JP6631883B2 - クロスリンガル音声合成用モデル学習装置、クロスリンガル音声合成用モデル学習方法、プログラム - Google Patents
クロスリンガル音声合成用モデル学習装置、クロスリンガル音声合成用モデル学習方法、プログラム Download PDFInfo
- Publication number
- JP6631883B2 JP6631883B2 JP2016225808A JP2016225808A JP6631883B2 JP 6631883 B2 JP6631883 B2 JP 6631883B2 JP 2016225808 A JP2016225808 A JP 2016225808A JP 2016225808 A JP2016225808 A JP 2016225808A JP 6631883 B2 JP6631883 B2 JP 6631883B2
- Authority
- JP
- Japan
- Prior art keywords
- target
- synthesis
- voice data
- speaker
- target language
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003786 synthesis reaction Methods 0.000 title claims description 388
- 230000015572 biosynthetic process Effects 0.000 title claims description 386
- 238000000034 method Methods 0.000 title claims description 33
- 239000013598 vector Substances 0.000 claims description 107
- 238000006243 chemical reaction Methods 0.000 claims description 85
- 230000002194 synthesizing effect Effects 0.000 claims description 9
- 230000006870 function Effects 0.000 claims description 8
- 238000001228 spectrum Methods 0.000 description 22
- 238000012545 processing Methods 0.000 description 21
- 230000003595 spectral effect Effects 0.000 description 19
- 238000003860 storage Methods 0.000 description 8
- 238000012549 training Methods 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000011218 segmentation Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Landscapes
- Electrically Operated Instructional Devices (AREA)
Description
_(アンダースコア)は下付き添字を表す。例えば、xy_zはyzがxに対する上付き添字であり、xy_zはyzがxに対する下付き添字であることを表す。
以下、各実施形態で用いる用語について説明する。
音声合成用モデルとは、音声合成に必要となる音声特徴量・音響特徴量(以下、音声パラメータという)を統計的にモデル化したものである。音声パラメータの例として、ケプストラム、メルケプストラム等のスペクトルパラメータや基本周波数(F0)等の音高パラメータがある。音声合成用モデルは、後述する音声データと発話情報を用いて学習する。音声合成用モデルの学習手法はいくつか提案されており、例えばHMM音声合成(非特許文献1)、DNN音声合成(非特許文献2)がある。
音声データとは、各学習(具体的には、不特定話者声質変換器の学習、クロスリンガル音声合成用モデルの学習)に用いるため、あらかじめ収録しておく音声データのことである。音声データは、話者が発話した文章の音声であり、音声データに対して信号処理を行った結果、得られる音声パラメータ(スペクトルパラメータ、音高パラメータ)として記録するのでもよい。
発話情報とは、音声データ中の各発話(話者が発話した文章の音声)に対して付与される発音情報等の情報のことである。音声データ中の各発話に一つの発話情報が付与されている。
以下、図2〜図9を参照してクロスリンガル音声合成用モデル学習装置100、クロスリンガル音声合成装置200について説明する。
図2に示すようにクロスリンガル音声合成用モデル学習装置100は、不特定話者声質変換器学習装置110、音声合成用モデル学習装置120、記録部190を含む。記録部190は、クロスリンガル音声合成用モデル学習装置100の処理に必要な情報を適宜記録する構成部である。クロスリンガル音声合成用モデル学習装置100は、目標話者音声データ、学習対象言語音声データn(1≦n≦N)、合成対象言語音声データとその合成対象言語音声データに含まれる発話の発話情報の集合(以下、合成対象言語発話情報集合という)を入力として、目標話者による合成対象言語での音声を合成するクロスリンガル音声合成モデルを学習し、出力する。
(参考非特許文献1)能勢隆,篠崎隆宏,伊藤洋二郎,伊藤彰則,“ニューラルネットワークに基づくユーザ音声を必要としない多対一声質変換の検討”, 日本音響学会論文集2015年3月, 3-2-1, pp.271-274, 2015
(参考非特許文献1)では、声質変換器を学習する際、声質変換器の入力となる多数の学習対象言語入力話者の音声データと、声質変換器の出力となる1名の目標話者の音声データを学習データとして用いる。これにより、どのような話者の音声データを入力しても目標話者の声質を有する音声データに変換することが可能となる。
図8に示すようにクロスリンガル音声合成装置200は、テキスト解析部210、音声パラメータ生成部220、音声波形生成部230、記録部290を含む。記録部290は、クロスリンガル音声合成装置200の処理に必要な情報を適宜記録する構成部である。クロスリンガル音声合成装置200は、音声合成の対象となる合成対象言語でのテキストである合成テキストを入力として、クロスリンガル音声合成用モデルを用いて、合成テキストを読み上げた合成音声を生成し、出力する。
(参考非特許文献2)今井聖,住田一男,古市千枝子,“音声合成のためのメル対数スペクトル近似(MLSA)フィルタ”,電子情報通信学会論文誌 A, Vol.J66-A, No.2, pp.122-129, 1983.
第一実施形態では、不特定話者声質変換器の学習、不特定話者声質変換器による声質変換に際して、音声データ(スペクトルパラメータ)のみを使用している。つまり、音声データに付随する発話情報を使用せずに学習した不特定話者声質変換器を用いて声質変換をしている。このため、声質変換の精度が劣化し、最終的な合成音声の品質が劣化してしまう可能性がある。
図11に示すようにクロスリンガル音声合成用モデル学習装置300は、不特定話者声質変換器学習装置310、音声合成用モデル学習装置320、記録部190を含む。記録部190には、事前に発音ベクトル作成規則が記録されているものとする。クロスリンガル音声合成用モデル学習装置300は、目標話者音声データ、学習対象言語音声データn(1≦n≦N)、学習対象言語音声データnに含まれる発話の発話情報の集合(以下、学習対象言語発話情報集合n(1≦n≦N)という)、合成対象言語音声データ、合成対象言語発話情報集合を入力として、クロスリンガル音声合成モデルを学習し、出力する。
(参考URL:https://www.internationalphoneticassociation.org/content/full-ipa-chart)
図16に示すように発音ベクトル作成規則生成装置400は、第1発音統計情報生成部410、第2発音統計情報生成部415、発音類似性判定部420、記録部490を含む。記録部490は、発音ベクトル作成規則生成装置400の処理に必要な情報を適宜記録する構成部である。発音ベクトル作成規則生成装置400は、目標話者音声データと目標話者音声データに含まれる発話の発話情報の集合(以下、目標話者発話情報集合という)、合成対象言語音声データと合成対象言語発話情報集合を入力として、発音ベクトル作成規則を生成し、出力する。
第一実施形態では、合成対象言語音声データとして1名の話者の音声データを使用している。
図20に示すように音声合成用モデル学習装置520は、声質変換部511、合成用モデル学習部513を含む。図21に従い音声合成用モデル学習装置520の動作について説明する。ここでは、合成対象言語音声データm(1≦m≦M)が必要である。
(参考非特許文献3)田村正統,益子貴史,徳田恵一,小林隆夫,“HMMに基づく音声合成におけるピッチ・スペクトルの話者適応”,電子情報通信学会論文誌 D, Vol.J85-D2, No.4, pp.545-553, 2002.
第三実施形態では、M名の話者による合成対象言語音声データから生成した声質変換後合成対象言語音声データをすべて音声合成用モデル学習に使用している。
これにより、合成音声の品質を向上させることができる。
図22に示すように音声合成用モデル学習装置620は、声質変換部511、話者類似性判定部612、合成用モデル学習部513を含む。図23に従い音声合成用モデル学習装置620の動作について説明する。
(参考非特許文献4)D. A. Reynolds, “Speaker identification and verification using Gaussian mixture speaker models”, Speech Communication, vol.17, Issues 1-2, pp.91-108, 1995.
第二実施形態では、合成対象言語音声データとして1名の話者の音声データを使用している。
図25に示すように音声合成用モデル学習装置720は、声質変換部711、第2発音ベクトル生成部712、合成用モデル学習部713を含む。図26に従い音声合成用モデル学習装置720の動作について説明する。ここでは、合成対象言語音声データm(1≦m≦M)が必要である。
第五実施形態では、M名の話者による合成対象言語音声データから生成した声質変換後合成対象言語音声データをすべて音声合成用モデル学習に使用している。
これにより、合成音声の品質を向上させることができる。
図27に示すように音声合成用モデル学習装置820は、声質変換部711、第2発音ベクトル生成部712、話者類似性判定部812、合成用モデル学習部713を含む。図28に従い音声合成用モデル学習装置820の動作について説明する。
この発明は上述の実施形態に限定されるものではなく、この発明の趣旨を逸脱しない範囲で適宜変更が可能であることはいうまでもない。上記実施形態において説明した各種の処理は、記載の順に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。
本発明の装置は、例えば単一のハードウェアエンティティとして、キーボードなどが接続可能な入力部、液晶ディスプレイなどが接続可能な出力部、ハードウェアエンティティの外部に通信可能な通信装置(例えば通信ケーブル)が接続可能な通信部、CPU(Central Processing Unit、キャッシュメモリやレジスタなどを備えていてもよい)、メモリであるRAMやROM、ハードディスクである外部記憶装置並びにこれらの入力部、出力部、通信部、CPU、RAM、ROM、外部記憶装置の間のデータのやり取りが可能なように接続するバスを有している。また必要に応じて、ハードウェアエンティティに、CD−ROMなどの記録媒体を読み書きできる装置(ドライブ)などを設けることとしてもよい。このようなハードウェア資源を備えた物理的実体としては、汎用コンピュータなどがある。
Claims (7)
- Nを1以上の整数、nを1≦n≦Nなる整数とし、
目標話者による学習対象言語での音声データである目標話者音声データと学習対象言語入力話者nによる学習対象言語での音声データである学習対象言語音声データn(1≦n≦N)は、同一の文章を発話した音声データであり、
前記目標話者音声データと前記学習対象言語音声データn(1≦n≦N)から、前記目標話者による合成対象言語での音声を合成するクロスリンガル音声合成用モデルを学習するクロスリンガル音声合成用モデル学習装置であって、
前記目標話者音声データと前記学習対象言語音声データnとの時間情報を調整し、時間情報調整後目標話者音声データnと時間情報調整後学習対象言語音声データnを生成する時間情報調整部と、
前記時間情報調整後目標話者音声データnと前記時間情報調整後学習対象言語音声データnの組(1≦n≦N)から、任意の音声データを前記目標話者の声質を有する音声データに変換する不特定話者声質変換器を学習する声質変換器学習部と、
前記不特定話者声質変換器を用いて、合成対象言語入力話者による合成対象言語での音声データである合成対象言語音声データから、前記目標話者の声質を有する声質変換後合成対象言語音声データを生成する声質変換部と、
前記声質変換後合成対象言語音声データと前記合成対象言語音声データに含まれる発話の発話情報の集合である合成対象言語発話情報集合から、前記クロスリンガル音声合成用モデルを学習する合成用モデル学習部と
を含むクロスリンガル音声合成用モデル学習装置。 - Nを1以上の整数、nを1≦n≦Nなる整数とし、
目標話者による学習対象言語での音声データである目標話者音声データと学習対象言語入力話者nによる学習対象言語での音声データである学習対象言語音声データn(1≦n≦N) は、同一の文章を発話した音声データであり、
前記目標話者音声データと前記学習対象言語音声データn(1≦n≦N)から、前記目標話者による合成対象言語での音声を合成するクロスリンガル音声合成用モデルを学習するクロスリンガル音声合成用モデル学習装置であって、
学習対象言語の音素と合成対象言語の音素の対応関係を示す発音ベクトル作成規則を記録した記録部と、
前記目標話者音声データと前記学習対象言語音声データnとの時間情報を調整し、時間情報調整後目標話者音声データnと時間情報調整後学習対象言語音声データnを生成する時間情報調整部と、
前記発音ベクトル作成規則を用いて、前記学習対象言語音声データnに含まれる発話の発話情報の集合である学習対象言語発話情報集合nから、前記発話情報から算出される発音ベクトルの集合である学習対象言語発音ベクトル集合nを生成する第1発音ベクトル生成部と、
前記時間情報調整後目標話者音声データnと前記時間情報調整後学習対象言語音声データnと前記学習対象言語発音ベクトル集合nの組(1≦n≦N)から、任意の音声データを前記目標話者の声質を有する音声データに変換する不特定話者声質変換器を学習する声質変換器学習部と、
前記発音ベクトル作成規則を用いて、合成対象言語入力話者による合成対象言語での音声データである合成対象言語音声データに含まれる発話の発話情報の集合である合成対象言語発話情報集合から、前記発話情報から算出される発音ベクトルの集合である合成対象言語発音ベクトル集合を生成する第2発音ベクトル生成部と、
前記不特定話者声質変換器を用いて、前記合成対象言語音声データと前記合成対象言語発音ベクトル集合から、前記目標話者の声質を有する声質変換後合成対象言語音声データを生成する声質変換部と、
前記声質変換後合成対象言語音声データと前記合成対象言語発話情報集合から、前記クロスリンガル音声合成用モデルを学習する合成用モデル学習部と
を含むクロスリンガル音声合成用モデル学習装置。 - 請求項1に記載のクロスリンガル音声合成用モデル学習装置であって、
Mを1以上の整数、mを1≦m≦Mなる整数とし、
前記声質変換部は、合成対象言語入力話者mによる合成対象言語での音声データである合成対象言語音声データmから、前記目標話者の声質を有する声質変換後合成対象言語音声データmを生成し、
前記合成用モデル学習部は、前記声質変換後合成対象言語音声データmと前記合成対象言語音声データmに含まれる発話の発話情報の集合である合成対象言語発話情報集合m(1≦m≦M)から、前記クロスリンガル音声合成用モデルを学習する
ことを特徴とするクロスリンガル音声合成用モデル学習装置。 - 請求項3に記載のクロスリンガル音声合成用モデル学習装置であって、
さらに、
前記声質変換後合成対象言語音声データmと前記目標話者音声データの類似の程度を示す類似度mを算出し、前記類似度mに基づいて前記声質変換後合成対象言語音声データmが前記目標話者音声データに類似していると判定される場合、前記声質変換後合成対象言語音声データmを前記目標話者音声データに類似している声質変換後合成対象言語音声データの集合である目標話者類似合成対象言語音声データ集合に追加していくことにより、前記目標話者類似合成対象言語音声データ集合を生成する話者類似性判定部を含み、
前記合成用モデル学習部は、前記目標話者類似合成対象言語音声データ集合と前記合成対象言語発話情報m(1≦m≦M)から、前記クロスリンガル音声合成用モデルを学習する
ことを特徴とするクロスリンガル音声合成用モデル学習装置。 - Nを1以上の整数、nを1≦n≦Nなる整数とし、
目標話者による学習対象言語での音声データである目標話者音声データと学習対象言語入力話者nによる学習対象言語での音声データである学習対象言語音声データn(1≦n≦N) は、同一の文章を発話した音声データであり、
クロスリンガル音声合成用モデル学習装置が、前記目標話者音声データと前記学習対象言語音声データn(1≦n≦N)から、前記目標話者による合成対象言語での音声を合成するクロスリンガル音声合成用モデルを学習するクロスリンガル音声合成用モデル学習方法であって、
前記クロスリンガル音声合成用モデル学習装置が、前記目標話者音声データと前記学習対象言語音声データnとの時間情報を調整し、時間情報調整後目標話者音声データnと時間情報調整後学習対象言語音声データnを生成する時間情報調整ステップと、
前記クロスリンガル音声合成用モデル学習装置が、前記時間情報調整後目標話者音声データnと前記時間情報調整後学習対象言語音声データnの組(1≦n≦N)から、任意の音声データを前記目標話者の声質を有する音声データに変換する不特定話者声質変換器を学習する声質変換器学習ステップと、
前記クロスリンガル音声合成用モデル学習装置が、前記不特定話者声質変換器を用いて、合成対象言語入力話者による合成対象言語での音声データである合成対象言語音声データから、前記目標話者の声質を有する声質変換後合成対象言語音声データを生成する声質変換ステップと、
前記クロスリンガル音声合成用モデル学習装置が、前記声質変換後合成対象言語音声データと前記合成対象言語音声データに含まれる発話の発話情報の集合である合成対象言語発話情報集合から、前記クロスリンガル音声合成用モデルを学習する合成用モデル学習ステップと
を含むクロスリンガル音声合成用モデル学習方法。 - Nを1以上の整数、nを1≦n≦Nなる整数とし、
目標話者による学習対象言語での音声データである目標話者音声データと学習対象言語入力話者nによる学習対象言語での音声データである学習対象言語音声データn(1≦n≦N) は、同一の文章を発話した音声データであり、
学習対象言語の音素と合成対象言語の音素の対応関係を示す発音ベクトル作成規則を記録した記録部を有するクロスリンガル音声合成用モデル学習装置が、前記目標話者音声データと前記学習対象言語音声データn(1≦n≦N)から、前記目標話者による合成対象言語での音声を合成するクロスリンガル音声合成用モデルを学習するクロスリンガル音声合成用モデル学習方法であって、
前記クロスリンガル音声合成用モデル学習装置が、前記目標話者音声データと前記学習対象言語音声データnとの時間情報を調整し、時間情報調整後目標話者音声データnと時間情報調整後学習対象言語音声データnを生成する時間情報調整ステップと、
前記クロスリンガル音声合成用モデル学習装置が、前記発音ベクトル作成規則を用いて、前記学習対象言語音声データnに含まれる発話の発話情報の集合である学習対象言語発話情報集合nから、前記発話情報から算出される発音ベクトルの集合である学習対象言語発音ベクトル集合nを生成する第1発音ベクトル生成ステップと、
前記クロスリンガル音声合成用モデル学習装置が、前記時間情報調整後目標話者音声データnと前記時間情報調整後学習対象言語音声データnと前記学習対象言語発音ベクトル集合nの組(1≦n≦N)から、任意の音声データを前記目標話者の声質を有する音声データに変換する不特定話者声質変換器を学習する声質変換器学習ステップと、
前記クロスリンガル音声合成用モデル学習装置が、前記発音ベクトル作成規則を用いて、合成対象言語入力話者による合成対象言語での音声データである合成対象言語音声データに含まれる発話の発話情報の集合である合成対象言語発話情報集合から、前記発話情報から算出される発音ベクトルの集合である合成対象言語発音ベクトル集合を生成する第2発音ベクトル生成ステップと、
前記クロスリンガル音声合成用モデル学習装置が、前記不特定話者声質変換器を用いて、前記合成対象言語音声データと前記合成対象言語発音ベクトル集合から、前記目標話者の声質を有する声質変換後合成対象言語音声データを生成する声質変換ステップと、
前記クロスリンガル音声合成用モデル学習装置が、前記声質変換後合成対象言語音声データと前記合成対象言語発話情報集合から、前記クロスリンガル音声合成用モデルを学習する合成用モデル学習ステップと
を含むクロスリンガル音声合成用モデル学習方法。 - 請求項1ないし4のいずれか1項に記載のクロスリンガル音声合成用モデル学習装置としてコンピュータを機能させるためのプログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016225808A JP6631883B2 (ja) | 2016-11-21 | 2016-11-21 | クロスリンガル音声合成用モデル学習装置、クロスリンガル音声合成用モデル学習方法、プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016225808A JP6631883B2 (ja) | 2016-11-21 | 2016-11-21 | クロスリンガル音声合成用モデル学習装置、クロスリンガル音声合成用モデル学習方法、プログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018084604A JP2018084604A (ja) | 2018-05-31 |
JP6631883B2 true JP6631883B2 (ja) | 2020-01-15 |
Family
ID=62238194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016225808A Active JP6631883B2 (ja) | 2016-11-21 | 2016-11-21 | クロスリンガル音声合成用モデル学習装置、クロスリンガル音声合成用モデル学習方法、プログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6631883B2 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112712789B (zh) * | 2020-12-21 | 2024-05-03 | 深圳市优必选科技股份有限公司 | 跨语言音频转换方法、装置、计算机设备和存储介质 |
WO2022140966A1 (zh) * | 2020-12-28 | 2022-07-07 | 深圳市优必选科技股份有限公司 | 跨语言语音转换方法、计算机设备和存储介质 |
CN112767912A (zh) * | 2020-12-28 | 2021-05-07 | 深圳市优必选科技股份有限公司 | 跨语言语音转换方法、装置、计算机设备和存储介质 |
CN112767958B (zh) * | 2021-02-26 | 2023-12-26 | 华南理工大学 | 一种基于零次学习的跨语种音色转换系统及方法 |
-
2016
- 2016-11-21 JP JP2016225808A patent/JP6631883B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018084604A (ja) | 2018-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6622505B2 (ja) | 音響モデル学習装置、音声合成装置、音響モデル学習方法、音声合成方法、プログラム | |
JP4455610B2 (ja) | 韻律パタン生成装置、音声合成装置、プログラムおよび韻律パタン生成方法 | |
JP6392012B2 (ja) | 音声合成辞書作成装置、音声合成装置、音声合成辞書作成方法及び音声合成辞書作成プログラム | |
JP6580882B2 (ja) | 音声認識結果出力装置、音声認識結果出力方法及び音声認識結果出力プログラム | |
JP6680933B2 (ja) | 音響モデル学習装置、音声合成装置、音響モデル学習方法、音声合成方法、プログラム | |
WO2016042659A1 (ja) | 音声合成装置、音声合成方法およびプログラム | |
JP2017058513A (ja) | 学習装置、音声合成装置、学習方法、音声合成方法、学習プログラム及び音声合成プログラム | |
JP2001282282A (ja) | 音声情報処理方法および装置および記憶媒体 | |
JP6631883B2 (ja) | クロスリンガル音声合成用モデル学習装置、クロスリンガル音声合成用モデル学習方法、プログラム | |
EP4266306A1 (en) | A speech processing system and a method of processing a speech signal | |
JP5807921B2 (ja) | 定量的f0パターン生成装置及び方法、f0パターン生成のためのモデル学習装置、並びにコンピュータプログラム | |
US10157608B2 (en) | Device for predicting voice conversion model, method of predicting voice conversion model, and computer program product | |
Dua et al. | Spectral warping and data augmentation for low resource language ASR system under mismatched conditions | |
JP2016151736A (ja) | 音声加工装置、及びプログラム | |
Gutkin et al. | Building statistical parametric multi-speaker synthesis for bangladeshi bangla | |
JP4964194B2 (ja) | 音声認識モデル作成装置とその方法、音声認識装置とその方法、プログラムとその記録媒体 | |
JP2021099454A (ja) | 音声合成装置、音声合成プログラム及び音声合成方法 | |
Shahnawazuddin et al. | An experimental study on the significance of variable frame-length and overlap in the context of children’s speech recognition | |
JP5722295B2 (ja) | 音響モデル生成方法と音声合成方法とそれらの装置とプログラム | |
JP6167063B2 (ja) | 発話リズム変換行列生成装置、発話リズム変換装置、発話リズム変換行列生成方法、及びそのプログラム | |
Shahnawazuddin et al. | Improving children’s mismatched ASR using structured low-rank feature projection | |
JP2004279436A (ja) | 音声合成装置及びコンピュータプログラム | |
Louw et al. | The Speect text-to-speech entry for the Blizzard Challenge 2016 | |
Godambe et al. | Developing a unit selection voice given audio without corresponding text | |
Jannati et al. | Part-syllable transformation-based voice conversion with very limited training data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20161121 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20181127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191126 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6631883 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |