JP6631433B2 - Control device for hybrid vehicle - Google Patents

Control device for hybrid vehicle Download PDF

Info

Publication number
JP6631433B2
JP6631433B2 JP2016149386A JP2016149386A JP6631433B2 JP 6631433 B2 JP6631433 B2 JP 6631433B2 JP 2016149386 A JP2016149386 A JP 2016149386A JP 2016149386 A JP2016149386 A JP 2016149386A JP 6631433 B2 JP6631433 B2 JP 6631433B2
Authority
JP
Japan
Prior art keywords
power
battery
internal combustion
combustion engine
limit value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016149386A
Other languages
Japanese (ja)
Other versions
JP2018016235A (en
Inventor
健太 大西
健太 大西
大樹 坂下
大樹 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016149386A priority Critical patent/JP6631433B2/en
Publication of JP2018016235A publication Critical patent/JP2018016235A/en
Application granted granted Critical
Publication of JP6631433B2 publication Critical patent/JP6631433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、ハイブリッド車両の制御装置、特に充電時のバッテリの制御に関する。   The present invention relates to a control device for a hybrid vehicle, and more particularly to control of a battery during charging.

電動機および発電機として機能する回転電機と内燃機関とを原動機として備えたハイブリッド車両が知られている。ハイブリッド車両は、回転電機に電力を供給し、また回転電機の発電した電力が充電されるバッテリを備えている。バッテリの劣化防止のために、バッテリの充放電電力は、過剰な値とならないように、そのときのバッテリの蓄電量や温度等に基づき制御されている。また、ハイブリッド車両は、内燃機関を停止し回転電機の動力で車両を駆動する電動車両モードで走行可能なものが知られている。   2. Description of the Related Art A hybrid vehicle including a rotating electric machine functioning as an electric motor and a generator and an internal combustion engine as a prime mover is known. The hybrid vehicle is provided with a battery that supplies electric power to the rotating electric machine and is charged with electric power generated by the rotating electric machine. In order to prevent the battery from deteriorating, the charge / discharge power of the battery is controlled based on the amount of stored power and the temperature of the battery at that time so as not to become an excessive value. Also, a hybrid vehicle is known that can run in an electric vehicle mode in which the internal combustion engine is stopped and the vehicle is driven by the power of a rotating electric machine.

下記特許文献1には、原動機として内燃機関(エンジン22)、第1回転電機(モータMG1)、第2回転電機(モータMG2)を備えたハイブリッド車両(ハイブリッド自動車20)が示されている。このハイブリッド車両(20)においては、電動車両モードで走行中に内燃機関(22)を始動する場合、第1回転電機MG1によって発電が行われ、この発電された電力がバッテリに充電される。この充電電力がバッテリが受け入れられる電力(始動判定用入力制限)を超えていると、内燃機関を始動できない。そこで、この充電電力が始動判定用入力制限を超えることが予測されるときは、超える前に内燃機関(22)を始動している。なお、上記の( )内の符号は、下記特許文献1にて用いられたものであり、本願の実施形態の符号とは関連しない。   Patent Document 1 below discloses a hybrid vehicle (hybrid vehicle 20) including an internal combustion engine (engine 22), a first rotating electric machine (motor MG1), and a second rotating electric machine (motor MG2) as prime movers. In the hybrid vehicle (20), when the internal combustion engine (22) is started while traveling in the electric vehicle mode, power is generated by the first rotating electrical machine MG1, and the generated power is charged in the battery. If the charging power exceeds the power that the battery can accept (input limit for starting determination), the internal combustion engine cannot be started. Therefore, when it is predicted that the charging power will exceed the start determination input limit, the internal combustion engine (22) is started before exceeding. The reference numerals in parentheses above are used in the following Patent Document 1, and are not related to the reference numerals in the embodiments of the present application.

特開2014−184893号公報JP 2014-184893 A

リチウムイオンバッテリ等の金属イオン電池においては、充電が継続するとバッテリ内に金属が析出する現象が知られている。充電の継続時間が長くなるほど金属が析出しやすくなるので、回生制動時においては、バッテリが受け入れられる充電電力(充電電力制限値)を徐々に減少させて金属の析出を防止し、電池を保護する。充電電力制限値が内燃機関始動時の充電電力より小さくなると、以降内燃機関を始動することができなくなる。この始動不能状態を回避するために、充電電力制限値が内燃機関始動時の充電電力より小さくなる前に内燃機関が始動される。電動車両モードで走行しているとき、上記のバッテリの充電電力制限値の減少による内燃機関の始動が行われると、その時点で電動車両モードが解除され、電動車両モードによる走行距離が短くなる。   2. Description of the Related Art In a metal ion battery such as a lithium ion battery, a phenomenon that a metal is deposited in the battery when charging is continued is known. As the duration of charging becomes longer, metal is more likely to be deposited. Therefore, during regenerative braking, the charging power (charging power limit value) that can be accepted by the battery is gradually reduced to prevent metal deposition and protect the battery. . If the charging power limit value becomes smaller than the charging power at the time of starting the internal combustion engine, the internal combustion engine cannot be started thereafter. In order to avoid this unstartable state, the internal combustion engine is started before the charging power limit value becomes smaller than the charging power at the time of starting the internal combustion engine. When the internal combustion engine is started due to the decrease in the charge power limit value of the battery while traveling in the electric vehicle mode, the electric vehicle mode is canceled at that time, and the traveling distance in the electric vehicle mode is reduced.

本発明は、回生制動時に内燃機関の始動の頻度を低下させ、電動車両モードの走行距離が短くなることを抑制することを目的とする。   It is an object of the present invention to reduce the frequency of starting the internal combustion engine during regenerative braking and to suppress a reduction in the traveling distance in the electric vehicle mode.

本発明に係るハイブリッド車両は、内燃機関、第1回転電機および第2回転電機が遊星歯車機構の3要素に各々接続された動力装置と、第1回転電機および第2回転電機に電力を供給し、第1回転電機および第2回転電機からの電力が充電されるバッテリと、を有し、内燃機関を停止し第2回転電機により走行する電動車両モードにて走行可能である。本発明の制御装置は、このハイブリッド車両の制御装置であり、第1回転電機および第2回転電機の運転制御とバッテリの充放電制御を行う。さらに、電動車両モードにおいて、本発明の制御装置は、制動開始からのバッテリへの充電電流に基づきバッテリ内での金属析出を防止するための充電電力制限値を算出し、充電電力制限値から所定値のマージンを減算して回生電力制限値を算出し、回生制動時に第2回転電機の発電電力を回生電力制限値以下に制限する。   The hybrid vehicle according to the present invention supplies power to the power unit in which the internal combustion engine, the first rotating electric machine and the second rotating electric machine are connected to the three elements of the planetary gear mechanism, and to the first rotating electric machine and the second rotating electric machine. And a battery that is charged with electric power from the first rotating electric machine and the second rotating electric machine, and is capable of traveling in an electric vehicle mode in which the internal combustion engine is stopped and the second rotating electric machine travels. The control device of the present invention is a control device for the hybrid vehicle, and performs operation control of the first rotating electric machine and the second rotating electric machine and charge / discharge control of the battery. Further, in the electric vehicle mode, the control device of the present invention calculates a charge power limit value for preventing metal deposition in the battery based on the charge current to the battery from the start of braking, and determines a predetermined charge power limit value from the charge power limit value. The regenerative power limit value is calculated by subtracting the value margin, and the generated power of the second rotating electrical machine is limited to the regenerative power limit value or less during regenerative braking.

充電電力制限値よりマージンの分、小さな値で充電が行われるため、金属イオンの濃度上昇が抑制され、金属の析出を防止するための充電電力制限値の減少が抑えられる。   Since charging is performed with a value smaller than the charging power limit value by a margin, the increase in the concentration of metal ions is suppressed, and the reduction in the charging power limit value for preventing metal deposition is suppressed.

充電電力制限値の低下が抑えられることにより、回生制動時の内燃機関の始動頻度が低下し、電動車両モードの走行距離の短縮が抑制される。   By suppressing the reduction in the charging power limit value, the frequency of starting the internal combustion engine during regenerative braking is reduced, and the reduction in the traveling distance in the electric vehicle mode is suppressed.

プラグインハイブリッド車両の要部構成を示す図である。FIG. 2 is a diagram illustrating a main configuration of a plug-in hybrid vehicle. 内燃機関始動時の各原動機の速度関係を説明するための図である。FIG. 4 is a diagram for explaining a speed relationship of each prime mover at the time of starting the internal combustion engine. 充電電力および回生電力の制限値を説明するための図である。It is a figure for explaining the limit value of charge electric power and regenerative electric power. 充電電力制限に係る制御フローチャートである。It is a control flowchart concerning charge power limitation.

以下、本発明の実施形態を図面に従って説明する。図1は、プラグインハイブリッド車両10の要部構成を示すブロック図である。プラグインハイブリッド車両は、車載されたバッテリを外部からの電力により充電できるハイブリッド車両である。プラグインハイブリッド車両、および外部充電機能を持たないハイブリッド車両(以下、通常のハイブリッド車両と記す。)は、内燃機関を停止し、回転電機のみにより車両を駆動する走行モードが設定されている。例えば、プラグインハイブリッド車両においては、運行当初は、バッテリの蓄電量が所定の下限値になるまで基本的に回転電機のみにより車両を駆動し、下限値に達するとそれ以降は内燃機関と回転電機を併用して車両を駆動する。以降において、内燃機関を停止し、回転電機による走行を優先する走行モードを「電動車両モード」と記す。一方、運転者の加減速要求、蓄電量などのバッテリ状態などに応じて内燃機関と回転電機を併用または切り換えて走行するモードを「ハイブリッド車両モード」と記す。プラグインハイブリッド車両においては、運行当初からバッテリの蓄電量が所定の下限値になるまで電動車両モードで走行し、下限値に達するとハイブリッド車両モードに移行する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a main configuration of plug-in hybrid vehicle 10. A plug-in hybrid vehicle is a hybrid vehicle that can charge a battery mounted on the vehicle with electric power from the outside. In a plug-in hybrid vehicle and a hybrid vehicle having no external charging function (hereinafter, referred to as a normal hybrid vehicle), a traveling mode in which the internal combustion engine is stopped and the vehicle is driven only by the rotating electric machine is set. For example, in a plug-in hybrid vehicle, at the beginning of operation, the vehicle is basically driven only by the rotating electric machine until the charged amount of the battery reaches a predetermined lower limit, and after reaching the lower limit, the internal combustion engine and the rotating electric machine are thereafter driven. To drive the vehicle. Hereinafter, a traveling mode in which the internal combustion engine is stopped and the traveling by the rotating electric machine is prioritized is referred to as an “electric vehicle mode”. On the other hand, a mode in which the internal combustion engine and the rotating electric machine are used in combination or switched according to a driver's request for acceleration / deceleration and a battery state such as a charged amount is referred to as a “hybrid vehicle mode”. In a plug-in hybrid vehicle, the vehicle travels in the electric vehicle mode from the beginning of operation until the charged amount of the battery reaches a predetermined lower limit, and shifts to the hybrid vehicle mode when the lower limit is reached.

プラグインハイブリッド車両10の動力装置12は、1機の内燃機関14と2機の回転電機16,18の3機の原動機を車両駆動用に備えている。2機の回転電機16,18は、いずれも電動機および発電機として動作可能である。3機の原動機14,16,18は、遊星歯車機構20の3要素(キャリア要素、サン要素、リング要素)にそれぞれ接続されている。この動力装置12においては、サン要素であるサンギア22に一方の回転電機16が接続され、リング要素であるリングギア24に他方の回転電機18が接続されている。以降、サンギア22に接続された回転電機を第1回転電機16、リングギア24に接続された回転電機を第2回転電機18と記す。キャリア要素であるプラネタリキャリア26は、サンギア22およびリングギア24に噛み合うプラネタリピニオン28を回動可能に支持している。このプラネタリキャリア26に内燃機関14が接続されている。3機の原動機と、これらが接続される遊星歯車機構の3要素との対応は、上記以外の組み合わせとしてもよい。3機の原動機14,16,18の回転速度は、遊星歯車機構のギア比により定まる所定の関係を有し、2機の回転速度を決めると残りの1機の回転速度が決定する。リングギア24には、出力ギア30が設けられ、ここから動力が減速ギア列32、差動装置34を経て駆動輪36に向けて出力される。   The power unit 12 of the plug-in hybrid vehicle 10 includes three prime movers of one internal combustion engine 14 and two rotating electric machines 16 and 18 for driving the vehicle. Each of the two rotating electric machines 16 and 18 can operate as a motor and a generator. The three prime movers 14, 16, 18 are connected to three elements (a carrier element, a sun element, and a ring element) of the planetary gear mechanism 20, respectively. In the power unit 12, one rotating electric machine 16 is connected to a sun gear 22 which is a sun element, and the other rotating electric machine 18 is connected to a ring gear 24 which is a ring element. Hereinafter, the rotating electric machine connected to the sun gear 22 is referred to as a first rotating electric machine 16, and the rotating electric machine connected to the ring gear 24 is referred to as a second rotating electric machine 18. A planetary carrier 26 as a carrier element rotatably supports a planetary pinion 28 meshing with the sun gear 22 and the ring gear 24. The internal combustion engine 14 is connected to the planetary carrier 26. The correspondence between the three prime movers and the three elements of the planetary gear mechanism to which they are connected may be a combination other than the above. The rotational speeds of the three prime movers 14, 16, and 18 have a predetermined relationship determined by the gear ratio of the planetary gear mechanism. When the rotational speeds of the two prime movers are determined, the rotational speeds of the remaining ones are determined. The ring gear 24 is provided with an output gear 30, from which power is output to drive wheels 36 via a reduction gear train 32 and a differential device 34.

第1および第2回転電機16,18には、電力変換装置38を介して二次電池であるバッテリ40から電力が供給される。このプラグインハイブリッド車両10において、バッテリ40は、リチウムイオンバッテリである。第1および第2回転電機16,18は、3相交流同期回転電機とすることができ、これらが電動機として機能するとき、バッテリ40からの直流電力が電力変換装置38により3相交流電力に変換されてこれらの回転電機16,18に供給される。また、第1および第2回転電機16,18が発電機として機能するときには、発電された交流電力が電力変換装置38により直流電力に変換されてバッテリ40に供給される。一方の回転電機、例えば第1回転電機16を発電機として機能させ、他方の第2回転電機18に電力を供給することもできる。さらに、電力変換装置38には、商用電源等の外部電源と接続するための外部接続プラグ42が接続されている。外部接続プラグ42を外部電源に接続することにより外部からバッテリ40に充電することができる。この外部電源からの充電を、以下「外部充電」と記す。   Power is supplied to the first and second rotating electric machines 16 and 18 from a battery 40 as a secondary battery via a power converter 38. In this plug-in hybrid vehicle 10, battery 40 is a lithium ion battery. The first and second rotating electric machines 16 and 18 can be three-phase AC synchronous rotating electric machines, and when these function as electric motors, the DC power from the battery 40 is converted into three-phase AC power by the power converter 38. Then, it is supplied to these rotating electric machines 16 and 18. When the first and second rotary electric machines 16 and 18 function as generators, the generated AC power is converted into DC power by the power converter 38 and supplied to the battery 40. One rotating electric machine, for example, the first rotating electric machine 16 can be made to function as a generator, and power can be supplied to the other second rotating electric machine 18. Further, an external connection plug 42 for connecting to an external power supply such as a commercial power supply is connected to the power converter 38. The battery 40 can be charged from the outside by connecting the external connection plug 42 to an external power supply. The charging from the external power supply is hereinafter referred to as “external charging”.

プラグインハイブリッド車両10は、動力装置12を制御する制御装置44を更に有する。制御装置44は、車両全体の制御を司るハイブリッド車両電子制御装置(以下、HV−ECUと記す。)46を有する。HV−ECU46は、運転者のアクセルペダル48、ブレーキペダル50等の操作から加速・減速要求を取得し、更に車両速度、各原動機14,16,18の運転状態、バッテリ40の蓄電量等の車両の運行状態を把握して、適切な車両の運行状態を決定する。この運行状態の決定に基づき、各機器の電子制御装置(ECU)を介して、対応する各機器を制御する。内燃機関ECU52は、内燃機関14のスロットル開度、燃料噴射量、バルブタイミング等を制御することにより内燃機関14が目標の回転速度、出力となるように制御する。回転電機ECU54は、電力変換装置38を制御して、第1および第2回転電機16,18が目標の回転速度、出力となるように制御する。バッテリECU56は、バッテリ40の蓄電量を監視し、また蓄電量の上限値、下限値の設定を行う。一般的にバッテリは、蓄電量が低い状態、および高い状態が続くと劣化が進む。この劣化を防止するために、上限値、下限値を設定して蓄電量がある幅に収まるように制御を行う。プラグインハイブリッド車両においては、電動走行モードの航続距離を伸ばすために、外部充電機能のない通常のハイブリッド車両に比して上限値を高めに設定する場合がある。   The plug-in hybrid vehicle 10 further has a control device 44 for controlling the power unit 12. The control device 44 has a hybrid vehicle electronic control device (hereinafter, referred to as HV-ECU) 46 that controls the entire vehicle. The HV-ECU 46 obtains an acceleration / deceleration request from the driver's operation of the accelerator pedal 48, the brake pedal 50, and the like, and further obtains a vehicle speed, a driving state of each of the prime movers 14, 16, 18 and a power storage amount of the battery 40. The operation state of the vehicle is grasped, and an appropriate operation state of the vehicle is determined. Based on the determination of the operation state, each corresponding device is controlled via an electronic control unit (ECU) of each device. The internal combustion engine ECU 52 controls the throttle opening, the fuel injection amount, the valve timing, and the like of the internal combustion engine 14 to control the internal combustion engine 14 to the target rotation speed and output. The rotating electrical machine ECU 54 controls the power converter 38 to control the first and second rotating electrical machines 16 and 18 to have target rotation speeds and outputs. The battery ECU 56 monitors the charged amount of the battery 40 and sets an upper limit value and a lower limit value of the charged amount. In general, the deterioration of a battery progresses when the state of low charge and the state of high charge continue. In order to prevent this deterioration, an upper limit value and a lower limit value are set, and control is performed so that the charged amount falls within a certain range. In a plug-in hybrid vehicle, the upper limit may be set higher than that of a normal hybrid vehicle without an external charging function in order to extend the cruising distance in the electric traveling mode.

一般的にハイブリッド車両においては、回転電機のみで走行しているとき、バッテリの蓄電量が低下した場合などにおいて内燃機関を始動する。図2は、走行中、内燃機関14を始動するとき各原動機14,16,18の速度を示した図である。3本の縦軸は、それぞれ内燃機関14、第1回転電機16および第2回転電機18の回転速度を示す。横軸は静止状態(0)を示し、それより上が正転、下が逆転を示す。各縦軸の間隔は、遊星歯車機構20の幾何学的な寸法(歯車の歯数比など)に基づき定まる。各原動機14,16,18の回転速度は、常に1本の直線上に並ぶ。   Generally, in a hybrid vehicle, the internal combustion engine is started when the vehicle is running only with the rotating electric machine or when the amount of stored power in the battery is reduced. FIG. 2 is a diagram showing the speeds of the prime movers 14, 16, 18 when the internal combustion engine 14 is started during traveling. The three vertical axes indicate the rotational speeds of the internal combustion engine 14, the first rotating electric machine 16 and the second rotating electric machine 18, respectively. The abscissa indicates the stationary state (0), above which indicates normal rotation and below indicates reverse rotation. The interval between the vertical axes is determined based on the geometric dimensions of the planetary gear mechanism 20 (such as the ratio of the number of gear teeth). The rotation speeds of the motors 14, 16, 18 are always arranged on one straight line.

プラグインハイブリッド車両10においては、電動車両モードでは第2回転電機18により走行を行う。第2回転電機18は、駆動輪36の回転速度と減速ギア列32のギア比で定まる回転速度N2で回転する。内燃機関14は停止、つまり回転速度NEeは0である。このときの第1回転電機16の回転速度N1eは、内燃機関14および第2回転電機18の回転速度(N1,NEe)を通る直線(図2中の破線)上にある。 In the plug-in hybrid vehicle 10, traveling is performed by the second rotating electric machine 18 in the electric vehicle mode. The second rotating electric machine 18 rotates at a rotation speed N 2 determined by the rotation speed of the drive wheels 36 and the gear ratio of the reduction gear train 32. The internal combustion engine 14 is stopped, that is, the rotation speed N E e is zero. The rotation speed N 1 e of the first rotating electric machine 16 at this time is on a straight line (dashed line in FIG. 2) passing through the rotation speeds (N 1 , N E e) of the internal combustion engine 14 and the second rotating electric machine 18.

内燃機関14を始動する場合には、内燃機関14を所定の回転速度NEiで回転させ、点火を行う。第1回転電機16の回転速度をN1iとすることは、逆転方向に回転している第1回転電機16の回転を減速させようとする制御であるから、このとき第1回転電機16は発電することになる。この発電された電力をバッテリ40が受け入れられない状態であると、内燃機関14の始動ができない。リチウムイオンバッテリなどの金属イオンバッテリにおいては、充電電流が大きく、かつ連続充電時間が長くなると、バッテリ内に金属(リチウム)が析出する。この析出を防止するために、充電電力が制限され、この制限によってバッテリが電力を受け入れられない状態となる場合がある。この充電電力の制限がなされると、内燃機関14を必要なときに始動できなくなる。このような内燃機関14が始動不能な状態となることを回避するために、充電電力の制限によって始動不能となる前に内燃機関14を始動すると、電動車両モードによる走行距離が短くなってしまう。 When starting the internal combustion engine 14 rotates the internal combustion engine 14 at a predetermined rotational speed N E i, performs ignition. Setting the rotation speed of the first rotating electric machine 16 to N 1 i is a control to reduce the rotation of the first rotating electric machine 16 rotating in the reverse rotation direction. It will generate electricity. If the battery 40 cannot accept the generated power, the internal combustion engine 14 cannot be started. In a metal ion battery such as a lithium ion battery, when the charging current is large and the continuous charging time is long, metal (lithium) precipitates in the battery. In order to prevent this deposition, charging power is limited, which may cause the battery to be unable to accept power. If the charging power is limited, the internal combustion engine 14 cannot be started when necessary. If the internal combustion engine 14 is started before the internal combustion engine 14 cannot be started due to the limitation of charging power in order to avoid such a state that the internal combustion engine 14 cannot be started, the traveling distance in the electric vehicle mode is reduced.

図3は、第1および第2回転電機16,18により発電される電力と、バッテリ40に充電される電力、および充電電力の制限の関係を示す図である。縦軸が充電電力及び発電電力であり、下向きを正としている。よって、図3において下に示されるほど充発電電力の値が大きい。横軸は時間である。「×」を付した実線が、内燃機関14を始動する際の充電電力の最大値(内燃機関始動電力Ps)を示す。内燃機関始動電力Psは、回生発電時の第2回転電機18の発電可能な最大電力と、内燃機関14を、点火を行う回転速度とするための第1回転電機16の発電電力との和に基づき定められる。つまり、内燃機関始動電力Psは、回生制動中に内燃機関14を始動するときの充電電力の最大値であり、この値が確保されていれば、内燃機関14を始動することができる。なお、実際の制御においては、回生制動中に内燃機関14を始動するときの充電電力の最大値より若干大きい値に内燃機関始動電力Psを設定し、余裕を設けることができる。「○」を付した実線は、バッテリ40に充電される電力の最大値(最大充電電力Pu)を表す。一点鎖線は、第2回転電機18の回生電力Ge,Ghを表す。太い実線および細い実線は、金属析出を防止するための電力制限値Lce,Lchを表し、太い破線は回生時の電力制限値Lgeを表す。以下、電力制限値Lce,Lchを充電電力制限値、電力制限値Lgeを回生電力制限値Lgeと記す。添え字「e」は、バッテリ内の金属析出の防止に起因する内燃機関の始動頻度を低減するための制御(以下、「始動頻度低減制御」と記す。)を適用した場合を示し、添え字「h」はこの制御を適用していない場合を示している。始動頻度低減制御を適用しない場合の回生電力、充電電力制限値を、第1回生電力Gh、第1充電電力制限値Lchと記す。始動頻度低減制御を適用した場合の回生電力、充電電力制限値、回生電力制限値を、第2回生電力Ge、第2充電電力制限値Lce、第2回生電力制限値Lgeと記す。   FIG. 3 is a diagram showing the relationship between the electric power generated by the first and second rotating electric machines 16 and 18, the electric power charged in the battery 40, and the limitation of the charging electric power. The vertical axis represents the charging power and the generated power, with the downward direction being positive. Therefore, the value of charging / generating power is larger as shown below in FIG. The horizontal axis is time. The solid line with “x” indicates the maximum value of the charging power when starting the internal combustion engine 14 (the internal combustion engine starting power Ps). The internal combustion engine starting power Ps is the sum of the maximum power that can be generated by the second rotary electric machine 18 during regenerative power generation and the power generated by the first rotary electric machine 16 for setting the internal combustion engine 14 to a rotational speed at which ignition is performed. It is determined based on. That is, the internal combustion engine starting power Ps is the maximum value of the charging power when the internal combustion engine 14 is started during the regenerative braking. If this value is secured, the internal combustion engine 14 can be started. In the actual control, the margin can be provided by setting the internal combustion engine starting power Ps to a value slightly larger than the maximum value of the charging power when the internal combustion engine 14 is started during the regenerative braking. The solid line with “○” indicates the maximum value of the electric power charged to the battery 40 (maximum charging electric power Pu). The chain line represents the regenerative power Ge, Gh of the second rotating electric machine 18. The thick solid line and the thin solid line represent the power limit values Lce and Lch for preventing metal deposition, and the thick broken line represents the power limit value Lge during regeneration. Hereinafter, the power limit values Lce and Lch are referred to as a charging power limit value, and the power limit value Lge is referred to as a regenerative power limit value Lge. The subscript “e” indicates a case where a control for reducing the frequency of starting the internal combustion engine due to the prevention of metal deposition in the battery (hereinafter referred to as “start frequency reduction control”) is applied. “H” indicates a case where this control is not applied. The regenerative power and charging power limit value when the start frequency reduction control is not applied are referred to as first regenerative power Gh and first charging power limit value Lch. The regenerative power, charging power limit value, and regenerative power limit value when the start frequency reduction control is applied are referred to as a second regenerative power Ge, a second charging power limit value Lce, and a second regenerative power limit value Lge.

まず、始動頻度低減制御を適用しない制御について説明する。走行中、時点t1でブレーキ操作がなされると第2回転電機18が発電し、この電力(第1回生電力Gh)がバッテリ40に充電される。この充電により、バッテリ40内のリチウムイオンが負極側に徐々に移動し、負極近傍のイオン濃度が高くなり、金属リチウムが析出しやすくなる。充電時の電流が大きいほど、また充電時間が長くなるほど、負極近傍のイオン濃度が高くなり、析出もしやすくなる。一旦析出したリチウムはイオンに戻らないので、析出は回避する必要がある。制御装置44は、ブレーキ操作による回生充電が開始されてからの充電電流に基づき第1充電電力制限値Lchを算出する。第1充電電力制限値Lch以下に充電電力が制限されることにより、金属リチウムの析出が防止され、電池が保護される。第1充電電力制限値Lchは、時間と共に減少し、制限がより強くなる。第1充電電力制限値Lchの減少に伴いこれが内燃機関始動電力Ps未満となると、内燃機関始動のために第1回転電機16が発電した電力をバッテリ40が受け入れられなくなる。この状態で内燃機関の始動が必要となっても、始動することができない。これを避けるために、第1充電電力制限値Lchが内燃機関始動電力Psに達したとき(時点t2)、制御装置44は内燃機関14を始動制御する。充電電力制限値Lchが第1回生電力Ghに達すると(時点t3)、これ以降、制御装置44は、第1回生電力Ghを第1充電電力制限値Lch以下に制御する。よって、このときの第1充電電力制限値Lchは、回生電力制限値(第1回生電力制限値Lgh)としても機能する。時点t4で、ブレーキ操作が終了すると、負極近傍のイオンは徐々に拡散し、これに伴って制御装置44は、第1充電電力制限値Lchを徐々に増加させる(制限を弱める)。時点t3と時点t4の間では、第1回生電力Ghが第1充電電力制限値Lch、すなわち第1回生電力制限値Lghにより制限を受けるため、要求された制動力を発生するためには十分ではない。この間は、回生制動力の不足分を摩擦ブレーキにより補う。   First, a control to which the start frequency reduction control is not applied will be described. During traveling, when a brake operation is performed at time t1, the second rotating electric machine 18 generates electric power, and this electric power (first regenerative electric power Gh) is charged in the battery 40. By this charging, lithium ions in the battery 40 gradually move to the negative electrode side, the ion concentration near the negative electrode increases, and metal lithium is easily deposited. As the current during charging is longer and the charging time is longer, the ion concentration in the vicinity of the negative electrode is higher, and precipitation is more likely. Once deposited lithium does not return to ions, deposition must be avoided. The control device 44 calculates the first charging power limit value Lch based on the charging current after the regenerative charging by the brake operation is started. By limiting the charging power to the first charging power limit value Lch or less, deposition of metallic lithium is prevented, and the battery is protected. The first charging power limit value Lch decreases with time, and the limit becomes stronger. When the first charging power limit value Lch decreases and becomes smaller than the internal combustion engine starting power Ps, the battery 40 cannot receive the power generated by the first rotating electric machine 16 for starting the internal combustion engine. Even if the internal combustion engine needs to be started in this state, it cannot be started. In order to avoid this, when the first charging power limit value Lch reaches the internal combustion engine starting power Ps (time t2), the control device 44 controls the internal combustion engine 14 to start. When the charging power limit value Lch reaches the first regenerative power Gh (time t3), thereafter, the control device 44 controls the first regenerative power Gh to be equal to or less than the first regenerative power limit value Lch. Therefore, the first charging power limit value Lch at this time also functions as a regenerative power limit value (first regenerative power limit value Lgh). At the time point t4, when the braking operation is completed, the ions near the negative electrode gradually diffuse, and accordingly, the control device 44 gradually increases the first charging power limit value Lch (weakens the limit). Between the time point t3 and the time point t4, the first regenerative power Gh is limited by the first charging power limit Lch, that is, the first regenerative power limit Lgh, so that it is not enough to generate the required braking force. Absent. During this time, the shortage of the regenerative braking force is compensated for by the friction brake.

次に、始動頻度低減制御を適用する制御について説明する。この制御は、電動車両モードによる走行に適用される。走行中、時点t1でブレーキ操作がなされると第2回転電機18が発電し、この電力(第2回生電力Ge)がバッテリ40に充電される。制御装置44は、始動頻度低減制御を適用しない場合と同様の処理に従って、制動開始時からの充電電流に基づき第2充電電力制限値Lceを算出する。電動車両モードにおいては、第2回生電力Geは、第2充電電力制限値Lceから所定の一定値を減じた値に設定される。この一定値をマージンmと記し、定め方については後述する。   Next, control to which the start frequency reduction control is applied will be described. This control is applied to traveling in the electric vehicle mode. During traveling, when a brake operation is performed at time t1, the second rotating electric machine 18 generates electric power, and this electric power (second regenerative electric power Ge) is charged in the battery 40. The control device 44 calculates the second charging power limit value Lce based on the charging current from the start of braking, in accordance with the same processing as when the starting frequency reduction control is not applied. In the electric vehicle mode, the second regenerative power Ge is set to a value obtained by subtracting a predetermined constant value from the second charging power limit value Lce. This constant value is described as a margin m, and how to determine it will be described later.

時点t5までは、第2回生電力Geは、第1回生電力Ghと等しいので、これらそれぞれの場合の充電電流に基づき算出される第2充電電力制限値Lceと第1充電電力制限値Lchも等しい。時点t5にて、第2充電電力制限値Lceからマージンmを減じた値が第2回生電力Geに一致すると、それ以降、第2回生電力Geは、制限されて第2回生電力制限値Lgeとなる。時点t5以降、第2回生電力Geが第1回生電力Ghよりも小さいため、第2充電電力制限値Lceは、第1充電電力制限値Lchよりも大きな値(図3では下方)となる。これにより、内燃機関14の始動を遅らせる、または始動不要とすることができる。第1回生電力Ghに対して第2回生電力Geが不足する分(図3の斜線を施した領域)の制動力は、摩擦ブレーキにより補う。 Until the time point t5, the second regenerative power Ge is equal to the first regenerative power Gh, so that the second charging power limit value Lce and the first charging power limit value Lch calculated based on the charging current in each case are also equal. . At time t5, when the value obtained by subtracting the margin m from the second charging power limit value Lce matches the second regenerative power Ge , thereafter, the second regenerative power Ge is limited to the second regenerative power limit Lge . Become. After the time point t5, since the second regenerative power Ge is smaller than the first regenerative power Gh, the second charging power limit value Lce becomes a value larger than the first charging power limit value Lch (downward in FIG. 3). Thereby, the start of the internal combustion engine 14 can be delayed or the start is unnecessary. The braking force corresponding to the shortage of the second regenerative power Ge with respect to the first regenerative power Gh (the shaded region in FIG. 3) is supplemented by the friction brake.

マージンmは、次のように定めることができる。バッテリ40において、充電によるリチウムイオンの移動と、濃度差によるイオンの拡散が平衡すると、それ以上負極近傍のイオン濃度が高まらず、金属は析出しない。このような充電電力を無析出電力と記す。第2回生電力Geが無析出電力Pn(図3参照)に達すると、それ以降充電を続けてもリチウムの析出は起こらない。このとき、第2充電電力制限値Lceもこれ以上減少しなくなる。したがって、第2回生電力Geが、第2充電電力制限値Lceに対して、内燃機関始動電力Psと無析出電力Pnの差分より小さい値であれば、第2充電電力制限値Lceは、内燃機関始動電力Psに達することがない。つまり、マージンmを、内燃機関始動電力Psと無析出電力Pnの差分より大きい値に定めることで、第2充電電力制限値Lceが内燃機関始動電力Psに達することがなくなり、内燃機関14の始動を防止することができる。また、マージンmを、内燃機関始動電力Psと無析出電力Pnの差分以下の値と定めた場合でも、内燃機関14の始動を遅らせること、またブレーキ期間が短ければ始動を防止することができ、始動の頻度を低減することができる。   The margin m can be determined as follows. In the battery 40, when the movement of lithium ions due to charging and the diffusion of ions due to the concentration difference are balanced, the ion concentration near the negative electrode does not increase any more, and no metal is deposited. Such charging power is referred to as non-deposition power. When the second regenerative power Ge reaches the non-deposition power Pn (see FIG. 3), lithium deposition does not occur even if charging is continued thereafter. At this time, the second charging power limit value Lce does not decrease any more. Therefore, if the second regenerative power Ge is smaller than the second charging power limit value Lce by a difference between the internal combustion engine starting power Ps and the non-deposition power Pn, the second charging power limit value Lce becomes It does not reach the starting power Ps. That is, by setting the margin m to a value larger than the difference between the internal combustion engine starting power Ps and the precipitation-free power Pn, the second charging power limit value Lce does not reach the internal combustion engine starting power Ps, and the internal combustion engine 14 is started. Can be prevented. Further, even when the margin m is set to a value equal to or less than the difference between the internal combustion engine starting power Ps and the precipitation-free power Pn, the starting of the internal combustion engine 14 can be delayed, and if the braking period is short, the starting can be prevented. The frequency of starting can be reduced.

図4は、プラグインハイブリッド車両10の制御、特に動力装置12およびバッテリ40の制御を示すフローチャートである。制御装置44は、内燃機関14が停止中か判断する(S100)。内燃機関14が停止していなければ、始動する必要がないのでこのフローを抜ける。また、アクセルペダル48が踏まれていない(アクセルオフ)かを判断する(S102)。アクセルオフでない、つまりアクセルオンである場合、回生発電は行われないのでこのフローを抜ける。ブレーキペダル50が踏まれている(ブレーキオン)かを判断し(S104)、また電動車両モードで走行中であるかを判断する(S106)。   FIG. 4 is a flowchart showing control of the plug-in hybrid vehicle 10, particularly control of the power unit 12 and the battery 40. The control device 44 determines whether the internal combustion engine 14 is stopped (S100). If the internal combustion engine 14 is not stopped, it is not necessary to start the engine, and the process exits from this flow. Further, it is determined whether or not the accelerator pedal 48 is depressed (accelerator off) (S102). If the accelerator is not off, that is, if the accelerator is on, the flow exits because regenerative power generation is not performed. It is determined whether the brake pedal 50 is depressed (brake-on) (S104), and whether the vehicle is running in the electric vehicle mode (S106).

ステップS104,S106にて、ブレーキがオンでない、または電動車両モードでない場合、制御装置44は、制動開始時からのバッテリ40への充電電流に基づき第1充電電力制限値Lchを逐次算出し(S108)、これに基づき回生電力制限値として第1回生電力制限値Lghを設定し、この制限値以下で回生発電を行うよう第2回転電機18を制御する(S110)。第1回生電力制限値Lghは、バッテリ40内でのリチウムの析出を防止するための第1充電電力制限値Lchに一致している。   When the brake is not on or in the electric vehicle mode in steps S104 and S106, the control device 44 sequentially calculates the first charging power limit value Lch based on the charging current to the battery 40 from the start of the braking (S108). Based on this, the first regenerative power limit value Lgh is set as the regenerative power limit value, and the second rotating electric machine 18 is controlled so as to perform regenerative power generation at or below this limit value (S110). The first regenerative power limit Lgh is equal to the first charge power limit Lch for preventing lithium from being precipitated in the battery 40.

ステップS104,S106にて、ブレーキオン、かつ電動車両モードである場合、制御装置44は、制動開始時からのバッテリ40への充電電流に基づき第2充電電力制限値Lceを逐次算出し(S112)、これに基づき回生電力制限値として第2回生電力制限値Lgeを設定し、この制限値以下で回生発電を行うよう第2回転電機18を制御する(S114)。第2回生電力制限値Lgeは、バッテリ40内でのリチウムの析出を防止するための第2充電電力制限値Lceからマージンmを減じた値である。第2回生電力制限値Lgeは、第1回生電力制限値Lghより小さいので、回生電力、すなわちバッテリ40への充電電力が小さくなる。このため、負極近傍のリチウムイオンの濃度増加が抑制され、第2充電電力制限値Lceによる制限は、第1充電電力制限値Lchによる制限に比べ緩和される。ステップS112では、制御装置44は、そのとき設定されている充電電力制限値(LceまたはLch)が内燃機関始動電力Psより小さいかを判断し(S116)、小さければ、内燃機関14を始動制御し(S118)、小さくなければ、このフローを抜ける。以上のフローが所定周期で繰り返される。   In steps S104 and S106, when the brake is on and the electric vehicle mode is set, the control device 44 sequentially calculates the second charging power limit value Lce based on the charging current to the battery 40 from the start of braking (S112). Based on this, the second regenerative power limit value Lge is set as the regenerative power limit value, and the second rotating electric machine 18 is controlled so as to perform regenerative power generation at or below this limit value (S114). The second regenerative power limit Lge is a value obtained by subtracting a margin m from the second charge power limit Lce for preventing lithium from being precipitated in the battery 40. Since the second regenerative power limit value Lge is smaller than the first regenerative power limit value Lgh, the regenerative power, that is, the power for charging the battery 40 is reduced. Therefore, an increase in the concentration of lithium ions near the negative electrode is suppressed, and the limitation by the second charging power limit value Lce is relaxed compared to the limitation by the first charging power limit value Lch. In step S112, the control device 44 determines whether the charging power limit value (Lce or Lch) set at that time is smaller than the internal combustion engine starting power Ps (S116). (S118) If it is not small, the process goes through this flow. The above flow is repeated at a predetermined cycle.

バッテリ40は、リチウムイオンバッテリに限らず,ナトリウムイオンバッテリなど他の金属イオン電池であってよい。制御装置44は、HV−ECU46、内燃機関ECU52、回転電機ECU54およびバッテリECU56をそれぞれ独立した構成に限らず、各ECUの一部または全てを一体に構成することもできる。   Battery 40 is not limited to a lithium ion battery, and may be another metal ion battery such as a sodium ion battery. The control device 44 is not limited to the HV-ECU 46, the internal combustion engine ECU 52, the rotating electric machine ECU 54, and the battery ECU 56, but may be configured integrally with a part or all of each ECU.

以上、プラグインハイブリッド車両10について説明したが、これに限らず、外部充電機能のない通常のハイブリッド車両に上述の制御を適用することができる。通常のハイブリッド車両においては、運転者が回転電機のみにより走行するモードを選択することができる車両があり、このようなモードも電動車両モードと言える。例えば、車両の走行音が周囲へ響くことを抑えるために、運転者はこの電動車両モードを選択することができる。この電動車両モードにおいても、バッテリの保護のために、つまり電力制限値の減少によって内燃機関が始動されてしまうと、望まない内燃機関の始動が実行される。この場合、上記の例であれば、期待した低騒音走行が達成されなくなる。   Although the plug-in hybrid vehicle 10 has been described above, the present invention is not limited to this, and the above-described control can be applied to a normal hybrid vehicle having no external charging function. In a normal hybrid vehicle, there is a vehicle in which a driver can select a mode in which the vehicle runs only by the rotating electric machine, and such a mode can be said to be an electric vehicle mode. For example, the driver can select this electric vehicle mode in order to suppress the traveling sound of the vehicle from affecting the surroundings. Also in this electric vehicle mode, if the internal combustion engine is started to protect the battery, that is, when the power limit value is reduced, an undesirable start of the internal combustion engine is executed. In this case, in the above example, the expected low-noise running cannot be achieved.

10 プラグインハイブリッド車両、12 動力装置、14 内燃機関、16 第1回転電機、18 第2回転電機、20 遊星歯車機構、22 サンギア、24 リングギア、26 プラネタリキャリア、28 プラネタリピニオン、30 出力ギア、32 減速ギア列、34 差動装置、36 駆動輪、38 電力変換装置、40 バッテリ、42 外部接続プラグ、44 制御装置、46 HV−ECU、48 アクセルペダル、50 ブレーキペダル、52 内燃機関ECU、54 回転電機ECU、56 バッテリECU、Ps 内燃機関始動電力、Pu 最大充電電力、Gh 第1回生電力、Ge 第2回生電力、Lgh 第1回生電力制限値、Lge 第2回生電力制限値、Lch 第1充電電力制限値、Lce 第2充電電力制限値。   Reference Signs List 10 plug-in hybrid vehicle, 12 power unit, 14 internal combustion engine, 16 first rotating electric machine, 18 second rotating electric machine, 20 planetary gear mechanism, 22 sun gear, 24 ring gear, 26 planetary carrier, 28 planetary pinion, 30 output gear, 32 reduction gear train, 34 differential gear, 36 drive wheels, 38 power converter, 40 battery, 42 external connection plug, 44 control device, 46 HV-ECU, 48 accelerator pedal, 50 brake pedal, 52 internal combustion engine ECU, 54 Rotating electric machine ECU, 56 battery ECU, Ps Internal combustion engine starting power, Pu maximum charging power, Gh first regenerative power, Ge second regenerative power, Lgh first regenerative power limit, Lge second regenerative power limit, Lch first Charge power limit value, Lce Second charge power limit value.

Claims (1)

内燃機関、第1回転電機および第2回転電機が遊星歯車機構の3要素に各々接続された動力装置と、
第1回転電機および第2回転電機に電力を供給し、第1回転電機および第2回転電機からの電力が充電される、金属イオン電池であるバッテリと、
を有し、内燃機関を停止し第2回転電機により走行する電動車両モードにて走行可能なハイブリッド車両の制御装置であって、
制御装置は、第1回転電機および第2回転電機の運転制御とバッテリの充放電制御を行い、
電動車両モードにおいて、制御装置は、
制動開始時からのバッテリへの充電電流に基づきバッテリ内での金属析出を防止するための充電電力制限値(Lce)を算出し、
内燃機関を始動する際の充電電力の最大値である内燃機関始動電力(Ps)と、バッテリの負極近傍の金属イオンの濃度が高くならない充電電力である無析出電力(Pn)との差分より大きい値であるマージン(m)を、充電電力制限値(Lce)から減算して回生電力制限値(Lge)を算出し、
回生制動時に第2回転電機の発電電力を回生電力制限値(Lge)以下に制限する、
ハイブリッド車両の制御装置。
A power unit in which an internal combustion engine, a first rotating electric machine and a second rotating electric machine are respectively connected to three elements of a planetary gear mechanism;
A battery that is a metal ion battery, which supplies power to the first rotating electrical machine and the second rotating electrical machine and is charged with power from the first rotating electrical machine and the second rotating electrical machine;
A control device for a hybrid vehicle having an internal combustion engine stopped and capable of running in an electric vehicle mode in which the vehicle is driven by a second rotating electric machine,
The control device performs operation control of the first rotating electric machine and the second rotating electric machine and charge / discharge control of the battery,
In the electric vehicle mode, the control device includes:
A charge power limit value (Lce) for preventing metal deposition in the battery is calculated based on the charge current to the battery from the start of braking,
It is larger than the difference between the internal combustion engine starting power (Ps), which is the maximum value of the charging power when starting the internal combustion engine, and the deposition-free power (Pn), which is the charging power at which the concentration of metal ions near the negative electrode of the battery does not increase. margin (m) is a value, calculates the regenerative power limit value (Lge) was calculated charge power limit value (Lce) or al down,
Limiting the power generated by the second rotating electric machine to a regenerative power limit value (Lge) or less during regenerative braking
Control device for hybrid vehicle.
JP2016149386A 2016-07-29 2016-07-29 Control device for hybrid vehicle Active JP6631433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016149386A JP6631433B2 (en) 2016-07-29 2016-07-29 Control device for hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016149386A JP6631433B2 (en) 2016-07-29 2016-07-29 Control device for hybrid vehicle

Publications (2)

Publication Number Publication Date
JP2018016235A JP2018016235A (en) 2018-02-01
JP6631433B2 true JP6631433B2 (en) 2020-01-15

Family

ID=61075698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016149386A Active JP6631433B2 (en) 2016-07-29 2016-07-29 Control device for hybrid vehicle

Country Status (1)

Country Link
JP (1) JP6631433B2 (en)

Also Published As

Publication number Publication date
JP2018016235A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP3933106B2 (en) POWER OUTPUT DEVICE, ITS CONTROL METHOD, AND AUTOMOBILE
JP4547011B2 (en) POWER OUTPUT DEVICE, VEHICLE EQUIPPED WITH THE SAME, DRIVE DEVICE, AND CONTROL METHOD FOR POWER OUTPUT DEVICE
JP5370584B2 (en) Hybrid vehicle
JP5747724B2 (en) Vehicle and vehicle control method
CN107985302B (en) Vehicle with a steering wheel
JP2008247252A (en) Hybrid car and its control method
JP2010195313A (en) Hybrid car
US9522670B2 (en) Control system of hybrid vehicle
CN109835322B (en) Hybrid electric vehicle
WO2013018221A1 (en) Vehicle, and vehicle control method
JP5370291B2 (en) vehicle
JP2010268578A (en) Control device for step-up/step-down converter, hybrid vehicle mounted with the same, and control method of the step-up/step-down converter
JP2008254677A (en) Vehicle and its control method
JP2007230366A (en) Power output device, control method for vehicle mounted with it and power output device
JP5796439B2 (en) Hybrid car
JP4069849B2 (en) Power output apparatus, automobile equipped with the same, and control method of power output apparatus
JP2012051515A (en) Hybrid vehicle
JP5412839B2 (en) Power supply device, control method therefor, and vehicle
JP6149814B2 (en) Hybrid vehicle
JP2012111450A (en) Hybrid vehicle
JP2010195312A (en) Hybrid car
JP6631433B2 (en) Control device for hybrid vehicle
JP2011162130A (en) Hybrid vehicle and control method for the same
JP5974796B2 (en) Hybrid vehicle and control method of hybrid vehicle
JP6947013B2 (en) Hybrid car

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191125

R151 Written notification of patent or utility model registration

Ref document number: 6631433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151