JP6623361B2 - Piezoelectric element, vibration device and dust removal device - Google Patents

Piezoelectric element, vibration device and dust removal device Download PDF

Info

Publication number
JP6623361B2
JP6623361B2 JP2015150990A JP2015150990A JP6623361B2 JP 6623361 B2 JP6623361 B2 JP 6623361B2 JP 2015150990 A JP2015150990 A JP 2015150990A JP 2015150990 A JP2015150990 A JP 2015150990A JP 6623361 B2 JP6623361 B2 JP 6623361B2
Authority
JP
Japan
Prior art keywords
piezoelectric element
vibration
diaphragm
peak
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015150990A
Other languages
Japanese (ja)
Other versions
JP2017034035A (en
Inventor
真紀 鈴木
真紀 鈴木
大場 佳成
佳成 大場
亮介 小林
亮介 小林
信隆 八幡
信隆 八幡
正彦 赤岸
正彦 赤岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NJ Components Co Ltd
Original Assignee
NJ Components Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NJ Components Co Ltd filed Critical NJ Components Co Ltd
Priority to JP2015150990A priority Critical patent/JP6623361B2/en
Publication of JP2017034035A publication Critical patent/JP2017034035A/en
Application granted granted Critical
Publication of JP6623361B2 publication Critical patent/JP6623361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、圧電素子、振動装置及び塵埃除去装置に関する。   The present invention relates to a piezoelectric element, a vibration device, and a dust removal device.

電気的エネルギーと機械的エネルギーとを可逆的に変換する圧電効果と呼ばれる特性を有する圧電素子がある。圧電素子は、電気機械エネルギー変換素子とも呼ばれる。圧電素子は、印加電圧により振動し、圧電素子が固着された対象物を振動させる。圧電素子は、カメラの塵埃除去装置、カメラのレンズ用モータ、圧電ブザー、画面タッチに応じてタッチ部分を振動させる触感伝達装置等に用いられる。   There is a piezoelectric element having a characteristic called a piezoelectric effect that reversibly converts electric energy and mechanical energy. A piezoelectric element is also called an electromechanical energy conversion element. The piezoelectric element vibrates according to the applied voltage, and vibrates the object to which the piezoelectric element is fixed. The piezoelectric element is used in a dust removing device of a camera, a motor for a lens of a camera, a piezoelectric buzzer, a tactile sensation transmitting device that vibrates a touch portion according to a screen touch, and the like.

特開2011−114587号公報JP 2011-114587 A 特許第4282226号明細書Patent No. 4282226

しかしながら、上記技術では、圧電素子内で振動しない部分が存在するため、取り付けられた対象物も振動しない部分(節)が存在するという問題がある。例えば、レンズ交換式のカメラの塵埃除去装置の場合、塵埃除去のためにカメラのフィルム又はセンサの上面側の光学フィルタに圧電素子が固着される。そして、圧電素子は、光学フィルタを振動させて、光学フィルタに付着した塵埃を除去する。しかし、上記技術では、光学フィルタ内で振動しない部分(節)が存在するため、この部分に塵埃が付着した場合、振動せず除去できないという問題がある。   However, in the above technique, there is a portion that does not vibrate in the piezoelectric element, and thus there is a problem that a portion (node) where the attached object does not vibrate also exists. For example, in the case of a dust removing device for a camera with an interchangeable lens, a piezoelectric element is fixed to a film of the camera or an optical filter on the upper surface side of the sensor for dust removal. Then, the piezoelectric element vibrates the optical filter to remove dust attached to the optical filter. However, in the above-described technology, there is a portion (node) that does not vibrate in the optical filter. Therefore, when dust adheres to this portion, there is a problem that the dust does not vibrate and cannot be removed.

一つの実施形態として、圧電素子が取り付けられた対象物の全領域を振動させる圧電素子、振動装置及び塵埃除去装置を提供することを目的とする。   As one embodiment, an object is to provide a piezoelectric element, a vibrating device, and a dust removing device that vibrate the entire region of an object to which the piezoelectric element is attached.

一つの実施形態において、圧電素子は、振動板の1つの主面に取り付けられ、電圧印加により第1の方向に伸縮振動して振動板を振動させる平板状の基体部を備える。そして、基体部が非矩形であり、電圧印加による基体部の共振ピークが、振動板の共振による基体部の共振ピークと一致する。 In one embodiment, the piezoelectric element includes a flat base member that is attached to one main surface of the vibration plate and that expands and contracts in a first direction by applying a voltage to vibrate the vibration plate. The base portion is non-rectangular, and the resonance peak of the base portion due to the voltage application coincides with the resonance peak of the base portion due to the resonance of the diaphragm .

一実施形態は、例えば、圧電素子が取り付けられた対象物の全領域を振動させることができる。   In one embodiment, for example, the entire area of the object to which the piezoelectric element is attached can be vibrated.

図1は、実施形態に係る振動装置の一例を示す図である。FIG. 1 is a diagram illustrating an example of the vibration device according to the embodiment. 図2は、実施形態に係る圧電素子の一例を示す図である。FIG. 2 is a diagram illustrating an example of the piezoelectric element according to the embodiment. 図3は、実施形態に係る振動装置における圧電素子及び振動板の振動の一例を示す図である。FIG. 3 is a diagram illustrating an example of vibration of the piezoelectric element and the vibration plate in the vibration device according to the embodiment. 図4は、実施形態に係る圧電素子及び振動板の共振周波数の一例を示す図である。FIG. 4 is a diagram illustrating an example of the resonance frequency of the piezoelectric element and the diaphragm according to the embodiment. 図5は、実施形態に係る圧電素子の共振周波数をシフトさせた場合の振動板の共振周波数の変化の一例を示す図である。FIG. 5 is a diagram illustrating an example of a change in the resonance frequency of the diaphragm when the resonance frequency of the piezoelectric element according to the embodiment is shifted. 図6は、その他の実施形態に係る圧電素子の一例を示す図である。FIG. 6 is a diagram illustrating an example of a piezoelectric element according to another embodiment. 図7は、実施形態の適用例の一例を示す図である。FIG. 7 is a diagram illustrating an example of an application example of the embodiment. 図8は、実施例及び従来例における振動板の変位観測の座標系の一例を示す図である。FIG. 8 is a diagram illustrating an example of a coordinate system for observing displacement of a diaphragm in the embodiment and the conventional example. 図9は、実施例1及び実施例2と、従来例1における振動板の変位量を比較する一例を示す図である。FIG. 9 is a diagram illustrating an example of comparing the displacement amounts of the diaphragm in the first and second embodiments and the first conventional example. 図10は、従来例1〜3において、圧電素子の面積に応じた変位量を比較する一例を示す図である。FIG. 10 is a diagram illustrating an example in which the displacement amounts according to the areas of the piezoelectric elements are compared in Conventional Examples 1 to 3.

以下に、開示技術に係る圧電素子、振動装置及び塵埃除去装置の実施形態の一例を図面に基づいて説明する。以下の実施形態において、図を参照して説明する「上」「下」「左」「右」「前」「後」等は、相対的位置を示すに過ぎない。なお、以下の実施形態は、一例を示すに過ぎず、開示技術を限定するものではない。   Hereinafter, an example of an embodiment of a piezoelectric element, a vibration device, and a dust removal device according to the disclosed technology will be described with reference to the drawings. In the following embodiments, “up,” “down,” “left,” “right,” “front,” “back,” and the like described with reference to the drawings merely indicate relative positions. The following embodiments are merely examples, and do not limit the disclosed technology.

(実施形態に係る振動装置)
図1は、実施形態に係る振動装置の一例を示す図である。実施形態に係る振動装置1は、圧電素子10、振動板20を有する。圧電素子10は、振動板20の上面の1つの端部に沿って振動板20上に取り付けられる、平板かつ長尺の圧電素子である。
(Vibration device according to the embodiment)
FIG. 1 is a diagram illustrating an example of the vibration device according to the embodiment. The vibration device 1 according to the embodiment has a piezoelectric element 10 and a vibration plate 20. The piezoelectric element 10 is a flat and long piezoelectric element mounted on the diaphragm 20 along one end of the upper surface of the diaphragm 20.

圧電素子10は、基体部11、電極12、電極13を有する。基体部11は、印加電圧に応じて電気エネルギーを機械エネルギーへ変換する、例えば圧電セラミックスである。電極12は、振動板20上に取り付けられる基体部11の下面から基体部11の1つの端部に沿って折り返され基体部11の下面の反対面である上面の部分まで配置される。電極13は、基体部11の上面の部分に配置される。基体部11の上面において、電極12及び電極13の間には、スリットが設けられる。   The piezoelectric element 10 has a base 11, an electrode 12, and an electrode 13. The base 11 is, for example, a piezoelectric ceramic that converts electric energy into mechanical energy in accordance with an applied voltage. The electrode 12 is folded from the lower surface of the base 11 attached to the diaphragm 20 along one end of the base 11 to the upper surface opposite to the lower surface of the base 11. The electrode 13 is disposed on the upper surface of the base 11. On the upper surface of the base portion 11, a slit is provided between the electrode 12 and the electrode 13.

圧電素子10は、基体部11に電極12及び電極13が配置された状態で振動板20上に取り付けられる。すなわち、圧電素子10は、振動板20上に取り付けられる状態であっても、基体部11の下面と接触する電極12の一部が基体部11の上面に引き出されるため、電極12及び電極13間に電圧を印加することができる。そして、圧電素子10は、電極12及び電極13間に電圧が印加されると、基体部11の厚さ方向に電圧が印加されることになり、圧電効果により基体部11の長手方向に伸縮振動する。例えば、長手方向が、第1の方向であり、後述の短手方向が、第1の方向と垂直な第2の方向である。   The piezoelectric element 10 is mounted on the diaphragm 20 in a state where the electrodes 12 and 13 are arranged on the base 11. That is, even when the piezoelectric element 10 is mounted on the vibration plate 20, a part of the electrode 12 in contact with the lower surface of the base portion 11 is drawn out to the upper surface of the base portion 11. Can be applied with a voltage. When a voltage is applied between the electrodes 12 and 13, a voltage is applied to the piezoelectric element 10 in the thickness direction of the base 11, and the piezoelectric element 10 expands and contracts in the longitudinal direction of the base 11 due to the piezoelectric effect. I do. For example, a longitudinal direction is a first direction, and a lateral direction described later is a second direction perpendicular to the first direction.

振動板20には、圧電素子10が上面の1つの端部に沿って、電圧印加による圧電素子10の振動が伝達するように取り付けられる。例えば、圧電素子10は、振動板20の上面の1つの端部に沿って固着される。振動板20は、圧電効果による圧電素子10の伸縮振動が伝搬して振動する。   The piezoelectric element 10 is attached to the vibration plate 20 along one end of the upper surface so that vibration of the piezoelectric element 10 due to voltage application is transmitted. For example, the piezoelectric element 10 is fixed along one end of the upper surface of the diaphragm 20. The vibration plate 20 vibrates due to propagation of expansion and contraction vibration of the piezoelectric element 10 due to the piezoelectric effect.

なお、(a)方向から見た圧電素子10の面を、圧電素子10の上面と呼ぶ。また、(b)方向から見た圧電素子10の面を、圧電素子10の左側面と呼ぶ。また、(c)方向から見た圧電素子10の面を、圧電素子10の右側面と呼ぶ。また、(d)方向から見た圧電素子10の面を、圧電素子10の後面と呼ぶ。また、(e)方向から見た圧電素子10の面を、圧電素子10の前面と呼ぶ。また、(f)方向から見た圧電素子10の面を、圧電素子10の下面と呼ぶ。   The surface of the piezoelectric element 10 viewed from the direction (a) is referred to as the upper surface of the piezoelectric element 10. Further, the surface of the piezoelectric element 10 viewed from the direction (b) is referred to as a left side surface of the piezoelectric element 10. Further, the surface of the piezoelectric element 10 viewed from the direction (c) is referred to as a right side surface of the piezoelectric element 10. The surface of the piezoelectric element 10 viewed from the direction (d) is referred to as a rear surface of the piezoelectric element 10. Further, the surface of the piezoelectric element 10 viewed from the direction (e) is referred to as the front surface of the piezoelectric element 10. The surface of the piezoelectric element 10 viewed from the direction (f) is referred to as the lower surface of the piezoelectric element 10.

(実施形態に係る圧電素子)
図2は、実施形態に係る圧電素子の一例を示す図である。図2の(a)〜(f)は、それぞれ、図1に示す(a)〜(f)の方向から見た圧電素子10の上面図、左側面図、右側面図、背面図、前面図、後面図である。図2において、ライン50は、圧電素子10の前後の長手方向の各中心を通過する中心線である。
(Piezoelectric element according to embodiment)
FIG. 2 is a diagram illustrating an example of the piezoelectric element according to the embodiment. FIGS. 2A to 2F are a top view, a left side view, a right side view, a rear view, and a front view of the piezoelectric element 10 viewed from the directions (a) to (f) shown in FIG. 1, respectively. FIG. In FIG. 2, a line 50 is a center line passing through each center of the piezoelectric element 10 in the longitudinal direction before and after.

図2に示すように、圧電素子10は、長手方向の長さがW、厚みがHである。また、図2に示すように、圧電素子10は、短手方向の長さが、長手方向のライン50付近においてL1であり、ライン50付近から長手方向の左右の端部へ近付くに従って前後均等に徐々に短くなり、各端部においてL1から前後にそれぞれDだけ短いL2となる。つまり、圧電素子10は、長辺及び短辺の長さがそれぞれW及びL1の矩形の各頂点を、各頂点から距離Dの短辺上の点と、長辺及びライン50の交点とを結んだ直線に沿って切り欠いた形状である。言い換えると、圧電素子10は、菱形の長手方向の各両端が同一長だけ切り取られ、長手方向の長さがWとなり、短手方向の長さが中心付近でL1、両端でL2となる六角形である。   As shown in FIG. 2, the piezoelectric element 10 has a length W in the longitudinal direction and a thickness H. As shown in FIG. 2, the piezoelectric element 10 has a length in the short side direction L1 near the line 50 in the longitudinal direction, and becomes uniform in the front-rear direction from the vicinity of the line 50 to the left and right ends in the longitudinal direction. It gradually becomes shorter, and becomes L2 which is shorter by D before and after L1 at each end. That is, the piezoelectric element 10 connects each vertex of the rectangle having the long sides and the short sides of W and L1, respectively, to a point on the short side at a distance D from each vertex and the intersection of the long side and the line 50. The shape is notched along the straight line. In other words, the piezoelectric element 10 has a hexagonal shape in which both ends in the longitudinal direction of the rhombus are cut out by the same length, the length in the longitudinal direction is W, and the length in the short direction is L1 near the center and L2 at both ends. It is.

また、図2に示すように、圧電素子10は、基体部11の下面から右端に沿って折り返されて右端からE1の距離までの上面に配置される折り返し電極である電極12を有する。また、図2に示すように、圧電素子10は、基体部11の上面に配置される電極13を有する。電極12及び電極13の間には、幅E2のスリットが設けられる。   As shown in FIG. 2, the piezoelectric element 10 has an electrode 12 that is a folded electrode that is folded from the lower surface of the base portion 11 along the right end and disposed on the upper surface up to a distance of E1 from the right end. As shown in FIG. 2, the piezoelectric element 10 has an electrode 13 arranged on the upper surface of the base 11. A slit having a width E2 is provided between the electrode 12 and the electrode 13.

(実施形態に係る圧電素子及び振動板の振動)
図3は、実施形態に係る振動装置における圧電素子及び振動板の振動の一例を示す図である。図3に示すように、圧電素子10は、厚さ方向に電圧が印加されると、圧電効果により長手方向Aに伸縮振動する。そして、振動板20は、圧電素子10が固着された1つの端部付近において、圧電素子10の長手方向Aの伸縮振動に伴って、圧電素子10の長手方向Aに伸縮振動する。そして、振動板20の1つの端部付近における伸縮振動が、振動板20において方向Bに伝搬することにより、振動板20の全体が振動する。
(Vibration of piezoelectric element and diaphragm according to embodiment)
FIG. 3 is a diagram illustrating an example of vibration of the piezoelectric element and the vibration plate in the vibration device according to the embodiment. As shown in FIG. 3, when a voltage is applied in the thickness direction, the piezoelectric element 10 expands and contracts in the longitudinal direction A by a piezoelectric effect. The vibrating plate 20 expands and contracts in the longitudinal direction A of the piezoelectric element 10 along with the expansion and contraction vibration in the longitudinal direction A of the piezoelectric element 10 near one end to which the piezoelectric element 10 is fixed. Then, the expansion and contraction vibration in the vicinity of one end of the diaphragm 20 propagates in the direction B on the diaphragm 20, so that the entire diaphragm 20 vibrates.

(実施形態に係る圧電素子及び振動板の共振周波数)
図4は、実施形態に係る圧電素子及び振動板の共振周波数の一例を示す図である。図4は、横軸を周波数[Hz]とし、縦軸を振動板20の変位量d[nm]とした場合を示す。図4に示す例では、圧電素子10の共振周波数のピークをp1、振動板20の共振により圧電素子10が振動し発電することによる共振周波数のピークをp2とする。すなわち、ピークp2は、圧電素子10の振動により共振する振動板20の振動による圧電素子10の共振周波数である。言い換えると、ピークp1は圧電素子10の電圧印加による共振ピークであり、ピークp2は圧電素子10の電圧印加以外による共振ピークである。
(Resonance frequency of piezoelectric element and diaphragm according to embodiment)
FIG. 4 is a diagram illustrating an example of the resonance frequency of the piezoelectric element and the diaphragm according to the embodiment. FIG. 4 shows a case where the horizontal axis represents the frequency [Hz] and the vertical axis represents the displacement d [nm] of the diaphragm 20. In the example shown in FIG. 4, the peak of the resonance frequency of the piezoelectric element 10 is p1, and the peak of the resonance frequency due to the vibration of the piezoelectric element 10 due to the resonance of the diaphragm 20 to generate power is p2. That is, the peak p2 is the resonance frequency of the piezoelectric element 10 due to the vibration of the vibration plate 20 that resonates with the vibration of the piezoelectric element 10. In other words, the peak p1 is a resonance peak due to the application of a voltage to the piezoelectric element 10, and the peak p2 is a resonance peak due to an operation other than the application of a voltage to the piezoelectric element 10.

圧電素子10の共振周波数のピークp1は、圧電素子10のサイズが小さいほど、より高い周波数となるが、最大変位量はより小さくなる。つまり、ピークp1は、圧電素子10の平置き面積に応じて、より高い周波数へシフトするが、パワーはより小さくなる。また、ピークp1は、圧電素子10の形状が、圧電素子10の短手方向の長さが、長手方向の中心付近から長手方向の左右の端部へ近付くに従って前後均等に徐々に短くなり、各端部において最小となる形状であると、より高い周波数へシフトする。つまり、ピークp1は、圧電素子10の形状を、圧電素子10の短手方向の長さが、長手方向の中心付近で最大とし、長手方向の左右の端部で最小とし、圧電素子10において振動の際に発生する応力を長手方向の中心付近に集中させると、より高い周波数へシフトする。   The peak p1 of the resonance frequency of the piezoelectric element 10 has a higher frequency as the size of the piezoelectric element 10 is smaller, but the maximum displacement amount is smaller. That is, the peak p1 shifts to a higher frequency according to the flat area of the piezoelectric element 10, but the power becomes smaller. In addition, the peak p1 is such that the shape of the piezoelectric element 10 is gradually and uniformly shortened back and forth as the length of the piezoelectric element 10 in the lateral direction approaches from the vicinity of the center in the longitudinal direction to the left and right ends in the longitudinal direction. The shape that is the smallest at the ends shifts to higher frequencies. That is, the peak p1 is such that the shape of the piezoelectric element 10 is such that the length in the short direction of the piezoelectric element 10 is maximized near the center in the longitudinal direction, and minimized at the left and right ends in the longitudinal direction. If the stress generated at the time is concentrated near the center in the longitudinal direction, the frequency shifts to a higher frequency.

一方、振動板20の共振周波数のピークp2は、圧電素子10の振動により振動板20が振動し、振動板20の振動により圧電素子10が振動して発電することによる共振ピークであり、圧電素子10の平置き面積に関わらず一定である。   On the other hand, the peak p2 of the resonance frequency of the vibration plate 20 is a resonance peak due to the vibration of the piezoelectric element 10 that vibrates due to the vibration of the piezoelectric element 10 and the vibration of the piezoelectric element 10 to generate power. It is constant irrespective of the flat area of ten.

このことから、圧電素子10の形状を、所定の矩形から平置きの面積を変えず、圧電素子10の短手方向の長さが、長手方向の中心付近から長手方向の左右の端部へ近付くに従って前後均等に徐々に短くなり、各端部において最小となる所定形状とする。以下、所定形状を、略ひし形と呼ぶ。すると、圧電素子10の共振周波数のピークは、パワーを低下させることなく、より高い周波数へシフトする。   From this, the shape of the piezoelectric element 10 is not changed from a predetermined rectangle to a flat area, and the length of the piezoelectric element 10 in the lateral direction approaches from the vicinity of the center in the longitudinal direction to the left and right ends in the longitudinal direction. , A predetermined shape that is gradually shortened in the front-rear direction and becomes minimum at each end. Hereinafter, the predetermined shape is referred to as a substantially diamond shape. Then, the peak of the resonance frequency of the piezoelectric element 10 shifts to a higher frequency without lowering the power.

図5は、実施形態に係る圧電素子の共振周波数をシフトさせた場合の振動板の共振周波数の変化の一例を示す図である。図5の(a1)及び(b1)に示す例では、圧電素子10の形状が矩形である場合である。また、図5の(a2)及び(b2)に示す例では、圧電素子10の形状が略ひし形である場合である。   FIG. 5 is a diagram illustrating an example of a change in the resonance frequency of the diaphragm when the resonance frequency of the piezoelectric element according to the embodiment is shifted. In the example shown in FIGS. 5A and 5B, the piezoelectric element 10 has a rectangular shape. Further, the examples shown in FIGS. 5A2 and 5B2 are cases where the shape of the piezoelectric element 10 is substantially rhombic.

図5の(a1)及び(a2)に示す例では、圧電素子10に印加する交流電圧の位相が90(90+360×t、tは整数)degであり、圧電素子10の共振周波数のピークをp11、圧電素子10の振動による振動板20の共振周波数のピークをp21〜p24とする。また、図5の(b1)及び(b2)に示す例では、圧電素子10に印加する交流電圧の位相が40(40+360×t)degであり、圧電素子10の共振周波数のピークをp12、圧電素子10の振動による振動板20の共振周波数のピークをp25〜p28とする。   In the example shown in (a1) and (a2) of FIG. 5, the phase of the AC voltage applied to the piezoelectric element 10 is 90 (90 + 360 × t, where t is an integer) deg, and the peak of the resonance frequency of the piezoelectric element 10 is p11 The peaks of the resonance frequency of the vibration plate 20 due to the vibration of the piezoelectric element 10 are defined as p21 to p24. In the examples shown in (b1) and (b2) of FIG. 5, the phase of the AC voltage applied to the piezoelectric element 10 is 40 (40 + 360 × t) deg, the peak of the resonance frequency of the piezoelectric element 10 is p12, The peak of the resonance frequency of the diaphragm 20 due to the vibration of the element 10 is defined as p25 to p28.

図5の(a1)及び(a2)に示すように、圧電素子10に印加する交流電圧の位相が90(90+360×t、tは整数)degのとき、圧電素子10の形状を略ひし形とすると、圧電素子10の共振周波数のピークp11が、振動板20の共振周波数のピークp23と同一になる。この場合、振動板20は、圧電素子10の振動により、共振周波数のピークp23−1において、(ピークp11の変位量+ピークp23の変位量)と等しい変位量dで振動する。よって、図5の(a3)に示すように、圧電素子10に印加する交流電圧の位相が90(90+360×t)degのとき、振動板20を上方から見た場合に、変位量dが100nm程度となる部分が現れる。   As shown in (a1) and (a2) of FIG. 5, when the phase of the AC voltage applied to the piezoelectric element 10 is 90 (90 + 360 × t, t is an integer) deg, the shape of the piezoelectric element 10 is substantially rhombic. The peak p11 of the resonance frequency of the piezoelectric element 10 becomes the same as the peak p23 of the resonance frequency of the diaphragm 20. In this case, due to the vibration of the piezoelectric element 10, the vibration plate 20 vibrates with a displacement d equal to (the displacement of the peak p11 + the displacement of the peak p23) at the peak p23-1 of the resonance frequency. Therefore, as shown in (a3) of FIG. 5, when the phase of the AC voltage applied to the piezoelectric element 10 is 90 (90 + 360 × t) deg, when the diaphragm 20 is viewed from above, the displacement d is 100 nm. A part of the degree appears.

一方、図5の(b1)及び(b2)に示すように、圧電素子10に印加する交流電圧の位相が40(40+360×t、tは整数)degのとき、圧電素子10の形状を略ひし形とすると、圧電素子10の共振周波数のピークp12が、振動板20の共振周波数のピークp27と同一になる。この場合、振動板20は、圧電素子10の振動により、共振周波数のピークp27−1において、(ピークp12の変位量+ピークp27の変位量)と等しい変位量dで振動する。よって、図5の(b3)に示すように、圧電素子10に印加する交流電圧の位相が40(40+360×t、tは整数)degのとき、振動板20を上方から見た場合に、変位量dが概ね50nm以下程度となる。   On the other hand, as shown in (b1) and (b2) of FIG. 5, when the phase of the AC voltage applied to the piezoelectric element 10 is 40 (40 + 360 × t, where t is an integer) deg, the shape of the piezoelectric element 10 is substantially rhombic. Then, the peak p12 of the resonance frequency of the piezoelectric element 10 becomes the same as the peak p27 of the resonance frequency of the diaphragm 20. In this case, due to the vibration of the piezoelectric element 10, the vibration plate 20 vibrates at the peak p27-1 of the resonance frequency with the displacement d equal to (the displacement of the peak p12 + the displacement of the peak p27). Therefore, as shown in (b3) of FIG. 5, when the phase of the AC voltage applied to the piezoelectric element 10 is 40 (40 + 360 × t, t is an integer) deg, when the diaphragm 20 is viewed from above, the displacement is The amount d is about 50 nm or less.

よって、図5の(a3)及び(b3)によると、圧電素子10に印加する交流電圧の位相が90(90+360×t、tは整数)deg、40(40+360×t)degのとき、振動板20を上方から見た場合に、変位量dの分布が異なる。すなわち、振動板20は、圧電素子10に印加する交流電圧の位相が90(90+360×t)degのときと、40(40+360×t)degのときで、異なる振動モードで振動する。   Therefore, according to (a3) and (b3) of FIG. 5, when the phase of the AC voltage applied to the piezoelectric element 10 is 90 (90 + 360 × t, t is an integer) deg and 40 (40 + 360 × t) deg, the diaphragm When viewing 20 from above, the distribution of the displacement d is different. That is, the vibration plate 20 vibrates in different vibration modes when the phase of the AC voltage applied to the piezoelectric element 10 is 90 (90 + 360 × t) deg and when the phase of the AC voltage is 40 (40 + 360 × t) deg.

以上から、実施形態は、圧電素子10の共振周波数のピークが、振動板20の共振周波数のピークと同一になるように圧電素子10の形状を略ひし形とすると、振動板20は、より大きく変動する、又は、異なる位相で異なる振動モードで振動する。   As described above, in the embodiment, when the shape of the piezoelectric element 10 is substantially rhombic so that the peak of the resonance frequency of the piezoelectric element 10 becomes the same as the peak of the resonance frequency of the vibration plate 20, the vibration plate 20 fluctuates more greatly. Or vibrates in different vibration modes with different phases.

(その他の実施形態)
(1)圧電素子の形状について
上記実施形態において、圧電素子10は、短手方向の長さが、長手方向の中心付近から長手方向の左右の端部へ近付くに従って前後均等に徐々に短くなり、各端部において最小となる六角形であるとした。しかし、これに限らず、例えば図6に示す圧電素子10aのように、短手方向の長さが、長手方向の中心付近から長手方向の左右各方向へΔの部分は一定であり、長手方向の左右各方向へΔの部分から左右の端部へ近付くに従って前後均等に徐々に短くなり、各端部において最小となる八角形であってもよい。あるいは、圧電素子10の形状は、非矩形であり、圧電素子10の電圧印加による共振ピークp1が、圧電素子10の電圧印加以外による共振ピークp2と一致する形状であれば、いずれであってもよい。その他、圧電素子は、例えば、円又は楕円、あるいは、図2に示す六角形又は図6に示す八角形の辺のうち最長の辺を直線から曲線に置き換えた形状であってもよい。もしくは、圧電素子は、例えば、図2に示す六角形又は図6に示す八角形の辺のうち少なくともいずれかの辺を直線から曲線に置き換えた形状であってもよい。いずれの場合も、例えば、圧電素子の伸縮振動方向が第1の方向であり、第1の方向と垂直な方向が第2の方向である。
(Other embodiments)
(1) Shape of Piezoelectric Element In the above-described embodiment, the length of the piezoelectric element 10 in the lateral direction gradually becomes shorter in the front-rear direction as it approaches the left and right ends in the longitudinal direction from near the center in the longitudinal direction, It was assumed that it was a hexagon which became the minimum at each end. However, the present invention is not limited to this. For example, as in the piezoelectric element 10a shown in FIG. In each of the left and right directions, an octagon may be gradually shortened in the front-rear direction as it approaches the left and right ends from the portion of Δ and becomes minimum at each end. Alternatively, any shape may be used as long as the shape of the piezoelectric element 10 is non-rectangular and the resonance peak p1 due to the application of the voltage of the piezoelectric element 10 matches the resonance peak p2 due to other than the application of the voltage to the piezoelectric element 10. Good. In addition, the piezoelectric element may be, for example, a circle or an ellipse, or a shape in which the longest side of the hexagon shown in FIG. 2 or the octagon shown in FIG. Alternatively, the piezoelectric element may have, for example, a shape in which at least one of the sides of the hexagon shown in FIG. 2 or the octagon shown in FIG. In any case, for example, the direction of expansion and contraction vibration of the piezoelectric element is the first direction, and the direction perpendicular to the first direction is the second direction.

(2)圧電素子の素材について
上記実施形態において、圧電素子10は、圧電セラミックスを含んで構成されるとした。しかし、これに限らず、圧電素子10は、圧電効果の特性を有する圧電材料であればいずれを含んで構成されてもよい。また、圧電素子10は、圧電材料に加え、金属板、弾性振動体等を含んで構成されてもよい。
(2) Material of Piezoelectric Element In the above embodiment, the piezoelectric element 10 is configured to include piezoelectric ceramics. However, the present invention is not limited to this, and the piezoelectric element 10 may include any piezoelectric material having a piezoelectric effect characteristic. Further, the piezoelectric element 10 may include a metal plate, an elastic vibrator, and the like in addition to the piezoelectric material.

(実施形態の適用例)
図7は、実施形態の適用例の一例を示す図である。図7は、実施形態をカメラのイメージセンサの受光部40を被覆する2層の光学ローパスフィルタ20a、30のうち、外部の塵が付着する表層部の光学ローパスフィルタ20aを振動板20とするカメラの塵埃除去装置に適用した場合を示す。光学ローパスフィルタ20aの略矩形の一つの端部の辺に沿って圧電素子10が固着される。圧電素子10は、電圧が印加されることにより伸縮振動し、伸縮振動により光学ローパスフィルタ20aが振動する。光学ローパスフィルタ20aの振動により、光学ローパスフィルタ20aの表面に付着した塵を、光学ローパスフィルタ20aの表面から除去できる。その他、圧電素子10は、圧電ブザー、画面タッチに応じてタッチ部分を振動させる触感伝達装置等に適用可能である。また、実施形態は、カメラに限らず、ファクシミリ装置、スキャナ、プロジェクタ、複写機、レーザビームプリンタ、インクジェットプリンタ、レンズ、双眼鏡、画像表示装置、その他の種々の装置が備える、対象機器を塵埃から保護する振動板に付着した塵埃を圧電素子及び振動板の振動により除去する塵埃除去装置に適用可能である。
(Application Example of Embodiment)
FIG. 7 is a diagram illustrating an example of an application example of the embodiment. FIG. 7 shows a camera in which the diaphragm 20 is the optical low-pass filter 20a in the surface layer to which external dust adheres, of the two-layer optical low-pass filters 20a and 30 that cover the light receiving unit 40 of the image sensor of the camera. It shows a case where the present invention is applied to a dust removing device. The piezoelectric element 10 is fixed along one side of a substantially rectangular end of the optical low-pass filter 20a. The piezoelectric element 10 expands and contracts when a voltage is applied, and the optical low-pass filter 20a vibrates due to the expansion and contraction vibration. Due to the vibration of the optical low-pass filter 20a, dust attached to the surface of the optical low-pass filter 20a can be removed from the surface of the optical low-pass filter 20a. In addition, the piezoelectric element 10 is applicable to a piezoelectric buzzer, a tactile sensation transmission device that vibrates a touch portion in response to a screen touch, and the like. In addition, the embodiments are not limited to cameras, but include facsimile devices, scanners, projectors, copiers, laser beam printers, inkjet printers, lenses, binoculars, image display devices, and various other devices. The present invention can be applied to a dust removing device that removes dust attached to a vibrating plate by vibration of the piezoelectric element and the vibrating plate.

以下、実施形態の実施例1〜2を、従来例1〜3と比較しつつ説明する。図8は、実施例及び従来例における振動板の変位観測の座標系の一例を示す図である。図8に示すように、略矩形の振動板20の1つの角の上面側を原点とし、圧電素子10の交差する2つの辺に沿ってx軸及びy軸を取り、圧電素子10の厚み方向をz軸とする。実施例1〜2及び従来例1〜3において、x軸の正方向は、振動板20において圧電素子10が固着され伸縮振動する方向である。また、y軸の正方向は、圧電素子10の伸縮振動による振動板20の振動が伝搬する方向である。z軸の正方向は、圧電素子10の厚み方向である。このようなxyz座標系を取った場合、振動板20の振動による振幅方向の変位量dは、z軸方向の変位量となる。   Hereinafter, Examples 1 and 2 of the embodiment will be described in comparison with Conventional Examples 1 to 3. FIG. 8 is a diagram illustrating an example of a coordinate system for observing displacement of a diaphragm in the embodiment and the conventional example. As shown in FIG. 8, the x-axis and the y-axis are taken along two sides intersecting the piezoelectric element 10 with the origin at the upper side of one corner of the substantially rectangular diaphragm 20, and the thickness direction of the piezoelectric element 10 is taken. Is the z axis. In Examples 1 and 2 and Conventional Examples 1 to 3, the positive direction of the x-axis is a direction in which the piezoelectric element 10 is fixed to the vibration plate 20 and expands and contracts. The positive direction of the y-axis is a direction in which the vibration of the vibration plate 20 due to the expansion and contraction vibration of the piezoelectric element 10 propagates. The positive direction of the z-axis is the thickness direction of the piezoelectric element 10. When such an xyz coordinate system is used, the displacement d in the amplitude direction due to the vibration of the diaphragm 20 is the displacement in the z-axis direction.

なお、実施例1〜2及び従来例1〜3に係る圧電素子、電極、光学ローパスフィルタの物性は、下記(表1)に示すとおりである。すなわち、圧電素子10の基体部11は、素材がP31(FDK素材)であり、面積が56m、厚みが0.5mmとした。また、基体部11は、物性が密度7.7×10kg/m、誘電率、機械的品質係数Qm、誘電正接tanδ、圧電定数d、弾性コンプライアンス定数sが、P31のカタログ値であるとした。また、圧電素子10の電極12及び電極13は、素材がAg、厚みが0.02mmとした。また、電極12及び電極13は、物性が、密度1.05×10kg/m、ヤング率7.32×1010Pa、ポアソン比3.8×10−1とした。また、電極12の電位はGNDすなわち0Vとし、電極13の電位は16Vとした(電気壁)。電極12は、基体部11の1つの端部に沿った基体部11の下面から上面への折り返し部分が2.5mmであり、電極13となすスリット幅が0.5mmとした。また、振動板20は、光学水晶又は防塵コートが施された光学水晶である光学ローパスフィルタとした例であり、30×28.5mmの矩形であり、素材をガラスとした。また、振動板20は、物性が密度2.77×10kg/m、ヤング率が7.31×1010Pa、ポアソン比1.7×10−1とした。 The physical properties of the piezoelectric elements, electrodes, and optical low-pass filters according to Examples 1 and 2 and Conventional Examples 1 to 3 are as shown in the following (Table 1). That is, the base portion 11 of the piezoelectric element 10 was made of P31 (FDK material), had an area of 56 m 2 , and had a thickness of 0.5 mm. The base part 11 has physical properties of a density of 7.7 × 10 3 kg / m 3 , a dielectric constant, a mechanical quality factor Qm, a dielectric loss tangent tan δ, a piezoelectric constant d, and an elastic compliance constant s are catalog values of P31. And The material of the electrodes 12 and 13 of the piezoelectric element 10 was Ag and the thickness was 0.02 mm. The electrodes 12 and 13 had physical properties of a density of 1.05 × 10 3 kg / m 3 , a Young's modulus of 7.32 × 10 10 Pa, and a Poisson's ratio of 3.8 × 10 −1 . The potential of the electrode 12 was set to GND, that is, 0 V, and the potential of the electrode 13 was set to 16 V (electric wall). The electrode 12 had a folded portion from the lower surface to the upper surface of the base portion 11 along one end of the base portion 11 of 2.5 mm, and a slit width formed with the electrode 13 was 0.5 mm. Further, the diaphragm 20 is an example of an optical low-pass filter which is an optical crystal or an optical crystal coated with a dust-proof coating, has a rectangular shape of 30 × 28.5 mm, and is made of glass. The diaphragm 20 had physical properties of a density of 2.77 × 10 3 kg / m 3 , a Young's modulus of 7.31 × 10 10 Pa, and a Poisson's ratio of 1.7 × 10 −1 .

図9は、実施例1及び実施例2と、従来例1における振動板の変位量を比較する一例を示す図である。また、図10は、従来例1〜3において、圧電素子の面積に応じた変位量を比較する一例を示す図である。図9に示す従来例1は、圧電素子を、28×2mmの矩形、面積56m、周辺長60mmとした場合を示す。また、図9に示す実施例1は、圧電素子を、図2に示すDが0.2mmの略ひし形、面積56m、周辺長59.2mmとした場合を示す。また、図9に示す実施例2は、圧電素子を、図2に示すDが0.4mmの略ひし形、面積56m、周辺長59.0mmとした場合を示す。 FIG. 9 is a diagram illustrating an example of comparing the displacement amounts of the diaphragm in the first and second embodiments and the first conventional example. FIG. 10 is a diagram illustrating an example of comparing the displacement amounts according to the area of the piezoelectric element in Conventional Examples 1 to 3. Conventional example 1 shown in FIG. 9 shows a case where the piezoelectric element has a rectangular shape of 28 × 2 mm, an area of 56 m 2 , and a peripheral length of 60 mm. Further, Example 1 shown in FIG. 9 shows a case where the piezoelectric element shown in FIG. 2 has a substantially diamond shape having D of 0.2 mm, an area of 56 m 2 , and a peripheral length of 59.2 mm. Further, Example 2 shown in FIG. 9 shows a case where the piezoelectric element shown in FIG. 2 has a substantially diamond shape with D of 0.4 mm, an area of 56 m 2 , and a peripheral length of 59.0 mm.

実施例1及び実施例2は、従来例1と比較して、共振周波数がより高周波数へシフトし、共振周波数の最大変位量が増大した。特に実施例2は、40(40+360×t、tは整数)degのときに、従来例1と比較して、変位量dの最大量が20nm程度から100nm程度へ増大した。これに伴い、実施例1及び実施例2は、従来例1と比較して、位相90(90+360×t)deg、40(40+360×t)degともに、変位量dが略0である波の“節”の部分が減少し、変位量dが最大となる波の“腹”の部分が増大した。また、実施例1及び実施例2は、従来例1と比較して、位相が90(90+360×t)degである場合と、40(40+360×t)degである場合とで、波の“節”の出現パターンが異なった。これは、実施例1及び実施例2では、異なる位相で異なる振動モードが出現することを示し、異なる振動モードで効率的に塵を除去できることを示す。   In Example 1 and Example 2, the resonance frequency was shifted to a higher frequency and the maximum displacement of the resonance frequency was increased as compared with Conventional Example 1. Particularly, in Example 2, the maximum amount of the displacement d increased from about 20 nm to about 100 nm at 40 (40 + 360 × t, where t is an integer) deg, as compared with Conventional Example 1. Accordingly, the first embodiment and the second embodiment are different from the first conventional example in that both the phase 90 (90 + 360 × t) deg and the 40 (40 + 360 × t) deg “ The “node” portion was reduced, and the “belly” portion of the wave where the displacement d was maximum increased. Further, the first and second embodiments are different from the conventional example 1 in that the phase of the wave is 90 (90 + 360 × t) deg and the phase of the wave is 40 (40 + 360 × t) deg. Was different. This indicates that in Example 1 and Example 2, different vibration modes appear at different phases, and that dust can be efficiently removed in different vibration modes.

なお、図10に示す従来例1は、図9に示す従来例1と同一である。また、図10に示す従来例2は、圧電素子を、面積47.6m、周辺長59.4mmの矩形とした場合を示す。また、図10に示す従来例3は、圧電素子を、面積39.2m、周辺長58.8mmの矩形とした場合を示す。すなわち、従来例2及び従来例3は、従来例1と比較して、圧電素子の形状は矩形のままとし、面積を小さくしたものである。従来例2及び従来例3は、従来例1と比較して、位相90(90+360×t)degの場合に、変位量dの最大量が減少した。すなわち、従来例1〜3において、圧電素子の面積が小さくなるほど、振動板の変位量dが減少した。また、図9に示す実施例1及び実施例2は、従来例2及び従来例3と比較しても、位相90(90+360×t)deg、40(40+360×t)degともに、変位量dが略0である波の“節”の部分が減少し、変位量dが最大となる波の“腹”の部分が増大することが分かった。また、図9に示す実施例1及び実施例2は、従来例2及び従来例3と比較しても、位相が90(90+360×t)degである場合と、40(40+360×t)degである場合とで、波の“節”の出現パターンが異なることが分かった。 The conventional example 1 shown in FIG. 10 is the same as the conventional example 1 shown in FIG. Further, Conventional Example 2 shown in FIG. 10 shows a case where the piezoelectric element is a rectangle having an area of 47.6 m 2 and a peripheral length of 59.4 mm. Conventional example 3 shown in FIG. 10 shows a case where the piezoelectric element is a rectangle having an area of 39.2 m 2 and a peripheral length of 58.8 mm. That is, in the conventional example 2 and the conventional example 3, the shape of the piezoelectric element is kept rectangular and the area is reduced as compared with the conventional example 1. In Conventional Example 2 and Conventional Example 3, the maximum amount of the displacement amount d was reduced in the case of the phase 90 (90 + 360 × t) deg, as compared with Conventional Example 1. That is, in Conventional Examples 1 to 3, the displacement d of the diaphragm decreases as the area of the piezoelectric element decreases. Further, in the first embodiment and the second embodiment shown in FIG. 9, the displacement amount d in both the phase 90 (90 + 360 × t) deg and the 40 (40 + 360 × t) deg is larger than the conventional example 2 and the conventional example 3. It has been found that the "node" portion of the wave, which is substantially zero, decreases, and the "antinode" portion of the wave where the displacement d is maximum increases. Further, the first embodiment and the second embodiment shown in FIG. 9 show the case where the phase is 90 (90 + 360 × t) deg and the case where the phase is 40 (40 + 360 × t) deg, as compared with the conventional example 2 and the conventional example 3. It was found that the appearance pattern of the "node" of the wave was different between the case.

カメラ等の光学機器は、撮像素子の分解能が向上するにつれて、光学系に付着する塵埃が撮像画像に及ぼす影響が大きくなってきている。例えば、ビデオカメラ、スチルカメラに用いられる撮像素子の分解能がめざましく向上してきている。このため、撮像素子の近くに配置される赤外線カットフィルタ、光学ローパスフィルタ等の光学部品に、外部からの塵埃や内部における機械的摩擦により発生する摩耗粉塵等が付着すると、撮像素子で像のボケが少ないので、撮像画像に塵埃等が写り込んでしまう。しかし、光学部品に圧電素子を単純に貼付しただけでは、圧電素子の振動により光学部品を振動させて光学部品に付着した塵埃等を除去する際に、光学部品の振動変位量が0となる波の“節”部分が多く存在し、塵埃除去効果が低い。また、波の“節”部分の発生を緩和するために圧電素子を複数に分割すると、各圧電素子の面積が小さくなるため振動のパワーが減少する。その結果、全体として振動のパワーが減少して塵埃除去効果が低下する。従来例1〜3は、圧電素子の面積を小さくした際の問題点を示している。   2. Description of the Related Art In optical devices such as cameras, as the resolution of an image sensor increases, the influence of dust adhering to an optical system on a captured image has increased. For example, the resolution of an image sensor used for a video camera and a still camera has been remarkably improved. For this reason, if dust from the outside or wear dust generated by mechanical friction inside adheres to optical components such as an infrared cut filter and an optical low-pass filter arranged near the image sensor, the image is blurred by the image sensor. , Dust and the like appear in the captured image. However, if a piezoelectric element is simply attached to an optical component, the vibration of the piezoelectric element causes the optical component to vibrate and remove dust or the like attached to the optical component. Many "knots" are present, and the dust removal effect is low. Further, when the piezoelectric element is divided into a plurality of parts in order to alleviate the generation of the "node" portion of the wave, the power of vibration is reduced because the area of each piezoelectric element is reduced. As a result, the vibration power is reduced as a whole, and the dust removing effect is reduced. Conventional examples 1 to 3 show problems when the area of the piezoelectric element is reduced.

そして、実施例1〜2を含む実施形態は、かかる従来技術の問題点を克服し、圧電素子を分割せず、圧電素子の面積を変えず、圧電素子の共振周波数が対象物の共振周波数と等しくなるように圧電素子の周辺長を短くする、つまり圧電素子の形状を変更することで、塵埃除去を最も要する対象物の中心部付近に、より強い振動を発生させることができる。すなわち、実施例1〜2を含む実施形態は、圧電素子が発生させた振動エネルギーを対象物の所定部分に与え、所定部分を集中してより強く振動させることができる。また、実施例1〜2を含む実施形態は、位相により振動エネルギーを与える対象物の所定部分を変化させるので、複数の振動モードで効率的に対象物に付着した塵埃等を除去することができる。   Embodiments including Examples 1 and 2 overcome the problems of the related art, do not divide the piezoelectric element, do not change the area of the piezoelectric element, and set the resonance frequency of the piezoelectric element to the resonance frequency of the target object. By shortening the peripheral length of the piezoelectric element so as to make them equal, that is, changing the shape of the piezoelectric element, stronger vibration can be generated near the center of the object that requires the most dust removal. That is, in the embodiments including Examples 1 and 2, the vibration energy generated by the piezoelectric element can be applied to a predetermined portion of the object, and the predetermined portion can be concentrated and vibrated more strongly. In the embodiments including the first and second embodiments, since the predetermined portion of the object that gives the vibration energy is changed according to the phase, it is possible to efficiently remove dust and the like attached to the object in a plurality of vibration modes. .

上記の実施例を含む実施形態に係る圧電素子、振動装置及び塵埃除去装置の各部は、設計に応じて、適宜変更してもよい。また、上記の実施例を含む実施形態に係る圧電素子、振動装置及び塵埃除去装置の各部を組合せ、代替、省略、形状変更、位置変更して構成した圧電素子、振動装置及び塵埃除去装置も、開示技術に係る圧電素子、振動装置及び塵埃除去装置に含まれる。   Each part of the piezoelectric element, the vibration device, and the dust removal device according to the embodiment including the above example may be appropriately changed according to the design. In addition, the piezoelectric element according to the embodiment including the above example, a combination of each part of the vibration device and the dust removal device, alternative, omission, shape change, the piezoelectric element configured by changing the position, vibration device and dust removal device, It is included in the piezoelectric element, the vibration device, and the dust removal device according to the disclosed technology.

10 圧電素子
11 基体部
12、13 電極
20 振動板
DESCRIPTION OF SYMBOLS 10 Piezoelectric element 11 Base parts 12, 13 Electrode 20 Vibration plate

Claims (6)

振動板の1つの主面に取り付けられ、電圧印加により第1の方向に伸縮振動して前記振動板を振動させる平板状の基体部を備え、
前記基体部が非矩形であり、前記電圧印加による前記基体部の共振ピークが、振動板の共振による前記基体部の共振ピークと一致する
ことを特徴とする圧電素子。
A plate-shaped base portion attached to one main surface of the diaphragm, which expands and contracts and vibrates in a first direction by applying a voltage to vibrate the diaphragm;
The piezoelectric element, wherein the base portion is non-rectangular, and a resonance peak of the base portion due to the voltage application coincides with a resonance peak of the base portion due to resonance of the diaphragm .
前記基体部の前記第1の方向と垂直な第2の方向の断面長が、前記基体部の前記第1の方向の中心付近よりも端部においてより短い
ことを特徴とする請求項1に記載の圧電素子。
2. The cross-sectional length of the base in a second direction perpendicular to the first direction is shorter at an end than near the center of the base in the first direction. 3. Piezoelectric element.
前記基体部の前記第2の方向の断面長は、前記中心付近から前記端部へ近付くに従ってより短い
ことを特徴とする請求項2に記載の圧電素子。
The piezoelectric element according to claim 2, wherein a cross-sectional length of the base in the second direction is shorter as approaching from the vicinity of the center to the end.
前記基体部の前記第2の方向の断面長が、前記中心付近から前記端部へ近付くに従って一定の比率でより短くなる
ことを特徴とする請求項3に記載の圧電素子。
4. The piezoelectric element according to claim 3, wherein a cross-sectional length of the base portion in the second direction becomes shorter at a fixed rate as approaching from the vicinity of the center to the end. 5.
振動板と、
請求項1〜4のいずれか1つに記載の、1以上の圧電素子と
を備えることを特徴とする振動装置。
A diaphragm,
A vibration device, comprising: at least one piezoelectric element according to claim 1.
機器を塵埃から保護する振動板と、
請求項1〜4のいずれか1つに記載の、1以上の圧電素子と
を備えることを特徴とする塵埃除去装置。
A diaphragm that protects the device from dust,
A dust removing device, comprising: at least one piezoelectric element according to claim 1.
JP2015150990A 2015-07-30 2015-07-30 Piezoelectric element, vibration device and dust removal device Active JP6623361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150990A JP6623361B2 (en) 2015-07-30 2015-07-30 Piezoelectric element, vibration device and dust removal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150990A JP6623361B2 (en) 2015-07-30 2015-07-30 Piezoelectric element, vibration device and dust removal device

Publications (2)

Publication Number Publication Date
JP2017034035A JP2017034035A (en) 2017-02-09
JP6623361B2 true JP6623361B2 (en) 2019-12-25

Family

ID=57989392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150990A Active JP6623361B2 (en) 2015-07-30 2015-07-30 Piezoelectric element, vibration device and dust removal device

Country Status (1)

Country Link
JP (1) JP6623361B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116060385B (en) * 2022-08-03 2023-11-14 荣耀终端有限公司 Camera module and electronic equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593266B2 (en) * 2004-12-27 2010-12-08 Hoya株式会社 Vibrator
JP4834409B2 (en) * 2006-01-24 2011-12-14 Hoya株式会社 Dust remover
DE102008026429A1 (en) * 2008-06-02 2009-12-10 Physik Instrumente (Pi) Gmbh & Co. Kg ultrasonic actuator

Also Published As

Publication number Publication date
JP2017034035A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
JP5455057B2 (en) Driving method of vibrating body, vibrating device, driving device having the vibrating device, dust removing device, and optical apparatus
JP5229704B2 (en) Optical scanning device
JP5383429B2 (en) Vibrating device, driving device having the vibrating device, dust removing device, and optical apparatus
KR100911144B1 (en) 2-axis driving electromagnetic actuator
JP5882796B2 (en) Driving method for vibrating body, vibrating device, driving device having the vibrating device, and optical apparatus
JP5675265B2 (en) Vibrating device and imaging device using the same
JP4893203B2 (en) Optical scanning element, optical scanning device, optical scanning display device, and retinal scanning display device
JP2007264096A (en) Dust remover
JP5675137B2 (en) Piezoelectric element used in vibration device, vibration device, and dust removing device having vibration device
JP2017167254A (en) Drive device and mirror device
JP2011024185A (en) Vibrating device
US8493506B2 (en) Imaging device unit and imaging apparatus for removing dust from an optical device
JP6623361B2 (en) Piezoelectric element, vibration device and dust removal device
JP2009204818A (en) Optical scanner
JP2007058107A (en) Micromirror element and movable structure
JP4942229B2 (en) Optical equipment
JP5434668B2 (en) Optical scanning device
JP2013099736A (en) Piezoelectric device, dust removing apparatus, and imaging apparatus
US8299418B2 (en) Imaging device unit and photographing apparatus comprising a piezoelectric element mounted on a plate
JP2010011134A (en) Resonance frequency variable mems vibrator
JP2008086067A (en) Movable structural body and optical element equipped with the same
JP2006525548A (en) Scanning mirror
JP2007058105A (en) Micromirror element and movable structure
JP2012114728A (en) Imaging device
CN112703063B (en) Vibration device and optical detection device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190510

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20190805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191017

R150 Certificate of patent or registration of utility model

Ref document number: 6623361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250