JP6624440B2 - Freezing method - Google Patents

Freezing method Download PDF

Info

Publication number
JP6624440B2
JP6624440B2 JP2016008678A JP2016008678A JP6624440B2 JP 6624440 B2 JP6624440 B2 JP 6624440B2 JP 2016008678 A JP2016008678 A JP 2016008678A JP 2016008678 A JP2016008678 A JP 2016008678A JP 6624440 B2 JP6624440 B2 JP 6624440B2
Authority
JP
Japan
Prior art keywords
freezing
tube
tunnels
axial direction
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016008678A
Other languages
Japanese (ja)
Other versions
JP2017128915A (en
Inventor
昌明 阿部
昌明 阿部
幸一 浜口
幸一 浜口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2016008678A priority Critical patent/JP6624440B2/en
Publication of JP2017128915A publication Critical patent/JP2017128915A/en
Application granted granted Critical
Publication of JP6624440B2 publication Critical patent/JP6624440B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は、例えば道路トンネルの分岐合流部などの大断面の地中空洞を施工する際に、掘削予定位置の外側に配列された複数の外殻シールドトンネル間の地山を凍結させて掘削する凍結工法に関するものである。   The present invention, for example, when constructing a large-section underground cavity such as a branch junction of a road tunnel, freezes the ground between a plurality of outer shell shield tunnels arranged outside the planned excavation position and excavates. It is related to the freezing method.

従来、道路トンネルの分岐合流部などの大断面の地中空洞を施工する場合に、地中空洞の施工予定位置の外側に複数の外殻シールドトンネルを所定間隔で配列した状態で施工して、施工予定位置を取り囲むシールドルーフ先受工を構築する方法が知られている(例えば、特許文献1〜3を参照)。   Conventionally, when constructing underground cavities with large cross sections such as branch junctions of road tunnels, construct multiple shell shield tunnels arranged at predetermined intervals outside the planned location of underground cavities, There is known a method of constructing a shield roof precedent surrounding a planned construction position (for example, see Patent Documents 1 to 3).

例えば、特許文献1では、本線シールドトンネルの一部分を切り広げた円周シールド発進基地を施工し、円周シールド発進基地から円周シールド機により本線シールドトンネルの外周面に沿って周方向に掘削することでリング状の外殻シールド発進基地を施工し、外殻シールド発進基地の側壁部より外殻シールド機を発進させ、複数の外殻シールドトンネルを施工する。さらに、複数の外殻シールドトンネル間の地山を凍結管で凍結させて掘削することにより連結し、掘削予定位置を取り囲む外殻体を構築する。   For example, in Patent Literature 1, a circumferential shield starting base in which a part of the main line shield tunnel is cut out is constructed, and a circumferential shield machine excavates from the circumferential shield starting base along the outer peripheral surface of the main line shield tunnel. In this way, a ring-shaped outer shield starting base will be constructed, the outer shield machine will be launched from the side wall of the outer shield starting base, and a plurality of outer shield tunnels will be constructed. Furthermore, the ground between the plurality of outer shell shield tunnels is connected by freezing with a freezing pipe and excavating to construct an outer shell surrounding the planned excavation position.

特開2014−43738号公報JP 2014-43737 A 特開2015−129411号公報JP-A-2005-129411 特開2007−217911号公報JP 2007-217911 A

ところで、従来、複数の外殻シールドトンネル間の地山を凍結させる際に、外殻シールドトンネルから放射状に凍結管を配置して地山を凍結させていた。この方法では、多数の凍結管を配置する必要があり、施工コストの上昇や工期の長期化を招くおそれがあった。このため、凍結管をより合理的に配置することが求められていた。   By the way, conventionally, when freezing the ground between a plurality of outer shield tunnels, the freezing tube is arranged radially from the outer shield tunnel to freeze the ground. In this method, it is necessary to arrange a large number of freezing pipes, which may lead to an increase in construction cost and a prolonged construction period. For this reason, it has been required to arrange the cryotube more rationally.

本発明は、上記に鑑みてなされたものであって、凍結管を合理的に配置した凍結工法を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a freezing method in which a freezing tube is rationally arranged.

上述した課題を解決し、目的を達成するために、本発明に係る凍結工法は、複数のトンネル間の間隔が、該トンネルの軸方向に沿って広がる場合において、前記トンネル間に凍結管を配置して前記トンネル間の地山を凍結させて掘削する凍結工法であって、前記トンネル間の間隔が狭い側では、前記軸方向に沿って前記凍結管を配置し、前記トンネル間の間隔が広い側では、前記軸方向と交差する方向に前記凍結管を配置することを特徴とする。   In order to solve the above-described problems and achieve the object, a freezing method according to the present invention is configured such that, when the interval between a plurality of tunnels is widened along the axial direction of the tunnel, a freezing tube is arranged between the tunnels. A freezing method for freezing the ground between the tunnels and excavating, wherein on the side where the interval between the tunnels is narrow, the freeze pipe is arranged along the axial direction, and the interval between the tunnels is wide. On the side, the freezing tube is arranged in a direction crossing the axial direction.

また、本発明に係る他の凍結工法は、上記発明において、前記軸方向に沿って配置される前記凍結管よりも、前記軸方向と交差する方向に配置される前記凍結管の方が短いことを特徴とする。   Further, in another freezing method according to the present invention, in the above invention, the freezing tube arranged in a direction intersecting with the axial direction is shorter than the freezing tube arranged along the axial direction. It is characterized.

また、本発明に係る他の凍結工法は、上記発明において、前記複数のトンネルの施工と並行して、前記軸方向に沿って前記凍結管を配置することを特徴とする。   Another freezing method according to the present invention is characterized in that, in the above invention, the freezing pipe is arranged along the axial direction in parallel with the construction of the plurality of tunnels.

また、本発明に係る他の凍結工法は、上記発明において、前記軸方向に沿って配置される前記凍結管より口径が大きいさや管を前記軸方向に沿って配置し、前記さや管内に前記凍結管を配置し、該凍結管の周囲に充填材を充填することを特徴とする。   Further, another freezing method according to the present invention is the above-mentioned invention, wherein in the above-mentioned invention, a sheath tube having a larger diameter than the freezing tube arranged along the axial direction is arranged along the axial direction, and the freezing is performed inside the sheath tube. A tube is arranged, and a filler is filled around the freezing tube.

本発明によれば、凍結管を合理的に配置した凍結工法を実現することができる。   According to the present invention, it is possible to realize a freezing method in which freezing tubes are rationally arranged.

図1は、分岐合流部の施工方法の概略説明図である。FIG. 1 is a schematic explanatory view of a construction method of a branch junction. 図2は、分岐合流部の施工方法の概略説明図である。FIG. 2 is a schematic explanatory view of a construction method of a branch junction. 図3は、分岐合流部の横断面図である。FIG. 3 is a cross-sectional view of the branch junction. 図4は、分岐合流部の施工方法の手順を示す図である。FIG. 4 is a diagram illustrating a procedure of a construction method of the branch junction. 図5は、凍結工法の概略説明図である。FIG. 5 is a schematic explanatory view of the freezing method. 図6は、凍結工法の概略説明図である。FIG. 6 is a schematic explanatory view of the freezing method. 図7は、凍結工法の概略説明図である。FIG. 7 is a schematic explanatory view of the freezing method.

以下に、本発明に係る凍結工法の実施の形態について、シールド工法により施工される道路トンネルの分岐合流部の場合を例に取り、図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Hereinafter, an embodiment of a freezing method according to the present invention will be described in detail with reference to the drawings, taking an example of a branching junction of a road tunnel constructed by a shield method. The present invention is not limited by the embodiment.

(地中空洞の施工方法)
まず、本発明に係る凍結工法を含む地中空洞の施工方法について説明する。
(Construction method of underground cavity)
First, a method of constructing an underground cavity including the freezing method according to the present invention will be described.

図1〜図3は、分岐合流部(地中空洞)の施工方法の概略説明図である。この施工方法では、本線シールドトンネル10およびランプシールドトンネル12を包含する分岐合流部14の掘削予定位置の外側に、小口径の外殻シールド機16を使って予め複数の外殻シールドトンネル18を配列した状態で施工することにより、それら外殻シールドトンネル18によって分岐合流部14の掘削予定位置を取り囲む外殻体20を構築し、この外殻体20の内側の地山を掘削して分岐合流部14を施工する。   1 to 3 are schematic explanatory diagrams of a method of constructing a branch junction (underground cavity). In this construction method, a plurality of outer shell shield tunnels 18 are arranged in advance using a small-diameter outer shell shield machine 16 outside the planned excavation position of the branch junction 14 including the main line shield tunnel 10 and the lamp shield tunnel 12. The outer shell body 20 surrounding the planned excavation position of the branching and joining portion 14 is constructed by the outer shell shield tunnel 18 by excavating the ground inside the outer shell body 20 and the branching and joining portion is formed. 14 is constructed.

より具体的には、まず、図4(1)に示すように、本線シールドトンネル10を在来のシールド工法により地山を安定に支保し、止水性を確保しつつ施工する。同様に、本線シールドトンネル10の隣に図示しないランプシールドトンネル12を在来のシールド工法により施工する。続いて、施工予定の分岐合流部14の軸方向(本線シールドトンネル10が延在するトンネル軸方向と平行な方向)の後端部(始端部)となる本線シールドトンネル10の外周に大径の本発明の地中発進基地構造22を構築する。地中発進基地構造22は、分岐合流部14の外殻体20をなす外殻シールドトンネル18を掘進する小口径の外殻シールド機16を発進するための基地である。なお、本実施の形態では本線シールドトンネル10の直径が例えば16m程度、ランプシールドトンネル12の直径が例えば11m程度、分岐合流部14の直径が32m程度であることを想定している。   More specifically, first, as shown in FIG. 4A, the main line shield tunnel 10 is constructed while the ground is stably supported by a conventional shield method and the water blocking property is secured. Similarly, a not-shown lamp shield tunnel 12 is constructed next to the main line shield tunnel 10 by a conventional shield method. Subsequently, a large-diameter outer periphery of the main line shield tunnel 10 which is a rear end portion (start end portion) of the branch junction 14 to be constructed in the axial direction (a direction parallel to the tunnel axis direction in which the main line shield tunnel 10 extends) is provided. The underground starting base structure 22 of the present invention is constructed. The underground starting base structure 22 is a base for starting the small-diameter outer shell shield machine 16 that excavates the outer shell shield tunnel 18 forming the outer shell body 20 of the branching junction 14. In the present embodiment, it is assumed that the diameter of the main line shield tunnel 10 is, for example, about 16 m, the diameter of the lamp shield tunnel 12 is, for example, about 11 m, and the diameter of the branching junction 14 is about 32 m.

次に、図4(2)に示すように、地中発進基地構造22から外殻シールド機16を発進させ、施工予定の分岐合流部14の外側周囲にその軸方向に沿う複数の小径(例えば直径4m程度)の外殻シールドトンネル18を所定間隔で配列した状態で施工する。   Next, as shown in FIG. 4B, the outer shell shield machine 16 is started from the underground starting base structure 22, and a plurality of small diameters (for example, around the outside of the branch junction 14 to be constructed along the axial direction thereof) The outer shield tunnels 18 (about 4 m in diameter) are arranged at predetermined intervals.

次に、図4(3)に示すように、この外殻シールドトンネル18間の地山を本発明に係る凍結工法により凍結させて掘削し、掘削した領域に本体覆工壁24を形成し、さらに、本体覆工壁24の両端となる部分にそれぞれ不図示の褄壁を形成することによって外殻体20を構築する。そして、図4(4)に示すように、この外殻体20によって囲まれた領域の地山を掘削して分岐合流部14を施工する。このようにして図4(5)に示すような道路トンネル用の分岐合流部14が完成する。   Next, as shown in FIG. 4 (3), the ground between the outer shell shield tunnels 18 is frozen and excavated by the freezing method according to the present invention, and a main body lining wall 24 is formed in the excavated area. Furthermore, the outer shell 20 is constructed by forming joint walls (not shown) at both ends of the main body lining wall 24. Then, as shown in FIG. 4D, the ground in an area surrounded by the outer shell body 20 is excavated to construct the branching junction 14. In this way, a branching junction 14 for a road tunnel as shown in FIG. 4 (5) is completed.

(凍結工法)
次に、上述した地中空洞の施工方法に用いられる本発明に係る凍結工法について説明する。
(Freezing method)
Next, a freezing method according to the present invention, which is used in the above-described method of constructing an underground cavity, will be described.

図5〜図7には、凍結工法の概略説明図を示す。この凍結工法では、図5に示すように、外殻シールドトンネル18間の間隔が、外殻シールドトンネル18の軸方向に沿って広がる場合において、外殻シールドトンネル18間に凍結管として水平凍結管26および放射凍結管28を配置して地山を凍結させて掘削する。水平凍結管26および放射凍結管28内には、塩化カルシウム等の冷却液が循環させられることにより凍土が造成される。より具体的には、この凍結工法では、外殻シールドトンネル18間の間隔が狭い側では、外殻シールドトンネル18の軸方向に沿って水平凍結管26を配置し、外殻シールドトンネル18間の間隔が広い側では、外殻シールドトンネル18の軸方向と交差する方向に放射凍結管28を配置する。なお、図5には、複数の外殻シールドトンネル18のうち2本の外殻シールドトンネル18と、その間に配置された水平凍結管26および放射凍結管28のみを図示した。   5 to 7 show schematic explanatory views of the freezing method. In this freezing method, as shown in FIG. 5, when the interval between the outer shield tunnels 18 is widened along the axial direction of the outer shield tunnel 18, a horizontal freezing tube is used as a freezing tube between the outer shield tunnels 18. 26 and a radiation freezing tube 28 are arranged to freeze the ground and excavate. A frozen liquid such as calcium chloride is circulated in the horizontal freezing tube 26 and the radiation freezing tube 28 to form frozen soil. More specifically, in this freezing method, the horizontal freezing tube 26 is arranged along the axial direction of the outer shell shield tunnel 18 on the side where the distance between the outer shell shield tunnels 18 is narrow, and On the side where the interval is wide, the radiation freezing tube 28 is arranged in a direction intersecting the axial direction of the outer shield tunnel 18. FIG. 5 shows only two outer shield tunnels 18 of the plurality of outer shield tunnels 18 and the horizontal freezing tube 26 and the radial freezing tube 28 disposed therebetween.

図6に示すように、図5のA−A線に対応する断面において、隣り合う外殻シールドトンネル18の中間の上下にそれぞれ水平凍結管26が配置される。水平凍結管26は、例えば直径が450mmのさや管を小口径推進工法で軸方向に沿って所定長さ施工し、その中に直径が150mmの凍結管を配置し、凍結管の周囲をモルタル等の充填材で充填したものである。水平凍結管26は、放射凍結管28より長いため、放射凍結管28より口径が大きくされていることが好ましい。なお、外殻シールドトンネル18の内側にも外殻シールドトンネル18に沿って凍結管が配置されている。   As shown in FIG. 6, in a cross section corresponding to the line AA in FIG. 5, horizontal freezing tubes 26 are arranged above and below the middle of the outer shell shield tunnel 18 adjacent to each other. The horizontal freezing tube 26 is, for example, a sheath tube having a diameter of 450 mm is constructed in a predetermined length along the axial direction by a small-diameter propulsion method, a freezing tube having a diameter of 150 mm is arranged therein, and a mortar or the like is provided around the freezing tube. Is filled with the filler. Since the horizontal freezing tube 26 is longer than the radiation freezing tube 28, it is preferable that the diameter of the horizontal freezing tube 26 is larger than that of the radiation freezing tube 28. A freezing tube is also arranged inside the outer shell shield tunnel 18 along the outer shell shield tunnel 18.

図7に示すように、図5を矢印Bの方向から見ると、各外殻シールドトンネル18から隣の外殻シールドトンネル18に向かって、上下にそれぞれ放射凍結管28が配置されている。放射凍結管28は、例えば直径が90mmの凍結管である。放射凍結管28は、水平凍結管26より短いため、水平凍結管26より細径でよい。   As shown in FIG. 7, when viewing FIG. 5 from the direction of arrow B, radiation freezing tubes 28 are arranged vertically from each outer shield tunnel 18 to the next outer shield tunnel 18. The radiation freezing tube 28 is, for example, a freezing tube having a diameter of 90 mm. Since the radiation freezing tube 28 is shorter than the horizontal freezing tube 26, it may be smaller in diameter than the horizontal freezing tube 26.

この凍結工法では、外殻シールドトンネル18間の間隔が狭い側では、水平凍結管26を配置することにより、凍結管の本数を従来工法より減らすことができる。具体的には、全ての凍結管を放射状に配置する従来の工法に比べ、本発明に係る凍結工法では、凍結管の本数を約半分にすることができる。そのため、施工コストの削減や工期の短縮化を図ることができる。一方、外殻シールドトンネル18間の間隔が広い側では、放射凍結管28を配置することにより、十分な厚みの凍土を造成するとともに、水平凍結管26が長くなりすぎることを防止した。水平凍結管26が長くなると、水平凍結管26の周囲の地山を凍結させるために必要な時間が長くなり、かえって工期の長期化を招くおそれがあるためである。従って、この凍結工法は、凍結管を合理的に配置した凍結工法である。   In this freezing method, by arranging the horizontal freezing tubes 26 on the side where the space between the outer shield tunnels 18 is narrow, the number of freezing tubes can be reduced as compared with the conventional method. Specifically, the number of the freezing tubes can be reduced to about half in the freezing method according to the present invention, as compared with the conventional method in which all the freezing tubes are radially arranged. Therefore, it is possible to reduce the construction cost and the construction period. On the other hand, on the side where the distance between the outer shell shield tunnels 18 is wide, the radiant freezing tube 28 is provided to form frozen soil having a sufficient thickness and prevent the horizontal freezing tube 26 from becoming too long. This is because, if the horizontal freezing tube 26 becomes longer, the time required for freezing the ground around the horizontal freezing tube 26 becomes longer, which may lead to a longer construction period. Therefore, this freezing method is a freezing method in which freezing tubes are rationally arranged.

また、外殻シールドトンネル18から放射状に放射凍結管28を設置する場合、外殻シールドトンネル18の掘進中は内部空間を様々に利用することから、掘進終了後でなければ放射凍結管28の配置作業を行うことは困難であるが、各外殻シールドトンネル18の中間に設置する水平凍結管26は外殻シールドトンネル18の掘進と並行して配置作業を行うことが可能であり、この点でも工期の短縮が可能である。   When the radiation freezing tube 28 is installed radially from the outer shield tunnel 18, the inner space is variously used during the excavation of the outer shield tunnel 18. Although it is difficult to perform the work, the horizontal freezing pipe 26 installed in the middle of each outer shield tunnel 18 can be arranged in parallel with the excavation of the outer shield tunnel 18. The construction period can be shortened.

なお、水平凍結管26を配置する区間と放射凍結管28を配置する区間との比率は、各トンネルの長さや径、工期等の施工条件により適宜最適な比率を求めて行うことになり、水平凍結管26を設置する区間が長いほど好ましいが、例えば水平凍結管26を配置する区間と放射凍結管28を配置する区間とを同じ長さとすれば大きな工期短縮が可能である。   The ratio between the section in which the horizontal freezing pipe 26 is disposed and the section in which the radiation freezing pipe 28 is disposed is determined by appropriately determining an optimum ratio depending on construction conditions such as the length and diameter of each tunnel and the construction period. The longer the section in which the freezing tube 26 is provided, the better. For example, if the section in which the horizontal freezing tube 26 is provided and the section in which the radiation freezing tube 28 is provided have the same length, it is possible to greatly shorten the construction period.

また、この凍結工法では、地中発進基地構造22から水平凍結管26を配置することができるため、外殻シールドトンネル18の完成を待たずに水平凍結管26を配置することができる。そのため、この凍結工法は、工期の短縮化に有利な凍結工法である。   Further, in this freezing method, since the horizontal freezing pipe 26 can be arranged from the underground starting base structure 22, the horizontal freezing pipe 26 can be arranged without waiting for the completion of the outer shell shield tunnel 18. Therefore, this freezing method is an advantageous freezing method for shortening the construction period.

以上のように、本発明に係る凍結工法は、例えば道路トンネルの分岐合流部などの大断面の地中空洞を施工する際に、掘削予定位置の外側に配列された複数の外殻シールドトンネル間の地山を凍結させて掘削する際に有用であり、特に、凍結管を合理的に配置した凍結工法を提供するのに適している。   As described above, the freezing method according to the present invention, for example, when constructing a large-section underground cavity such as a branch junction of a road tunnel, between a plurality of outer shell shield tunnels arranged outside the planned excavation position It is useful when excavating the ground by freezing it, and is particularly suitable for providing a freezing method in which frozen pipes are rationally arranged.

10 本線シールドトンネル
12 ランプシールドトンネル
14 分岐合流部(地中空洞)
16 外殻シールド機
18 外殻シールドトンネル
20 外殻体
22 地中発進基地構造
24 本体覆工壁
26 水平凍結管
28 放射凍結管
10 Main line shield tunnel 12 Ramp shield tunnel 14 Branch junction (underground cavity)
16 outer shell shield machine 18 outer shell shield tunnel 20 outer shell body 22 underground starting base structure 24 main body lining wall 26 horizontal freezing tube 28 radiation freezing tube

Claims (4)

複数のトンネル間の間隔が、該トンネルの軸方向に沿って広がる場合において、前記トンネル間に凍結管を配置して前記トンネル間の地山を凍結させて掘削する凍結工法であって、
前記トンネル間の間隔が狭い側では、前記軸方向に沿って前記凍結管を配置し、
前記トンネル間の間隔が広い側では、前記軸方向と交差する方向に前記凍結管を配置することを特徴とする凍結工法。
When the interval between a plurality of tunnels is widened along the axial direction of the tunnel, a freezing method in which a freezing tube is arranged between the tunnels to freeze the ground between the tunnels and excavate,
On the side where the interval between the tunnels is narrow, the cryotube is arranged along the axial direction,
A freezing method, wherein the freezing tube is arranged in a direction intersecting with the axial direction on a side where a distance between the tunnels is wide.
前記軸方向に沿って配置される前記凍結管よりも、前記軸方向と交差する方向に配置される前記凍結管の方が短いことを特徴とする請求項1に記載の凍結工法。   2. The freezing method according to claim 1, wherein the freezing tube arranged in a direction intersecting with the axial direction is shorter than the freezing tube arranged along the axial direction. 3. 前記複数のトンネルの施工と並行して、前記軸方向に沿って前記凍結管を配置することを特徴とする請求項1に記載の凍結工法。   The freezing method according to claim 1, wherein the freezing pipe is arranged along the axial direction in parallel with the construction of the plurality of tunnels. 前記軸方向に沿って配置される前記凍結管より口径が大きいさや管を前記軸方向に沿って配置し、
前記さや管内に前記凍結管を配置し、
該凍結管の周囲に充填材を充填することを特徴とする請求項1に記載の凍結工法。
Arranging a sheath tube having a larger diameter than the freezing tube arranged along the axial direction along the axial direction,
Placing the cryotube within the sheath,
The freezing method according to claim 1, wherein a filler is filled around the freezing tube.
JP2016008678A 2016-01-20 2016-01-20 Freezing method Active JP6624440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016008678A JP6624440B2 (en) 2016-01-20 2016-01-20 Freezing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016008678A JP6624440B2 (en) 2016-01-20 2016-01-20 Freezing method

Publications (2)

Publication Number Publication Date
JP2017128915A JP2017128915A (en) 2017-07-27
JP6624440B2 true JP6624440B2 (en) 2019-12-25

Family

ID=59396065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016008678A Active JP6624440B2 (en) 2016-01-20 2016-01-20 Freezing method

Country Status (1)

Country Link
JP (1) JP6624440B2 (en)

Also Published As

Publication number Publication date
JP2017128915A (en) 2017-07-27

Similar Documents

Publication Publication Date Title
JP5316894B2 (en) Shield roof construction method
JP6171052B2 (en) Construction method of underground widening part
JP2008274705A (en) Tunnel construction method
JP5958754B2 (en) Construction method of large section tunnel
JP2007217910A (en) Underground cavity construction method and tunnel construction method
AU2015317071A1 (en) Method and installation for mechanised digging of a cross-passage between two traffic tunnels or between two vertical shafts
JP2016160717A (en) Freezing method and freezing device of shield tunnel construction
JP6675637B2 (en) Freezing method
JP6624440B2 (en) Freezing method
CN102691510B (en) Butt section lining structure in shield tunnel
JP2007224532A (en) Construction method for underground structure
JP2006070530A (en) Tunnel construction method
JP2016176267A (en) Connection structure of pipe roof
JPH03257298A (en) Construction method of large-depth large-scale underground space by ground freezing method and ground freezing pipe therefor
JP2016008426A (en) Construction method for large-cross-section tunnel
JP6624441B2 (en) Construction method of the wall
JP6764512B1 (en) How to build an underground structure
JP2016020564A (en) Construction method of large cross-sectional tunnel
JP6105028B1 (en) Construction method of underground structure
JP7021419B2 (en) Construction method of underground widening part
JP5158631B2 (en) Construction method of tunnel junction
JP3890293B2 (en) Propulsion method and connection structure for propulsion method tube
JP6764513B1 (en) How to build an underground structure
JP7107070B2 (en) How to construct a large-section tunnel
JP2006169924A (en) Execution method of branch part or junction of sealed tunnel

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6624440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150