JP6626643B2 - Thermally responsive thickness variable material, thermal control device using the thermally responsive thickness variable material, and thermal control method using the thermally responsive thickness variable material - Google Patents

Thermally responsive thickness variable material, thermal control device using the thermally responsive thickness variable material, and thermal control method using the thermally responsive thickness variable material Download PDF

Info

Publication number
JP6626643B2
JP6626643B2 JP2015127705A JP2015127705A JP6626643B2 JP 6626643 B2 JP6626643 B2 JP 6626643B2 JP 2015127705 A JP2015127705 A JP 2015127705A JP 2015127705 A JP2015127705 A JP 2015127705A JP 6626643 B2 JP6626643 B2 JP 6626643B2
Authority
JP
Japan
Prior art keywords
liquid crystal
thermally responsive
thickness
variable material
thickness variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015127705A
Other languages
Japanese (ja)
Other versions
JP2016056345A (en
Inventor
裕希 長谷川
裕希 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Publication of JP2016056345A publication Critical patent/JP2016056345A/en
Application granted granted Critical
Publication of JP6626643B2 publication Critical patent/JP6626643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、熱応答性厚み可変材料、当該熱応答性厚み可変材料を用いた熱制御装置、及び当該熱応答性厚み可変材料を用いた熱制御方法に関する。   The present invention relates to a thermally responsive thickness variable material, a thermal control device using the thermally responsive thickness variable material, and a thermal control method using the thermally responsive thickness variable material.

断熱材は多くの分野で使用されており、例えば、充電池は、その性能を十分に発揮させるための適切な温度範囲が存在するため、寒冷地等の気温の低い場所では充電池の温度を下げないために断熱材が用いられている。   Insulating materials are used in many fields.For example, rechargeable batteries have an appropriate temperature range to fully demonstrate their performance. Insulation is used to prevent lowering.

しかし、充電池を断熱材等で覆うと、充電池を使用したときに発生した熱を放出することが出来なくなるため、充電池の温度が上昇し、その性能が低下する。   However, if the rechargeable battery is covered with a heat insulating material or the like, the heat generated when the rechargeable battery is used cannot be released, so that the temperature of the rechargeable battery increases and its performance decreases.

従来、この問題を解決するために、充電池を断熱材で覆い、充電池の温度が一定以上に達したときにファン等で冷却する熱制御装置が知られている(特許文献1)。   Conventionally, in order to solve this problem, there has been known a thermal control device in which a rechargeable battery is covered with a heat insulating material and cooled by a fan or the like when the temperature of the rechargeable battery reaches a certain temperature or higher (Patent Document 1).

しかし、従来の熱制御装置は断熱材とは別に冷却装置を設ける必要があり、熱制御装置が大型になった。さらに、冷却装置として冷却ファン等を設けた場合は、冷却時に継続的にファンを回す電力が必要となる上、非常に複雑な配線の構成等が必要となる等の問題があった。また、冷却装置としてヒートパイプ等を備えた場合(特許文献2)、断熱材の厚みを変更する手段を備えた場合(特許文献3)、及び電場等の印加手段を備えた場合(特許文献4)も同様に、その構造は非常に複雑かつ大きくなる。   However, in the conventional heat control device, it is necessary to provide a cooling device separately from the heat insulating material, and the heat control device becomes large. Further, when a cooling fan or the like is provided as a cooling device, there is a problem that electric power for continuously turning the fan during cooling is required, and a very complicated wiring configuration and the like are required. Further, when a heat pipe or the like is provided as a cooling device (Patent Document 2), when a means for changing the thickness of a heat insulating material is provided (Patent Document 3), and when a means for applying an electric field or the like is provided (Patent Document 4). Similarly, the structure becomes very complicated and large.

特開2001−76771号公報JP 2001-76771 A 特開平10−55827号公報JP-A-10-55827 特開2013−113408号公報JP 2013-113408 A 特開2013−234244号公報JP 2013-234244 A

本発明は、前記課題に鑑みてなされたものであり、断熱材とは別に冷却装置等を設ける必要がないシンプルかつコンパクトな構成の熱制御装置及び熱制御方法を実現するための材料を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a heat control device and a material for realizing a heat control method with a simple and compact configuration that does not require a cooling device or the like separately from a heat insulating material. The purpose is to:

本発明は、予め定められた温度以上のときに厚みが小さくなる熱応答性材料中に、フィラーが分散している、熱応答性厚み可変材料に関する。   The present invention relates to a thermoresponsive variable thickness material in which a filler is dispersed in a thermoresponsive material whose thickness decreases when the temperature is equal to or higher than a predetermined temperature.

前記フィラーは、熱伝導性フィラーであることが好ましい。   The filler is preferably a heat conductive filler.

前記熱伝導性フィラーは、前記熱応答性材料よりも高い熱伝導率を有するものであることが好ましい。予め定められた温度以上のときに前記熱応答性厚み可変材料の厚みが小さくなることによって、前記熱伝導性フィラーが相互に近接し、熱応答性厚み可変材料の熱伝導率をさらに高くすることができる。   It is preferable that the thermally conductive filler has a higher thermal conductivity than the thermally responsive material. By reducing the thickness of the thermally responsive thickness variable material at a temperature equal to or higher than a predetermined temperature, the thermally conductive fillers are close to each other, and the thermal conductivity of the thermally responsive thickness variable material is further increased. Can be.

本発明の熱応答性厚み可変材料は、予め定められた温度以上のときに厚みが小さくなることによって熱伝導率が高くなる。さらに、本発明の熱応答性厚み可変材料は、熱伝導性フィラーが分散されていることから、予め定められた温度以上のときに熱応答性厚み可変材料の厚みが小さくなることによって熱伝導性フィラーが相互に接触し、伝熱路が確保されることによって熱伝導率が高くなる。また、本発明の熱応答性厚み可変材料は、予め定められた温度未満のときは厚みが元の状態に戻り、熱伝導性フィラーは相互に離れて伝熱路が断たれ熱伝導率が元の状態に低下する。すなわち、本発明の熱応答性厚み可変材料は、温度により熱伝導率を変化させることができるため断熱機能と放熱機能を切り替えることができる。従って、本発明によれば、断熱材とは別に冷却装置等を設ける必要がないシンプルかつコンパクトな構成の熱制御装置及び熱制御方法を実現するための材料を提供することができる。   The thermal responsive thickness variable material of the present invention has a high thermal conductivity due to a decrease in thickness when the temperature is higher than a predetermined temperature. Furthermore, since the thermally responsive thickness variable material of the present invention has a thermally conductive filler dispersed therein, the thickness of the thermally responsive thickness variable material is reduced at a temperature equal to or higher than a predetermined temperature. The fillers come into contact with each other to secure a heat transfer path, thereby increasing the thermal conductivity. When the temperature is less than a predetermined temperature, the thickness of the thermally responsive variable thickness material of the present invention returns to the original state, and the thermally conductive fillers are separated from each other, the heat transfer path is cut off, and the thermal conductivity is reduced. In the state of. That is, the thermally responsive thickness variable material of the present invention can change the thermal conductivity depending on the temperature, so that the heat insulating function and the heat radiating function can be switched. Therefore, according to the present invention, it is possible to provide a material for realizing a heat control device and a heat control method with a simple and compact structure that does not require a cooling device or the like separately from the heat insulating material.

本発明の実施形態に係る熱制御装置を示す概略図FIG. 1 is a schematic diagram illustrating a heat control device according to an embodiment of the present invention. 予め定められた温度以上のときの熱制御装置を示す概略図Schematic diagram showing the heat control device when the temperature is equal to or higher than a predetermined temperature

<熱応答性厚み可変材料>
本発明の熱応答性厚み可変材料は、予め定められた温度以上のときに厚みが小さくなる熱応答性材料中に、フィラーが分散しているものである。
<Heat-responsive variable thickness material>
The thermally responsive thickness variable material of the present invention is a material in which a filler is dispersed in a thermally responsive material whose thickness becomes smaller at a temperature equal to or higher than a predetermined temperature.

〔熱応答性材料〕
前記熱応答性材料は、予め定められた温度以上のときに形状が変化して厚みが小さくなり、予め定められた温度未満のときには形状が元に戻り厚みが元に戻る材料であれば特に限定されない。当該材料としては、液晶エラストマーが挙げられ、当該液晶エラストマーとしては、液晶ポリウレタンエラストマー、液晶シリコーンエラストマー、液晶アクリレートエラストマー、ポリN置換(メタ)アクリルアミド(例えば、ポリN−イソプロピルアクリルアミド)、ポリビニルエーテル等が例示できるが、いずれを用いるかは熱を制御する対象物(以下、当該対象物を熱制御対象物ともいう)の特性、環境温度、所望の断熱性能、放熱性能等を考慮して適宜決定することができる。
(Thermal responsive material)
The thermo-responsive material is not particularly limited as long as the material changes its shape at a temperature higher than a predetermined temperature to decrease its thickness, and at a temperature lower than the predetermined temperature, the material returns to its original shape and its thickness returns to its original thickness. Not done. Examples of the material include liquid crystal elastomers. Examples of the liquid crystal elastomer include liquid crystal polyurethane elastomer, liquid crystal silicone elastomer, liquid crystal acrylate elastomer, poly N-substituted (meth) acrylamide (for example, poly N-isopropylacrylamide), and polyvinyl ether. Although one of them can be exemplified, which one to use is appropriately determined in consideration of the characteristics of the object for controlling heat (hereinafter, the object is also referred to as a heat control object), environmental temperature, desired heat insulation performance, heat radiation performance, and the like. be able to.

一例としては、前記熱制御対象物が常温付近(例えば−10〜40℃)での使用が想定されるものである場合(例えば、前記特許文献1及び2に記載の充電池)、前記熱応答性厚み可変材料に用いられる材料として、軽量化の観点、及び断熱性能と放熱性能の切り替えの観点から液晶エラストマーが好ましく、当該液晶エラストマーの中でも、液晶ポリウレタンエラストマーが好ましい。   As an example, when the thermal control object is assumed to be used near normal temperature (for example, −10 to 40 ° C.) (for example, the rechargeable batteries described in Patent Documents 1 and 2), the thermal response As a material used for the variable thickness material, a liquid crystal elastomer is preferable from the viewpoint of weight reduction and a viewpoint of switching between heat insulation performance and heat radiation performance, and among the liquid crystal elastomers, a liquid crystal polyurethane elastomer is preferable.

[液晶エラストマー]
前記液晶エラストマーの例としては、活性水素基を有するメソゲン基含有化合物にアルキレンオキシド及び/又はスチレンオキシドを付加した液晶性化合物と、当該液晶性化合物の活性水素基と反応する化合物とを反応させて得られる液晶エラストマーが挙げられる。当該液晶性化合物は、液晶性が発現する温度範囲が低い。当該液晶性化合物を用いることにより、無溶媒でかつ液晶性が発現した状態で反応硬化を行うことができる。前記液晶エラストマーは、原料である前記液晶性化合物の液晶性が発現する温度範囲が低く、かつ架橋によるネットワーク構造を有するため、低温(室温付近)で液晶性とゴム弾性を有する。当該液晶エラストマーは、メソゲン基が一軸方向に配向しているため、熱が加わることによりメソゲン基の配向度が減少して配向方向に縮み、熱を除くことによりメソゲン基の配向度が増加して配向方向に伸びるという特徴的な応答挙動を示す。
[Liquid crystal elastomer]
As an example of the liquid crystal elastomer, a liquid crystal compound obtained by adding an alkylene oxide and / or styrene oxide to a mesogen group-containing compound having an active hydrogen group is reacted with a compound that reacts with the active hydrogen group of the liquid crystal compound. And the resulting liquid crystal elastomer. The liquid crystal compound has a low temperature range in which liquid crystallinity is exhibited. By using the liquid crystal compound, reaction curing can be performed without a solvent and in a state where liquid crystallinity is developed. Since the liquid crystal elastomer has a low temperature range in which the liquid crystal compound of the raw material exhibits liquid crystallinity and has a network structure by crosslinking, it has liquid crystallinity and rubber elasticity at low temperature (around room temperature). In the liquid crystal elastomer, since the mesogenic groups are uniaxially oriented, the degree of orientation of the mesogenic groups decreases by application of heat and shrinks in the direction of orientation, and the degree of orientation of the mesogenic groups increases by removing heat. It shows a characteristic response behavior of extending in the orientation direction.

〔活性水素基を有するメソゲン基含有化合物にアルキレンオキシド及び/又はスチレンオキシドを付加した液晶性化合物〕
前記メソゲン基含有化合物は、低温(例えば、特許文献1及び2に記載の充電池の使用が想定される温度)での液晶性とゴム弾性を発現させる観点から、下記一般式(1)で表される化合物であることが好ましい。
[Liquid crystal compound obtained by adding alkylene oxide and / or styrene oxide to a mesogen group-containing compound having an active hydrogen group]
The mesogen group-containing compound is represented by the following general formula (1) from the viewpoint of exhibiting liquid crystallinity and rubber elasticity at a low temperature (for example, a temperature at which the use of the rechargeable batteries described in Patent Documents 1 and 2 is assumed). Preferably, the compound is

Figure 0006626643

(式中、Xは活性水素基であり、Rは単結合、−N=N−、−CO−、−CO−O−、又は−CH=N−であり、Rは単結合、又は−O−であり、Rは単結合、又は炭素数1〜20のアルキレン基である。ただし、Rが−O−であり、かつRが単結合である場合を除く。)
Figure 0006626643

Wherein X is an active hydrogen group, R 1 is a single bond, -N = N-, -CO-, -CO-O-, or -CH = N-, and R 2 is a single bond, or —O—, and R 3 is a single bond or an alkylene group having 1 to 20 carbon atoms, provided that R 2 is —O— and R 3 is a single bond.

Xとしては、例えば、OH、SH、NH、COOH、又は二級アミンなどが挙げられる。 X includes, for example, OH, SH, NH 2 , COOH, or a secondary amine.

液晶相から等方相へ、又は等方相から液晶相への転移温度(Ti)が、0〜100℃である熱応答性材料を得るために、ビフェニル骨格(Rが単結合)を有する化合物を用いることが好ましい。また、Rがアルキレン基の場合、炭素数は2〜10であることが好ましい。 In order to obtain a thermoresponsive material having a transition temperature (Ti) from a liquid crystal phase to an isotropic phase or from an isotropic phase to a liquid crystal phase of 0 to 100 ° C., a biphenyl skeleton (R 1 is a single bond) is provided. Preferably, a compound is used. When R 3 is an alkylene group, it preferably has 2 to 10 carbon atoms.

付加するアルキレンオキシドは特に制限されず、例えば、エチレンオキシド、プロピレンオキシド、1,2−ブチレンオキシド、2,3−ブチレンオキシド、シクロヘキセンオキシド、エピクロロヒドリン、エピブロモヒドリン、メチルグリシジルエーテル、及びアリルグリシジルエーテルなどが挙げられる。付加するスチレンオキシドは、ベンゼン環にアルキル基、アルコキシル基、又はハロゲンなどの置換基を有していてもよい。液晶相から等方相へ、又は等方相から液晶相への転移温度(Ti)が、0〜100℃である熱応答性材料を得るために、エチレンオキシド、プロピレンオキシド、1,2−ブチレンオキシド、2,3−ブチレンオキシド、及びスチレンオキシドからなる群より選択される少なくとも1種のオキシドを付加することが好ましい。   The alkylene oxide to be added is not particularly limited, and examples thereof include ethylene oxide, propylene oxide, 1,2-butylene oxide, 2,3-butylene oxide, cyclohexene oxide, epichlorohydrin, epibromohydrin, methyl glycidyl ether, and allyl. Glycidyl ether and the like. The styrene oxide to be added may have a substituent such as an alkyl group, an alkoxyl group, or a halogen on the benzene ring. In order to obtain a thermoresponsive material having a transition temperature (Ti) from a liquid crystal phase to an isotropic phase or from an isotropic phase to a liquid crystal phase of 0 to 100 ° C., ethylene oxide, propylene oxide, 1,2-butylene oxide It is preferable to add at least one oxide selected from the group consisting of, 2,3-butylene oxide and styrene oxide.

また、アルキレンオキシド及び/又はスチレンオキシドは、一般式(1)で表される化合物1モルに対して2〜10モル付加することが好ましく、2〜8モル付加することがより好ましい。付加モル数が2モル未満の場合には、液晶性化合物の液晶性が発現する温度範囲を十分に下げることが難しくなり、無溶媒でかつ液晶性が発現した状態で反応硬化を行うことが困難になる傾向にある。一方、付加モル数が10モルを超える場合には、液晶性化合物が液晶性を発現しなくなる傾向にある。   Further, the alkylene oxide and / or styrene oxide is preferably added in an amount of 2 to 10 mol, more preferably 2 to 8 mol, per 1 mol of the compound represented by the general formula (1). When the number of moles added is less than 2 mol, it is difficult to sufficiently lower the temperature range in which the liquid crystallinity of the liquid crystal compound is developed, and it is difficult to perform reaction curing in a state where the liquid crystallinity is developed without a solvent. Tends to be. On the other hand, when the number of added moles exceeds 10 mol, the liquid crystal compound tends not to exhibit liquid crystallinity.

前記液晶性化合物は、液晶相から等方相へ、又は等方相から液晶相への転移温度(Ti)が、15〜150℃であることが好ましく、より好ましくは25〜125℃である。   The liquid crystal compound preferably has a transition temperature (Ti) from a liquid crystal phase to an isotropic phase or from an isotropic phase to a liquid crystal phase of 15 to 150 ° C, and more preferably 25 to 125 ° C.

前記液晶性化合物は、1種で用いてもよく、2種以上を併用してもよい。   The liquid crystal compounds may be used alone or in combination of two or more.

〔前記液晶性化合物の活性水素基と反応する化合物〕
前記液晶性化合物の活性水素基と反応する化合物としては、例えば、イソシアネート化合物、エポキシ化合物、シラノール基含有化合物、ハロゲン化物、カルボン酸、アルコールなどが挙げられる。特に、液晶相から等方相へ、又は等方相から液晶相への転移温度(Ti)が、0〜100℃である熱応答性材料を得るために、イソシアネート化合物を用いることが好ましい。以下、液晶エラストマーについて、液晶ポリウレタンエラストマーを例に挙げて説明する。
(Compound that reacts with the active hydrogen group of the liquid crystal compound)
Examples of the compound that reacts with the active hydrogen group of the liquid crystal compound include an isocyanate compound, an epoxy compound, a silanol group-containing compound, a halide, a carboxylic acid, and an alcohol. In particular, it is preferable to use an isocyanate compound in order to obtain a thermoresponsive material having a transition temperature (Ti) from a liquid crystal phase to an isotropic phase or from an isotropic phase to a liquid crystal phase of 0 to 100 ° C. Hereinafter, the liquid crystal elastomer will be described using a liquid crystal polyurethane elastomer as an example.

液晶ポリウレタンエラストマーの原料であるイソシアネート化合物は、ポリウレタンの分野において公知の化合物を特に限定なく使用できる。例えば、2,4−トルエンジイソシアネート、2,6−トルエンジイソシアネート、2,2’−ジフェニルメタンジイソシアネート、2,4’−ジフェニルメタンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート、1,5−ナフタレンジイソシアネート、p−フェニレンジイソシアネート、m−フェニレンジイソシアネート、p−キシリレンジイソシアネート、m−キシリレンジイソシアネートなどの芳香族ジイソシアネート、エチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネート、1,4−シクロヘキサンジイソシアネート、4,4’−ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネートなどの脂環式ジイソシアネートが挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。   As the isocyanate compound which is a raw material of the liquid crystal polyurethane elastomer, a compound known in the field of polyurethane can be used without particular limitation. For example, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalenediisocyanate, p-phenylene Aromatic diisocyanates such as diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, aliphatic diisocyanates such as ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 1,6-hexamethylene diisocyanate 1,4-cyclohexane diisocyanate, 4,4′-dicyclohexylmethane diisocyanate, isophorone diisocyanate, Cycloaliphatic diisocyanates such as Rubo Renan diisocyanate. These may be used alone or in combination of two or more.

液晶ポリウレタンエラストマー内に架橋点を導入してネットワーク化するために、3官能以上のイソシアネート化合物を併用することが好ましく、特に3官能のイソシアネート化合物を併用することが好ましい。3官能以上のイソシアネート化合物としては、例えば、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート、リジンエステルトリイソシアネート、1,3,6−ヘキサメチレントリイソシアネート、1,6,11−ウンデカントリイソシアネート、1,8−ジイソシアネート−4−イソシアネートメチルオクタン、及びビシクロヘプタントリイソシアネートなどのトリイソシアネート、テトライソシアネートシランなどのテトライソシアネートが挙げられる。これらは1種で用いてもよく、2種以上を併用してもよい。また、多量化ジイソシアネートを用いてもよい。多量化ジイソシアネートとは、3つ以上のジイソシアネートが付加することにより多量化したイソシアネート変性体又はそれらの混合物である。イソシアネート変性体としては、例えば、1)トリメチロールプロパンアダクトタイプ、2)ビュレットタイプ、3)イソシアヌレートタイプなどが挙げられる。   In order to introduce a crosslinking point into the liquid crystal polyurethane elastomer to form a network, it is preferable to use a trifunctional or more isocyanate compound in combination, and particularly preferable to use a trifunctional isocyanate compound in combination. Examples of the trifunctional or higher isocyanate compound include triphenylmethane triisocyanate, tris (isocyanatephenyl) thiophosphate, lysine ester triisocyanate, 1,3,6-hexamethylene triisocyanate, and 1,6,11-undecane triisocyanate. , 1,8-diisocyanate-4-isocyanatomethyloctane, and triisocyanates such as bicycloheptane triisocyanate, and tetraisocyanates such as tetraisocyanate silane. These may be used alone or in combination of two or more. Further, multimerized diisocyanate may be used. The multimerized diisocyanate is an isocyanate-modified product or a mixture thereof which is multiplied by addition of three or more diisocyanates. Examples of the modified isocyanate include 1) a trimethylolpropane adduct type, 2) a buret type, and 3) an isocyanurate type.

ジイソシアネートと3官能のイソシアネート化合物を併用する場合、前者/後者=19/1〜1/1(重量比)で配合することが好ましい。   When a diisocyanate and a trifunctional isocyanate compound are used in combination, it is preferable to mix the former / the latter at a weight ratio of 19/1 to 1/1.

前記液晶エラストマーの効果を損なわない範囲で高分子量ポリオールを用いてもよい。高分子量ポリオールとしては、液晶ポリウレタンエラストマー内に架橋点を導入してネットワーク化するために、水酸基数3以上の高分子量ポリオールを用いてもよい。水酸基数は3であることが好ましい。高分子量ポリオールとしては、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、及びポリエステルポリカーボネートポリオールなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。   A high molecular weight polyol may be used as long as the effect of the liquid crystal elastomer is not impaired. As the high molecular weight polyol, a high molecular weight polyol having 3 or more hydroxyl groups may be used in order to form a network by introducing a crosslinking point into the liquid crystal polyurethane elastomer. The number of hydroxyl groups is preferably 3. High molecular weight polyols include polyether polyols, polyester polyols, polycarbonate polyols, polyester polycarbonate polyols, and the like. These may be used alone or in combination of two or more.

高分子量ポリオールの他に、前記液晶エラストマーの効果を損なわない範囲で活性水素基含有低分子量化合物を用いてもよい。活性水素基含有低分子量化合物とは、分子量が400未満の化合物であり、例えば、エチレングリコール、1,2−プロピレングリコール、1,3−プロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール、3−メチル−1,5−ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、トリメチロールプロパン、グリセリン、1,2,6−ヘキサントリオール、ペンタエリスリトール、テトラメチロールシクロヘキサン、メチルグルコシド、ソルビトール、マンニトール、ズルシトール、スクロース、2,2,6,6−テトラキス(ヒドロキシメチル)シクロヘキサノール、ジエタノールアミン、N−メチルジエタノールアミン、及びトリエタノールアミン等の低分子量ポリオール;エチレンジアミン、トリレンジアミン、ジフェニルメタンジアミン、及びジエチレントリアミン等の低分子量ポリアミン;モノエタノールアミン、2−(2−アミノエチルアミノ)エタノール、及びモノプロパノールアミン等のアルコールアミンなどが挙げられる。これら活性水素基含有低分子量化合物は1種単独で用いてもよく、2種以上を併用してもよい。   In addition to the high molecular weight polyol, a low molecular weight compound containing an active hydrogen group may be used as long as the effect of the liquid crystal elastomer is not impaired. The active hydrogen group-containing low molecular weight compound is a compound having a molecular weight of less than 400, for example, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butane Diol, 1,4-butanediol, 2,3-butanediol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, diethylene glycol, triethylene Glycol, 1,4-bis (2-hydroxyethoxy) benzene, trimethylolpropane, glycerin, 1,2,6-hexanetriol, pentaerythritol, tetramethylolcyclohexane, methylglucoside, sorbitol, mannitol, dulcitol, sucrose, Low molecular weight polyols such as 2,6,6-tetrakis (hydroxymethyl) cyclohexanol, diethanolamine, N-methyldiethanolamine and triethanolamine; low molecular weight polyamines such as ethylenediamine, tolylenediamine, diphenylmethanediamine and diethylenetriamine; monoethanol Examples include amines, alcohol amines such as 2- (2-aminoethylamino) ethanol, and monopropanolamine. These active hydrogen group-containing low molecular weight compounds may be used alone or in combination of two or more.

前記液晶エラストマーは、原料として前記液晶性化合物を50〜90重量%含むことが好ましく、より好ましくは60〜80重量%である。液晶性化合物の配合量を多くしてメソゲン基の含有量を多くすることにより、温度変化によって大きく変形する液晶エラストマーを得ることができる。本発明においては、前記液晶性化合物を用いているため、液晶性化合物の含有量を多くしても得られる液晶エラストマーは低弾性率である。液晶性化合物の含有量が50重量%未満の場合には、液晶エラストマーの液晶が発現し難くなる傾向にある。一方、液晶性化合物の含有量が90重量%を超える場合には、分子内に架橋点を導入し難くなるため、硬化し難くなる傾向にある。   The liquid crystal elastomer preferably contains 50 to 90% by weight of the liquid crystal compound as a raw material, and more preferably 60 to 80% by weight. By increasing the content of the mesogenic group by increasing the blending amount of the liquid crystal compound, a liquid crystal elastomer that is greatly deformed by a change in temperature can be obtained. In the present invention, since the liquid crystal compound is used, the liquid crystal elastomer obtained even if the content of the liquid crystal compound is increased has a low elastic modulus. When the content of the liquid crystal compound is less than 50% by weight, the liquid crystal of the liquid crystal elastomer tends to be hardly developed. On the other hand, when the content of the liquid crystal compound exceeds 90% by weight, it is difficult to introduce a crosslinking point into the molecule, so that curing tends to be difficult.

前記液晶ポリウレタンエラストマーは、ポリウレタン原料組成物を加熱してウレタン化反応によって硬化させることにより得られる。そして、ウレタン化反応中に、液晶性化合物が液晶性を発現した状態で、液晶性化合物のメソゲン基を一軸方向に配向させ、メソゲン基を配向させた状態で硬化させる。メソゲン基を一軸方向に配向させる方法は特に制限されないが、例えば、配向膜上でウレタン化反応を行う方法、ウレタン化反応時に電場又は磁場をかけて配向させる方法、半硬化状態の時に延伸する方法などが挙げられる。   The liquid crystal polyurethane elastomer is obtained by heating a polyurethane raw material composition and curing it by a urethanization reaction. Then, during the urethanization reaction, the mesogen groups of the liquid crystal compound are uniaxially oriented in a state where the liquid crystal compound has exhibited liquid crystallinity, and the liquid crystal compound is cured with the mesogen groups oriented. The method for orienting the mesogen group in the uniaxial direction is not particularly limited. And the like.

活性水素基を有するメソゲン基含有化合物に、アルキレンオキシド及び/又はスチレンオキシドを付加することによりメソゲン基の熱的安定性が低下し、それにより液晶性が発現する温度範囲を低下させることが出来る。当該液晶性化合物を用いることにより、無溶媒でかつ液晶性が発現した状態で反応硬化を行うことができる。液晶性が発現した状態で反応硬化を行うことにより、メソゲンの結晶性を阻害して結晶相の形成を防ぐことができる。   By adding an alkylene oxide and / or styrene oxide to a mesogen group-containing compound having an active hydrogen group, the thermal stability of the mesogen group is reduced, and the temperature range in which liquid crystallinity is exhibited can be reduced. By using the liquid crystal compound, reaction curing can be performed without a solvent and in a state where liquid crystallinity is developed. By performing the reaction curing in a state where the liquid crystallinity is developed, the crystallinity of the mesogen can be inhibited and the formation of a crystal phase can be prevented.

ポリウレタン原料組成物中の液晶性化合物の含有量は50〜90重量%であることが好ましく、より好ましくは60〜80重量%である。ポリウレタン原料組成物は無溶媒条件下で各原料成分を混合して調整する。   The content of the liquid crystal compound in the polyurethane raw material composition is preferably from 50 to 90% by weight, and more preferably from 60 to 80% by weight. The polyurethane raw material composition is prepared by mixing each raw material component under solvent-free conditions.

前記液晶ポリウレタンエラストマーは、プレポリマー法により製造してもよく、ワンショット法により製造してもよい。なお、第3級アミン系等の公知のウレタン反応を促進する触媒を使用してもかまわない。   The liquid crystal polyurethane elastomer may be manufactured by a prepolymer method or may be manufactured by a one-shot method. Note that a known catalyst such as a tertiary amine-based catalyst that promotes a urethane reaction may be used.

前記液晶エラストマーは、液晶相から等方相へ、又は等方相から液晶相への転移温度(Ti)が、0〜100℃であることが好ましく、より好ましくは0〜85℃である。   The liquid crystal elastomer preferably has a transition temperature (Ti) from a liquid crystal phase to an isotropic phase or from an isotropic phase to a liquid crystal phase of 0 to 100 ° C, and more preferably 0 to 85 ° C.

前記予め定められた温度の調整は、前記液晶ポリウレタンエラストマーのTiを調整することによって行うことが出来る。前記液晶ポリウレタンエラストマーのTiは、種々の手法により調整することが出来る。例えば、前記一般式(1)で表されるメソゲンジオールのアルキレンオキサイドの付加数が大きいと前記Tiが小さくなり、当該付加数が小さいとTiが大きくなることから、当該アルキレンオキサイドの付加数を調整することによりTiを調整することができる。他の例としては、前記液晶ポリウレタンエラストマー内に架橋点が多いとTiが小さくなり、当該架橋点が少ないとTiが大きくなることから、架橋剤を調整することによりTiを調整することができる。他の例としては、液晶性発現の元となるメソゲンの凝集を阻害する方向に配合を調整するとTiが小さくなり、凝集を誘起する方向に配合を調整するとTiが大きくなることから、メソゲンの凝集を調整することによりTiを調整することができる。また、前記メソゲンジオールの含有量が多くなるほどTiは高くなるので、当該含有量を調整することによっても液晶ポリウレタンエラストマーのTiを調整することができる。液晶ポリウレタンエラストマーの原料であるイソシアネート化合物として高結晶性イソシアネート化合物、芳香環含有イソシアネート化合物を用いるとTiが高くなる傾向があることから、イソシアネート化合物の種類によってTiを調整することができる。   The adjustment of the predetermined temperature can be performed by adjusting the Ti of the liquid crystal polyurethane elastomer. Ti of the liquid crystal polyurethane elastomer can be adjusted by various methods. For example, when the number of addition of the alkylene oxide of the mesogen diol represented by the general formula (1) is large, the Ti becomes small, and when the number of addition is small, the Ti becomes large. Therefore, the number of addition of the alkylene oxide is adjusted. By doing so, Ti can be adjusted. As another example, when the number of cross-linking points in the liquid crystal polyurethane elastomer is large, Ti becomes small, and when the number of cross-linking points is small, Ti becomes large. Therefore, Ti can be adjusted by adjusting the cross-linking agent. As another example, when the composition is adjusted in a direction that inhibits the aggregation of mesogen, which is a source of liquid crystallinity, Ti becomes small, and when the composition is adjusted in a direction that induces aggregation, Ti becomes large. Can be adjusted to adjust the Ti. In addition, since Ti increases as the content of the mesogendiol increases, Ti of the liquid crystal polyurethane elastomer can be adjusted by adjusting the content. If a highly crystalline isocyanate compound or an aromatic ring-containing isocyanate compound is used as the isocyanate compound as a raw material of the liquid crystal polyurethane elastomer, Ti tends to increase, so that Ti can be adjusted depending on the type of the isocyanate compound.

前記液晶ポリウレタンエラストマーは、モノドメイン化の延伸方向(モノドメインの配向方向)が変形方向になるため、当該配向方向(延伸方向)を基に形状変化の方向を調整することが出来る。前記液晶ポリウレタンエラストマーの形状の変化量の調整は、例えば、液晶ポリウレタンエラストマーは延伸量が多い方、すなわち、配向度が大きい方が前記変形量が大きくなるので、当該延伸量を調整することによって前記変形量を調整することができる。他の例としては、前記液晶ポリウレタンエラストマー内に架橋点が多いと前記変形量が小さくなり、当該架橋点が少ないと前記変形量が大きくなることから、架橋剤を調整することにより前記変形量を調整することができる。他の例としては、液晶性発現の元となるメソゲンの凝集を阻害する方向に配合を調整すると前記変形量が小さくなり、凝集を誘起する方向に配合を調整すると前記変形量が大きくなることから、メソゲンの凝集を調整することにより前記変形量を調整することができる。   In the liquid crystal polyurethane elastomer, since the stretching direction of monodomain formation (orientation direction of monodomain) is the deformation direction, the direction of shape change can be adjusted based on the orientation direction (stretching direction). Adjustment of the amount of change in the shape of the liquid crystal polyurethane elastomer is, for example, the liquid crystal polyurethane elastomer has a larger stretching amount, that is, the larger the degree of orientation, the larger the deformation amount. The amount of deformation can be adjusted. As another example, the amount of deformation is reduced when there are many crosslinking points in the liquid crystal polyurethane elastomer, and the amount of deformation is increased when the number of crosslinking points is small, so that the amount of deformation is adjusted by adjusting the crosslinking agent. Can be adjusted. As another example, the amount of deformation is reduced when the composition is adjusted in a direction that inhibits the aggregation of mesogen, which is a source of liquid crystallinity, and the amount of deformation is increased when the composition is adjusted in a direction that induces aggregation. The amount of deformation can be adjusted by adjusting the aggregation of the mesogen.

前記熱応答性厚み可変材料に用いられる液晶エラストマーは、断熱性を向上させるために内部に空隙を有しても良い。空隙を有すると、予め定められた温度未満のときは熱伝導率が低く断熱性に優れ、予め定められた温度以上のときは空隙を有さない熱応答性厚み可変材料よりも形状変化の度合いが大きくなり、熱伝導率が高くなる。すなわち、断熱性能と放熱性能を大きく切り替えることができるため好ましい。空隙率は、所望の断熱性能を有し、温度による形状変化によって熱応答性厚み可変材料の熱伝導率が変更できれば良い。空隙は、それぞれが独立していても良く、連続していても良いが、熱応答性厚み可変材料の形状変化の容易性の観点から、連続空隙率が高い方が好ましい。空隙率及び連続空隙率は、所望の断熱性能及び放熱性能によって適宜設定することができる。   The liquid crystal elastomer used for the thermoresponsive thickness variable material may have a void inside to improve heat insulation. When having a gap, when the temperature is lower than a predetermined temperature, the thermal conductivity is low and the heat insulating property is excellent, and when the temperature is equal to or higher than the predetermined temperature, the degree of shape change is larger than that of a thermoresponsive thickness variable material having no gap. And the thermal conductivity increases. That is, it is preferable because the heat insulation performance and the heat radiation performance can be largely switched. The porosity has a desired heat insulating performance, and it is sufficient if the thermal conductivity of the thermally responsive thickness variable material can be changed by a shape change with temperature. The voids may be independent or continuous, but it is preferable that the continuous porosity is high from the viewpoint of easy change of the shape of the thermoresponsive thickness variable material. The porosity and the continuous porosity can be appropriately set depending on desired heat insulation performance and heat radiation performance.

〔フィラー〕
前記熱応答性材料中にフィラーを分散させておくことにより、熱応答性厚み可変材料の破断強度を向上させることができる。分散させるフィラーは補強機能を有するものであればよく、公知のフィラーを特に制限なく使用することができる。前記フィラーは熱伝導性フィラーであることが好ましく、特に前記熱応答性材料よりも高い熱伝導率を有するフィラーであることが好ましい。当該熱伝導性フィラーとしては、例えば、窒化ホウ素、窒化アルミ、窒化ホウ素、アルミナ、炭素粒子、カーボンファイバー、酸化マグネシウム、シリカ、酸化亜鉛、純鉄、カルボニル鉄粉、Mn−Znフェライト、Ni−Znフェライト、マグネタイト、コバルト、及びニッケル等が挙げられる。これらの中で、一定のアスペクト比を有する窒化ホウ素は、その縦方向と横方向でその熱伝導率が大きく異なる特徴があり、熱応答性厚み可変材料の厚み方向に配向させた場合に熱伝導率の変化率がより大きくなるため好ましい。
(Filler)
By dispersing the filler in the thermoresponsive material, the breaking strength of the thermoresponsive thickness variable material can be improved. The filler to be dispersed only needs to have a reinforcing function, and a known filler can be used without any particular limitation. The filler is preferably a thermally conductive filler, particularly preferably a filler having a higher thermal conductivity than the thermally responsive material. As the heat conductive filler, for example, boron nitride, aluminum nitride, boron nitride, alumina, carbon particles, carbon fiber, magnesium oxide, silica, zinc oxide, pure iron, carbonyl iron powder, Mn-Zn ferrite, Ni-Zn Ferrite, magnetite, cobalt, nickel and the like. Among them, boron nitride having a certain aspect ratio has the characteristic that its thermal conductivity differs greatly in the vertical and horizontal directions. This is preferable because the rate of change of the rate becomes larger.

熱伝導性フィラーの熱応答性厚み可変材料に占める体積占有率は、熱応答性厚み可変材料の形状変化に伴う熱伝導性フィラーの相互接触による伝熱路によって熱伝導率の向上を起こり易くする観点から、5vol%以上が好ましく、10vol%以上がより好ましい。また、熱伝導性フィラーの熱応答性厚み可変材料に占める体積占有率は、熱応答性厚み可変材料の形状変化が無い場合に熱伝導性フィラーが相互に接触するのを防ぎ、形状変化による熱伝導率の変化を大きくする観点から40vol%以下が好ましく、30vol%以下がより好ましい。   The volume occupancy of the thermally responsive thickness variable material in the thermally responsive thickness variable material facilitates the improvement of the thermal conductivity by the heat transfer path due to the mutual contact of the thermally responsive filler accompanying the shape change of the thermally responsive thickness variable material. From the viewpoint, 5 vol% or more is preferable, and 10 vol% or more is more preferable. In addition, the volume occupancy of the thermally responsive thickness variable material in the thermally responsive thickness variable material is determined by preventing the thermally responsive filler from contacting each other when the thermally responsive thickness variable material does not change shape. From the viewpoint of increasing the change in conductivity, 40 vol% or less is preferable, and 30 vol% or less is more preferable.

前記熱伝導性フィラーの平均粒子径は、特段の制限がないが、必要体積量を添加する観点から0.1μm以上が好ましく、1μm以上がより好ましい。また、前記熱伝導性フィラーの平均粒子径は、前記熱応答性材料に分散させ、前記熱応答性厚み可変材料の形状変化が無い場合に熱伝導性フィラーが相互に接触するのを防ぎ、形状変化に伴う熱伝導率の変化を大きくする観点から500μm以下が好ましく、300μm以下がより好ましい。当該熱伝導性フィラーは、平均粒子径が異なる1種又は2種以上を組み合わせて用いても良い。本明細書において、平均粒子径は実施例に記載の方法により測定する。   The average particle size of the heat conductive filler is not particularly limited, but is preferably 0.1 μm or more, and more preferably 1 μm or more from the viewpoint of adding a required volume. The average particle diameter of the thermally conductive filler is dispersed in the thermally responsive material to prevent the thermally conductive filler from contacting each other when there is no change in the shape of the thermally responsive thickness variable material. 500 μm or less is preferable, and 300 μm or less is more preferable, from the viewpoint of increasing the change in thermal conductivity accompanying the change. The heat conductive filler may be used alone or in combination of two or more kinds having different average particle diameters. In the present specification, the average particle diameter is measured by the method described in Examples.

前記熱伝導性フィラーのアスペクト比は、熱応答性厚み可変材料の形状変化時に伝熱路が形成され易くし、熱応答性厚み可変材料の形状変化に伴う熱伝導率の変化を大きくする観点から1以上が好ましく、3以上がより好ましい。また、前記熱伝導性フィラーのアスペクト比は、前記熱応答性材料に分散させ、前記熱応答性厚み可変材料の形状変化が無い場合に熱伝導性フィラーが相互に接触するのを防ぎ、形状変化に伴う熱伝導率の変化を大きくする観点から250以下が好ましく、200以下がより好ましい。なお、熱伝導性フィラーの「アスペクト比」とは、当該熱伝導性フィラーの平均長径と平均短径の比(平均長径/平均短径)をいう。平均短径とは、熱伝導性フィラーの短い方の辺の長さを意味し、平均長径とは、熱伝導性フィラーの長い方の辺の長さを意味する。本明細書において、アスペクト比は実施例に記載の方法により測定する。   The aspect ratio of the thermally conductive filler, from the viewpoint of making it easier for heat transfer paths to be formed when the shape of the thermally responsive thickness variable material changes, and increasing the change in thermal conductivity due to the shape change of the thermally responsive thickness variable material. One or more is preferable, and three or more is more preferable. In addition, the aspect ratio of the thermally conductive filler is dispersed in the thermally responsive material to prevent the thermally conductive filler from contacting each other when the thermally responsive thickness variable material does not change shape, and to change the shape. Is preferably 250 or less, and more preferably 200 or less, from the viewpoint of increasing the change in the thermal conductivity due to the above. The “aspect ratio” of the thermally conductive filler refers to the ratio of the average major axis to the average minor axis (average major axis / average minor axis) of the thermal conductive filler. The average minor axis refers to the length of the shorter side of the thermally conductive filler, and the average major axis refers to the length of the longer side of the thermally conductive filler. In this specification, the aspect ratio is measured by the method described in Examples.

<熱制御装置>
本実施形態の熱制御装置は、前記熱応答性厚み可変材料を有する。前記熱応答性厚み可変材料を用いた熱制御装置について、図面を参照しつつ説明する。図1は、前記熱応答性厚み可変材料を用いた熱制御装置1の構成を示す概略図である。
<Heat control device>
The thermal control device according to the present embodiment has the thermoresponsive thickness variable material. A heat control device using the thermoresponsive thickness variable material will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a configuration of a thermal control device 1 using the thermally responsive thickness variable material.

前記熱制御装置1は、少なくとも前記熱応答性厚み可変材料2を有する。前記熱応答性厚み可変材料2は、熱伝導性フィラー3を有する。   The thermal control device 1 has at least the thermally responsive thickness variable material 2. The thermally responsive thickness variable material 2 has a thermally conductive filler 3.

熱応答性厚み可変材料2は、熱制御対象物4の周囲を覆うように設けられている。なお、図1では、熱応答性厚み可変材料2は、熱制御対象物4の四方を囲むように設けられているが、これには限定されず、熱制御対象物4の使用環境等によって適宜変更することは可能である。   The thermally responsive thickness variable material 2 is provided so as to cover the periphery of the thermal control target 4. In FIG. 1, the thermally responsive thickness variable material 2 is provided so as to surround four sides of the thermal control target 4, but is not limited thereto, and may be appropriately determined depending on the use environment of the thermal control target 4. It is possible to change.

図2は、温度が高くなり、予め定められた温度以上になることによって熱応答性厚み可変材料2が変形し、厚みが小さくなった状態の一例を示す概略図である。熱応答性厚み可変材料2は、図1に示すような厚みが大きく熱伝導性フィラーが離れている状態では熱伝導率が低いため、高い断熱効果を有する。一方、図2に示すように、熱によって熱応答性厚み可変材料2の厚みが小さくなり、熱伝導性フィラーが相互に接触することにより伝熱路が確保されている状態では熱伝導率が高くなるため、断熱効果を低減させることができる。また、温度が低くなり、予め定められた温度未満になると、熱応答性厚み可変材料2は、図1に示すような元の状態に戻る。本実施形態に係る熱制御装置1は、上記のような構成により、熱伝導率を調節し、断熱性と放熱性を切り替えることができるため、熱制御対象物4の熱を制御することができる。   FIG. 2 is a schematic diagram illustrating an example of a state in which the temperature is increased and becomes equal to or higher than a predetermined temperature, whereby the thermally responsive thickness variable material 2 is deformed and the thickness is reduced. The thermally responsive variable thickness material 2 has a high heat insulating effect because the thermal conductivity is low when the thermally conductive filler is far away from the thermally conductive filler as shown in FIG. On the other hand, as shown in FIG. 2, the thickness of the thermally responsive thickness variable material 2 is reduced by heat, and the thermal conductivity is high in a state where a heat transfer path is secured by contact of the thermally conductive fillers with each other. Therefore, the heat insulation effect can be reduced. Further, when the temperature decreases and becomes lower than the predetermined temperature, the thermoresponsive thickness variable material 2 returns to the original state as shown in FIG. The thermal control device 1 according to the present embodiment can adjust the thermal conductivity and switch between the heat insulating property and the heat radiating property with the above configuration, and thus can control the heat of the thermal control target 4. .

以下に、実施例に基づいて本発明の熱応答性厚み可変材料を詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   Hereinafter, the thermoresponsive thickness variable material of the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

<評価方法>
[測定、評価方法]
〔液晶性化合物の含有量の算出〕
ポリウレタンエラストマー中の液晶性化合物の含有量は下記式により算出した。
液晶性化合物の含有量(重量%)={(液晶性化合物の重量)/(フィラー以外のポリウレタンエラストマーの全原料成分の重量)}×100
<Evaluation method>
[Measurement and evaluation methods]
(Calculation of the content of the liquid crystal compound)
The content of the liquid crystal compound in the polyurethane elastomer was calculated by the following equation.
Content of liquid crystal compound (% by weight) = {(weight of liquid crystal compound) / (weight of all raw material components of polyurethane elastomer other than filler)} × 100

〔液晶性化合物及びポリウレタンエラストマーの液晶相から等方相への転移温度(Ti)の測定〕
Tiは、示差走査熱量分析器DSC(株式会社日立ハイテクサイエンス社製、商品名:X−DSC 7000)を用いて、20℃/分の条件で測定した。
[Measurement of transition temperature (Ti) of liquid crystal compound and polyurethane elastomer from liquid crystal phase to isotropic phase]
Ti was measured at 20 ° C./min using a differential scanning calorimeter DSC (trade name: X-DSC 7000, manufactured by Hitachi High-Tech Science Corporation).

〔液晶性の評価〕
液晶性化合物及びポリウレタンエラストマーの液晶性の有無は、偏光顕微鏡(ニコン社製、商品名:LV−100POL)及び示差走査熱量分析器DSC(株式会社日立ハイテクサイエンス社製、商品名:X−DSC 7000)を用いて、20℃/分の条件で評価した。
(Evaluation of liquid crystal properties)
The presence or absence of liquid crystallinity of the liquid crystal compound and the polyurethane elastomer is determined by a polarizing microscope (manufactured by Nikon Corporation, trade name: LV-100POL) and a differential scanning calorimeter DSC (manufactured by Hitachi High-Tech Science Corporation, trade name: X-DSC 7000) ) Was evaluated under the condition of 20 ° C./min.

〔平均粒子径〕
島津レーザ回折式粒度分布測定装置SALD2200にて測定した。本明細書において
平均粒子径は、水分散液の状態で、レーザ回折式粒度分布測定装置にて測定した粒度分布
を体積基準で微粒側から積算した場合の50%粒子径(メディアン径D50)をいう。
(Average particle size)
It was measured by Shimadzu laser diffraction particle size distribution analyzer SALD2200. In the present specification, the average particle diameter is a 50% particle diameter (median diameter D 50 ) when the particle size distribution measured by a laser diffraction type particle size distribution analyzer is integrated from the fine particle side on a volume basis in an aqueous dispersion. Say.

〔アスペクト比〕
熱伝導性フィラーの平均短径及び平均長径を、透過型電子顕微鏡(TEM)によって直接観察することにより測定する。無差別に50個の熱伝導性フィラーをサンプリングして、平均短径及び平均長径を個々にカウントし、その平均値を平均短径及び平均長径とし、平均長径と平均短径の比(平均長径/平均短径)をアスペクト比とした。
〔aspect ratio〕
The average minor axis and average major axis of the thermally conductive filler are measured by directly observing with a transmission electron microscope (TEM). The fifty thermally conductive fillers are sampled indiscriminately, the average minor axis and the average major axis are individually counted, the average value is defined as the average minor axis and the average major axis, and the ratio of the average major axis to the average minor axis (average major axis) (Average minor axis) was taken as the aspect ratio.

〔熱応答性厚み可変材料の性能評価〕
熱応答性厚み可変材料の評価は、熱流計(江藤電気製:M55A,2300A)、ラバーヒーター(サミコン230,SBX3030K1S)を組み合わせた装置を用いて性能評価を行った。
1)熱伝導率
熱応答性厚み可変材料の熱伝導率は、当該熱応答性厚み可変材料の厚さ方向についてJISA 1412−2に従って熱流計法によって測定した。
2)厚み変化率
厚み変化率は、予め定められた温度未満のときの熱応答性厚み可変材料(縦100mm×横100mm×厚さ10mm)の厚みを100%とし、予め定められた温度以上のときの熱応答性厚み可変材料の厚みの変化の度合いを表す。厚み変化率は、以下の式により求めた。
厚み変化率(%)=(予め定められた温度以上のときの熱応答性厚み可変材料の厚み/予め定められた温度未満のときの熱応答性厚み可変材料の厚み)×100
3)熱伝導率変化率
熱伝導率変化率は、予め定められた温度未満のときの熱応答性厚み可変材料の熱伝導率を100%とし、予め定められた温度以上のときの熱応答性厚み可変材料の熱伝導率の変化の度合いを表す。数値が大きい方がより大きく熱伝導率が変化したことを意味する。熱伝導率変化率は、以下の式により求めた。
熱伝導率変化率(%)=(予め定められた温度以上のときの熱応答性厚み可変材料の熱伝導率/予め定められた温度未満のときの熱応答性厚み可変材料の熱伝導率)×100
(Performance evaluation of thermoresponsive thickness variable material)
The evaluation of the thermoresponsive thickness variable material was performed using a device in which a heat flow meter (M55A, 2300A, manufactured by Eto Electric Co., Ltd.) and a rubber heater (Samicon 230, SBX3030K1S) were combined.
1) Thermal conductivity The thermal conductivity of the thermally responsive thickness variable material was measured by a heat flow meter in the thickness direction of the thermally responsive thickness variable material according to JISA 1412-2.
2) Thickness change rate The thickness change rate is defined as 100% when the thickness of the thermally responsive thickness variable material (100 mm long × 100 mm wide × 10 mm thick) at a temperature lower than a predetermined temperature is equal to or higher than a predetermined temperature. It shows the degree of change in the thickness of the thermoresponsive thickness variable material at that time. The thickness change rate was determined by the following equation.
Thickness change rate (%) = (thickness of thermally responsive thickness variable material at or above a predetermined temperature / thickness of thermally responsive thickness variable material at or below a predetermined temperature) × 100
3) Thermal conductivity change rate The thermal conductivity change rate is defined as the thermal responsiveness when the thermal conductivity of the thermally responsive thickness variable material is lower than a predetermined temperature is 100% and the thermal responsiveness is higher than a predetermined temperature. It indicates the degree of change in the thermal conductivity of the thickness variable material. The larger the value, the more the thermal conductivity has changed. The rate of change in thermal conductivity was determined by the following equation.
Thermal conductivity change rate (%) = (thermal conductivity of thermally responsive thickness variable material at or above a predetermined temperature / thermal conductivity of thermally responsive thickness variable material at or below a predetermined temperature) × 100

<実施例及び比較例>
〔実施例1〕
[液晶性化合物であるメソゲンジオールの合成]
反応容器にBH6(100g)、KOH3.8g、及びDMF600mlを入れて混合し、その後、プロピレンオキシドをBH6(1モル)に対して4当量添加し、加圧条件下で120℃で2時間反応させた。その後、シュウ酸3.0gを添加して付加反応を停止させ、吸引ろ過により塩を除去し、さらにDMFを減圧蒸留により除去して、目的物であるメソゲンジオール(構造異性体を含んでいてもよい)を得た。当該反応を下記化学式2に示す。
<Examples and comparative examples>
[Example 1]
[Synthesis of Mesogendiol as Liquid Crystalline Compound]
BH6 (100 g), KOH 3.8 g, and DMF 600 ml were put and mixed in a reaction vessel, and then 4 equivalents of propylene oxide were added to BH6 (1 mol), and reacted at 120 ° C. for 2 hours under pressure. Was. Thereafter, 3.0 g of oxalic acid was added to stop the addition reaction, the salt was removed by suction filtration, and DMF was further removed by distillation under reduced pressure to obtain the target mesogendiol (even if it contained structural isomers). Good). The reaction is shown in the following chemical formula 2.

Figure 0006626643
(式中、n=2である。)
Figure 0006626643
(Where n = 2)

〔ポリウレタンエラストマーの合成及び熱応答性厚み可変材料の作成〕
前記メソゲンジオール 20g、ヘキサメチレンジイソシアネート 6.9g、HDI系イソシアヌレート(住化バイエルウレタン株式会社製、スミジュールN3300) 0.8g、及びカルボニル鉄粉CI−CS(BASF社製 平均粒子径6μm(D50)、アスペクト比1)20gを100℃で混合した。その後、反応溶液をあらかじめ100℃に加温した金型内に流し入れ、100℃で30分硬化させて、所定のサイズの半硬化状態の液晶ポリウレタンエラストマーを得た。金型から脱型した後、20℃で試料を一軸方向に伸長することで、熱応答性厚み可変材料を作製した。
[Synthesis of polyurethane elastomer and preparation of thermoresponsive thickness variable material]
20 g of the mesogendiol, 6.9 g of hexamethylene diisocyanate, 0.8 g of HDI-based isocyanurate (Sumijur N3300, manufactured by Sumika Bayer Urethane Co., Ltd.), and carbonyl iron powder CI-CS (manufactured by BASF, average particle diameter 6 μm (D 50 ), aspect ratio 1) 20 g were mixed at 100 ° C. Thereafter, the reaction solution was poured into a mold heated to 100 ° C. in advance and cured at 100 ° C. for 30 minutes to obtain a semi-cured liquid crystal polyurethane elastomer of a predetermined size. After releasing from the mold, the sample was stretched in a uniaxial direction at 20 ° C. to produce a thermoresponsive thickness variable material.

〔実施例2及び比較例〕
表1に記載の原料及び配合を採用した以外は実施例1と同様の方法でポリウレタンエラストマーを得た。なお、窒化ホウ素はデンカボロンナイトライド−GP(電気化学工業社製 平均粒子径8.0(D50)、アスペクト比8.7)を使用した。
[Example 2 and Comparative Example]
A polyurethane elastomer was obtained in the same manner as in Example 1 except that the raw materials and the composition shown in Table 1 were employed. The boron nitride used was dencaboron nitride-GP (average particle diameter 8.0 (D 50 ), aspect ratio 8.7, manufactured by Denki Kagaku Kogyo KK).

Figure 0006626643
Figure 0006626643

評価結果を表2に示す。   Table 2 shows the evaluation results.

Figure 0006626643
Figure 0006626643

以上、本発明を詳細に説明してきたが、上記の説明はあらゆる点において本発明の一例にすぎず、その範囲を限定しようとするものではない。本発明の範囲を逸脱することなく種々の改良や変形を行うことが可能である。   Although the present invention has been described in detail, the above description is merely an example of the present invention in every aspect, and is not intended to limit the scope thereof. Various modifications and variations can be made without departing from the scope of the invention.

本発明に係る熱応答性厚み可変材料は、熱制御装置及び熱制御方法に使用することができ、例えば、自動車に搭載された充電池の温度を調節する熱制御装置及び熱制御方法に好適に利用することができる。   The thermally responsive thickness variable material according to the present invention can be used for a heat control device and a heat control method. For example, it is suitable for a heat control device and a heat control method for adjusting the temperature of a rechargeable battery mounted on an automobile. Can be used.

1 熱制御装置
2 熱応答性厚み可変材料
3 熱伝導性フィラー
4 熱制御対象物
DESCRIPTION OF SYMBOLS 1 Thermal control device 2 Thermoresponsive thickness variable material 3 Thermal conductive filler 4 Thermal control object

Claims (6)

予め定められた温度以上のときに厚みが小さくなる熱応答性材料中に、フィラーが分散している、熱応答性厚み可変材料であって、
前記熱応答性材料は、活性水素基を有するメソゲン基含有化合物にアルキレンオキシド及び/又はスチレンオキシドを付加した液晶性化合物と、当該液晶性化合物の活性水素基と反応するイソシアネート化合物と反応物である液晶ポリウレタンエラストマーであり、
前記液晶ポリウレタンエラストマーは配向を持ち、予め定められた温度以上のときに当該配向の性質が変化することにより厚みが小さくなる熱応答性厚み可変材料。
In a thermoresponsive material whose thickness is reduced when the temperature is equal to or higher than a predetermined temperature, a filler is dispersed, a thermoresponsive thickness variable material,
Said heat responsive material is a reaction product of a liquid crystalline compound by adding an alkylene oxide and / or styrene oxide to the mesogenic group-containing compound having an active hydrogen group, with an isocyanate compound that reacts with an active hydrogen group in the liquid crystalline compound Oh Ru is a liquid crystal polyurethane elastomer,
A thermoresponsive thickness variable material in which the liquid crystal polyurethane elastomer has an orientation, and the thickness is reduced by changing the property of the orientation at or above a predetermined temperature.
前記フィラーは、熱伝導性フィラーである請求項1に記載の熱応答性厚み可変材料。   The thermally responsive thickness variable material according to claim 1, wherein the filler is a thermally conductive filler. 前記熱伝導性フィラーは、前記熱応答性材料よりも高い熱伝導率を有するものであり、
予め定められた温度以上のときに前記熱応答性材料の厚みが小さくなることによって、前記熱伝導性フィラーが相互に近接し熱伝導率が高くなる、請求項2に記載の熱応答性厚み可変材料。
The thermally conductive filler has a higher thermal conductivity than the thermally responsive material,
The thermally responsive thickness variable according to claim 2, wherein the thickness of the thermally responsive material is reduced when the temperature is equal to or higher than a predetermined temperature, whereby the thermally conductive fillers are close to each other and have a high thermal conductivity. material.
前記熱伝導性フィラーの体積占有率が5〜40vol%である、請求項2又は3に記載の熱応答性厚み可変材料。   The thermally responsive thickness variable material according to claim 2 or 3, wherein a volume occupancy of the thermally conductive filler is 5 to 40 vol%. 請求項1〜4のいずれかに記載の熱応答性厚み可変材料を用いた熱制御装置。   A thermal control device using the thermally responsive thickness variable material according to claim 1. 予め定められた温度以上のときに配向の性質が変化することにより厚みが小さくなる液晶ポリウレタンエラストマー中に、フィラーが分散している、熱応答性厚み可変材料の製造方法であって、A method for producing a thermoresponsive thickness-variable material, in which a filler is dispersed in a liquid crystal polyurethane elastomer whose thickness is reduced due to a change in alignment properties when the temperature is equal to or higher than a predetermined temperature,
活性水素基を有するメソゲン基含有化合物にアルキレンオキシド及び/又はスチレンオキシドを付加した液晶性化合物と、前記液晶性化合物の活性水素基と反応するイソシアネート化合物と、前記フィラーとを含むポリウレタン原料組成物を加熱してウレタン化反応を行う工程、ウレタン化反応中に、前記液晶性化合物が液晶性を発現した状態で前記液晶性化合物のメソゲン基を一軸方向に配向させる工程、及び前記メソゲン基を一軸方向に配向させた状態でウレタン化反応物を硬化させて、ウレタン化反応により生成した前記液晶ポリウレタンエラストマー中に前記フィラーを分散させる工程、を含む熱応答性厚み可変材料の製造方法。A polyurethane raw material composition comprising a liquid crystal compound obtained by adding an alkylene oxide and / or styrene oxide to a mesogen group-containing compound having an active hydrogen group, an isocyanate compound that reacts with the active hydrogen group of the liquid crystal compound, and the filler Heating to perform a urethanization reaction, during the urethanization reaction, a step of uniaxially orienting the mesogen group of the liquid crystal compound in a state where the liquid crystal compound exhibits liquid crystallinity, and Curing the urethanization reaction product in a state where the urethanization reaction is performed, and dispersing the filler in the liquid crystal polyurethane elastomer produced by the urethanization reaction.
JP2015127705A 2014-09-05 2015-06-25 Thermally responsive thickness variable material, thermal control device using the thermally responsive thickness variable material, and thermal control method using the thermally responsive thickness variable material Active JP6626643B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181618 2014-09-05
JP2014181618 2014-09-05

Publications (2)

Publication Number Publication Date
JP2016056345A JP2016056345A (en) 2016-04-21
JP6626643B2 true JP6626643B2 (en) 2019-12-25

Family

ID=55757697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015127705A Active JP6626643B2 (en) 2014-09-05 2015-06-25 Thermally responsive thickness variable material, thermal control device using the thermally responsive thickness variable material, and thermal control method using the thermally responsive thickness variable material

Country Status (1)

Country Link
JP (1) JP6626643B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164396A (en) * 2017-12-06 2020-05-15 Nok株式会社 Temperature measuring device and temperature measuring mechanism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014393A (en) * 2015-07-01 2017-01-19 東洋ゴム工業株式会社 Liquid crystal urethane compound, thermal responsive liquid crystal polyurethane elastomer and manufacturing method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140138577A (en) * 2011-08-03 2014-12-04 앵커 사이언스 엘엘씨 Dynamic thermal interface material
JP6013220B2 (en) * 2013-02-18 2016-10-25 東洋ゴム工業株式会社 Thermal conductivity variable material, thermal control device using the thermal conductivity variable material, and thermal control method using the thermal conductivity variable material
JP6138523B2 (en) * 2013-03-07 2017-05-31 東洋ゴム工業株式会社 Liquid crystal polyurethane elastomer and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164396A (en) * 2017-12-06 2020-05-15 Nok株式会社 Temperature measuring device and temperature measuring mechanism
CN111164396B (en) * 2017-12-06 2021-11-30 Nok株式会社 Temperature measuring device and temperature measuring mechanism

Also Published As

Publication number Publication date
JP2016056345A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6626647B2 (en) Variable thermal conductivity material, thermal control device using the variable thermal conductivity material, and thermal control method using the variable thermal conductivity material
JP6396130B2 (en) Liquid crystalline compound, thermoresponsive material and method for producing the same
JP6956789B2 (en) Resin composition
JP6138523B2 (en) Liquid crystal polyurethane elastomer and method for producing the same
US9850339B2 (en) Liquid crystalline polyurethane elastomer and method for producing same
JP6626643B2 (en) Thermally responsive thickness variable material, thermal control device using the thermally responsive thickness variable material, and thermal control method using the thermally responsive thickness variable material
WO2017002681A1 (en) Liquid-crystal urethane compound, thermally responsive liquid-crystal polyurethane elastomer, and production method therefor
JP6473242B2 (en) Thermally responsive material, thermal responsive material manufacturing method, and thermal control device
JP6362973B2 (en) Thermal control device
JP6200795B2 (en) Liquid crystal polyurethane elastomer and method for producing the same
JP6616596B2 (en) Thermal control device
JP6200796B2 (en) Liquid crystal polyurethane elastomer and method for producing the same
WO2017149640A1 (en) Liquid crystalline compound, thermally responsive material and method for producing same
JP2010248350A (en) Polyurethane resin composition
JP6527793B2 (en) Temperature control device
KR102272714B1 (en) Liquid crystalline polyurethane for heat dissipating material and heat dissipating material comprising the same
TWI832151B (en) Composition and battery comprising thereof
JP6757135B2 (en) Heat-responsive materials, and heat control devices and fibers using heat-responsive materials
KR20220158495A (en) Curable compositon
TW202239804A (en) Curable composition, two-component curable composition and device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R150 Certificate of patent or registration of utility model

Ref document number: 6626643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250