JP6625639B2 - Orthopedic fixation material - Google Patents
Orthopedic fixation material Download PDFInfo
- Publication number
- JP6625639B2 JP6625639B2 JP2017530558A JP2017530558A JP6625639B2 JP 6625639 B2 JP6625639 B2 JP 6625639B2 JP 2017530558 A JP2017530558 A JP 2017530558A JP 2017530558 A JP2017530558 A JP 2017530558A JP 6625639 B2 JP6625639 B2 JP 6625639B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- heat conductive
- conductive powder
- thermal conductivity
- orthopedic fixation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims description 51
- 230000000399 orthopedic effect Effects 0.000 title claims description 30
- 239000000843 powder Substances 0.000 claims description 45
- 229920005989 resin Polymers 0.000 claims description 44
- 239000011347 resin Substances 0.000 claims description 44
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 32
- 239000002245 particle Substances 0.000 claims description 10
- 238000002844 melting Methods 0.000 claims description 8
- 230000008018 melting Effects 0.000 claims description 8
- 238000001816 cooling Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229920005992 thermoplastic resin Polymers 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 2
- 239000002826 coolant Substances 0.000 claims description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- 239000004594 Masterbatch (MB) Substances 0.000 description 12
- 239000004698 Polyethylene Substances 0.000 description 11
- 229920000573 polyethylene Polymers 0.000 description 11
- -1 polyethylene terephthalate Polymers 0.000 description 10
- 229920001610 polycaprolactone Polymers 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000004632 polycaprolactone Substances 0.000 description 8
- 229920001684 low density polyethylene Polymers 0.000 description 7
- 239000004702 low-density polyethylene Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000000377 silicon dioxide Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 238000002156 mixing Methods 0.000 description 4
- 238000004381 surface treatment Methods 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 201000005299 metal allergy Diseases 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229920006167 biodegradable resin Polymers 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229920009537 polybutylene succinate adipate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- UVCJGUGAGLDPAA-UHFFFAOYSA-N ensulizole Chemical compound N1C2=CC(S(=O)(=O)O)=CC=C2N=C1C1=CC=CC=C1 UVCJGUGAGLDPAA-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/07—Stiffening bandages
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、整形外科用固定材に関する。 The present invention relates to an orthopedic fixation material.
整形外科用固定材、いわゆるギプス材として、従来の石膏をもちいたものに代えて、下記特許文献1のように熱可塑性を有する樹脂素材を用いたものが近年普及しつつある。 As an orthopedic fixation material, a so-called cast material, a material using a thermoplastic resin material as shown in Patent Literature 1 below has been widely used in recent years, instead of a material using conventional gypsum.
このような熱可塑性を有する樹脂素材からなる整形外科用固定材は、熱を加えることで骨折した箇所等の人体の患部に沿わせて変形させることが容易であり、固化した後には形状が維持されやすいため、利便性が高い。 The orthopedic fixation material made of such a thermoplastic resin material can be easily deformed along the affected part of the human body such as a fractured portion by applying heat, and the shape is maintained after solidification. Because it is easy to be done, convenience is high.
しかし、患部の腫れを抑えるために冷却するなど、整形外科用固定材で固定した上から患部を治療のために冷却したり加温したりする必要があるが、樹脂素材は熱伝導性が悪いため、冷却や加温の効果が得られにくい問題がある。 However, it is necessary to cool or heat the affected part for treatment after fixing it with orthopedic fixing materials, such as cooling to suppress swelling of the affected part, but resin material has poor thermal conductivity Therefore, there is a problem that it is difficult to obtain the effects of cooling and heating.
そこで本発明の解決すべき課題は、樹脂素材からなる整形外科用固定材について、熱伝導性を向上させることである。 The problem to be solved by the present invention is to improve the thermal conductivity of an orthopedic fixation material made of a resin material.
上記課題を解決するため、本発明の整形外科用固定材では、基材として、樹脂成分に当該樹脂成分よりも熱伝導性の高い熱伝導性粉末を含有させたものを用いることとしたのである。 In order to solve the above problems, the orthopedic fixation material of the present invention uses, as a base material, a resin component containing a heat conductive powder having higher heat conductivity than the resin component. .
前記基材中の前記熱伝導性粉末の含有量は、5〜50重量%の範囲内であるのが好ましい。前記熱伝導性粉末の平均粒径(メジアン径)は、5〜100μmの範囲内であるのが好ましい。 The content of the heat conductive powder in the base material is preferably in the range of 5 to 50% by weight. The average particle size (median diameter) of the heat conductive powder is preferably in the range of 5 to 100 μm.
前記熱伝導性粉末としては、後述する理由によりアルミニウム粉末であるのが好ましい。なお、ここでいうアルミニウム粉末には、アルミニウム合金粉末も含まれるものとする。 The heat conductive powder is preferably an aluminum powder for the reasons described below. Note that the aluminum powder here includes an aluminum alloy powder.
前記樹脂成分は、熱可塑性を有するのが好ましい。前記熱可塑性を有する樹脂成分の融点は40〜90℃の範囲内であるのが好ましい。 The resin component preferably has thermoplasticity. The melting point of the thermoplastic resin component is preferably in the range of 40 to 90 ° C.
整形外科用固定材の基材に樹脂成分と熱伝導性粉末とを含有させたため、熱伝導性が向上する。この整形外科用固定材で患部を固定した上から冷却剤や温熱剤を貼付するなどすると、患部を冷却または加温して治療することが可能である。 Since the resin component and the heat conductive powder are contained in the base material of the orthopedic fixing material, the heat conductivity is improved. If the affected part is fixed with the orthopedic fixing material and then a cooling agent or a heating agent is applied thereto, the affected part can be treated by cooling or heating.
熱伝導性を向上させるために樹脂成分に含有させる熱伝導性粉末としてアルミニウム粉末を使用した場合、アルミニウム粉末が比較的軽量であるため、整形外科用固定材の重量が増加するのが防止される。 When aluminum powder is used as the heat conductive powder to be contained in the resin component to improve the heat conductivity, the weight of the orthopedic fixation material is prevented from increasing because the aluminum powder is relatively lightweight. .
以下、本発明の実施形態について説明する。
実施形態の整形外科用固定材は、骨折した箇所等の人体の患部を覆って固定するために用いられるものであり、従来の樹脂素材からなる整形外科用固定材と比較して熱伝導性が良好である。Hereinafter, embodiments of the present invention will be described.
The orthopedic fixing material of the embodiment is used for covering and fixing an affected part of a human body such as a fractured part, and has a higher thermal conductivity than an orthopedic fixing material made of a conventional resin material. Good.
実施形態の整形外科用固定材は、樹脂成分と当該樹脂成分よりも熱伝導性の高い熱伝導性粉末とを含有させてなる基材から構成される。 The orthopedic fixation material of the embodiment is composed of a base material containing a resin component and a heat conductive powder having higher heat conductivity than the resin component.
樹脂成分の種類は特に限定されないが、熱可塑性樹脂の場合、熱を加えることで人体の患部に沿わせて変形させることが容易であり、かつ固化した後には形状が維持されやすいため、扱いやすく好ましい。 The type of the resin component is not particularly limited, but in the case of a thermoplastic resin, it is easy to deform along the affected part of the human body by applying heat, and the shape is easily maintained after solidification, so it is easy to handle. preferable.
このような樹脂としては、ポリカプロラクトン(PCL)、ポリ乳酸、ポリグリコール酸などのポリエステル系生分解樹脂、生分解系を除くポリエチレンテレフタレート(PET)などのポリエステル系樹脂、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフィン系樹脂が例示でき、これらの樹脂が混合したものであってもよい。 Examples of such a resin include polyester biodegradable resins such as polycaprolactone (PCL), polylactic acid, and polyglycolic acid; polyester resins such as polyethylene terephthalate (PET) excluding biodegradable resins; polyethylene (PE); Examples thereof include polyolefin-based resins such as PP), and a mixture of these resins may be used.
基材中の樹脂成分の含有量は、特に限定されないが、50〜95重量%の範囲内が好ましい。 The content of the resin component in the base material is not particularly limited, but is preferably in the range of 50 to 95% by weight.
含有量が50重量%を下回ると、整形外科用固定材が脆くなって患部に沿わせた際に割れや折れが生じやすくなる。また含有量が95重量%を上回ると、後述する熱伝導性粉末を配合しても、整形外科用固定材の熱伝導性の向上率が望めなくなるからである。なお、樹脂成分そのものの熱伝導率は非常に低く、0.1〜0.5W/m・Kである。 If the content is less than 50% by weight, the orthopedic fixation material becomes brittle and easily breaks or breaks when it is placed along the affected part. On the other hand, if the content exceeds 95% by weight, the rate of improvement in the thermal conductivity of the orthopedic fixation material cannot be expected even if the below-described heat conductive powder is blended. In addition, the thermal conductivity of the resin component itself is very low, and is 0.1 to 0.5 W / m · K.
熱可塑性樹脂の融点は特に限定されないが、整形外科用固定材が一般的な温度の湯により軟化するように調整しておくと、取扱いが容易であることから、融点は40〜90℃の範囲内であることが好ましい。 The melting point of the thermoplastic resin is not particularly limited. However, if the orthopedic fixing material is adjusted so as to be softened by hot water at a common temperature, the handling is easy, and the melting point is in the range of 40 to 90 ° C. Is preferably within the range.
なかでも、ポリカプロラクトンが50〜80℃程度の範囲内の湯で簡単に熱変形し、かつ固化後の形状記憶性が良好であるため、特に好ましい。 Among them, polycaprolactone is particularly preferable because it is easily thermally deformed with hot water in the range of about 50 to 80 ° C. and has good shape memory after solidification.
熱伝導性粉末は、整形外科用固定材の熱伝導性を向上させるために、樹脂成分に含有される。 The heat conductive powder is contained in the resin component in order to improve the heat conductivity of the orthopedic fixing material.
熱伝導性粉末は、樹脂成分よりも高い熱伝導率を有する熱伝導粉末であればよく、その種類は特に限定されない。例えば、アルミニウム、金、銀、銅、ニッケル、鉄、ステンレスなどの金属粉末、炭化ケイ素、窒化アルミ、アルミナ、炭素などの無機粉末などが挙げられる。また、樹脂粉末のように熱伝導性の低い粉末の表面に、めっき等の化学的処理を施すことで金属被膜や無機化合物被膜が表面に形成した熱伝導性の高い粉末も使用することができる。 The heat conductive powder may be any heat conductive powder having a higher heat conductivity than the resin component, and the type thereof is not particularly limited. For example, metal powders such as aluminum, gold, silver, copper, nickel, iron, and stainless steel, and inorganic powders such as silicon carbide, aluminum nitride, alumina, and carbon are exemplified. In addition, by applying a chemical treatment such as plating to the surface of a powder having a low thermal conductivity such as a resin powder, a powder having a high thermal conductivity having a metal film or an inorganic compound film formed on the surface can also be used. .
熱伝導性粉末は、特に、20℃における熱伝導率が100W/m・K以上である熱伝導粉末であることが好ましく、20℃における熱伝導率が200W/m・K以上である熱伝導粉末であることがより好ましい。この中でも、安価で入手が容易でかつ比較的軽量で高い放熱性を有するアルミニウム粉末(アルミニウムの合金を含む)がよい。この場合、整形外科用固定材の重量やコストの増加を抑えることができる。 The heat conductive powder is particularly preferably a heat conductive powder having a thermal conductivity of 100 W / m · K or more at 20 ° C., and a thermal conductive powder having a heat conductivity of 200 W / m · K or more at 20 ° C. Is more preferable. Among these, aluminum powder (including an aluminum alloy) that is inexpensive, easily available, relatively lightweight, and has high heat dissipation is preferred. In this case, an increase in the weight and cost of the orthopedic fixing material can be suppressed.
アルミニウム粉末のような金属粉末は、その表面がケイ素、チタン、アルミニウム、などの金属の酸化物や同様の金属の水酸化物のような無機物による層や、樹脂や有機化合物などの有機物による層で被覆されているなどの表面処理がなされていてもよい。このような表面処理がなされている場合、皮膚と直接接触する部分への汗などの水分付着による金属粉末の腐食やそれによる樹脂成分の変質を抑制することができる。また、患者が金属アレルギーを有している場合には、そのような表面処理がなされていれば皮膚と金属粉末との直接的な接触を防ぐことができ、金属アレルギーの発症を抑制することが可能となる。なお、金属アレルギー対策としては、金属粉末以外の無機粉末からなる熱伝導性粉末を使用することで対処できる。 Metal powders such as aluminum powder have a surface made of a layer made of an inorganic substance such as a metal oxide such as silicon, titanium, or aluminum or a hydroxide of a similar metal, or a layer made of an organic substance such as a resin or an organic compound. Surface treatment such as coating may be performed. When such a surface treatment is performed, it is possible to suppress corrosion of the metal powder due to adhesion of moisture such as sweat to a portion directly in contact with the skin and deterioration of the resin component due to the corrosion. In addition, if the patient has a metal allergy, such surface treatment can prevent direct contact between the skin and the metal powder, and can suppress the occurrence of metal allergy. It becomes possible. As a countermeasure against metal allergy, it is possible to use a heat conductive powder composed of an inorganic powder other than the metal powder.
また熱伝導性粉末の形状も特に限定されず、球状、粒状、板状、フレーク状のものが例示できる。 Further, the shape of the heat conductive powder is not particularly limited, and examples thereof include spherical, granular, plate, and flake shapes.
熱伝導性粉末としてアルミニウム粉末を用いる場合は、アルミニウム単体からなるものでも、アルミニウム合金からなるものでもいずれでもよい。 When aluminum powder is used as the thermal conductive powder, it may be either aluminum alone or an aluminum alloy.
熱伝導性粉末を樹脂成分に混合させる際には、熱伝導性粉末単体で混合させてもよいし、取り扱いを容易にするため、キャリア樹脂中に含有させてマスターバッチ化したものを混合させてもよい。 When mixing the heat conductive powder with the resin component, the heat conductive powder may be mixed alone or, in order to facilitate the handling, mixed with a master batch that is contained in the carrier resin. Is also good.
キャリア樹脂の種類は特に限定されないが、低密度ポリエチレン(LDPE)、ポリエチレンワックスなどのポリエチレンが例示できる。マスターバッチ中の熱伝導性粉末の含有量も特に限定されないが、60〜80重量%の範囲内が例示できる。 Although the type of the carrier resin is not particularly limited, polyethylene such as low density polyethylene (LDPE) and polyethylene wax can be exemplified. The content of the thermally conductive powder in the masterbatch is not particularly limited, but may be in the range of 60 to 80% by weight.
基材中の熱伝導性粉末の含有量は特に限定されないが、5〜50重量%の範囲内が好ましい。さらには、10〜30重量%の範囲内であることがより好ましい。特に10〜30重量%の範囲内であれば、整形外科用固定材に含有させた場合に、使用上問題の無い範囲内で成型性、熱伝導性、柔軟性の全ての点を程よく満足することが可能となる。 The content of the thermally conductive powder in the substrate is not particularly limited, but is preferably in the range of 5 to 50% by weight. More preferably, it is in the range of 10 to 30% by weight. In particular, if the content is within the range of 10 to 30% by weight, when it is contained in the orthopedic fixing material, all of the moldability, thermal conductivity and flexibility are moderately satisfied within a range where there is no problem in use. It becomes possible.
含有量が5重量%を下回ると、整形外科用固定材の熱伝導性の向上率が低くなるからである。また含有量が50重量%を上回ると、整形外科用固定材の重量が増加し、また整形外科用固定材が脆くなって患部に沿わせた際に割れや折れが生じやすくなるからである。 If the content is less than 5% by weight, the rate of improvement in the thermal conductivity of the orthopedic fixing material decreases. On the other hand, if the content exceeds 50% by weight, the weight of the orthopedic fixation material increases, and the orthopedic fixation material becomes brittle and easily cracks or breaks when it is placed along the affected part.
熱伝導性粉末の平均粒径は特に限定されないが、メジアン径(D50)で5〜100μmの範囲内が好ましい。 The average particle size of the heat conductive powder is not particularly limited, but is preferably in the range of 5 to 100 μm in median diameter (D50).
平均粒径が5μmを下回ると、粉体の取り扱いが容易ではなくなるからである。また平均粒径が100μmを上回ると、樹脂成分内に均等に分散されにくくなり、過熱の恐れもあるため、整形外科用固定材に所望の熱伝導性を与えにくくなるからである。 If the average particle diameter is less than 5 μm, it becomes difficult to handle the powder. On the other hand, if the average particle size exceeds 100 μm, it is difficult to uniformly disperse the resin component in the resin component, and there is a possibility of overheating, so that it is difficult to impart desired thermal conductivity to the orthopedic fixing material.
熱伝導性粉末の平均粒径は、レーザー回折法などの公知の粒度分布測定法により測定できる。 The average particle size of the heat conductive powder can be measured by a known particle size distribution measuring method such as a laser diffraction method.
次に本発明の実施例および比較例を挙げて本発明の内容を一層明確にする。 Next, the content of the present invention will be further clarified by giving Examples and Comparative Examples of the present invention.
実施例の整形外科用固定材に用いる熱伝導性粉末として、アルミニウム粉末を含有するマスターバッチである東洋アルミニウム株式会社製のMETAX NEO(商品名)「NME010T6」を準備した。 As a heat conductive powder used in the orthopedic fixing material of the example, a masterbatch containing aluminum powder, METAX NEO (trade name) “NME010T6” manufactured by Toyo Aluminum Co., Ltd. was prepared.
マスターバッチに含有するアルミニウム粉末の平均粒径は、10μmであり、キャリア樹脂は低密度ポリエチレンとポリエチレンワックスの混合物であり、マスターバッチ中のアルミニウム粉末の含有量は、70重量%である。 The average particle size of the aluminum powder contained in the masterbatch is 10 μm, the carrier resin is a mixture of low-density polyethylene and polyethylene wax, and the content of the aluminum powder in the masterbatch is 70% by weight.
また実施例および比較例の整形外科用固定材に用いる基材としての樹脂成分について、Perstorp社製の熱可塑性ポリカプロラクトン「CapaTM6400」、「CapaTM6500」および「CapaTM6800」の三種類を準備した。In addition, three types of resin components as base materials used in the orthopedic fixing materials of Examples and Comparative Examples were thermoplastic polycaprolactones “Capa ™ 6400”, “Capa ™ 6500” and “Capa ™ 6800” manufactured by Perstorp. Was prepared.
ここで「CapaTM6400」は分子量が37000g/mol、メルトフローインデックス(MFI)が160℃で40dg/min、融点が58〜60℃である。また「CapaTM6500」は分子量が50000g/mol、メルトフローインデックス(MFI)が160℃で7dg/min、融点が58〜60℃である。「CapaTM6800」は分子量が80000g/mol、メルトフローインデックス(MFI)が160℃で3dg/min、融点が58〜60℃である。Here, “Capa ™ 6400” has a molecular weight of 37000 g / mol, a melt flow index (MFI) of 40 dg / min at 160 ° C., and a melting point of 58 to 60 ° C. Further, “Capa ™ 6500” has a molecular weight of 50,000 g / mol, a melt flow index (MFI) of 7 dg / min at 160 ° C., and a melting point of 58 to 60 ° C. “Capa ™ 6800” has a molecular weight of 80,000 g / mol, a melt flow index (MFI) of 3 dg / min at 160 ° C., and a melting point of 58 to 60 ° C.
これらのアルミニウム粉末および樹脂成分を用いて、後述するように射出成型機により成型物のサンプルを作製し、表1に示す実施例A1〜実施例A3、実施例B1〜実施例B3、および実施例C1〜実施例C3の各実施例、ならびに比較例A1、比較例B1および比較例C1の各比較例を作成した。 Using these aluminum powder and the resin component, a sample of a molded product was prepared by an injection molding machine as described later, and Examples A1 to A3, Examples B1 to B3, and Examples shown in Table 1 were prepared. Each of Examples C1 to C3 and Comparative Examples of Comparative Example A1, Comparative Example B1 and Comparative Example C1 were prepared.
なお樹脂成分として、表1中、比較例A1および実施例A1〜A3は「CapaTM6400」を、比較例B1および実施例B1〜B3は「CapaTM6500」を、比較例C1および実施例C1〜C3は「CapaTM6800」をそれぞれ使用した。As a resin component, in Table 1, Comparative Example A1 and Examples A1 to A3 are “Capa ™ 6400”, Comparative Examples B1 and Examples B1 to B3 are “Capa ™ 6500”, Comparative Examples C1 and C1. As for C3, “Capa ™ 6800” was used.
また表1中、PCLは基材としてのポリカプロラクトンを、ALはアルミニウム粉末としてのアルミニウムを、PEはキャリア樹脂としての低密度ポリエチレンとポリエチレンワックスの混合物をそれぞれ示す。 In Table 1, PCL indicates polycaprolactone as a substrate, AL indicates aluminum as an aluminum powder, and PE indicates a mixture of low-density polyethylene and polyethylene wax as a carrier resin.
成型性テスト:これらの実施例および比較例の材料を用いて、汎用されている射出成型機により、成型温度180℃にて、49mm×79mm×2.5mmの寸法のサンプルの射出成型を試みた。評価の基準は次のとおりである。○は問題無く成型ができた。△は成型はできるものの成型体表面に割れ等の欠陥が発生した。×は成型ができなかった。表1における実施例の配合においては、全て○であった。 Moldability test: Injection molding of a sample having a size of 49 mm x 79 mm x 2.5 mm was attempted by using a commonly used injection molding machine at a molding temperature of 180 ° C using the materials of these Examples and Comparative Examples. . The evaluation criteria are as follows. ○ indicates that molding was possible without any problem. Δ indicates that molding was possible but defects such as cracks occurred on the surface of the molded body. × indicates that molding was not possible. In the formulations of the examples in Table 1, all were ○.
熱伝導性テスト:これら成型性テストにより作成された実施例および比較例のサンプルにつき、熱伝導性を評価した。熱伝導性の評価には、測定装置としてESPEC社製「Thermo Recorder RT12」に温度センサーを接続し、サンプル表面の温度変化を確認することで行った。具体的には、49mm×79mm×2.5mmに成型したサンプルの裏面に冷却シート(東洋アルミエコープロダクツ株式会社製「Coolingシート」)を貼り付けた場合のサンプルの表面中心部に温度センサーを設置することで30分経過後の温度変化を確認した(熱伝導性テスト1)。また、同様にして同じサンプルの裏面に発熱体(東洋アルミエコープロダクツ株式会社製「Warm Aid 伸びる温熱テープ」)を貼り付けた場合の温度変化を確認した(熱伝導性テスト2)。なお、測定は、室温25℃、湿度22%の条件の下で行った。表2中、基準となる比較例を評価1(温度変化が一番小さい)とし、温度変化が非常に高い場合(熱伝導性が非常に良好)を5として、5段階評価により判定をおこなった。熱伝導性テスト1と熱伝導性テスト2の評価結果の平均値を表2中の熱伝導性テストの欄に示した。 Thermal conductivity test: The samples of Examples and Comparative Examples prepared by these moldability tests were evaluated for thermal conductivity. The evaluation of the thermal conductivity was performed by connecting a temperature sensor to “Thermo Recorder RT12” manufactured by ESPEC as a measuring device and confirming the temperature change on the sample surface. Specifically, when a cooling sheet (“Cooling sheet” manufactured by Toyo Aluminum Echo Products Co., Ltd.) is attached to the back of a sample molded to 49 mm × 79 mm × 2.5 mm, a temperature sensor is installed at the center of the surface of the sample. By doing so, a temperature change after a lapse of 30 minutes was confirmed (thermal conductivity test 1). Similarly, a change in temperature when a heating element ("Warm Aid extending thermal tape" manufactured by Toyo Aluminum Echo Products Co., Ltd.) was adhered to the back surface of the same sample was confirmed (thermal conductivity test 2). The measurement was performed under the conditions of room temperature 25 ° C. and humidity 22%. In Table 2, a comparative example serving as a reference was evaluated as 1 (the temperature change was the smallest), and the case where the temperature change was very high (the thermal conductivity was very good) was set to 5, and the evaluation was performed by a five-step evaluation. . The average of the evaluation results of the thermal conductivity test 1 and the thermal conductivity test 2 is shown in the column of the thermal conductivity test in Table 2.
柔軟性テスト:実施例および比較例のサンプルにつき、80℃の温度条件で180度折り曲げ、折れや割れの発生を観察し、柔軟度を評価した。折り曲げ後、サンプル表面(折り曲げた時に外側になる面)に目視できる亀裂等の発生がないものを○と、目視できる亀裂等が一部で発生したものを△と、亀裂が表面から裏面まで達して貫通した割れが発生したものを×と判定した。結果を表2に示す。 Flexibility test: The samples of Examples and Comparative Examples were bent at 180 ° C. under a temperature condition of 80 ° C., and the occurrence of breaks and cracks was observed to evaluate the flexibility. After bending, the sample surface (the surface that becomes outside when bent) has no visible cracks or the like, and the sample has some visible cracks or the like, and the triangle has the cracks extending from the front surface to the back surface. And the one in which a crack penetrated occurred was judged as x. Table 2 shows the results.
表2に示すように、いずれの実施例も成型に問題はなく、熱伝導性も比較例よりも良好であることがわかる。なお、各実施例での熱伝導性テストに評価の違いが発生しているのは、アルミニウム粉末の含有量の相違によるものと推察される。 As shown in Table 2, there is no problem in molding in any of the examples, and it can be seen that the thermal conductivity is better than that of the comparative example. The difference in the evaluation in the thermal conductivity test in each example is presumed to be due to the difference in the content of the aluminum powder.
また、別の実施例として、次の表3の「熱伝導性粉末の種類」に示す種々の熱伝導性粉末を用いて、同表に示す熱伝導性粉末と樹脂成分の組成にて、上述と同様に、成型性テスト、熱伝導性テストおよび柔軟性テストを行った。結果を表4に示す。 Further, as another example, using various heat conductive powders shown in “Types of heat conductive powder” in the following Table 3, the composition of the heat conductive powder and the resin component shown in the same table was used. A moldability test, a thermal conductivity test, and a flexibility test were performed in the same manner as described above. Table 4 shows the results.
表3中、樹脂被覆ALはアルミニウム粉末の表面が樹脂層で被覆された樹脂被覆アルミニウム粉末を、シリカ(酸化ケイ素)被覆ALはアルミニウム粉末の表面がシリカ(酸化ケイ素)で被覆されたシリカ被覆アルミニウム粉末を、PCLは基材としてのポリカプロラクトンを、PEはキャリア樹脂としての低密度ポリエチレンとポリエチレンワックスの混合物を、PBSAは基材としてグリコールとジカルボン酸との縮重合反応によって得られる脂肪族ポリエステルであるポリブチレンサクシネートアジペート(昭和高分子株式会社製 商品名ビオノーレ5001G 融点79.3℃)を、それぞれ示す。 In Table 3, resin-coated AL is a resin-coated aluminum powder in which the surface of an aluminum powder is coated with a resin layer, and silica (silicon oxide) -coated AL is silica-coated aluminum in which the surface of an aluminum powder is coated with silica (silicon oxide). Powder, PCL is polycaprolactone as a base material, PE is a mixture of low-density polyethylene and polyethylene wax as a carrier resin, and PBSA is an aliphatic polyester obtained by condensation polymerization of glycol and dicarboxylic acid as a base material. Certain polybutylene succinate adipates (manufactured by Showa Polymer Co., Ltd., trade name: Bionole 5001G, melting point: 79.3 ° C.) are shown.
なお、実施例A4は、樹脂被覆アルミニウム粉末をキャリア樹脂と混合することにより得られたマスターバッチを準備し、これを基材としてのポリカプロラクトンに混合することで調整した。マスターバッチに含有する樹脂被覆アルミニウム粉末の平均粒径は、10μmであり、キャリア樹脂は低密度ポリエチレンとポリエチレンワックスの混合物であり、マスターバッチ中の樹脂被覆アルミニウム粉末の含有量は、70重量%である。 In Example A4, a masterbatch obtained by mixing the resin-coated aluminum powder with the carrier resin was prepared, and the masterbatch was mixed with polycaprolactone as a base material. The average particle size of the resin-coated aluminum powder contained in the masterbatch is 10 μm, the carrier resin is a mixture of low-density polyethylene and polyethylene wax, and the content of the resin-coated aluminum powder in the masterbatch is 70% by weight. is there.
同様に、実施例A5は、シリカ(酸化ケイ素)被覆アルミニウム粉末をキャリア樹脂と混合することにより得られたマスターバッチを準備し、これを基材としてのポリカプロラクトンに混合することで調整した。マスターバッチに含有するシリカ(酸化ケイ素)アルミニウム粉末の平均粒径は、10μmであり、キャリア樹脂は低密度ポリエチレンとポリエチレンワックスの混合物であり、マスターバッチ中のシリカ(酸化ケイ素)被覆アルミニウム粉末の含有量は、70重量%である。 Similarly, Example A5 was prepared by preparing a masterbatch obtained by mixing silica (silicon oxide) -coated aluminum powder with a carrier resin, and mixing this with polycaprolactone as a base material. The average particle size of the silica (silicon oxide) aluminum powder contained in the masterbatch is 10 μm, the carrier resin is a mixture of low-density polyethylene and polyethylene wax, and the content of silica (silicon oxide) -coated aluminum powder in the masterbatch The amount is 70% by weight.
表4に示すように、いずれの熱伝導性粉末を用いた場合であっても、表1および表2に示す比較例と比べて、熱伝導性が良好であることがわかる。なお、各実施例での熱伝導性テストに評価の違いが発生しているのは、各々の熱伝導性粉末の種類により熱伝導性が相違することによるものである。また、表2と表4において、アルミニウム粉末を使用した実施例A3および実施例D1に比べて実施例A4および実施例A5の熱伝導性テストの評価が低いのは、実施例A4および実施例A5で用いるアルミニウム粉末に表面処理が施されていることに起因する若干の熱伝導性の低下によるものと思われるが、それでもなお十分に良好な熱伝導性を備えている。 As shown in Table 4, it can be seen that, regardless of which thermal conductive powder was used, the thermal conductivity was better than those of Comparative Examples shown in Tables 1 and 2. The difference in evaluation in the thermal conductivity test in each example is due to the difference in thermal conductivity depending on the type of each thermal conductive powder. Further, in Tables 2 and 4, the evaluations of the thermal conductivity tests of Examples A4 and A5 were lower than those of Examples A3 and D1 using aluminum powder. This is probably due to a slight decrease in the thermal conductivity caused by the surface treatment of the aluminum powder used in the above, but it still has a sufficiently good thermal conductivity.
今回開示された実施形態および実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は特許請求の範囲によって示され、その範囲内でのすべての修正と変形を含むものであることが意図される。 The embodiments and examples disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the invention is set forth by the following claims, and is intended to include all modifications and variations within the scope.
Claims (4)
前記基材中の前記熱伝導性粉末の含有量は、5〜50重量%の範囲内であり、
患部を固定した上から冷却剤または温熱剤を貼付することで、患部を冷却または加温して治療するための整形外科用固定材。 An orthopedic fixation material using a base material containing a resin component having thermoplasticity and a heat conductive powder having higher heat conductivity than the resin component,
The content of the heat conductive powder in the base material is in the range of 5 to 50% by weight,
An orthopedic fixation material for treating an affected area by cooling or heating the affected area by applying a cooling agent or a heating agent from above the fixed area.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/071612 WO2017017832A1 (en) | 2015-07-30 | 2015-07-30 | Orthopedic fixing material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017017832A1 JPWO2017017832A1 (en) | 2018-05-24 |
JP6625639B2 true JP6625639B2 (en) | 2019-12-25 |
Family
ID=57884276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017530558A Expired - Fee Related JP6625639B2 (en) | 2015-07-30 | 2015-07-30 | Orthopedic fixation material |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6625639B2 (en) |
CN (1) | CN107847631B (en) |
WO (1) | WO2017017832A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108478884B (en) * | 2018-03-30 | 2020-12-11 | 常州大学 | Shape memory high-thermal conductivity medical external fixation multilayer material and preparation method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IE54942B1 (en) * | 1982-05-06 | 1990-03-28 | Smith & Nephew Ass | Bandages, components thereof and use |
JPS598320U (en) * | 1982-07-07 | 1984-01-19 | 三菱レイヨン株式会社 | Sterilizing fixing material for orthopedics |
FR2615396A1 (en) * | 1987-05-22 | 1988-11-25 | Guignard Claude | THERMOFORMABLE ELEMENT, ESPECIALLY FOR ORTHOPEDIC BANDAGE |
JPH09234241A (en) * | 1996-02-29 | 1997-09-09 | Shimadzu Corp | Orthosis having thermally deforming property |
JP4181883B2 (en) * | 2003-01-29 | 2008-11-19 | ニチバン株式会社 | Roll medical adhesive tape |
JP4749765B2 (en) * | 2005-05-23 | 2011-08-17 | バンドー化学株式会社 | Wound protection film and medical patch |
JP5767809B2 (en) * | 2008-03-18 | 2015-08-19 | 株式会社カネカ | High thermal conductive resin molding |
JP5619922B2 (en) * | 2010-03-15 | 2014-11-05 | オルフィット・インドゥストリーズOrfit Industries | Non-mobilization device |
CN103028146B (en) * | 2011-09-29 | 2015-06-03 | 深圳兰度生物材料有限公司 | Reinforcement medical composite material and method for preparing same |
-
2015
- 2015-07-30 WO PCT/JP2015/071612 patent/WO2017017832A1/en active Application Filing
- 2015-07-30 JP JP2017530558A patent/JP6625639B2/en not_active Expired - Fee Related
- 2015-07-30 CN CN201580081216.8A patent/CN107847631B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN107847631B (en) | 2021-02-05 |
JPWO2017017832A1 (en) | 2018-05-24 |
WO2017017832A1 (en) | 2017-02-02 |
CN107847631A (en) | 2018-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20180133917A (en) | Electrically conductive, hot-melt adhesive or molding composition | |
TW201213480A (en) | Adhesive resin composition, cured product thereof and adhesive film | |
JP2006528717A (en) | Powdered composition of polymer and ammonium polyphosphate-containing flameproofing agent, method for producing the same, and molded product produced from this powder | |
TWI293040B (en) | Silver-based powder, method of preparation thereof, and curable silicone composition | |
JP6625639B2 (en) | Orthopedic fixation material | |
JP6309790B2 (en) | Orthopedic fixation material | |
KR20160040218A (en) | Epoxy resin composition and electronic component device | |
JP6486525B2 (en) | Orthopedic fixation material | |
Weidenfeller et al. | Crystallinity, thermal diffusivity, and electrical conductivity of carbon black filled polyamide 46 | |
JP5114112B2 (en) | Resin composition, heat conductive sheet, high heat conductive adhesive sheet with metal foil, and high heat conductive adhesive sheet with metal plate | |
JP5245044B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same | |
JP2017014445A (en) | Aluminum nitride composite filler and resin composition containing the same | |
TWI291976B (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same | |
JPS61185527A (en) | Curable epoxy resin composition | |
TWI628229B (en) | Film forming resin composition, insulating film and semiconductor device | |
JPH0953001A (en) | Electroconductive epoxy resin composition | |
Blagojević et al. | Influence of silica nanofiller on the isothermal crystallization and melting of polyurethane elastomer | |
JP2001064484A (en) | Electroconductive resin composition | |
JP2004315761A (en) | Heat radiator | |
JP5157473B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP6905043B2 (en) | Low density PET composite material for tableware | |
TW200400997A (en) | Thermoconductive curable liquid polymer composition and semiconductor device produced with the use of this composition | |
TW202104451A (en) | Heat-conducting composition and heat-conducting member | |
Goryczka et al. | Characterization of polylactide layer deposited on ni-ti shape memory alloy | |
JP5347223B2 (en) | Resin-coated inorganic powder composition for electronic device sealing, electronic device sealing tablet obtained using the same, and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A529 | Written submission of copy of amendment under article 34 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A5211 Effective date: 20171113 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180712 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190507 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20190628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190827 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191029 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191127 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6625639 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |