JP6623363B2 - Water-absorbing gel for collecting metal ions - Google Patents

Water-absorbing gel for collecting metal ions Download PDF

Info

Publication number
JP6623363B2
JP6623363B2 JP2015149474A JP2015149474A JP6623363B2 JP 6623363 B2 JP6623363 B2 JP 6623363B2 JP 2015149474 A JP2015149474 A JP 2015149474A JP 2015149474 A JP2015149474 A JP 2015149474A JP 6623363 B2 JP6623363 B2 JP 6623363B2
Authority
JP
Japan
Prior art keywords
water
absorbing gel
gel
dimethacrylate
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015149474A
Other languages
Japanese (ja)
Other versions
JP2017031440A (en
Inventor
信行 柴田
信行 柴田
万敬 中野
万敬 中野
武彦 木下
武彦 木下
友三 石垣
友三 石垣
山口 浩一
浩一 山口
重人 秋田
重人 秋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CITY OF NAGOYA
Original Assignee
CITY OF NAGOYA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CITY OF NAGOYA filed Critical CITY OF NAGOYA
Priority to JP2015149474A priority Critical patent/JP6623363B2/en
Publication of JP2017031440A publication Critical patent/JP2017031440A/en
Application granted granted Critical
Publication of JP6623363B2 publication Critical patent/JP6623363B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、水中に含まれている白金族元素や金を回収するのに好適に用いることができる吸水ゲルに関する。   The present invention relates to a water-absorbing gel that can be suitably used for recovering platinum group elements and gold contained in water.

白金族元素や金(以下、本明細書及び特許請求の範囲において「貴金属」という)は自動車、家電、IT機器など、多くの工業製品の生産に必須の重要材料である。しかし、資源ナショナリズムの高まりの中で、戦略物資として貴金属の輸出規制が行われており、ここ十年の間に異常な高騰を招いている。このため、地下資源に乏しい我国にとって、貴金属の資源リサイクルシステムの構築は喫緊の課題となっており、廃棄物からの貴金属の回収技術の確立が求められている。   BACKGROUND ART Platinum group elements and gold (hereinafter referred to as “noble metals” in the present specification and claims) are important materials indispensable for the production of many industrial products such as automobiles, home appliances, and IT devices. However, with the rise of resource nationalism, export restrictions on precious metals as strategic goods have been imposed, which has caused an abnormal rise in the last decade. For this reason, the construction of a precious metal resource recycling system has become an urgent issue for Japan, which has scarce underground resources, and there is a need to establish a technology for recovering precious metals from waste.

従来、家電製品や工業製品などの廃棄物に含まれている貴金属を回収する技術としては、廃棄物を粉砕し、貴金属を溶解する薬剤に浸漬して貴金属含有溶液とし、さらにこの貴金属含有溶液中の貴金属分を吸着剤に吸着させて回収するという技術が知られている。吸着剤としては、例えばイオン交換樹脂や活性炭などが挙げられる。また、ビニルピリジンを架橋剤で架橋した吸着剤も知られている(特許文献1)。   Conventionally, as a technology for recovering precious metals contained in waste such as home appliances and industrial products, the waste is crushed and immersed in a chemical that dissolves the precious metal to form a precious metal-containing solution. A technique is known in which a noble metal component is adsorbed on an adsorbent and collected. Examples of the adsorbent include an ion exchange resin and activated carbon. An adsorbent obtained by crosslinking vinylpyridine with a crosslinking agent is also known (Patent Document 1).

しかし、イオン交換樹脂や活性炭は吸着剤の表面においてのみ吸着に寄与するため、吸着剤のうちの表面以外は無駄となっていた。また、特許文献1に記載のビニルピリジンを架橋した重合物は、耐熱性や機械的強度を上げるために架橋度が高くされており、このため細孔内の表面で貴金属を吸着することはできるが、重合物内部にまで吸着能を及ぼすことができず、やはり、無駄が多かった。   However, the ion-exchange resin and the activated carbon contribute to the adsorption only on the surface of the adsorbent, so that the adsorbent other than the surface is wasted. Further, the crosslinked polymer of vinylpyridine described in Patent Document 1 has a high degree of crosslinkage in order to increase heat resistance and mechanical strength, and therefore, a noble metal can be adsorbed on the surface in the pores. However, it was not possible to exert the adsorptive capacity even inside the polymer, which was also wasteful.

一方、膨潤性の吸水ゲルに金属イオンの吸着機能を付与させるタイプの金属回収用の吸水ゲルが開発されている。例えば、分子鎖であるポリエーテル中の酸素原子で金属の吸着を行う吸水ゲル(特許文献2及び非特許文献1、2)や、ポリエチレンイミンやポリアリルアミンをポリグリシジルエーテルで架橋した吸水ゲル(特許文献)などである。これらの吸水ゲルは、溶液がゲル表面だけでなく、ゲル分子鎖間にも浸透して金属が吸着するため、細孔内部の表面で吸着する固体吸着材に比べて、金属の吸着容量を極めて大きくすることができるという長所を有しており、液−液抽出法の高い吸着容量という利点と、固−液抽出法の吸着材の分離が容易であるという利点とを兼ね備えている。 On the other hand, a water-absorbing gel for recovering metal of a type in which a swellable water-absorbing gel has a function of adsorbing metal ions has been developed. For example, a water-absorbing gel that adsorbs a metal with oxygen atoms in a polyether that is a molecular chain (Patent Document 2 and Non-Patent Documents 1 and 2 ), a water-absorbing gel obtained by crosslinking polyethyleneimine or polyallylamine with polyglycidyl ether (Patent Reference 3 ). In these water-absorbing gels, the metal penetrates not only on the gel surface but also between the gel molecular chains, and the metal is adsorbed. It has the advantage of being able to be large, and has both the advantage of high adsorption capacity of the liquid-liquid extraction method and the advantage of easy separation of the adsorbent of the solid-liquid extraction method.

しかし、上記特許文献2や非特許文献1、2に記載の膨潤性吸水ゲルでは、金やクロムを吸着することはできるが、他の貴金属に対しては高い吸着特性を示していなかった。また、特許文献3に記載の膨潤性吸水ゲルでは、選択的な吸着性能は期待できず、銅に対する吸着のみが明らかにされているだけであった。 However, the swellable water-absorbing gels described in Patent Literature 2 and Non-Patent Literatures 1 and 2 can adsorb gold and chromium, but do not show high adsorption characteristics to other noble metals. Further, in the swellable water-absorbing gel described in Patent Document 3, selective adsorption performance could not be expected, and only adsorption to copper was clarified.

特開平9−173834JP-A-9-173834 特開2011−115718号公報JP 2011-115718 A 特開2013−166090号公報JP 2013-166090 A

Separation and Purification Technology、2006、49、253-257Separation and Purification Technology, 2006, 49, 253-257 Journal of Chemical Engineering of Japan、2012、45、148-153Journal of Chemical Engineering of Japan, 2012, 45, 148-153

本発明は、上記の問題点を鑑みてなされたもので、内部にまで吸水することが可能であって、貴金属(すなわち、白金族元素や金元素)を構成要素として含むイオン(以下「貴金属イオン」と略す)を選択的に吸着することができる吸水ゲルを提供することを課題とする。   The present invention has been made in view of the above-mentioned problems, and is capable of absorbing water to the inside, and containing an ion containing a noble metal (that is, a platinum group element or a gold element) as a constituent element (hereinafter, “noble metal ion”). ) Is provided.

発明者らは、上記課題を解決するために、ビニル基を有する含窒素芳香複素環式化合物(A)と、ビニル基を2つ以上有する化合物(B)との共重合体について鋭意研究を行った。その結果、内部にまで吸水することが可能なゲルとすることが可能であって、さらには、この吸水ゲルが貴金属イオンを効果的に吸着できることを見出し、本発明を達成するに至った。
すなわち、本発明の貴金属回収用吸水ゲルは、ビニル基を有する含窒素芳香族複素環式化合物(A)と、ビニル基を2つ以上有する化合物(B)との共重合体からなり、該共重合体の内部にまで吸水することが可能とされていることを特徴とする。
Means for Solving the Problems In order to solve the above problems, the inventors have conducted intensive studies on a copolymer of a nitrogen-containing aromatic heterocyclic compound having a vinyl group (A) and a compound having two or more vinyl groups (B). Was. As a result, a gel capable of absorbing water to the inside can be obtained, and further, it has been found that this water-absorbing gel can effectively adsorb noble metal ions, and the present invention has been achieved.
That is, the noble metal recovery water-absorbing gel of the present invention comprises a copolymer of a nitrogen-containing aromatic heterocyclic compound having a vinyl group (A) and a compound having two or more vinyl groups (B). It is characterized in that it is possible to absorb water even inside the polymer.

本発明の貴金属回収用吸水ゲルは、内部にまで吸水することが可能とされているため、貴金属を構成要素とするイオン(以下「貴金属イオン」と略す)は、吸水ゲルの表面のみならず、内部においても吸着される。このため、単に多孔体として表面に貴金属イオンが吸着する場合に比べて、より多くの貴金属イオンを吸着することができる。また、本発明の貴金属回収用吸水ゲルは、ろ過や静置による沈殿及びデカンテーション等の方法により、容易に母液から分離することができる。さらに、こうして分離した吸水ゲルを乾燥させてから焼却したり、貴金属を溶出させることが可能な溶液に浸漬する等して、容易に貴金属を分離回収することができる。   Since the noble metal recovery water-absorbing gel of the present invention is capable of absorbing water to the inside, ions having noble metal as a component (hereinafter abbreviated as “noble metal ions”) are not only present on the surface of the water-absorbing gel, It is also adsorbed inside. Therefore, more noble metal ions can be adsorbed than when noble metal ions are simply adsorbed on the surface as a porous body. Further, the noble metal recovery water-absorbing gel of the present invention can be easily separated from the mother liquor by a method such as precipitation or decantation by filtration or standing. Further, the separated water-absorbing gel is dried and then incinerated, or immersed in a solution capable of eluting the noble metal, and the noble metal can be easily separated and collected.

本発明の貴金属回収用吸水ゲルは、下記式で定義される架橋度が0.01以上0.2以下であることが好ましい。架橋度が0.2より大きいと、金属含有溶液が吸水ゲル内部に浸透しにくくなるため、吸着速度が遅くなったり、吸着容量が低下したりする恐れがある。また、架橋度が0.01未満であると、吸水ゲルの機械的強度が低下して壊れやすくなり、ハンドリングが難しくなる。   The noble metal recovery water-absorbing gel of the present invention preferably has a degree of crosslinking defined by the following formula of 0.01 to 0.2. If the degree of cross-linking is larger than 0.2, the metal-containing solution is less likely to penetrate into the water-absorbing gel, so that the adsorption speed may be reduced or the adsorption capacity may be reduced. On the other hand, if the degree of crosslinking is less than 0.01, the mechanical strength of the water-absorbing gel is reduced and the water-absorbing gel is easily broken, making handling difficult.

ビニル基を有する含窒素芳香族複素環式化合物(A)は、1−ビニルイミダゾール、2−ビニルピリジン、3−ビニルピリジン、4−ビニルピリジン、9−ビニルカルバゾール及び2−ビニル−4,6−ジアミノ−1,3,5−トリアジンの少なくとも1種とすることができる。これらの化合物は単独であってもよいし、複数種類が存在していてもよい。ビニル基を有する含窒素芳香族複素環式化合物(A)の中でも、1−ビニルイミダゾール、2−ビニルピリジン、4−ビニルピリジン、9−ビニルカルバゾール及び2−ビニル−4,6−ジアミノ−1,3,5−トリアジンは比較的手に入れやすく、吸水ゲルも容易に得られるため好適である。   The nitrogen-containing aromatic heterocyclic compound having a vinyl group (A) includes 1-vinylimidazole, 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 9-vinylcarbazole and 2-vinyl-4,6- It can be at least one of diamino-1,3,5-triazine. These compounds may be used alone or in combination of two or more. Among the nitrogen-containing aromatic heterocyclic compounds having a vinyl group (A), 1-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, 9-vinylcarbazole and 2-vinyl-4,6-diamino-1, 3,5-Triazine is preferable because it is relatively easy to obtain and a water-absorbing gel can be easily obtained.

また、(純水を飽和吸水させた状態におけるゲルが吸水した純水の重量)/(乾燥状態におけるゲルの重量)で定義される吸水率が0.5以上20以下であることが好ましい。吸水率が0.5未満であると、金属含有溶液が吸水ゲル内部に浸透しにくくなるため、吸着速度が遅くなったり、吸着容量が低下したりする恐れがある。また該吸水率が20より大きいと、吸水ゲルの機械的強度が低下して壊れやすくなり、ハンドリングが難しくなる。より好ましくは、吸水率が1以上12以下である。さらに好ましくは、吸水率が1.5以上5以下である。こうであれば、吸水ゲル内部に水溶液が浸透しやすく、かつ、丈夫な吸水ゲルが得られる。   Further, it is preferable that a water absorption rate defined by (weight of pure water absorbed by gel in a state where pure water is saturated and absorbed) / (weight of gel in a dry state) is 0.5 or more and 20 or less. If the water absorption rate is less than 0.5, the metal-containing solution is less likely to penetrate into the water-absorbing gel, so that the adsorption speed may be reduced or the adsorption capacity may be reduced. On the other hand, if the water absorption is larger than 20, the mechanical strength of the water-absorbing gel is reduced, the gel is easily broken, and handling becomes difficult. More preferably, the water absorption is 1 or more and 12 or less. More preferably, the water absorption is 1.5 or more and 5 or less. In this case, the aqueous solution easily penetrates into the water-absorbing gel, and a strong water-absorbing gel is obtained.

ビニル基を2つ以上有する化合物(B)は、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、エチレングリコールジビニルエーテル、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、ジエチレングリコールジビニルエーテル、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、トリエチレングリコールジビニルエーテル、テトラエチレングリコールジアクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジビニルエーテル、ジビニルベンゼン、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ポリエチレングリコールジビニルエーテル、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールメタクリレート、2−メチル−1,8−オクタンジオールジメタクリレート、エトキシ化ビスフェノールAジメタクリレート、ネオペンチルグリコールジメタクリレート、トリシクロデカンジメタノールジメタクリレート、エトキシ化ポリプロピレングリコールジメタクリレート、グリセリンジメタクリレート、トリプロピレングリコールジメタクリレート、及びポリプロピレングリコールジメタクリレート及び2,2−ジメチルプロパンジオールジメタクリレート、の少なくとも1種とすることができる。これらの化合物(B)は単独であってもよいし、複数種類が存在していてもよい。これらのビニル基を2つ以上有する化合物の中でも、ジビニルベンゼンは比較的手に入れやすく、共重合によって容易に吸水ゲルとすることができるため、好適である。   Compounds (B) having two or more vinyl groups include ethylene glycol diacrylate, ethylene glycol dimethacrylate, ethylene glycol divinyl ether, diethylene glycol diacrylate, diethylene glycol dimethacrylate, diethylene glycol divinyl ether, triethylene glycol diacrylate, and triethylene glycol diacrylate. Methacrylate, triethylene glycol divinyl ether, tetraethylene glycol diacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol divinyl ether, divinylbenzene, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polyethylene glycol divinyl ether, 1,4-butanediol Dimethac Rate, 1,6-hexanediol methacrylate, 2-methyl-1,8-octanediol dimethacrylate, ethoxylated bisphenol A dimethacrylate, neopentyl glycol dimethacrylate, tricyclodecane dimethanol dimethacrylate, ethoxylated polypropylene glycol dimethacrylate Glycerin dimethacrylate, tripropylene glycol dimethacrylate, and polypropylene glycol dimethacrylate and 2,2-dimethylpropanediol dimethacrylate. These compounds (B) may be used alone or in combination of two or more. Among these compounds having two or more vinyl groups, divinylbenzene is preferable because it is relatively easy to obtain and can easily form a water-absorbing gel by copolymerization.

本発明の吸水ゲルが多孔質体に担持された吸水ゲル−多孔質複合体とすることもできる。多孔質体と吸水ゲルの複合化により、吸水ゲルの機械的強度を格段に向上させることができ、取り扱いがさらに容易になる。このため、貴金属イオンを含む溶液から吸水ゲル−多孔質複合体を回収したり、カラムに詰めて貴金属イオン回収用の吸着塔としたりする場合のハンドリングが極めて容易となる。
多孔質体としては特に制限はないが、例えば、発泡高分子、不織布・織物、樹脂焼結多孔体、多孔質セラミック、多孔質ガラス、多孔質金属等があげられる。
A water-absorbing gel-porous composite in which the water-absorbing gel of the present invention is supported on a porous body can also be used. By combining the porous body and the water-absorbing gel, the mechanical strength of the water-absorbing gel can be remarkably improved, and the handling is further facilitated. For this reason, handling when the water-absorbing gel-porous composite is recovered from the solution containing the noble metal ions or when packed into a column to form an adsorption tower for recovering the noble metal ions becomes extremely easy.
The porous body is not particularly limited, and examples thereof include a foamed polymer, a nonwoven fabric / woven fabric, a resin sintered porous body, a porous ceramic, a porous glass, a porous metal, and the like.

本発明の貴金属の回収方法は、本発明の貴金属回収用吸水ゲルや吸水ゲル−多孔質複合体に、白金族元素を構成要素とするイオン及び金元素を構成要素とするイオンの少なくとも1種のイオンを含有する溶液を接触させることを特徴とする。接触させる方法に、特に限定はなく、例えば工場廃液の被処理液にビーズ状の吸水ゲルを投入したり、吸水ゲルを充填したカラムに被処理液を流したりしてもよい。さらには、粉末状でもよく、膜状にして流通経路等に設置してもよい。
処理を行う溶液は、中性、もしくは、酸性であることが好ましい。より好ましくは、酸性である。さらに好ましくは、pH4未満である。pHが4以上となると、白金族元素が沈殿するおそれがあるからである。
The method for recovering a noble metal according to the present invention is characterized in that the water-absorbing gel or the water-absorbing gel-porous composite for recovering a noble metal according to the present invention includes at least one kind of ion having a platinum group element and ion having a gold element as a constituent element. It is characterized by contacting a solution containing ions. The contacting method is not particularly limited. For example, a bead-shaped water-absorbing gel may be charged into a liquid to be treated as factory waste liquid, or the liquid to be treated may be flowed into a column filled with the water-absorbing gel. Further, it may be in the form of a powder or in the form of a film and installed in a distribution channel or the like.
The solution for performing the treatment is preferably neutral or acidic. More preferably, it is acidic. More preferably, the pH is less than 4. If the pH is 4 or more, the platinum group element may be precipitated.

複合化前のメラミンポーラス体断面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of a melamine porous body before compounding. 複合化後のメラミンポーラス体断面の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the cross section of a melamine porous body after compounding. 複合化前のアルミナポーラス体断面の走査型電子顕微鏡写真である。4 is a scanning electron micrograph of a cross section of an alumina porous body before compounding. 複合化後のアルミナポーラス体断面の電子顕微鏡写真の走査型電子顕微鏡写真である。It is a scanning electron micrograph of the electron micrograph of the cross section of the alumina porous body after compounding. ロジウムを吸着させた実施例2の金属回収用吸水ゲルを焼却してえられた酸化ロジウムの電子顕微鏡写真である。5 is an electron micrograph of rhodium oxide obtained by burning the water-absorbing gel for metal recovery of Example 2 having rhodium adsorbed thereon.

以下、本発明を詳細に説明する。
本発明の貴金属回収用吸水ゲルは、ビニル基を有する含窒素芳香族複素環式化合物(A)と、ビニル基を2つ以上有する化合物(B)との共重合体からなり、共重合体の内部にまで吸水することが可能とされている。
ここで、「共重合体の内部にまで吸水することが可能とされている」とは、共重合体の網目構造が粗いため、水が共重合体の内部のどの位置にも侵入することが可能であることを意味する。網目構造の粗さは、前述した架橋度によって制御が可能である。本発明者らの試験結果によれば、架橋度は0.01以上0.2以下とすることが好ましい。架橋度が0.2より大きいと、金属含有溶液が吸水ゲル内部に浸透しにくくなるため、吸着速度が遅くなったり、吸着容量が低下したりするおそれがある。また、架橋度が0.01未満であると、吸水ゲルが脆くて崩れやすくなるため、ハンドリングが難しくなる。さらに好ましいのは架橋度が0.02以上10以下であり、最も好ましいのは0.03以上8以下である。
Hereinafter, the present invention will be described in detail.
The noble metal recovery water-absorbing gel of the present invention comprises a copolymer of a nitrogen-containing aromatic heterocyclic compound having a vinyl group (A) and a compound having two or more vinyl groups (B). It is possible to absorb water to the inside.
Here, "it is possible to absorb water to the inside of the copolymer" means that because the network structure of the copolymer is coarse, water can enter any position inside the copolymer. Means possible. The roughness of the network structure can be controlled by the degree of crosslinking described above. According to the test results of the present inventors, the degree of crosslinking is preferably 0.01 or more and 0.2 or less. If the degree of cross-linking is more than 0.2, the metal-containing solution is less likely to penetrate into the water-absorbing gel, so that the adsorption speed may be reduced or the adsorption capacity may be reduced. On the other hand, if the degree of crosslinking is less than 0.01, the water-absorbing gel becomes brittle and easily collapsed, so that handling becomes difficult. More preferably, the degree of crosslinking is 0.02 or more and 10 or less, and most preferably 0.03 or more and 8 or less.

本発明の貴金属回収用吸水ゲルは、作製の容易さや得られるゲルの吸水率の制御などの観点から、重合開始剤を添加して吸水ゲルを得ることが好ましい。重合開始剤としては、例えば、アゾ化合物、ベンゾイン誘導体、ベンジル誘導体、アセトフェノン誘導体、ベンゾフェノン誘導体、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、過酸化水素、t−ブチルパーオキシド、メチルエチルケトンパーオキシド等の過酸化物、などの化合物が挙げられるが、必ずしもこれらに限定されるものではない。   The water-absorbing gel for recovering a noble metal of the present invention is preferably obtained by adding a polymerization initiator from the viewpoints of ease of preparation and control of the water absorption of the obtained gel. Examples of the polymerization initiator include, for example, azo compounds, benzoin derivatives, benzyl derivatives, acetophenone derivatives, benzophenone derivatives, persulfates such as sodium persulfate, potassium persulfate, ammonium persulfate, hydrogen peroxide, t-butyl peroxide, methyl ethyl ketone Examples include compounds such as peroxides such as peroxides, but are not necessarily limited thereto.

本発明の貴金属回収用吸水ゲルは、その機械的強度を高めたり、吸水率を調整したりするなどの観点から、ビニル基を有する含窒素芳香族複素環式化合物(A)やビニル基を2つ以上有する化合物(B)を2種以上用いて作製することもできる。   The water-absorbing gel for recovering a noble metal according to the present invention comprises a nitrogen-containing aromatic heterocyclic compound having a vinyl group (A) or a vinyl group from the viewpoint of increasing its mechanical strength and adjusting the water absorption. It can also be produced using two or more compounds (B) having one or more compounds.

本発明の貴金属回収用吸水ゲルを貴金属イオン含有溶液に入れて貴金属を回収する場合、その固液比である(吸水した吸水ゲルの重量)/(金属イオン含有溶液の重量)の値は、貴金属イオンの濃度等を考慮して適宜選択されるが、好ましい範囲としては、0.001から5である。固液比が0.001より小さいと溶液中の金属を十分に吸着しない恐れがあり、5より大きいと溶液の回収がしづらくなるなどハンドリング性が低下する恐れがある。より好ましくは、0.005から1である。さらに好ましくは、0.01から0.3である。こうであれば、ハンドリング性がよく、かつ、溶液中の金属を十分に吸着することができる。   When the noble metal recovery water-absorbing gel of the present invention is placed in a noble metal ion-containing solution to recover the noble metal, the value of the solid-liquid ratio (weight of water-absorbing gel absorbed) / (weight of metal ion-containing solution) is noble metal. It is appropriately selected in consideration of the ion concentration and the like, but a preferable range is 0.001 to 5. If the solid-liquid ratio is smaller than 0.001, the metal in the solution may not be sufficiently adsorbed. More preferably, it is 0.005 to 1. More preferably, it is 0.01 to 0.3. In this case, the handleability is good, and the metal in the solution can be sufficiently adsorbed.

本発明の貴金属回収用吸水ゲルの貴金属イオンの吸着率(すなわち(吸水ゲルに吸着した金属重量)/(吸水ゲル投入前の溶液中に含まれる金属重量))の値が0.6以上であることが好ましい。こうであれば、効率よく金属回収を行うことができる。0.6未満であると、金属回収効率が低下する恐れがある。より好ましくは、0.8以上である。さらに好ましくは、0.9以上である。   The value of the noble metal ion adsorption rate of the noble metal recovery water-absorbing gel of the present invention (that is, (weight of metal adsorbed on water-absorbing gel) / (weight of metal contained in solution before pouring water-absorbing gel)) is 0.6 or more. Is preferred. In this case, the metal can be efficiently recovered. If it is less than 0.6, the metal recovery efficiency may be reduced. More preferably, it is 0.8 or more. More preferably, it is 0.9 or more.

本発明において使用する貴金属回収用吸水ゲルの形態は、用途によって様々なものとすることができる。例えば、ビーズ状、粉末状、膜状、板状などの形態で使用できる。さらに、これらの吸水ゲルを通水性のある容器に入れて使用してもよい。   The form of the noble metal recovery water-absorbing gel used in the present invention can be various depending on the application. For example, it can be used in the form of beads, powder, film, plate and the like. Furthermore, you may use these water-absorbing gels by putting them in a water-soluble container.

本発明の貴金属回収用吸水ゲルにおける発明の効果を阻害することのない範囲において、添加剤を配合することができる。このような添加剤としては、着色材、紫外線吸収剤、光安定剤、防カビ剤などが例示される。   Additives can be added within a range that does not impair the effects of the invention in the noble metal recovery water-absorbing gel of the present invention. Examples of such additives include coloring agents, ultraviolet absorbers, light stabilizers, and fungicides.

本発明の貴金属回収用吸水ゲルと接触させる貴金属含有溶液は、中性、もしくは、酸性であることが好ましく、より好ましくはpH3以下の強酸性である。こうであれば、吸水率は高くなり、吸水ゲル内外の液交換も速くなるため、金属の吸着も速くなる。   The noble metal-containing solution to be brought into contact with the noble metal recovery water-absorbing gel of the present invention is preferably neutral or acidic, and more preferably strongly acidic with a pH of 3 or less. In this case, the water absorption rate is high, and the liquid exchange between the inside and outside of the water-absorbing gel is also fast, so that the metal adsorption is also fast.

金属を吸着した貴金属回収用吸水ゲルは、燃焼させたり、強力な酸化剤などを用いてゲルを分解したりすることにより、吸着した金属、もしくはその酸化物のみを回収することができる。貴金属回収用吸水ゲルと可燃性の多孔質体とを複合させた吸水ゲル−多孔質複合体についても、同様にして金属、もしくはその酸化物のみを回収することができる。   The noble metal recovery water-absorbing gel that has adsorbed the metal can recover only the adsorbed metal or its oxide by burning or decomposing the gel using a strong oxidizing agent or the like. In the case of a water-absorbing gel-porous composite in which a water-absorbing gel for recovering a noble metal and a flammable porous body are combined, only a metal or an oxide thereof can be recovered in the same manner.

以下、本発明を具体化した実施例をあげて更に詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.

<貴金属回収用吸水ゲル>
(実施例1〜10)
実施例1〜10の吸水ゲルは、ビニルイミダゾール(VIZ)とジビニルベンゼン(DVB)を様々な比率で重合させた共重合体であり、ジビニルベンゼン(DVB)が架橋剤である。これらの吸水ゲルの製造方法の詳細を以下に示す。
ビニルイミダゾール(VIZ)(アルドリッチ社製)と、ジビニルベンゼン(DVB)(東京化成工業社製)と、2,2’−アゾビス(2-メチルプロピオンアミジン)二塩酸塩(V-50)(和光純薬工業社製)と、純水を表1に示す様々な重量比で混合し、60℃で48時間加熱することにより共重合を行った。得られたゲル状物質を純水で数回洗浄し、さらに純水に48時間以上浸して実施例1〜10の吸水ゲルを得た。この吸水ゲルを取り出し、付着している水滴を拭き取った後、吸水ゲルの重量を測定した。その後、吸水ゲルを乾燥機中で完全に乾燥させて重量を測定した。乾燥前の重量と乾燥後の重量の差から吸水量を算出し、吸水率を求めた。また、同様に得られたゲルを0.01N塩酸溶液に48時間以上浸した後、同様の処理を行い、吸水率を求めた。結果を表1に示す。
<Water-absorbing gel for precious metal recovery>
(Examples 1 to 10)
The water-absorbing gels of Examples 1 to 10 are copolymers obtained by polymerizing vinylimidazole (VIZ) and divinylbenzene (DVB) at various ratios, and divinylbenzene (DVB) is a crosslinking agent. The details of the method for producing these water-absorbing gels are shown below.
Vinyl imidazole (VIZ) (manufactured by Aldrich), divinylbenzene (DVB) (manufactured by Tokyo Kasei Kogyo), and 2,2′-azobis (2-methylpropionamidine) dihydrochloride (V-50) (Wako Jun (Manufactured by Yakuhin Kogyo Co., Ltd.) and pure water at various weight ratios shown in Table 1, and heated at 60 ° C. for 48 hours to perform copolymerization. The obtained gel-like substance was washed several times with pure water and further immersed in pure water for 48 hours or more to obtain water-absorbing gels of Examples 1 to 10. After taking out the water-absorbing gel and wiping off attached water droplets, the weight of the water-absorbing gel was measured. Thereafter, the water-absorbing gel was completely dried in a dryer, and the weight was measured. The amount of water absorption was calculated from the difference between the weight before drying and the weight after drying, and the water absorption was determined. The gel obtained in the same manner was immersed in a 0.01 N hydrochloric acid solution for 48 hours or more, and then subjected to the same treatment to determine the water absorption. Table 1 shows the results.

(実施例11〜13)
実施例11の吸水ゲルはビニルイミダゾール(VIZ)と2−ビニルピリジン(2VP)とジビニルベンゼン(DVB)の共重合体であり、実施例12の吸水ゲルはビニルイミダゾール(VIZ)と4−ビニルピリジン(4VP)とジビニルベンゼン(DVB)の共重合体であり、実施例13ではビニルイミダゾール(VIZ)と9−ビニルカルバゾール(9VC)とジビニルベンゼン(DVB)の共重合体である。これらの吸水ゲルの製造方法の詳細は以下のとおりである。
ビニルイミダゾール(VIZ)(アルドリッチ社製)、2−ビニルピリジン(2VP)(アルドリッチ社製)、4−ビニルピリジン(4VP)(アルドリッチ社製)、9−ビニルカルバゾール(9VC)(関東化学社製)、ジビニルベンゼン(DVB、東京化成工業社製)、アゾビスイソブチロニトリル(AIBN、和光純薬工業社製)をそれぞれ表2の重量比で混合し、65℃で48時間加熱することにより共重合を行った。得られたゲル状物質を純水で数回洗浄し、さらに純水に48時間以上浸して実施例11〜13の吸水ゲルを得た。この吸水ゲルを取り出し、付着している水滴を拭き取った後、吸水ゲルの重量を測定した。その後、吸水ゲルを乾燥機中で完全に乾燥させて重量を測定した。乾燥前の重量と乾燥後の重量の差から吸水量を算出し、吸水率を求めた。また、同様に得られたゲルを0.01N塩酸溶液に48時間以上浸した後、同様の処理を行い、吸水率を求めた。結果を表2に示す。
(Examples 11 to 13)
The water-absorbing gel of Example 11 is a copolymer of vinylimidazole (VIZ), 2-vinylpyridine (2VP) and divinylbenzene (DVB), and the water-absorbing gel of Example 12 is vinylimidazole (VIZ) and 4-vinylpyridine. It is a copolymer of (4VP) and divinylbenzene (DVB). In Example 13, it is a copolymer of vinylimidazole (VIZ), 9-vinylcarbazole (9VC) and divinylbenzene (DVB). The details of the method for producing these water-absorbing gels are as follows.
Vinylimidazole (VIZ) (Aldrich), 2-vinylpyridine (2VP) (Aldrich), 4-vinylpyridine (4VP) (Aldrich), 9-vinylcarbazole (9VC) (Kanto Chemical) , Divinylbenzene (DVB, manufactured by Tokyo Kasei Kogyo Co., Ltd.) and azobisisobutyronitrile (AIBN, manufactured by Wako Pure Chemical Industries, Ltd.) in a weight ratio shown in Table 2, and heated at 65 ° C. for 48 hours to obtain a common solution. Polymerization was performed. The obtained gel-like substance was washed several times with pure water, and further immersed in pure water for 48 hours or more to obtain water-absorbing gels of Examples 11 to 13. After taking out the water-absorbing gel and wiping off attached water droplets, the weight of the water-absorbing gel was measured. Thereafter, the water-absorbing gel was completely dried in a dryer, and the weight was measured. The amount of water absorption was calculated from the difference between the weight before drying and the weight after drying, and the water absorption was determined. The gel obtained in the same manner was immersed in a 0.01 N hydrochloric acid solution for 48 hours or more, and then subjected to the same treatment to determine the water absorption. Table 2 shows the results.

(実施例14及び実施例15)
実施例14の吸水ゲルは2−ビニルピリジン(2VP)とジビニルベンゼン(DVB)の共重合体であり、実施例15の吸水ゲルは4−ビニルピリジン(4VP)とジビニルベンゼン(DVB)の共重合体である。これらの吸水ゲルの製造方法の詳細を以下に示す。
すなわち、2−ビニルピリジン(2VP、アルドリッチ社製)、4−ビニルピリジン(4VP、アルドリッチ社製)、ジビニルベンゼン(DVB、東京化成工業社製)、アゾビスイソブチロニトリル(AIBN、和光純薬工業社製)をそれぞれ表3の重量比で混合し、得られたゲル状物質を純水で数回洗浄し、さらに純水に48時間以上浸して実施例14及び15の吸水ゲルを得た。この吸水ゲルを取り出し、付着している水滴を拭き取った後、吸水ゲルの重量を測定した。その後、吸水ゲルを乾燥機中で完全に乾燥させて重量を測定した。乾燥前の重量と乾燥後の重量の差から吸水量を算出し、吸水率を求めた。また、同様に得られたゲルを0.01N塩酸溶液に48時間以上浸した後、同様の処理を行い、吸水率を求めた。結果を表3に示す。
(Examples 14 and 15)
The water-absorbing gel of Example 14 is a copolymer of 2-vinylpyridine (2VP) and divinylbenzene (DVB), and the water-absorbing gel of Example 15 is a copolymer of 4-vinylpyridine (4VP) and divinylbenzene (DVB). It is united. The details of the method for producing these water-absorbing gels are shown below.
That is, 2-vinylpyridine (2VP, manufactured by Aldrich), 4-vinylpyridine (4VP, manufactured by Aldrich), divinylbenzene (DVB, manufactured by Tokyo Chemical Industry), azobisisobutyronitrile (AIBN, Wako Pure Chemical Industries, Ltd.) (Manufactured by Kogyo Co., Ltd.) at the respective weight ratios shown in Table 3, and the obtained gel-like substance was washed several times with pure water, and further immersed in pure water for 48 hours or more to obtain water-absorbing gels of Examples 14 and 15. . After taking out the water-absorbing gel and wiping off attached water droplets, the weight of the water-absorbing gel was measured. Thereafter, the water-absorbing gel was completely dried in a dryer, and the weight was measured. The amount of water absorption was calculated from the difference between the weight before drying and the weight after drying, and the water absorption was determined. The gel obtained in the same manner was immersed in a 0.01 N hydrochloric acid solution for 48 hours or more, and then subjected to the same treatment to determine the water absorption. Table 3 shows the results.

(実施例16〜18)
実施例16〜18の吸水ゲルは、2−ビニル−4,6−ジアミノ−1,3,5−トリアジン(VDT)とジビニルベンゼン(DVB)を様々な比率で重合させた共重合体である。これらの吸水ゲルの製造方法の詳細を以下に示す。
すなわち、2−ビニル−4,6−ジアミノ−1,3,5−トリアジン(VDT、東京化成工業社製)、ジビニルベンゼン(DVB)(東京化成工業社製)、2,2’−アゾビス(2−メチルプロピオンアミジン)二塩酸塩(V-50)(和光純薬工業社製)、乳酸(東京化成工業社製)、及び純水をそれぞれ表4の重量比で混合し、60℃で48時間加熱することにより吸水ゲルを得た。なお、乳酸を加えたのは2−ビニル−4,6−ジアミノ−1,3,5−トリアジンを水に溶解させるためであり、乳酸を添加しない場合には溶解しなかった。また、理由はよく分からないが、塩酸を加えても2−ビニル−4,6−ジアミノ−1,3,5−トリアジンは溶解しなかった。
以上のようにして得られたゲルを純水で十回以上洗浄して乳酸を取り除き、純水に48時間以上浸した。このゲルを取り出し、ゲルに付着している水滴を拭き取った後、吸水ゲルの重量を測定した。その後、吸水ゲルを乾燥機中で完全に乾燥させて重量を測定した。乾燥前の重量と乾燥後の重量の差から吸水量を算出し、吸水率を求めた。また、同様に得られたゲルを0.01N塩酸溶液に48時間以上浸した後、同様の処理を行い、吸水率を求めた。
(Examples 16 to 18)
The water-absorbing gels of Examples 16 to 18 are copolymers obtained by polymerizing 2-vinyl-4,6-diamino-1,3,5-triazine (VDT) and divinylbenzene (DVB) at various ratios. The details of the method for producing these water-absorbing gels are shown below.
That is, 2-vinyl-4,6-diamino-1,3,5-triazine (VDT, manufactured by Tokyo Chemical Industry), divinylbenzene (DVB) (manufactured by Tokyo Chemical Industry), 2,2′-azobis (2 -Methylpropionamidine) dihydrochloride (V-50) (manufactured by Wako Pure Chemical Industries, Ltd.), lactic acid (manufactured by Tokyo Kasei Kogyo Co., Ltd.), and pure water were each mixed at a weight ratio shown in Table 4, and were mixed at 60 ° C. for 48 hours. A water-absorbing gel was obtained by heating. The addition of lactic acid was for dissolving 2-vinyl-4,6-diamino-1,3,5-triazine in water, and was not dissolved when lactic acid was not added. Although the reason is not well understood, 2-vinyl-4,6-diamino-1,3,5-triazine did not dissolve even when hydrochloric acid was added.
The gel obtained as described above was washed ten times or more with pure water to remove lactic acid, and immersed in pure water for 48 hours or more. After taking out this gel and wiping off water drops adhering to the gel, the weight of the water-absorbing gel was measured. Thereafter, the water-absorbing gel was completely dried in a dryer, and the weight was measured. The amount of water absorption was calculated from the difference between the weight before drying and the weight after drying, and the water absorption was determined. The gel obtained in the same manner was immersed in a 0.01 N hydrochloric acid solution for 48 hours or more, and then subjected to the same treatment to determine the water absorption.

・貴金属回収用吸水ゲルの評価
上記のようにして製造した貴金属回収用吸水ゲルの貴金属イオンに対する吸着能の評価を行った。
Evaluation of noble metal recovery water-absorbing gel The noble metal ion adsorption ability of the noble metal recovery water-absorbing gel produced as described above was evaluated.

(各種金属溶液に対する吸着率の測定)
各金属イオン(金、白金、パラジウム、ロジウム、ルテニウム、オスミウム、イリジウム、アルミニウム、鉄、銅)100ppmを含む10種類の1M塩酸溶液を用意した。そして、実施例2、13、14、15及び19の貴金属回収用吸水ゲルを乾燥重量で0.14g秤取り、各金属イオン溶液4mLに投入し、48時間攪拌した。その後、溶液に含まれる金属濃度を誘導結合プラズマ発光分光分析法により測定し、その濃度から吸水ゲルの各金属吸着率、すなわち(吸水ゲルに吸着した金属重量)/(吸水ゲル投入前の溶液中に含まれる金属重量)を求めた。結果を表5に示す。この表から、実施例2、13、14、15及び19の貴金属回収用吸水ゲルは、全て貴金属であるAu、Pt、Pd、Rh、Ru、Os及びIrの各イオンを高い吸着率で吸着させることができるのに対し、Al、Fe及びCuの各イオンは吸着率が低く、選択的に貴金属を回収することが分かった。
(Measurement of adsorption rate for various metal solutions)
Ten kinds of 1M hydrochloric acid solutions containing 100 ppm of each metal ion (gold, platinum, palladium, rhodium, ruthenium, osmium, iridium, aluminum, iron, copper) were prepared. Then, 0.14 g of the noble metal recovery water-absorbing gel of each of Examples 2, 13, 14, 15, and 19 was weighed in a dry weight, and added to 4 mL of each metal ion solution, followed by stirring for 48 hours. Thereafter, the concentration of the metal contained in the solution was measured by inductively coupled plasma emission spectroscopy, and the metal adsorption rate of the water-absorbing gel, that is, (weight of metal adsorbed on the water-absorbing gel) / (the Of the metal contained in the sample). Table 5 shows the results. From this table, the noble metal recovery water-absorbing gels of Examples 2, 13, 14, 15, and 19 all adsorb the noble metal ions of Au, Pt, Pd, Rh, Ru, Os and Ir at a high adsorption rate. On the other hand, it was found that the ions of Al, Fe and Cu had low adsorption rates and selectively recovered noble metals.

(複数金属イオンが混合された金属溶液に対する各金属イオン吸着率の測定)
金、白金、パラジウム、ロジウム、ルテニウム、オスミウム、イリジウム、アルミニウム、鉄及び銅を100ppmずつ含む1M塩酸溶液を用意した。そして、実施例2の貴金属回収用吸水ゲルを乾燥重量で0.35g秤取り、混合金属イオン溶液10mLに投入し、24時間攪拌した。その後、溶液に含まれる金属濃度を誘導結合プラズマ発光分光分析法により測定し、その濃度から吸水ゲルの各金属吸着率、すなわち(吸水ゲルに吸着した金属重量)/(吸水ゲル投入前の溶液中に含まれる金属重量)を求めた。結果を表6に示す。この表から、実施例2の貴金属回収用吸水ゲルは、貴金属であるRh、Pd及びPtと非金属であるAl、Fe及びCuの各イオン混合物から、選択的に貴金属であるRh、Pd及びPtを回収できることが分かった。
(Measurement of adsorption rate of each metal ion to metal solution mixed with multiple metal ions)
A 1 M hydrochloric acid solution containing 100 ppm of gold, platinum, palladium, rhodium, ruthenium, osmium, iridium, aluminum, iron and copper was prepared. Then, 0.35 g of the noble metal recovery water-absorbing gel of Example 2 was weighed out by dry weight, poured into 10 mL of the mixed metal ion solution, and stirred for 24 hours. Thereafter, the concentration of the metal contained in the solution was measured by inductively coupled plasma emission spectroscopy, and the metal adsorption rate of the water-absorbing gel, that is, (weight of metal adsorbed on the water-absorbing gel) / (the Of the metal contained in the sample). Table 6 shows the results. According to this table, the noble metal recovery water-absorbing gel of Example 2 was prepared by selectively selecting the noble metals Rh, Pd, and Pt from the respective ion mixtures of the noble metals Rh, Pd, and Pt and the nonmetals, Al, Fe, and Cu. Can be recovered.

(貴金属回収用吸水ゲルの架橋度と吸着率の関係)
金属回収用吸水ゲルの架橋度と吸着率との関係を調べるために、以下の試験を行った。
まず、ロジウムイオンを100、1000及び10000ppm含有する塩酸溶液を調製し、各溶液を50mLづつビーカーに入れ、これに実施例の金属回収用吸水ゲルを乾燥重量で1.76gを投入し、48時間攪拌した。その後、溶液に含まれる金属濃度を誘導結合プラズマ発光分光分析法により測定し、その濃度から吸水ゲルの各金属吸着率、すなわち(吸水ゲルに吸着した金属重量)/(吸水ゲル投入前の溶液中に含まれる金属重量)を求めた。結果を表7に示す。この表から、架橋度が高くなると、10000ppmという高濃度のロジウム溶液において吸着率が低下することが分かった。以上の結果から、吸着率及び吸着速度の観点から、架橋度は0.2以下が好ましいことが分かった。ただし、架橋度が低くなると、吸着ゲルの機械的強度が低下し、崩れやすくなる傾向があった。
(Relation between degree of cross-linking and adsorption rate of water-absorbing gel for precious metal recovery)
The following test was conducted to examine the relationship between the degree of crosslinking and the adsorption rate of the water-absorbing gel for metal recovery.
First, a hydrochloric acid solution containing 100, 1000 and 10000 ppm of rhodium ions was prepared, and each solution was put into a beaker by 50 mL, and 1.76 g by weight of the metal-absorbing gel for metal recovery of the example was put into the beaker for 48 hours. Stirred. Thereafter, the concentration of the metal contained in the solution was measured by inductively coupled plasma emission spectroscopy, and the metal adsorption rate of the water-absorbing gel, that is, (weight of metal adsorbed on the water-absorbing gel) / (the Of the metal contained in the sample). Table 7 shows the results. From this table, it was found that the higher the degree of crosslinking, the lower the adsorption rate in a rhodium solution having a high concentration of 10,000 ppm. From the above results, it was found that the degree of crosslinking is preferably 0.2 or less from the viewpoint of the adsorption rate and the adsorption rate. However, when the degree of cross-linking was low, the mechanical strength of the adsorptive gel was low, and the gel tended to collapse.

(貴金属回収用吸水ゲルの吸着率におけるpHの影響)
金属回収用吸水ゲルのロジウム吸着率におけるpHの影響を調べるために、以下の試験を行った。
ロジウムイオンを100ppm含有する各種酸強度の塩酸溶液を調製し、各溶液を3.82mLづつビーカーに入れ、これに実施例2の金属回収用吸水ゲルを乾燥重量で134mg投入し、48時間攪拌した。また、金属回収用吸水ゲルを投入しないで、同様の溶液も調製した。その後、各溶液に含まれる金属濃度を誘導結合プラズマ発光分光分析法により測定し、その濃度から吸水ゲルの各金属吸着率、すなわち(吸水ゲルに吸着した金属重量)/(吸水ゲル投入前の溶液中に含まれる金属重量)を求めた。結果を表8に示す。この表から、塩酸濃度が6M以下の場合に特に高い吸着率を示すことが分かった。pH8以上の溶液では、溶液調製時より沈殿が生じ、pH4以上では実験の経過とともにロジウム溶液が黄色に変色することから、沈殿するおそれがあった。

(Effect of pH on adsorption rate of water-absorbing gel for precious metal recovery)
The following test was conducted to examine the effect of pH on the rhodium adsorption rate of the water-absorbing gel for metal recovery.
Hydrochloric acid solutions of various acid strengths containing 100 ppm of rhodium ions were prepared, 3.82 mL of each solution was put into a beaker, and 134 mg of the metal-absorbing gel for metal recovery of Example 2 was put into the beaker by dry weight and stirred for 48 hours. . Also, a similar solution was prepared without introducing the water-absorbing gel for metal recovery. Then, the concentration of the metal contained in each solution was measured by inductively coupled plasma emission spectroscopy, and the metal adsorption rate of the water-absorbing gel, that is, (weight of metal adsorbed on the water-absorbing gel) / (solution before the introduction of the water-absorbing gel) was determined from the concentration. Weight of the metal contained therein). Table 8 shows the results. From this table, it was found that a particularly high adsorption rate was exhibited when the hydrochloric acid concentration was 6 M or less. In the case of a solution having a pH of 8 or more, precipitation occurred from the time of preparation of the solution. In the case of a solution having a pH of 4 or more, the rhodium solution turned yellow with the progress of the experiment, and there was a risk of precipitation.

<貴金属回収用吸水ゲル−多孔質複合体>
(貴金属回収用吸水ゲル−多孔質複合体の製造方法)
上記貴金属回収用吸水ゲルの実施例5における仕込み比で原料を混合し、混合液5.5gをポリプロピレン製の容器(16mm×16mm×高さ20mm)に入れた。そこに、メラミンポーラス体(激落ちポイポイ、レック製、16mm×16mm×高さ5mm)又はアルミナポーラス体(AZP−60、アスザック製、15mm×15mm×高さ5mm)を入れ、約5分脱気した。その後、60℃で48時間加熱することにより貴金属回収用吸水ゲル−多孔質複合体を得たこうして得られた複合体を、純水で数回洗浄し、さらに48時間以上純水中に浸した。複合化前のメラミンポーラス体断面、複合化後のメラミンポーラス体断面、複合化前のアルミナポーラス体断面及び複合化後のアルミナポーラス体断面の電子顕微鏡写真を図1〜図4に示す。
<Water-absorbing gel for precious metal recovery-porous composite>
(Production method of water-absorbing gel-porous composite for precious metal recovery)
The raw materials were mixed at the charging ratio in Example 5 of the precious metal recovery water-absorbing gel, and 5.5 g of the mixed solution was placed in a polypropylene container (16 mm × 16 mm × 20 mm in height). A melamine porous body (hard drop poipoi, made by Lec, 16 mm x 16 mm x 5 mm in height) or an alumina porous body (AZP-60, made by Aszak, 15 mm x 15 mm x 5 mm in height) is put therein and degassed for about 5 minutes. did. Thereafter, the resultant was heated at 60 ° C. for 48 hours to obtain a water-absorbing gel-porous composite for precious metal recovery. The thus obtained composite was washed several times with pure water, and further immersed in pure water for 48 hours or more. . FIGS. 1 to 4 show electron micrographs of the cross section of the melamine porous body before the composite, the cross section of the melamine porous body after the composite, the cross section of the alumina porous body before the composite, and the cross section of the alumina porous body after the composite.

(金属を吸着した吸水ゲルの焼却による貴金属回収)
まず、ロジウムイオンを10000ppm含有する塩酸溶液を調製し、ビーカーに50mL入れ、ここに実施例2の金属回収用吸水ゲルを乾燥重量で1.76gを投入し、48時間攪拌した。その後、吸水ゲルをろ過によって分離し、乾燥後、バーナーで加熱焼却し、残った灰分を蛍光X線分析装置で分析したところ、酸素及びロジウムが検出された。この結果から、灰分は酸化ロジウムであることが分かった。この灰分の電子顕微鏡写真を図5に示す。
(Precious metal recovery by incineration of water-absorbing gel with metal adsorbed)
First, a hydrochloric acid solution containing 10000 ppm of rhodium ions was prepared, and 50 mL of the solution was put into a beaker, and 1.76 g of the water-absorbing gel for metal recovery of Example 2 was added thereto by dry weight and stirred for 48 hours. Thereafter, the water-absorbing gel was separated by filtration, dried, and then incinerated by heating with a burner. The remaining ash was analyzed by a fluorescent X-ray analyzer, and oxygen and rhodium were detected. From this result, it was found that the ash was rhodium oxide. An electron micrograph of this ash is shown in FIG.

本発明の貴金属回収用吸水ゲルを貴金属イオンを含む液に浸漬するだけで、効率的に貴金属イオンを吸着させることができる。また、貴金属を吸着した吸水ゲルを焼却するだけで、容易に貴金属を回収することができる。このため、家電製品や工業製品の廃棄物からの貴金属の回収技術に利用することができる。   Noble metal ions can be efficiently adsorbed simply by immersing the noble metal recovery water-absorbing gel of the present invention in a liquid containing noble metal ions. Further, the noble metal can be easily recovered simply by burning the water-absorbing gel on which the noble metal is adsorbed. For this reason, it can be used for the technology for recovering precious metals from the waste of home appliances and industrial products.

Claims (9)

ビニル基を有する含窒素芳香族複素環式化合物(A)と、ビニル基を2つ以上有する化合物(B)との共重合体からなり、下記式で定義される架橋度が0.01以上0.2以下であることを特徴とする貴金属回収用吸水ゲル。
It comprises a copolymer of a nitrogen-containing aromatic heterocyclic compound (A) having a vinyl group and a compound (B) having two or more vinyl groups, and has a degree of crosslinking of 0.01 to 0 defined by the following formula. A water-absorbing gel for recovering precious metals, wherein the gel is no more than 2 .
前記ビニル基を有する含窒素芳香族複素環式化合物(A)は、1−ビニルイミダゾール、2−ビニルピリジン、3−ビニルピリジン、4−ビニルピリジン、9−ビニルカルバゾール及び2−ビニル−4,6−ジアミノ−1,3,5−トリアジンの少なくとも1種である請求項1に記載の貴金属回収用吸水ゲル。   The nitrogen-containing aromatic heterocyclic compound having a vinyl group (A) includes 1-vinylimidazole, 2-vinylpyridine, 3-vinylpyridine, 4-vinylpyridine, 9-vinylcarbazole and 2-vinyl-4,6. The water-absorbing gel for recovering a noble metal according to claim 1, which is at least one of diamino-1,3,5-triazine. 前記ビニル基を有する含窒素芳香族複素環式化合物(A)は、2−ビニル−4,6−ジアミノ−1,3,5−トリアジンである請求項1又は2のいずれか1項に記載の貴金属回収用吸水ゲル。 3. The method according to claim 1, wherein the nitrogen-containing aromatic heterocyclic compound having a vinyl group (A) is 2-vinyl-4,6-diamino-1,3,5-triazine. 4. Water absorbing gel for precious metal recovery. (純水を飽和吸水させた状態におけるゲルが吸水した純水の重量)/(乾燥状態におけるゲルの重量)で定義される吸水率が0.5以上20以下であることを特徴とする請求項1乃至のいずれか1項に記載の貴金属回収用吸水ゲル。 The water absorption rate defined by (weight of pure water absorbed by gel in a state where pure water is saturated and absorbed) / (weight of gel in a dry state) is 0.5 or more and 20 or less. 4. The water-absorbing gel for recovering precious metals according to any one of 1 to 3 . 前記ビニル基を2つ以上有する化合物(B)は、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、エチレングリコールジビニルエーテル、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、ジエチレングリコールジビニルエーテル、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、トリエチレングリコールジビニルエーテル、テトラエチレングリコールジアクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジビニルエーテル、ジビニルベンゼン、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ポリエチレングリコールジビニルエーテル、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールメタクリレート、2−メチル−1,8−オクタンジオールジメタクリレート、エトキシ化ビスフェノールAジメタクリレート、ネオペンチルグリコールジメタクリレート、トリシクロデカンジメタノールジメタクリレート、エトキシ化ポリプロピレングリコールジメタクリレート、グリセリンジメタクリレート、トリプロピレングリコールジメタクリレート、及びポリプロピレングリコールジメタクリレート及び2,2−ジメチルプロパンジオールジメタクリレート、の少なくとも1種である請求項1乃至のいずれか1項に記載の貴金属回収用吸水ゲル。 The compound (B) having two or more vinyl groups is ethylene glycol diacrylate, ethylene glycol dimethacrylate, ethylene glycol divinyl ether, diethylene glycol diacrylate, diethylene glycol dimethacrylate, diethylene glycol divinyl ether, triethylene glycol diacrylate, triethylene glycol. Dimethacrylate, triethylene glycol divinyl ether, tetraethylene glycol diacrylate, tetraethylene glycol dimethacrylate, tetraethylene glycol divinyl ether, divinylbenzene, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polyethylene glycol divinyl ether, 1,4-butane Diol dimeta Acrylate, 1,6-hexanediol methacrylate, 2-methyl-1,8-octanediol dimethacrylate, ethoxylated bisphenol A dimethacrylate, neopentyl glycol dimethacrylate, tricyclodecane dimethanol dimethacrylate, ethoxylated polypropylene glycol dimethacrylate , glycerol dimethacrylate, tripropylene glycol dimethacrylate, and polypropylene glycol dimethacrylate and 2,2-dimethyl propanediol dimethacrylate, of at least one kind of claim 1 or precious metal recovery water according to one of 4 gel. 前記ビニル基を2つ以上有する化合物(B)は、ジビニルベンゼンである請求項1乃至のいずれか1項に記載の貴金属回収用吸水ゲル。 The noble metal recovery water-absorbing gel according to any one of claims 1 to 5 , wherein the compound (B) having two or more vinyl groups is divinylbenzene. 請求項1乃至のいずれか1項に記載の吸水ゲルが多孔質体に担持されていることを特徴とする吸水ゲル−多孔質複合体。 A water-absorbing gel-porous composite, wherein the water-absorbing gel according to any one of claims 1 to 6 is supported on a porous body. 請求項1乃至のいずれか1項に記載の吸水ゲル又は請求項7に記載の吸水ゲル−多孔質複合体に、白金族元素を構成要素とするイオン及び金元素を構成要素とするイオンの少なくとも1種のイオンを含有する溶液を接触させることを特徴とする白金族元素及び金の除去方法。 The water-absorbing gel according to any one of claims 1 to 6 or the water-absorbing gel-porous composite according to claim 7, wherein the ion having a platinum group element and the ion having a gold element as components. A method for removing a platinum group element and gold, comprising contacting a solution containing at least one ion. 請求項の除去方法によって得られた、白金族元素を構成要素とするイオン及び金元素を構成要素とするイオンの少なくとも1種のイオンを吸着した吸水ゲル又は吸水ゲル−多孔質複合体を焼却することを特徴とする貴金属の回収方法。 A water-absorbing gel or a water-absorbing gel-porous composite obtained by the removal method according to claim 8 and adsorbing at least one ion of ions comprising a platinum group element and ions comprising a gold element. A method for recovering precious metals.
JP2015149474A 2015-07-29 2015-07-29 Water-absorbing gel for collecting metal ions Active JP6623363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015149474A JP6623363B2 (en) 2015-07-29 2015-07-29 Water-absorbing gel for collecting metal ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015149474A JP6623363B2 (en) 2015-07-29 2015-07-29 Water-absorbing gel for collecting metal ions

Publications (2)

Publication Number Publication Date
JP2017031440A JP2017031440A (en) 2017-02-09
JP6623363B2 true JP6623363B2 (en) 2019-12-25

Family

ID=57985712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015149474A Active JP6623363B2 (en) 2015-07-29 2015-07-29 Water-absorbing gel for collecting metal ions

Country Status (1)

Country Link
JP (1) JP6623363B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308077B (en) * 2021-06-18 2022-02-01 湖北工业大学 Self-repairing circular processing formed poly (ampholyte-triazine)/quartz sand composite material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173834A (en) * 1995-12-21 1997-07-08 Chiyoda Corp Noble metal adsorbent and recovery of noble metal
JPH09173835A (en) * 1995-12-25 1997-07-08 Chiyoda Corp Noble metal adsorbent and recovery of noble metal
JP4637533B2 (en) * 2004-08-31 2011-02-23 信和化工株式会社 Separation agent for solid phase extraction
JP2008264732A (en) * 2007-04-24 2008-11-06 Tokuyama Corp Porous ion exchanger and manufacturing method thereof
CN102199245A (en) * 2011-04-01 2011-09-28 南京大学 Polymer hydrogel, preparation method and application thereof to water treatment
JP2014111829A (en) * 2012-11-07 2014-06-19 Kuraray Co Ltd Gold ion adsorption material and gold ion adsorption module using the same
JP2014114447A (en) * 2012-11-15 2014-06-26 Kuraray Co Ltd Graft copolymer whose graft chain possesses an aromatic nitrogen-containing heterocycle, method for manufacturing the same, and ion adsorbent using the same
JP2014172764A (en) * 2013-03-06 2014-09-22 Kawamura Institute Of Chemical Research Metal-carrying porous carbonaceous material, and production method of the same

Also Published As

Publication number Publication date
JP2017031440A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
Zhang et al. Sorption enhancement of lead ions from water by surface charged polystyrene-supported nano-zirconium oxide composites
Moghbeli et al. Nanosilica reinforced ion-exchange polyHIPE type membrane for removal of nickel ions: Preparation, characterization and adsorption studies
An et al. Adsorption of heavy metal ions by iminodiacetic acid functionalized D301 resin: Kinetics, isotherms and thermodynamics
Jiang et al. Adsorption of Rhodamine B on two novel polar-modified post-cross-linked resins: Equilibrium and kinetics
Kamari et al. Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan
Yu et al. Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals
Chen et al. Surface modification of hydrophobic resin with tricaprylmethylammonium chloride for the removal of trace hexavalent chromium
An et al. Calcium and hydrogen effects during sorption of copper onto an alginate-based ion exchanger: Batch and fixed-bed column studies
WO2004014548A1 (en) Organic porous article having selective adsorption ability for boron, and boron removing module and ultra-pure water production apparatus using the same
Elkady et al. Nano-sulphonated poly (glycidyl methacrylate) cations exchanger for cadmium ions removal: effects of operating parameters
CN110139708B (en) Molecularly imprinted polymer beads for extracting lithium, mercury and scandium
Yue et al. Macroporous monoliths for trace metal extraction from seawater
Khan et al. Adsorption of methyl orange from aqueous solution on anion exchange membranes: Adsorption kinetics and equilibrium
Wu et al. Ternary carboxymethyl chitosan-hemicellulose-nanosized TiO 2 composite as effective adsorbent for removal of heavy metal contaminants from water
Bryjak et al. Capacitive deionization for selective extraction of lithium from aqueous solutions
Pirgalıoğlu et al. Crosslinked polyDADMAC gels as highly selective and reusable arsenate binding materials
Zhang et al. A graphene-based porous composite hydrogel for efficient heavy metal ions removal from wastewater
Bessbousse et al. Novel metal-complexing membrane containing poly (4-vinylpyridine) for removal of Hg (II) from aqueous solution
Hou et al. Electrochemical regeneration of polypyrrole-tailored activated carbons that have removed sulfate
JP6623363B2 (en) Water-absorbing gel for collecting metal ions
KR101820927B1 (en) Ion exchange membrane for improving desalination efficiency and capacitive deionization process employing the same
Bai et al. Processable amidoxime functionalized porous hyper-crosslinked polymer with highly efficient regeneration for uranium extraction
Ali et al. Study on the synthesis of a macroporous ethylacrylate‐divinylbenzene copolymer, its conversion into a bi‐functional cation exchange resin and applications for extraction of toxic heavy metals from wastewater
JP6024416B2 (en) Ultrapure water production method and ultrapure water production apparatus
Zarghami et al. Diffusive transport of Cu (II) ions through thin ion imprinted polymeric membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191019

R150 Certificate of patent or registration of utility model

Ref document number: 6623363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250