低減手段を有することを特徴とする撮像装置である。
つまり、本線信号の色帯域維持よりも、実行S/Nの維持を優先する発明である。ニュース取材や監視用途に適した発明である。
また、R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、B撮像信号を周囲B画素撮像信号の中央値で補間すれば、本線信号の色帯域も非特許文献1のY:R−Y:B−Yは3:1:0.7=4.3:1.4:1の視特性色帯域に近似させることができる。
Further, the present invention provides an imaging apparatus having a solid-state imaging device,
R, G1, G2, B imagers with color filters in a Bayer array and means for processing their signals, or R, G1, G2, B four-plate imagers, color separation optical system and means for processing their signals, Or a means for processing a G video signal and a means for processing a video signal of an RB pixel having an interval twice as long as the interval between G pixels, or a means for transmitting a G video signal and an image of an RB pixel having an interval twice as long as the interval between G pixels Means for transmitting a signal, a means for halving the band of the R video signal and the B video signal with respect to the band of the G video signal,
The means for varying the amplification degree of the RGB video signal and the bright portion correlate the R imaging signal with the amplification degree of the R video signal between the median value of the surrounding R pixel imaging signal and the center pixel imaging signal (for small amplification degree, the central R When the image signal of the pixel is main and the amplification degree is large, the median value of the image signals of the surrounding R pixels is mainly interpolated. Interpolation by weighted average correlated with the amplification degree of the RGB video signal with the imaging signal (when the amplification degree is small, the imaging signal of the center R pixel is mainly, and when the amplification degree is large, the median value of the imaging signals of surrounding R pixels is mainly) An imaging apparatus comprising: a noise reduction unit configured to convert the converted signal into a main line video signal.
In other words, the invention prioritizes maintaining the effective S / N over maintaining the color band of the main signal. This invention is suitable for news gathering and surveillance applications.
Further, if the R image signal is interpolated by the average of the median value of the peripheral R pixel image signal and the central pixel image signal, and the B image signal is interpolated by the median value of the peripheral B pixel image signal, the color band of the main line signal is also non-interpolated. Y: RY: BY of Patent Document 1 can be approximated to a visual characteristic color band of 3: 1: 0.7 = 4.3: 1.4: 1.

(実施例2)色温度検出と増幅度と周囲画素中央値と中心画素との重みづけ加算平均で補間 以下、本発明の一実施例を図1A、図1B、図1C、図1D、図1E、図3C、図7B、図7D、図7E、図7F、図18C、図18Dを用いて、実施例1との相違点を中心に説明する。
図1Aと図1Bは本発明のテレビジョンカメラの一実施例を示すブロック図である。図1Aはガンマ前マトリクスであり、図1Bはガンマ後マトリクスである。図3Cは本発明の一実施例の色相検出補正部の構成を示すブロック図で、色温度検出と6色独立色調補正の色調補正を実現する詳細構成を示すブロック図である。
また、本発明の一実施例として、図1Aと図1Bに色温度検出が追加されている。
色温度検出は、図3Cの左端に示すゲート部41、過大信号削除部42、ピーク検出部43で構成されている。
(Embodiment 2) Interpolation by weighted averaging of color temperature detection, amplification degree, median value of surrounding pixels, and center pixel Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1A, 1B, 1C, 1D, and 1E. 3C, FIG. 7B, FIG. 7D, FIG. 7E, FIG. 7F, FIG. 18C, and FIG. 18D, focusing on differences from the first embodiment.
1A and 1B are block diagrams showing one embodiment of the television camera of the present invention. 1A is a pre-gamma matrix, and FIG. 1B is a post-gamma matrix. FIG. 3C is a block diagram showing a configuration of a hue detection and correction unit according to an embodiment of the present invention, and is a block diagram showing a detailed configuration for realizing color temperature detection and color tone correction of six-color independent color tone correction.
As one embodiment of the present invention, color temperature detection is added to FIGS. 1A and 1B.
The color temperature detection includes a gate section 41, an excessive signal deletion section 42, and a peak detection section 43 shown at the left end of FIG. 3C.

図1A、図1B、図1C、図1D、図1Eにおいて、光電変換されたR/G/Bの信号はCCDではAFE(アナログフロントエンドプロセッサ)でゲイン補正を行っており、CMOS撮像素子では内部でゲイン補正を行っており、RGB映像信号の増幅度を可変する手段となっている。
図1Aと図1Bのプリズム(色分解光学系)32と撮像素子33R,33G,33Bは、図1Cの様に、プリズム(色分解光学系)32と撮像素子33R,33G,33G2,33Bの様に、4板撮像素子R,G1,G2,Bでも良い。
また、図1Dの様に、R,G1,G2,Bのベイヤ配列のオンチップカラーフィルタ付撮像素子47の単板でも良い。
In FIG. 1A, FIG. 1B, FIG. 1C, FIG. 1D, and FIG. 1E, the gain of the photoelectrically converted R / G / B signal is corrected by an AFE (analog front end processor) in a CCD, and the internal , Which is a means for varying the amplification degree of the RGB video signal.
1A and 1B, the prism (color separation optical system) 32 and the image pickup devices 33R, 33G, 33B are similar to the prism (color separation optical system) 32 and the image pickup devices 33R, 33G, 33G2, 33B as shown in FIG. 1C. Alternatively, four-plate image sensors R, G1, G2, and B may be used.
Further, as shown in FIG. 1D, a single plate of an image pickup element 47 with an on-chip color filter having a Bayer arrangement of R, G1, G2, and B may be used.

図1C、図1D、図1Eは本発明のテレビジョンカメラの一実施例を示すブロック図である。また、図1Cと図1Dと図1Eに色温度検出が追加されている。
図1CはR,G1,G2,Bの4板撮像素子と色分解光学系を用いたカメラでガンマ前マトリクスであり、R,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段を有している。図1Dはベイヤ配列のオンチップカラーフィルタ付撮像素子の単板カメラでガンマ後マトリクスであり、R,G1,G2,Bのベイヤ配列のオンチップカラーフィルタ付撮像素子とその信号を処理する手段を有している。図1EはRGBの3板撮像素子と色分解光学系を用いたカメラでガンマ前マトリクスである。
1C, 1D, and 1E are block diagrams showing one embodiment of the television camera of the present invention. In addition, color temperature detection is added to FIGS. 1C, 1D, and 1E.
FIG. 1C shows a pre-gamma matrix of a camera using a four-chip image sensor of R, G1, G2, and B and a color separation optical system. It has means for processing signals. FIG. 1D is a single-chip camera of an image pickup device with an on-chip color filter having a Bayer array, and a matrix after gamma. The image pickup device with an on-chip color filter having a Bayer array of R, G1, G2, and B and means for processing signals thereof. Have. FIG. 1E shows a pre-gamma matrix of a camera using an RGB three-plate image sensor and a color separation optical system.

さらに、図1Cと図1Dにおいて、RG1G2Bと4系統の色ごとの伝送(いわゆるDG伝送)する手段あるいはR−(G1+G2),G1,G2,B−(G1+G2)又はR−(Y1+Y2),Y1,Y2,B−(Y1+Y2)又はR−G1,G1,G2,B−G2又はR−Y1,Y1,Y2,B−Y2又はR−G2,G1,G2,B−G1又はR−Y2,Y1,Y2,B−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送する手段を有している。つまり、詳細は実施例3で説明するが、図1Cと図1Dは、G映像信号の帯域に対しR映像信号とB映像信号との帯域または輝度を半減させる手段を有している。   Further, in FIGS. 1C and 1D, means for transmitting (so-called DG transmission) RG1G2B and four colors for each color or R- (G1 + G2), G1, G2, B- (G1 + G2) or R- (Y1 + Y2), Y1, Y2, B- (Y1 + Y2) or R-G1, G1, G2, B-G2 or R-Y1, Y1, Y2, B-Y2 or R-G2, G1, G2, B-G1 or R-Y2, Y1, There are means for transmitting two main signals, such as Y2 and B-Y1, such as a signal having a main luminance and a signal having a main color. That is, although the details will be described in the third embodiment, FIGS. 1C and 1D have a unit for reducing the band or luminance of the R video signal and the B video signal by half with respect to the band of the G video signal.

図1Cや図1Dでは、34のパラレル−シリアル変換部により、G映像信号と一つ置きのB映像信号と一つ置きのR映像信号とに変換され信号処理される。信号処理後に、44のマトリスクス付シリアル−パラレル変換部によりR,G1,G2,Bと4系統の色ごとの伝送(いわゆるDG伝送)する手段あるいはR−(G1+G2),G1,G2,B−(G1+G2)又はR−(Y1+Y2),Y1,Y2,B−(Y1+Y2)又はR−G1,G1,G2,B−G2又はR−Y1,Y1,Y2,B−Y2又はR−G2,G1,G2,B−G1又はR−Y2,Y1,Y2,B−Y1等の2系統の輝度が主な信号と色が主な信号とに変換されて、伝送する。伝送された映像信号は、マトリスクス付パラレル−シリアル変換部45により、G映像信号と一つ置きのB映像信号と一つ置きのR映像信号とに変換され信号処理される。   In FIG. 1C and FIG. 1D, a G video signal, every other B video signal, and every other R video signal are converted and processed by the 34 parallel-serial conversion units. After the signal processing, means for transmitting (so-called DG transmission) for each of the four colors of R, G1, G2, and B by 44 serial-to-parallel conversion units with matrices or R- (G1 + G2), G1, G2, B- ( G1 + G2) or R- (Y1 + Y2), Y1, Y2, B- (Y1 + Y2) or R-G1, G1, G2, B-G2 or R-Y1, Y1, Y2, B-Y2 or R-G2, G1, G2 , BG1, or RY2, Y1, Y2, BY1, etc., are converted into a main signal of luminance and a main signal of color and transmitted. The transmitted video signal is converted to a G video signal, every other B video signal, and every other R video signal by the matrix-to-parallel-to-serial conversion unit 45, and subjected to signal processing.

図1Eでは、本発明のテレビジョンカメラの一実施例を示すブロック図(ガンマ後マトリクス)であり、(R−(G1+G2),G1,G2,B−(G1+G2)又はR−(Y1+Y2),Y1,Y2,B−(Y1+Y2)又はR−G1,G1,G2,B−G2又はR−Y1,Y1,Y2,B−Y2又はR−G2,G1,G2,B−G1又はR−Y2,Y1,Y2,B−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送する。   FIG. 1E is a block diagram (matrix after gamma) showing an embodiment of the television camera of the present invention, in which (R− (G1 + G2), G1, G2, B− (G1 + G2) or R− (Y1 + Y2), Y1). , Y2, B- (Y1 + Y2) or R-G1, G1, G2, B-G2 or R-Y1, Y1, Y2, B-Y2 or R-G2, G1, G2, B-G1 or R-Y2, Y1 , Y2, and B-Y1, etc., are transmitted as a main signal of luminance and a main signal of color.

図7Bは、本発明の他の一実施例の色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。
G撮像信号を中心画素撮像信号を維持し色調補正用の映像信号とし、G撮像信号の中心画素撮像信号を維持と周囲G画素撮像信号の中央値と中心画素撮像信号との平均と周囲G画素撮像信号の中央値とに切替して本線用のG映像信号とする。色温度で可変と共通である。
FIG. 7B is a block diagram showing a detailed configuration for calculating and interpolating the median value of eight pixels around the color tone correction processing according to another embodiment of the present invention.
The G imaging signal is maintained at the center pixel imaging signal and used as a video signal for color tone correction, the center pixel imaging signal of the G imaging signal is maintained, the median of the surrounding G pixel imaging signals, the average of the center pixel imaging signals, and the surrounding G pixels Switching to the median value of the imaging signal to obtain a G video signal for the main line. It is common with variable in color temperature.

図7Dは、本発明の一実施例の色温度検出手段と加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。
B撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均で補間して色調補正用のB画素映像信号とする。B撮像信号の中心画素撮像信号を維持と中心画素維持と周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均と周囲B画素撮像信号中央値とに切替して本線用のB画素映像信号とする。算出した画面の色温度の逆数を含めたB増幅度に相関した重みづけ加算平均とする。
FIG. 7D is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method in which a color temperature detection unit and an addition weight variable unit are added according to an embodiment of the present invention. .
The B image signal is interpolated by weighted averaging of the median value of the peripheral B pixel image signals and the center pixel image signal to obtain a B pixel video signal for color tone correction. Maintain the center pixel image signal of the B image signal, maintain the center pixel, switch the weighted average of the median value of the peripheral B pixel image signal and the central pixel image signal to the median value of the peripheral B pixel image signal, It is assumed to be a B pixel video signal. The weighted average is correlated with the B amplification degree including the reciprocal of the calculated screen color temperature.

図7Eは、本発明の一実施例の色温度検出手段と加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図で、色調補正用のR画素映像信号は周囲R画素の中央値と中心画素との重みづけ加算平均で補間である。
R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均で補間して色調補正用のR画素映像信号とする。R撮像信号の中心画素撮像信号を維持と中心画素維持と周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均と周囲R画素撮像信号中央値とに切替して本線用のR画素映像信号とする。算出した画面の色温度を含めたR増幅度に相関した重みづけ加算平均とする。
FIG. 7E is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method in which a color temperature detection unit and an addition weight variable unit are added according to an embodiment of the present invention. The R pixel video signal for color tone correction is interpolated by weighted averaging of the median of the surrounding R pixels and the central pixel.
The R image signal is interpolated by weighted averaging of the median value of the peripheral R pixel image signal and the center pixel image signal to obtain an R pixel image signal for color tone correction. Maintaining the center pixel imaging signal of the R imaging signal, maintaining the center pixel, switching between the weighted averaging of the median value of the surrounding R pixel imaging signal and the center pixel imaging signal, and switching to the center value of the surrounding R pixel imaging signal, Let it be an R pixel video signal. The weighted average is correlated with the R amplification including the calculated color temperature of the screen.

図7Fは、本発明の一実施例の加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図、色調補正用のG映像信号は周囲G画素の中央値と中心画素との重みづけ加算平均で補間である。
G撮像信号を周囲G画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均で補間して色調補正用のR画素映像信号とする。G撮像信号の中心画素撮像信号を維持と中心画素維持と周囲G画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均と周囲G画素撮像信号中央値とに切替して本線用のG画素映像信号とする。G増幅度に相関した重みづけ加算平均とする。
FIG. 7F is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method to which an addition weight variable means is added according to an embodiment of the present invention, and a G image for color tone correction. The signal is interpolated by the weighted average of the median value of the surrounding G pixels and the central pixel.
The G image signal is interpolated by weighted averaging of the median value of the peripheral G pixel image signal and the center pixel image signal to obtain an R pixel image signal for color tone correction. Maintain the center pixel image signal of the G image signal, maintain the center pixel, switch the weighted average of the median value of the peripheral G pixel image signal and the central pixel image signal to the median value of the peripheral G pixel image signal, It is assumed to be a G pixel video signal. The weighted average is correlated with the G amplification degree.

図18Cは、本発明の他の一実施例の中央画素を中央画素と周囲画素中央値との1:3の加重平均で補間の動作を示す模式図であり、中央値の雑音やや大で数値がやや大きく異なっている場合に有効である。
また、図18Dは、本発明の他の一実施例の中央画素を中央画素と周囲画素中央値との3:1の加重平均で補間の動作を示す模式図であり、中央値の雑音やや小で数値がやや小さく異なっている場合に有効である。
14bitの16384を800%とすると、12bitの4096は200%となり、10bitの1024は50%となり、8bitの256は12.5%となる。
FIG. 18C is a schematic diagram showing the operation of interpolation of the center pixel by another weighted average of 1: 3 between the center pixel and the center value of the surrounding pixels according to another embodiment of the present invention. This is effective when the values are slightly different.
FIG. 18D is a schematic diagram showing the operation of interpolation of the center pixel of another embodiment of the present invention by a weighted average of 3: 1 between the center pixel and the center value of the surrounding pixels. This is effective when the numerical values are slightly different.
If 16384 of 14bit is 800%, 4096 of 12bit becomes 200%, 1024 of 10bit becomes 50%, and 256 of 8bit becomes 12.5%.

図18Cにおいて、
200%の中央画素と周囲画素中央値との1:3の平均は、(1280×1+4096×3)÷4=3392、となり、
50%の中央画素と周囲画素中央値との平均は、(1920×1+1024×3)÷4=1248、となり、
12.5%の中央画素と周囲画素中央値との平均は、(512×1+256×3)÷2=320、となる。
In FIG. 18C,
The average of 1: 3 between the 200% central pixel and the peripheral pixel median is (1280 × 1 + 4096 × 3) ÷ 4 = 3392,
The average of 50% of the central pixel and the peripheral pixel median is (1920 × 1 + 1024 × 3) ÷ 4 = 1248,
The average of 12.5% of the central pixel and the peripheral pixel median is (512 × 1 + 256 × 3) ÷ 2 = 320.

図18Dにおいて、
200%の中央画素と周囲画素中央値との3:1の平均は、(3700×3+4096×1)÷4=3799、となり、
50%の中央画素と周囲画素中央値との平均は、(1150×3+1024×1)÷4=1118.5≒1119、となり、
12.5%の中央画素と周囲画素中央値との平均は、(372×3+256×1)÷2=343、となる。
In FIG. 18D,
The 3: 1 average of the 200% central pixel and the peripheral pixel median is (3700 × 3 + 4096 × 1) ÷ 4 = 3799,
The average of 50% of the central pixel and the peripheral pixel median is (1150 × 3 + 1024 × 1) ÷ 4 = 1118.5 ≒ 1119,
The average of 12.5% of the central pixel and the peripheral pixel median is (372 × 3 + 256 × 1) × 2 = 343.

つまり、本発明の他の1実施例は、固体撮像素子を有する撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はRG1G2Bの4板撮像素子と色分解光学系とその信号を処理する手段を有し、少なくとも明部もR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部もB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はB撮像信号を周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段を有することと、
RGBの3板と色分解光学系からのRGBの信号を信号処理する手段を有し、少なくとも明部もR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部もB撮像信号を一つ置きの周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はB撮像信号を一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段を有することと、
のいずれか一つの映像信号処理手段と色調補正手段とを有することを特徴とする撮像装置である。
That is, another embodiment of the present invention relates to an imaging device having a solid-state imaging device,
An image sensor with a color filter of Bayer array of R, G1, G2, and B and means for processing signals thereof, or a four-chip image sensor of RG1G2B, a color separation optical system, and means for processing signals thereof, and at least a bright portion Also, the R image signal is interpolated by a weighted average of the median value of the peripheral R pixel image signal and the center pixel image signal or the R image signal is interpolated by the average of the median value of the peripheral R pixel image signal and the center pixel image signal, At least the bright portion also interpolates the B image signal with a weighted average of the median value of the peripheral B pixel image signal and the central pixel image signal or the color tone correction signal from the signal obtained by interpolating the B image signal with the median value of the peripheral B pixel image signal. Having color tone correction means for generating;
Means for signal processing of RGB signals from the three RGB plates and the color separation optical system, and at least the bright portion is provided with a median value and a central pixel image signal of the surrounding R pixel image signals every other R image signal. Interpolation by weighted average or interpolation of R imaging signals by the average of the median value of center R imaging signals and the center pixel imaging signal of every other surrounding R pixel, and at least the bright part also captures every other B imaging signal of surrounding B pixel. Having a tone correction means for generating a tone correction signal from a signal obtained by interpolating with a weighted average of the median value of the signal and the center pixel image signal or interpolating the B image signal with the median value of every other surrounding B pixel image signal When,
An image pickup apparatus comprising any one of the video signal processing means and the color tone correction means.

また、本発明の他の1実施例は、R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、等のG映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、
少なくとも明部もR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(中央値のみを含む)で補間し、少なくとも明部もB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(中央値のみを含む)で補間した信号から色調補正信号を生成する色調補正手段を有することを特徴とする撮像装置である。
Another embodiment of the present invention relates to an image pickup device with a color filter having a Bayer array of R, G1, G2, and B, and a means for processing signals thereof, or a four-plate image pickup device of R, G1, G2, and B. A color separation optical system and a unit for processing the signal, or a unit for processing the G video signal and a unit for processing the video signal of the RB pixel having an interval twice as large as the interval of the G pixel. Means for halving the band between the video signal and the B video signal,
At least the bright portion also interpolates the R image signal with a weighted average (including only the median value) of the median value of the peripheral R pixel image signal and the central pixel image signal, and at least the bright portion also converts the B image signal into the surrounding B pixel image signal. An image pickup apparatus characterized by having a color tone correcting means for generating a color tone correction signal from a signal interpolated by a weighted average (including only the median value) of the median value of the central pixel and the central pixel image pickup signal.

また、本発明の他の1実施例は、R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はRG1G2Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、等のG映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し R撮像信号をY画素で一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、B撮像信号をY画素で一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する、色調補正手段とのいずれか一つの色調補正手段を有することを特徴とする撮像装置である。   Further, another embodiment of the present invention relates to an image pickup device with a color filter of a Bayer array of R, G1, G2, and B, and a means for processing signals thereof, or a four-plate image pickup device of RG1G2B, a color separation optical system, and a color separation optical system. R video signal and B video signal for the band of the G video signal, such as a means for processing a signal, a means for processing a G video signal, and a means for processing a video signal of an RB pixel having an interval twice as long as the interval between G pixels. And a means for halving the band of the R image signal. The R image signal is interpolated by the average of the median value and the center pixel image signal of every other R pixel image signal of every other Y pixel, and the B image signal is extracted by one Y pixel. An image pickup apparatus comprising any one of a color tone correction unit and a color tone correction unit that generates a color tone correction signal from a signal interpolated by a median value of the image signals of other surrounding B pixels.

以上のように本発明によれば、リニアマトリックスでも、画素ごとに特定の色相を検出し画素ごとに特定の色相を補正する12色マスキングでも、色調補正を行うと、雑音の多いB又はRの雑音が、他の色にも混入し、実行S/Nが低下することを周囲画素の中央値又は周囲画素の中央値と中心画素との平均又は周囲画素の中央値と中心画素との重みづけ平均で補間という雑音低減した信号で色相を補正することで防止し、クロマキー処理等で、RやBやR−YやB−Yの映像信号はY同等の帯域いわゆる4:4:4が要求されても、本線信号の色帯域維持と、色調補正の改善と実行S/Nの維持とを両立することが実現できる。   As described above, according to the present invention, even in a linear matrix, even in 12-color masking in which a specific hue is detected for each pixel and a specific hue is corrected for each pixel, when a tone correction is performed, B The fact that noise is also mixed in other colors and the execution S / N is reduced means that the median value of the surrounding pixels or the average of the median value of the surrounding pixels and the center pixel or the weighting of the median value of the surrounding pixels and the center pixel. The hue is corrected by correcting the hue with a noise-reduced signal, which is averaged by interpolation, and R, B, RY, and BY video signals require a band equivalent to Y, so-called 4: 4: 4, in chroma key processing and the like. Even so, it is possible to realize both the maintenance of the color band of the main line signal, the improvement of the color tone correction, and the maintenance of the execution S / N.

ここで、色温度を検出(算出)する方法を説明する。
図3Cにおいて、白バランス調整は、赤R、緑G、青Bの各映像信号が、白色被写体の撮像時に1:1:1となるように各色映像信号の利得を調整または撮像素子の感度を調整するようになされている。図3Cの左端に示す白バランス検出回路が用いられており、ゲート部41で映像信号の高輝度部分を抜出し、過大信号削除部42で照明や太陽等の過大なレベルの高輝度部分を削除し、ピーク検出部43より、赤R、緑G、青B各映像信号のピーク値RpとGpとBpを検出し、各映像信号のピーク値が等しくなるように赤、青信号の利得を調整する方式が用いられている。
Here, a method of detecting (calculating) the color temperature will be described.
In FIG. 3C, the white balance adjustment adjusts the gain of each color video signal or adjusts the sensitivity of the image sensor so that the video signals of red R, green G, and blue B become 1: 1: 1 when capturing a white object. Adjustments have been made. A white balance detection circuit shown at the left end of FIG. 3C is used. A high-luminance portion of a video signal is extracted by a gate unit 41, and an excessive-level high-luminance portion such as illumination or the sun is deleted by an excessive signal deletion unit 42. , The peak detection unit 43 detects the peak values Rp, Gp, and Bp of the red R, green G, and blue B video signals, and adjusts the gains of the red and blue signals so that the peak values of the video signals are equal. Is used.

白バランス調整を行うことで得られた赤、青信号の利得制御値を基に被写体の色温度を以下の6次近似式より算出(検出)する。
Y=(0.0000005*X−0.000002*X−0.00006*X+0.0006*X
+0.0096*X−0.1445*X+3.1848)*1000 なお、Xは、赤と青の利得差=(Rg−Bg)dB である。
Based on the gain control values of the red and blue signals obtained by performing the white balance adjustment, the color temperature of the subject is calculated (detected) by the following sixth-order approximation formula.
Y = (0.0000005 * X 6 -0.000002 * X 5 -0.00006 * X 4 + 0.0006 * X 3
+ 0.0096 * X 2 −0.1445 * X + 3.1848) * 1000 Note that X is a gain difference between red and blue = (Rg−Bg) dB.

本発明の他の1実施例は、上の6次近似式により算出(検出)した被写体の色温度を用いて、色温度に相関した重みづけ平均でRBの撮像信号を補間した信号から色調補正信号を生成する。
固体撮像素子の品種により異なるが、およそ3200K程度の低色温度では、Rの撮像信号の感度はGの撮像信号の感度と同程度でBの撮像信号の感度はGの撮像信号の感度の半分以下であり、感度が低い分増幅度を上げるため、雑音は感度に反比例し、Rの撮像信号の雑音はGの撮像信号の雑音と同程度でBの撮像信号の雑音はGの撮像信号の雑音の倍以上である。およそ5600K程度の中色温度では、RとBの撮像信号の感度はGの撮像信号の感度より少し低く、RとBの撮像信号の雑音はGの撮像信号の雑音より少し多い。およそ10000K程度の高色温度では、Rの撮像信号の感度はGの撮像信号の感度の半分以下でBの撮像信号の感度はGの撮像信号の感度と同程度であり、Rの撮像信号の雑音はGの撮像信号の雑音倍以上でBの撮像信号の雑音はGの撮像信号の雑音と同程度である。
したがって、色温度に相関し増幅度に相関した重みづけ平均で補間した信号から色調補正信号を生成すれば、雑音低減効果が大きい。
According to another embodiment of the present invention, color tone correction is performed from a signal obtained by interpolating an RB image signal with a weighted average correlated to a color temperature, using the color temperature of the subject calculated (detected) by the above sixth-order approximation formula. Generate a signal.
At a low color temperature of about 3200K, the sensitivity of the R image signal is about the same as the sensitivity of the G image signal, and the sensitivity of the B image signal is half of the sensitivity of the G image signal, although it depends on the type of solid-state image sensor. The noise is inversely proportional to the sensitivity because the sensitivity is low, the noise of the R image signal is about the same as the noise of the G image signal, and the noise of the B image signal is the noise of the G image signal. More than double the noise. At a medium color temperature of about 5600K, the sensitivity of the R and B imaging signals is slightly lower than the sensitivity of the G imaging signal, and the noise of the R and B imaging signals is slightly higher than the noise of the G imaging signal. At a high color temperature of about 10000K, the sensitivity of the R image signal is less than half the sensitivity of the G image signal, the sensitivity of the B image signal is about the same as the sensitivity of the G image signal, The noise is at least twice the noise of the G image signal, and the noise of the B image signal is substantially equal to the noise of the G image signal.
Therefore, if a color tone correction signal is generated from a signal interpolated with a weighted average correlated with the color temperature and with the amplification degree, the noise reduction effect is large.

つまり、本発明の他の1実施例は、固体撮像素子を有する撮像装置において、
G映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、又はG映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、の少なくとも一方の手段を有し、
RGB映像信号の増幅度を可変する手段と、明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該R映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該RGB映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間した信号から色調補正信号を生成する色調補正手段を有し、
色温度を検出(算出)する手段と、少なくとも明部もR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に正に相関した重みづけ平均で補間し、少なくとも明部もB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に負に相関した重みづけ平均で補間した信号から色調補正信号を生成する色調補正手段を有することを特徴とする撮像装置である。
That is, another embodiment of the present invention relates to an imaging apparatus having a solid-state imaging device,
Means for processing the G video signal and means for processing the video signal of the RB pixel at an interval twice the interval of the G pixel, or means for transmitting the G video signal and the video signal of the RB pixel at an interval twice the interval of the G pixel Transmitting at least one of:
The means for varying the amplification degree of the RGB video signal and the bright portion correlate the R imaging signal with the amplification degree of the R video signal between the median value of the surrounding R pixel imaging signal and the center pixel imaging signal (for small amplification degree, the central R When the image signal of the pixel is main and the amplification degree is large, the median value of the image signals of the surrounding R pixels is mainly interpolated), and the bright portion is obtained by interpolating the B image signal with the median value of the peripheral B pixel image signal and the central pixel. Interpolation by weighted average correlated with the amplification degree of the RGB video signal with the imaging signal (when the amplification degree is small, the imaging signal of the center R pixel is mainly, and when the amplification degree is large, the median value of the imaging signals of surrounding R pixels is mainly) Color tone correction means for generating a color tone correction signal from the resulting signal,
A means for detecting (calculating) a color temperature, and a weighted average of at least a bright portion of the R image signal which is positively correlated with the detected (calculated) color temperature of the median value of the peripheral R pixel image signal and the center pixel image signal. At least in the bright portion, color correction from a signal obtained by interpolating the B image signal with a weighted average negatively correlated with the detected (calculated) color temperature of the median value of the peripheral B pixel image signal and the center pixel image signal. An image pickup apparatus including a color tone correction unit that generates a signal.

以上のように本発明の他の1実施例によれば、R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に正に相関し増幅度に相関した重みづけ平均で補間し、B撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に負に相関し増幅度に相関した重みづけ平均で補間した信号から色調補正信号を生成することにより、増幅度が高く雑音が大きい色の雑音が、他の色へ混入することを低減することができ、色調補正の改善と実行S/Nの維持とをよりよく両立することができる。
特に、低照度の撮影条件で、Gも高感度となり、G映像信号も雑音が多い時に有効である。色調補正の色帯域維持よりも、実行S/Nの維持を優先する発明である。ニュース取材に適した発明である。
As described above, according to another embodiment of the present invention, the R imaging signal is positively correlated with the detected (calculated) color temperature of the median value of the surrounding R pixel imaging signal and the center pixel imaging signal, and the amplification degree The weighted average is negatively correlated with the detected (calculated) color temperature of the median value of the peripheral B pixel image signal and the center pixel image signal, and is correlated with the amplification degree. By generating a color tone correction signal from the signal interpolated in step (1), it is possible to reduce noise of a color having a high amplification degree and a large amount of noise from being mixed into other colors, thereby improving color tone correction and improving execution S / N. Maintenance can be better balanced.
In particular, this is effective when G has high sensitivity under low illuminance shooting conditions and the G video signal is also noisy. This is an invention in which maintenance of the execution S / N is prioritized over maintenance of the color band of the color tone correction. This is an invention suitable for news coverage.

また本発明は、固体撮像素子を有する撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、等のG映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、
RGB映像信号の増幅度を可変する手段と、明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該R映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該RGB映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間した信号を本線の映像信号とする雑音低減手段を有し、
色温度を検出(算出)する手段と、明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に正に相関した重みづけ平均で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に負に相関した重みづけ平均で重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間した信号を本線の映像信号とする雑音低減手段を有することを特徴とする撮像装置である。
特に、低照度の撮影条件で、Gも高感度となり、G映像信号も雑音が多い時に有効である。つまり、本線信号の色帯域維持よりも、実行S/Nの維持を優先する発明である。監視用途に適した発明である。
Further, the present invention provides an imaging apparatus having a solid-state imaging device,
R, G1, G2, B imagers with color filters in a Bayer array and means for processing their signals, or R, G1, G2, B four-plate imagers, color separation optical system and means for processing their signals, Alternatively, the bandwidth of the R video signal and the bandwidth of the B video signal are reduced by half with respect to the bandwidth of the G video signal, such as a means for processing the G video signal and a means for processing the video signal of the RB pixel at an interval twice the interval between the G pixels. Having means,
The means for varying the amplification degree of the RGB video signal and the bright portion correlate the R imaging signal with the amplification degree of the R video signal between the median value of the surrounding R pixel imaging signal and the center pixel imaging signal (for small amplification degree, the central R When the image signal of the pixel is main and the amplification degree is large, the median value of the image signals of the surrounding R pixels is mainly interpolated. Interpolation by weighted average correlated with the amplification degree of the RGB video signal with the imaging signal (when the amplification degree is small, the imaging signal of the center R pixel is mainly, and when the amplification degree is large, the median value of the imaging signals of surrounding R pixels is mainly) Noise reduction means for making the main signal a video signal,
The means for detecting (calculating) the color temperature, and the bright portion calculates the R image signal by a weighted average that is positively correlated with the detected (calculated) color temperature of the median value of the peripheral R pixel image signal and the center pixel image signal. The interpolation is performed, and the bright portion is obtained by weighting the B image signal with a weighted average that is negatively correlated with the detected (calculated) color temperature of the median value of the surrounding B pixel image signal and the center pixel image signal (the median value or the median value). An image pickup apparatus comprising: a noise reduction unit that uses a signal interpolated by using the average of the median value and the center pixel as a video signal of a main line.
In particular, this is effective when G has high sensitivity under low illuminance shooting conditions and the G video signal is also noisy. In other words, the invention prioritizes maintaining the effective S / N over maintaining the color band of the main signal. This is an invention suitable for monitoring use.

(実施例3)2系統の輝度が主な信号と色が主な信号とで伝送 以下、本発明の一実施例を図1C、図1D、図1E、図3C、図7A、図7B、図7C、図7D、図7E、図7Fを用いて、実施例1と実施例2との相違点を中心に説明する。
図1Aと図1Bと図1Eのプリズム32と撮像素子33R,33G,33Bは、図1Cの様に、プリズム32と撮像素子33R,33G,33G2,33Bの様に、4板撮像素子でも良い。また、図1Dの様に、R,G1,G2,Bのベイヤ配列のオンチップカラーフィルタ付撮像素子47でも良い。
(Embodiment 3) Transmission of two systems with a main signal of luminance and a main signal of color Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1C, 1D, 1E, 3C, 7A, 7B and 7B. 7C, FIG. 7D, FIG. 7E, and FIG. 7F, description will be made focusing on differences between the first embodiment and the second embodiment.
The prism 32 and the imaging devices 33R, 33G, and 33B in FIGS. 1A, 1B, and 1E may be four-plate imaging devices, such as the prism 32 and the imaging devices 33R, 33G, 33G2, and 33B, as shown in FIG. 1C. Further, as shown in FIG. 1D, an image pickup device 47 with an on-chip color filter having a Bayer array of R, G1, G2, and B may be used.

図1C、図1D、図1Eにおいて、光電変換されたR/G/Bの信号はCCDではAFE(アナログフロントエンドプロセッサ)でゲイン補正を行っており、CMOS撮像素子では内部でゲイン補正を行っており、RGB映像信号の増幅度を可変する手段となっている。
図1C、図1D、図1Eは本発明のテレビジョンカメラの一実施例を示すブロック図である。図1Cはガンマ前マトリクスであり、図1Dはガンマ後マトリクスである。
また、本発明の一実施例として、図1Cと図1Dに色温度検出が追加されている。
In FIG. 1C, FIG. 1D, and FIG. 1E, the gain of the photoelectrically converted R / G / B signal is corrected by an AFE (analog front end processor) in a CCD, and the gain is corrected internally in a CMOS image sensor. This is a means for varying the amplification degree of the RGB video signal.
1C, 1D, and 1E are block diagrams showing one embodiment of the television camera of the present invention. FIG. 1C shows a pre-gamma matrix, and FIG. 1D shows a post-gamma matrix.
Further, as one embodiment of the present invention, color temperature detection is added to FIGS. 1C and 1D.

図1Cと図1Dにおいて、RG1G2Bと4系統の色ごとの伝送(いわゆるDG伝送)する手段あるいはR色差のR−(G1+G2),G1,G2,B色差のB−(G1+G2)又はR色差のR−(Y1+Y2),Y1,Y2,B色差のB−(Y1+Y2)又はR色差のR−G1,G1,G2,B色差のB−G2又はR色差のR−Y1,Y1,Y2,B色差のB−Y2又はR−G2,G1,G2,B色差のB−G1又はR色差のR−Y2,Y1,Y2,B色差のB−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送する手段を有している。   In FIG. 1C and FIG. 1D, means for transmitting RG1G2B and each color of four systems (so-called DG transmission), or R- (G1 + G2) for R color difference, B- (G1 + G2) for B color difference, or R for R color difference. -(Y1 + Y2), Y1, Y2, B- (Y1 + Y2) of B color difference or R-G1, G1, G2 of R color difference, BG2 of B color difference, or R-Y1, Y1, Y2, B color difference of R color difference Signals and colors are mainly luminance signals of two systems such as B-Y2 or R-G2, G1, G2, B-G1 of B color difference or R-Y2, Y1, Y2 of R color difference, and B-Y1 of B color difference. And means for transmitting the signal.

図1Cや図1Dでは、パラレル−シリアル変換部34により、G映像信号と一つ置きのB映像信号と一つ置きのR映像信号とに変換され信号処理される。信号処理後に、マトリスクス付シリアル−パラレル変換部44によりRG1G2Bと4系統の色ごとの伝送(いわゆるDG伝送)する手段あるいはR色差のR−(G1+G2),G1,G2,B色差のB−(G1+G2)又はR色差のR−(Y1+Y2),Y1,Y2,B色差のB−(Y1+Y2)又はR色差のR−G1,G1,G2,B色差のB−G2又はR色差のR−Y1,Y1,Y2,B色差のB−Y2又はR色差のR−G2,G1,G2,B色差のB−G1又はR色差のR−Y2,Y1,Y2,B色差のB−Y1等の2系統の輝度が主な信号と色が主な信号とに変換されて、伝送する。伝送された映像信号は、マトリスクス付パラレル−シリアル変換部45により、G映像信号と一つ置きのB映像信号と一つ置きのR映像信号とに変換され信号処理される。   In FIG. 1C and FIG. 1D, the parallel-serial converter 34 converts the signal into a G image signal, every other B image signal, and every other R image signal, and performs signal processing. After the signal processing, the serial-to-parallel conversion unit with matrices 44 transmits the RG1G2B and the four colors (so-called DG transmission) for each color or R-color difference R- (G1 + G2), G1, G2, and B color difference B- (G1 + G2). ) Or R-color difference R- (Y1 + Y2), Y1, Y2, B-color difference B- (Y1 + Y2) or R-color difference R-G1, G1, G2, B-color difference BG2 or R-color difference R-Y1, Y1 , Y2, B-Y2 for B color difference or R-G2, G1, G2 for R color difference, BG1 for B color difference or RY2, Y1, Y2 for R color difference, and B-Y1 for B color difference. The signal is converted into a main signal of luminance and a main signal of color, and transmitted. The transmitted video signal is converted to a G video signal, every other B video signal, and every other R video signal by the matrix-to-parallel-to-serial conversion unit 45, and subjected to signal processing.

図1Eは、本発明のテレビジョンカメラの一実施例を示すブロック図(ガンマ後マトリクス)であり、R色差のR−(G1+G2),G1,G2,B色差のB−(G1+G2)又はR色差のR−(Y1+Y2),Y1,Y2,B色差のB−(Y1+Y2)又はR色差のR−G1,G1,G2,B色差のB−G2又はR色差のR−Y1,Y1,Y2,B色差のB−Y2又はR色差のR−G2,G1,G2,B色差のB−G1又はR色差のR−Y2,Y1,Y2,B色差のB−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送する。   FIG. 1E is a block diagram (matrix after gamma) showing an embodiment of the television camera of the present invention, in which R-color difference R- (G1 + G2), G1, G2, B color difference B- (G1 + G2) or R color difference. R- (Y1 + Y2), Y1, Y2, B-color difference B- (Y1 + Y2) or R color difference R-G1, G1, G2, B color difference BG2 or R color difference R-Y1, Y1, Y2, B There are two main types of luminance, such as color difference BY2 or R color difference RG2, G1, G2, B color difference BG1 or R color difference RY2, Y1, Y2, B color difference BY1. The signal and the color are transmitted by the main signal.

図3Cは本発明の一実施例の色相検出補正部の構成を示すブロック図で、色温度検出と6色独立色調補正の色調補正を実現する詳細構成を示すブロック図である。
色温度検出は、図3Cの左端に示すゲート部41、過大信号削除部42、ピーク検出部43で構成されている。
FIG. 3C is a block diagram showing a configuration of a hue detection and correction unit according to an embodiment of the present invention, and is a block diagram showing a detailed configuration for realizing color temperature detection and color tone correction of six-color independent color tone correction.
The color temperature detection includes a gate section 41, an excessive signal deletion section 42, and a peak detection section 43 shown at the left end of FIG. 3C.

図7Bは、本発明の他の一実施例の色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。
G撮像信号を中心画素撮像信号を維持し色調補正用の映像信号とし、G撮像信号の中心画素撮像信号を維持と周囲G画素撮像信号の中央値と中心画素撮像信号との平均と周囲G画素撮像信号の中央値とに切替して本線用のG映像信号とする。色温度で可変と共通である。
FIG. 7B is a block diagram showing a detailed configuration for calculating and interpolating the median value of eight pixels around the color tone correction processing according to another embodiment of the present invention.
The G imaging signal is maintained at the center pixel imaging signal and used as a video signal for color tone correction, the center pixel imaging signal of the G imaging signal is maintained, the median of the surrounding G pixel imaging signals, the average of the center pixel imaging signals, and the surrounding G pixels Switching to the median value of the imaging signal to obtain a G video signal for the main line. It is common with variable in color temperature.

図7Dは、本発明の一実施例の色温度検出手段と加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図である。
B撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均で補間して色調補正用のB画素映像信号とする。B撮像信号の中心画素撮像信号を維持と中心画素維持と周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均と周囲B画素撮像信号中央値とに切替して本線用のB画素映像信号とする。算出した画面の色温度の逆数を含めたB増幅度に相関した重みづけ加算平均とする。
FIG. 7D is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method in which a color temperature detection unit and an addition weight variable unit are added according to an embodiment of the present invention. .
The B image signal is interpolated by weighted averaging of the median value of the peripheral B pixel image signals and the center pixel image signal to obtain a B pixel video signal for color tone correction. Maintain the center pixel image signal of the B image signal, maintain the center pixel, switch the weighted average of the median value of the peripheral B pixel image signal and the central pixel image signal to the median value of the peripheral B pixel image signal, It is assumed to be a B pixel video signal. The weighted average is correlated with the B amplification degree including the reciprocal of the calculated screen color temperature.

図7Eは、本発明の一実施例の色温度検出手段と加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図で、色調補正用のR画素映像信号は周囲R画素の中央値と中心画素との重みづけ加算平均で補間である。
R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均で補間して色調補正用のR画素映像信号とする。R撮像信号の中心画素撮像信号を維持と中心画素維持と周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均と周囲R画素撮像信号中央値とに切替して本線用のR画素映像信号とする。算出した画面の色温度を含めたR増幅度に相関した重みづけ加算平均とする。
FIG. 7E is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method in which a color temperature detection unit and an addition weight variable unit are added according to an embodiment of the present invention. The R pixel video signal for color tone correction is interpolated by weighted averaging of the median of the surrounding R pixels and the central pixel.
The R image signal is interpolated by weighted averaging of the median value of the peripheral R pixel image signal and the center pixel image signal to obtain an R pixel image signal for color tone correction. Maintaining the center pixel imaging signal of the R imaging signal, maintaining the center pixel, switching between the weighted averaging of the median value of the surrounding R pixel imaging signal and the center pixel imaging signal, and switching to the center value of the surrounding R pixel imaging signal, Let it be an R pixel video signal. The weighted average is correlated with the R amplification including the calculated color temperature of the screen.

図7Fは、本発明の一実施例の加算重みづけ可変手段を追加した補正方式による色調補正処理の周囲8画素の中央値を算出し補間する詳細構成を示すブロック図、色調補正用のG映像信号は周囲G画素の中央値と中心画素との重みづけ加算平均で補間である。
G撮像信号を周囲G画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均で補間して色調補正用のR画素映像信号とする。G撮像信号の中心画素撮像信号を維持と中心画素維持と周囲G画素撮像信号の中央値と中心画素撮像信号との重みづけ加算平均と周囲G画素撮像信号中央値とに切替して本線用のG画素映像信号とする。G増幅度に相関した重みづけ加算平均とする。
FIG. 7F is a block diagram showing a detailed configuration for calculating and interpolating a median value of eight pixels around a color tone correction process by a correction method to which an addition weight variable means is added according to an embodiment of the present invention, and a G image for color tone correction. The signal is interpolated by the weighted average of the median value of the surrounding G pixels and the central pixel.
The G image signal is interpolated by weighted averaging of the median value of the peripheral G pixel image signal and the center pixel image signal to obtain an R pixel image signal for color tone correction. Maintain the center pixel image signal of the G image signal, maintain the center pixel, switch the weighted average of the median value of the peripheral G pixel image signal and the central pixel image signal to the median value of the peripheral G pixel image signal, It is assumed to be a G pixel video signal. The weighted average is correlated with the G amplification degree.

つまり、本発明の1実施例は、(R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子信号又は、R,G1,G2,Bの4板と色分解光学系からの映像信号を信号処理する手段を有し、)少なくとも明部もR色差撮像信号を周囲R色差画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はR色差撮像信号を周囲R色差画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部もB色差撮像信号を周囲B色差画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はB色差撮像信号を周囲B色差画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段を有し、
R,G1,G2,Bと4系統の色ごとの伝送(いわゆるDG伝送)する手段あるいはR色差のR−(G1+G2),G1,G2,B色差のB−(G1+G2)又はR色差のR−(Y1+Y2),Y1,Y2,B色差のB−(Y1+Y2)又はR色差のR−G1,G1,G2,B色差のB−G2又はR色差のR−Y1,Y1,Y2,B色差のB−Y2又はR色差のR−G2,G1,G2,B色差のB−G1又はR色差のR−Y2,Y1,Y2,B色差のB−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送する手段を有することと、ことを特徴とする撮像装置である。
In other words, one embodiment of the present invention is based on the following principle: (a R, G1, G2, B image sensor signal with a color filter in a Bayer array or a video signal from the four plates R, G1, G2, B and the color separation optical system) Signal processing means, and at least the bright portion is interpolated with the weighted average of the median value and the center pixel image signal of the surrounding R color difference pixel image signal or the R color difference image signal of the surrounding R color difference pixel image Interpolation is performed by the average of the median value of the signal and the center pixel image signal, and at least the bright portion is interpolated by the weighted average of the median value of the surrounding B color difference pixel image signal and the center pixel image signal or the B color difference image is obtained. A color tone correction unit that generates a color tone correction signal from a signal obtained by interpolating the signal with the median value of the surrounding B color difference pixel imaging signal,
R, G1, G2, B means for transmitting each color of four systems (so-called DG transmission), or R- (G1 + G2) for R color difference, B- (G1 + G2) for G1, G2, B color difference or R- for R color difference (Y1 + Y2), Y1, Y2, B- (Y1 + Y2) of B color difference or R-G1, G1, G2 of R color difference, BG2 of B color difference, or R-Y1, Y1, Y2, R color difference B of B color difference The main signal and color are luminance of two systems such as -Y2 or R-color difference RG2, G1, G2, B-color difference BG1 or R-color difference RY2, Y1, Y2, B-color difference BY-1. Has means for transmitting the main signal and the main signal.

以上のように本発明によれば、リニアマトリックスでも、画素ごとに特定の色相を検出し画素ごとに特定の色相を補正する12色マスキングでも、色調補正を行うと、雑音の多いB又はRの雑音が、他の色にも混入し、実行S/Nが低下することを周囲画素の中央値又は周囲画素の中央値と中心画素との平均又は周囲画素の中央値と中心画素との重みづけ平均で補間という雑音低減した信号で色相を補正することで防止し、クロマキー処理等で、RやBやR−YやB−Yの映像信号はY同等の帯域いわゆる4:4:4が要求されても、本線信号の色帯域維持と、色調補正の改善と実行S/Nの維持とを両立することが実現できる。
特に、R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、B撮像信号を周囲B画素撮像信号の中央値で補間すれば、色調補正の色帯域も視特性色帯域に近似させることができる。
As described above, according to the present invention, even in a linear matrix, even in 12-color masking in which a specific hue is detected for each pixel and a specific hue is corrected for each pixel, when a tone correction is performed, B The fact that noise is also mixed in other colors and the execution S / N is reduced means that the median value of the surrounding pixels or the average of the median value of the surrounding pixels and the center pixel or the weighting of the median value of the surrounding pixels and the center pixel. The hue is corrected by correcting the hue with a noise-reduced signal, which is averaged by interpolation, and R, B, RY, and BY video signals require a band equivalent to Y, so-called 4: 4: 4, in chroma key processing and the like. Even so, it is possible to realize both the maintenance of the color band of the main line signal, the improvement of the color tone correction, and the maintenance of the execution S / N.
In particular, if the R image signal is interpolated by the average of the median value of the peripheral R pixel image signal and the central pixel image signal, and the B image signal is interpolated by the median value of the peripheral B pixel image signal, the color band of the color tone correction can be viewed. The characteristic color band can be approximated.

また、R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該検出した色温度に正に相関した重みづけ平均で補間し、B撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該検出した色温度に負に相関した重みづけ平均で補間した信号から色調補正信号を生成することにより、増幅度が高く雑音が大きい色の雑音が、他の色へ混入することを低減することができ、色調補正の改善と実行S/Nの維持とをよりよく両立することができる。   Further, the R image signal is interpolated by a weighted average that is positively correlated with the detected color temperature of the center value of the surrounding R pixel image signal and the center value of the center pixel image signal, and the B image signal is calculated as the median value of the surrounding B pixel image signal. By generating a color tone correction signal from a signal interpolated by a weighted average negatively correlated with the detected color temperature of the center pixel imaging signal and the center pixel imaging signal, noise of a color having a high amplification degree and a large amount of noise is reduced to another color. The mixing can be reduced, and the improvement of the color tone correction and the maintenance of the execution S / N can be better balanced.

さらに、R撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該検出した色温度に正に相関した重みづけ平均で補間し、B撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該検出した色温度に負に相関した重みづけ平均で補間した信号から色調補正信号を生成することにより、増幅度が高く雑音が大きい色の雑音が、他の色へ混入することを低減することができ、色調補正の改善と実行S/Nの維持とをよりよく両立することができる。   Further, the R image signal is interpolated by a weighted average that is positively correlated with the detected color temperature of the median value of the peripheral R pixel image signal and the central pixel image signal, and the B image signal is median of the peripheral B pixel image signal. By generating a color tone correction signal from a signal interpolated by a weighted average negatively correlated with the detected color temperature of the center pixel imaging signal and the center pixel imaging signal, noise of a color having a high amplification degree and a large amount of noise is reduced to another color. The mixing can be reduced, and the improvement of the color tone correction and the maintenance of the execution S / N can be better balanced.

画素数が縦横共に倍以上あるR,G1,G2,Bのベイヤ配列のオンチップカラーフィルタ付撮像素子信号からのダウンコンバートの4:4:4フル帯域のRGBの信号処理と4:4:4フル帯域の伝送又は、RGBの3板と色分解光学系からの4:4:4フル帯域のRGBの信号処理と4:4:4フル帯域の伝送では、ディスプレイの画素拡大表示や、信号方式のアップコンバートにより、色調補正の帯域低減の副作用が現れることもある。そのため、色調補正の色帯域維持よりも、実行S/Nの維持を優先するニュース取材に適した発明である。   4: 4: 4 full-band RGB signal processing and 4: 4: 4 of down-conversion from an image sensor signal with an on-chip color filter having a Bayer array of R, G1, G2, and B pixels having more than twice the number of pixels both vertically and horizontally. In full band transmission or RGB signal processing of 4: 4: 4 full band from RGB three plates and color separation optical system and transmission of 4: 4: 4 full band, pixel enlargement display of display and signal system May cause a side effect of band reduction of color tone correction. Therefore, the present invention is suitable for news coverage in which maintenance of the execution S / N is prioritized over maintenance of the color band of color tone correction.

しかし、R,G1,G2,Bと4系統の色ごとの伝送(いわゆるDG伝送)する手段あるいはR色差のR−(G1+G2),G1,G2,B色差のB−(G1+G2)又はR色差のR−(Y1+Y2),Y1,Y2,B色差のB−(Y1+Y2)又はR色差のR−G1,G1,G2,B色差のB−G2又はR色差のR−Y1,Y1,Y2,B色差のB−Y2又はR色差のR−G2,G1,G2,B色差のB−G1又はR色差のR−Y2,Y1,Y2,B色差のB−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送する場合では、ディスプレイの画素拡大表示や、信号方式のアップコンバートによっても、色調補正の帯域低減の副作用が現れることはほとんどない。   However, means for transmitting (so-called DG transmission) for each of the four colors of R, G1, G2, and B, or R- (G1 + G2) for R color difference, B- (G1 + G2) for G1, G2, B color difference, or R-color difference. R- (Y1 + Y2), Y1, Y2, B- (Y1 + Y2) of B color difference or R-G1, G1, G2 of R color difference, BG2 of B color difference or R-Y1, Y1, Y2, B color difference of R color difference The main signal is the luminance of two systems, such as B-Y2 or R-color difference R-G2, G1, G2, B-color difference B-G1 or R-color difference R-Y2, Y1, Y2, B-color difference BY-1. In the case of transmitting the main color and the main signal, the side effect of the band reduction of the color tone correction hardly appears even by the enlarged display of the pixel of the display or the up-conversion of the signal system.

つまり、本発明の他の1実施例によれば、R,G1,G2,Bと4系統の色ごとの伝送(いわゆるDG伝送)する手段あるいはR色差のR−(G1+G2),G1,G2,B色差のB−(G1+G2)又はR色差のR−(Y1+Y2),Y1,Y2,B色差のB−(Y1+Y2)又はR色差のR−G1,G1,G2,B色差のB−G2又はR色差のR−Y1,Y1,Y2,B色差のB−Y2又はR色差のR−G2,G1,G2,B色差のB−G1又はR色差のR−Y2,Y1,Y2,B色差のB−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送することにより、重みづけ平均で補間した信号から色調補正信号を生成することによる色調補正の帯域低減の副作用がより低減するので、色調補正の改善と実行S/Nの維持とをよりよく両立することができる。   In other words, according to another embodiment of the present invention, means for transmitting (so-called DG transmission) for each of the four colors R, G1, G2, and B, or R- (G1 + G2), G1, G2, B-color difference B- (G1 + G2) or R color difference R- (Y1 + Y2), Y1, Y2, B color difference B- (Y1 + Y2) or R color difference R-G1, G1, G2, B-color difference BG2 or R R-Y1, Y1, Y2 of color difference, B-Y2 of B color difference or R-G2, G1, G2 of R color difference, B-G1 of B color difference or R-Y2, Y1, Y2 of R color difference, B of B color difference -By transmitting two main signals, such as Y1 and the like, of a main signal and a main signal of color, the side effect of the band reduction of the color tone correction by generating the color tone correction signal from the signal interpolated by the weighted average is more significant. The improvement of the color tone correction and the maintenance of the effective S / N. It is possible to stand.

また、本発明は、固体撮像素子を有する撮像装置において、
G映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、等のG映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、
明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間した信号を本線の映像信号とする雑音低減手段を有することを特徴とする撮像装置である。
Further, the present invention provides an imaging device having a solid-state imaging device,
Means for transmitting the G video signal and means for transmitting the RB pixel video signal having an interval twice as long as the interval of the G pixel, and halving the bandwidth of the R video signal and the B video signal with respect to the bandwidth of the G video signal Has,
The bright portion interpolates the R image signal with a weighted average of the median value of the peripheral R pixel image signal and the center pixel image signal (including the median value or the average of the median value and the central pixel). A noise which is a signal obtained by interpolating an image pickup signal with a weighted average of the median value of the surrounding B pixel image pickup signal and the center pixel image pickup signal (including the median value or the average of the median value and the center pixel) as a main line video signal An imaging apparatus comprising a reduction unit.

特に、低照度の撮影条件で、Gも高感度となり、G映像信号も雑音が多い時に有効である。つまり、本線信号の色帯域維持よりも、実行S/Nの維持を優先する発明である。監視用途に適した発明である。   In particular, this is effective when G has high sensitivity under low illuminance shooting conditions and the G video signal is also noisy. In other words, the invention prioritizes maintaining the effective S / N over maintaining the color band of the main signal. This is an invention suitable for monitoring use.

本発明の実施形態である撮像装置は、リニアマトリックスでも、画素ごとに特定の色相を検出し画素ごとに特定の色相を補正する12色マスキングでも、色調補正を行うと、雑音の多いB又はRの雑音が、他の色にも混入し、実行S/Nが低下することを周囲画素の中央値又は周囲画素の中央値と中心画素との平均又は周囲画素の中央値と中心画素との重みづけ平均で補間という雑音低減した信号で色相を補正することで防止し、クロマキー処理等で、RやBやR−YやB−Yの映像信号はY同等の帯域いわゆる4:4:4が要求されても、本線信号の色帯域維持と、色調補正の改善と実行S/Nの維持とを両立することが実現できる。   The image pickup apparatus according to the embodiment of the present invention can perform a noisy B or R by performing a color tone correction on a linear matrix or a 12-color masking for detecting a specific hue for each pixel and correcting a specific hue for each pixel. Noise is mixed in other colors, and the execution S / N is reduced. The median value of the peripheral pixels or the average of the median value of the peripheral pixels and the central pixel, or the weight of the median value of the peripheral pixels and the central pixel. This is prevented by correcting the hue with a noise-reduced signal called interpolation and averaging, and in chroma key processing or the like, the video signal of R, B, RY, and BY has a band equivalent to Y, that is, a so-called 4: 4: 4. Even if requested, it is possible to realize both the maintenance of the color band of the main signal, the improvement of the color tone correction, and the maintenance of the execution S / N.

以上、本発明の一実施形態について詳細に説明したが、本発明は上述した実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変更して実施することができる。この出願は、2016年9月27日に出願された日本出願特願2016−188232を基礎として優先権の利益を主張するものであり、その開示の全てを引用によってここに取り込む。   As described above, one embodiment of the present invention has been described in detail. However, the present invention is not limited to the above-described embodiment, and can be implemented with various modifications without departing from the spirit of the present invention. This application claims the benefit of priority based on Japanese Patent Application No. 2006-188232 filed on Sep. 27, 2016, the entire disclosure of which is incorporated herein by reference.

R信号を周囲中央値と中心との平均で補間し、B信号を周囲中央値で補間した色相補正信号を生成すること、またはR信号とB信号とを色温度又は増幅度に相関した周囲中央値との重みづけ平均で補間した色相補正信号を生成すること等の、R信号とB信号とを周囲中央値との重みづけ平均で補間した色相補正信号を生成することによって、色帯域維持と色調補正の改善と実行S/Nの維持とを両立したい用途に適用できる。スタジオ撮影用途、劇場撮影用途、コンサート撮影用途、お天気カメラ、医療用途、検査用途などに有効である。
また、色温度又は増幅度に相関し本線映像信号を中央値と中心画素との重みづけ平均することによって、本線信号の色帯域維持よりも、色調補正の改善と実行S/Nの維持を優先する用途に適用できる。特に、低照度の撮影条件で、Gも高感度となり、G映像信号も雑音が多い用途に有効である。監視用途、ニュース取材用途、学術用途などに有効である。
Interpolate the R signal with the average of the median surrounding value and the center, and generate a hue correction signal by interpolating the B signal with the median surrounding value, or generate the center of the surrounding image that correlates the R signal and the B signal with the color temperature or the amplification degree By generating a hue correction signal in which an R signal and a B signal are interpolated by a weighted average of a surrounding median value, such as generating a hue correction signal interpolated by a weighted average of values, color band maintenance and The present invention can be applied to an application in which improvement of color tone correction and maintenance of execution S / N are compatible. It is effective for studio photography, theater photography, concert photography, weather camera, medical use, inspection use, etc.
Also, by weighting and averaging the main line video signal with the median value and the central pixel in correlation with the color temperature or the amplification degree, priority is given to improvement of color tone correction and maintenance of the execution S / N over maintenance of the color band of the main line signal. Can be applied to In particular, under low illuminance shooting conditions, G also has high sensitivity, and the G video signal is effective in applications with much noise. It is effective for surveillance use, news coverage use, academic use, etc.

1,2,3:減算器、4:色相領域判定回路、5:彩度成分量と原色成分量及び補色成分量判定回路、6:定数選択回路、7,8:乗算器9,10:補数器(−1倍乗算器)、11:データ選択加算回路12,13,14:加算器、15:中間色色相設定回路、17:α/β、α/β算出回路、18,24,25:定数選択回路、16,19,20,21,22,23,26:乗算器、21:データ選択加減算回路、30:テレビジョンカメラ、31:レンズ、32:プリズム(色分解光学系)、33R,33G,33B,33G1,33G2,:CCD(電荷結合素子)+AFE(アナログフロントエンドプロセッサ)又はCMOS撮像素子、34:パラレル−シリアル変換部、35:色相検出補正機能付き映像信号処理部、37:パラレル−シリアル変換部、39:CPU、40:ビューファインダ、41:ゲート部、42:過大信号削除部、43:ピーク検出部、44:マトリスクス付シリアル−パラレル変換部、45:マトリスクス付パラレル−シリアル変換部、46:ガンマ補正部、47:オンチップカラーフィルタ付撮像素子。   1, 2, 3: subtractor, 4: hue area determination circuit, 5: saturation component amount, primary color component amount, and complementary color component amount determination circuit, 6: constant selection circuit, 7, 8: multiplier 9, 10: complement number Multiplier (-1 multiplier), 11: data selection and addition circuits 12, 13, 14: adder, 15: intermediate color hue setting circuit, 17: α / β, α / β calculation circuit, 18, 24, 25: constant Selection circuit, 16, 19, 20, 21, 22, 23, 26: multiplier, 21: data selection addition / subtraction circuit, 30: television camera, 31: lens, 32: prism (color separation optical system), 33R, 33G , 33B, 33G1, 33G2: CCD (charge coupled device) + AFE (analog front end processor) or CMOS image sensor, 34: parallel-serial converter, 35: video signal processor with hue detection correction function, 37: parallel- Shi Real conversion section, 39: CPU, 40: Viewfinder, 41: Gate section, 42: Excessive signal deletion section, 43: Peak detection section, 44: Serial-parallel conversion section with matrices, 45: Parallel-serial conversion section with matrices , 46: gamma correction unit, 47: imaging device with on-chip color filter.

Claims (7)

固体撮像素子を有する撮像装置において、G映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、少なくとも明部をR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間し、少なくとも明部をB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間した信号から色調補正信号を生成する色調補正手段を有することを特徴とする撮像装置。   In an imaging apparatus having a solid-state imaging device, the imaging apparatus includes means for halving the band of the R image signal and the band of the B image signal by half with respect to the band of the G image signal. And the center pixel image pickup signal are interpolated by a weighted average (including the median value or the average of the center value and the center pixel). An imaging apparatus comprising: a color tone correction unit configured to generate a color tone correction signal from a signal interpolated by a weighted average (including the median value or the average of the median value and the central pixel) of the imaging signal. 固体撮像素子を有する撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段を有し、少なくとも明部をR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部をB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はB撮像信号を周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段を有することを特徴とする撮像装置。
In an imaging device having a solid-state imaging device,
An image sensor with color filters of Bayer array of R, G1, G2, and B and means for processing signals thereof, or a four-plate image sensor of R, G1, G2, and B, a color separation optical system, and means for processing signals thereof are provided. Then, at least in the bright portion, the R image signal is interpolated by a weighted average of the median value of the peripheral R pixel image signal and the center pixel image signal, or the R image signal is calculated by dividing the median value of the peripheral R pixel image signal and the center pixel image signal. A signal obtained by interpolating on average, and interpolating at least the bright portion of the B image signal by the weighted average of the median value of the peripheral B pixel image signal and the central pixel image signal or interpolating the B image signal by the median value of the peripheral B pixel image signal An image pickup apparatus comprising: a color tone correction unit that generates a color tone correction signal from the image data.
請求項2の撮像装置において、
R,G1,G2,Bと4系統の色ごとの伝送(いわゆるDG伝送)する手段あるいはR−(G1+G2),G1,G2,B−(G1+G2)又はR−(Y1+Y2),Y1,Y2,B−(Y1+Y2)又はR−G1,G1,G2,B−G2又はR−Y1,Y1,Y2,B−Y2又はR−G2,G1,G2,B−G1又はR−Y2,Y1,Y2,B−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送する手段を有することを特徴とする撮像装置。
The imaging device according to claim 2,
Means for transmitting (so-called DG transmission) for each of the four systems of R, G1, G2, and B, or R- (G1 + G2), G1, G2, B- (G1 + G2) or R- (Y1 + Y2), Y1, Y2, B -(Y1 + Y2) or RG1, G1, G2, BG2 or RY1, Y1, Y2, BY2 or RG2, G1, G2, BG1 or RY2, Y1, Y2, B -An imaging apparatus comprising means for transmitting two main signals, such as Y1 and the like, mainly of luminance and color.
請求項1乃至請求項3撮像装置において、
G映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、又はG映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、の少なくとも一方の手段を有し、
色温度を検出(算出)する手段と、少なくとも明部もR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に正に相関した重みづけ平均で補間し、少なくとも明部もB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に負に相関した重みづけ平均で補間した信号から色調補正信号を生成する色調補正手段と、
RGB映像信号の増幅度を可変する手段と、少なくとも明部もR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該R映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間し、少なくとも明部もB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該RGB映像信号の増幅度に相関(増幅度小では中心R画素撮像信号が主で増幅度大では周囲R画素撮像信号の中央値が主と)した重みづけ平均で補間した信号から色調補正信号を生成する色調補正手段と、の少なくともいずれか一方を有することを特徴とする撮像装置。
The imaging device according to any one of claims 1 to 3,
Means for processing the G video signal and means for processing the video signal of the RB pixel at an interval twice the interval of the G pixel, or means for transmitting the G video signal and the video signal of the RB pixel at an interval twice the interval of the G pixel Transmitting at least one of:
A means for detecting (calculating) a color temperature, and a weighted average of at least a bright portion of the R image signal which is positively correlated with the detected (calculated) color temperature of the median value of the peripheral R pixel image signal and the center pixel image signal. At least in the bright portion, color correction from a signal obtained by interpolating the B image signal with a weighted average negatively correlated with the detected (calculated) color temperature of the median value of the peripheral B pixel image signal and the center pixel image signal. Color tone correction means for generating a signal;
Means for varying the amplification degree of the RGB video signal, and at least the bright portion correlates the R imaging signal with the amplification degree of the R video signal between the median value of the surrounding R pixel imaging signal and the center pixel imaging signal (the center is smaller when the amplification degree is small). When the image signal of the R pixel is main and the amplification degree is large, the median value of the image signals of the surrounding R pixels is mainly interpolated. Interpolated by a weighted average correlated with the amplification degree of the RGB video signal with the center pixel imaging signal (for a small amplification degree, the center R pixel imaging signal is mainly, and for a large amplification degree, the central value of surrounding R pixel imaging signals is mainly). And a color tone correcting means for generating a color tone correction signal from the obtained signal.
請求項1乃至請求項3の撮像装置において、
R,G1,G2,Bのベイヤ配列のカラーフィルタ付撮像素子とその信号を処理する手段、又はR,G1,G2,Bの4板撮像素子と色分解光学系とその信号を処理する手段、又はG映像信号を処理する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を処理する手段、又はG映像信号を伝送する手段及びG画素の間隔の倍の間隔のRB画素の映像信号を伝送する手段、等のG映像信号に対しR映像信号とB映像信号との帯域を半減させる手段を有し R撮像信号をG画素で一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、B撮像信号をG画素で一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段を有することを特徴とする撮像装置。
The imaging device according to claim 1, wherein
R, G1, G2, B imagers with color filters in a Bayer array and means for processing their signals, or R, G1, G2, B four-plate imagers, color separation optical system and means for processing their signals, Or a means for processing a G video signal and a means for processing a video signal of an RB pixel having an interval twice as long as the interval between G pixels, or a means for transmitting a G video signal and an image of an RB pixel having an interval twice as long as the interval between G pixels Means for transmitting signals, means for halving the band between the R video signal and the B video signal with respect to the G video signal, and the like. The image processing apparatus further includes a color tone correction unit configured to generate a color tone correction signal from a signal obtained by interpolating the average of the B pixel image signal with the center pixel image signal and interpolating the B image signal with the median value of every other peripheral B pixel image signal in G pixels. Imaging device.
固体撮像素子を有する撮像装置において、RGBの3板と色分解光学系からのRGBの信号を信号処理する手段を有し、少なくとも明部もR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との重みづけ平均で補間又はR撮像信号を一つ置きの周囲R画素撮像信号の中央値と中心画素撮像信号との平均で補間し、少なくとも明部もB撮像信号を一つ置きの周囲B画素撮像信号の中央値と中心画素との重みづけ平均で補間又はB撮像信号を一つ置きの周囲B画素撮像信号の中央値で補間した信号から色調補正信号を生成する色調補正手段を有し、R−(G1+G2),G1,G2,B−(G1+G2)又はR−(Y1+Y2),Y1,Y2,B−(Y1+Y2)又はR−G1,G1,G2,B−G2又はR−Y1,Y1,Y2,B−Y2又はR−G2,G1,G2,B−G1又はR−Y2,Y1,Y2,B−Y1等の2系統の輝度が主な信号と色が主な信号とで伝送する手段を有することを特徴とする撮像装置。   In an image pickup apparatus having a solid-state image pickup device, there are provided three RGB plates and a means for signal processing of RGB signals from a color separation optical system. Interpolation by weighted average of the median value and the center pixel image signal or interpolation of the R image signal by the average of the median value and the center pixel image signal of every other surrounding R pixel image signal, and at least the bright part is also the B image signal A color tone correction signal is generated from a signal obtained by interpolating the B image signal with the median value of the center pixel of every other surrounding B pixel image pickup signal or the center value of the center pixel of every other surrounding B pixel image pickup signal. R- (G1 + G2), G1, G2, B- (G1 + G2) or R- (Y1 + Y2), Y1, Y2, B- (Y1 + Y2) or R-G1, G1, G2, B- G2 or R-Y1, Y1, Means for transmitting two signals, such as 2, 2, BY2 or R-G2, G1, G2, B-G1 or R-Y2, Y1, Y2, BY1, etc., as a signal mainly having luminance and a signal mainly having color. An imaging device comprising: 固体撮像素子を有する撮像装置において、
G映像信号の帯域に対しR映像信号とB映像信号との帯域を半減させる手段を有し、
色温度を検出(算出)する手段と、明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に正に相関した重みづけ平均で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該検出(算出)した色温度に負に相関した重みづけ平均で重みづけ平均(該中央値あるいは該中央値と中心画素との平均を含む)で補間した信号を本線の映像信号とする雑音低減手段と、
RGB映像信号の増幅度を可変する手段と、明部はR撮像信号を周囲R画素撮像信号の中央値と中心画素撮像信号との該R映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間し、明部はB撮像信号を周囲B画素撮像信号の中央値と中心画素撮像信号との該RGB映像信号の増幅度に相関(増幅度小では中心R画素の撮像信号が主で増幅度大では周囲R画素の撮像信号の中央値が主と)した重みづけ平均で補間した信号を本線の映像信号とする雑音低減手段と、のいずれか一方を有することを特徴とする撮像装置。
In an imaging device having a solid-state imaging device,
Means for halving the band of the R video signal and the band of the B video signal with respect to the band of the G video signal,
The means for detecting (calculating) the color temperature, and the bright portion calculates the R image signal by a weighted average that is positively correlated with the detected (calculated) color temperature of the median value of the peripheral R pixel image signal and the center pixel image signal. The interpolation is performed, and the bright portion is obtained by weighting the B image signal with a weighted average that is negatively correlated with the detected (calculated) color temperature of the median value of the surrounding B pixel image signal and the center pixel image signal (the median value or the median value). A noise reduction unit that uses a signal interpolated by using the average of the median value and the central pixel) as a main line video signal;
The means for varying the amplification degree of the RGB video signal and the bright portion correlate the R imaging signal with the amplification degree of the R video signal between the median value of the surrounding R pixel imaging signal and the center pixel imaging signal (for small amplification degree, the central R When the image signal of the pixel is main and the amplification degree is large, the median value of the image signals of the surrounding R pixels is mainly interpolated), and the bright portion is obtained by interpolating the B image signal with the median value of the peripheral B pixel image signal and the central pixel. Interpolation by weighted average correlated with the amplification degree of the RGB video signal with the imaging signal (when the amplification degree is small, the imaging signal of the center R pixel is mainly, and when the amplification degree is large, the median value of the imaging signals of surrounding R pixels is mainly) An image pickup apparatus comprising: a noise reduction unit that converts the converted signal into a main line video signal.
JP2018542031A 2016-09-27 2017-09-01 Imaging device Active JP6632093B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016188232 2016-09-27
JP2016188232 2016-09-27
PCT/JP2017/031595 WO2018061615A1 (en) 2016-09-27 2017-09-01 Imaging apparatus

Publications (2)

Publication Number Publication Date
JPWO2018061615A1 JPWO2018061615A1 (en) 2019-06-24
JP6632093B2 true JP6632093B2 (en) 2020-01-15

Family

ID=61760719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018542031A Active JP6632093B2 (en) 2016-09-27 2017-09-01 Imaging device

Country Status (2)

Country Link
JP (1) JP6632093B2 (en)
WO (1) WO2018061615A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113554554A (en) * 2020-04-24 2021-10-26 京东方科技集团股份有限公司 Image color filtering method and device, electronic equipment and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000217123A (en) * 1999-01-20 2000-08-04 Canon Inc Image pickup device and image processing method for image pickup device
US7236190B2 (en) * 2002-10-31 2007-06-26 Freescale Semiconductor, Inc. Digital image processing using white balance and gamma correction

Also Published As

Publication number Publication date
WO2018061615A1 (en) 2018-04-05
JPWO2018061615A1 (en) 2019-06-24

Similar Documents

Publication Publication Date Title
US7102669B2 (en) Digital color image pre-processing
US5548330A (en) Image pickup device for generating a corrected luminance signal
US7030913B2 (en) White balance control apparatus and method, and image pickup apparatus
US8508625B2 (en) Image processing apparatus
KR20080102117A (en) Image signal processing device and image signal processing method
JPH0823543A (en) Image pickup device
KR20040057927A (en) Image synthesis method and image pickup apparatus
US7667735B2 (en) Image pickup device and image processing method having a mask function
JP2013223152A (en) Image pickup device
US8384799B2 (en) Image processing apparatus and image processing method
JP3919389B2 (en) Signal processing apparatus and signal processing method
JP2005109991A (en) Signal processing method and device, and imaging device
JP5152491B2 (en) Imaging device
JP6632093B2 (en) Imaging device
JP6095519B2 (en) Imaging device
US8350924B2 (en) System and method for processing image signals based on interpolation
JP6590955B2 (en) Imaging apparatus and color correction method
JP2011166535A (en) Imaging apparatus
JP2004215063A (en) Photographing device and outline correction method
KR100949188B1 (en) Method for processing image of the ccd
JP2012009937A (en) Imaging device
JP3880276B2 (en) Imaging device
JP3410638B2 (en) Video camera system
JP2004096633A (en) Imaging apparatus and imaging method
US9092882B2 (en) Image processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191206

R150 Certificate of patent or registration of utility model

Ref document number: 6632093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250