JP6621734B2 - Blood concentration measurement value calibration device - Google Patents

Blood concentration measurement value calibration device Download PDF

Info

Publication number
JP6621734B2
JP6621734B2 JP2016508714A JP2016508714A JP6621734B2 JP 6621734 B2 JP6621734 B2 JP 6621734B2 JP 2016508714 A JP2016508714 A JP 2016508714A JP 2016508714 A JP2016508714 A JP 2016508714A JP 6621734 B2 JP6621734 B2 JP 6621734B2
Authority
JP
Japan
Prior art keywords
blood concentration
blood
concentration
light
jomizu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016508714A
Other languages
Japanese (ja)
Other versions
JPWO2015141621A1 (en
Inventor
佐野 嘉彦
嘉彦 佐野
証英 原田
証英 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nipro Corp
Harada Electronics Industry Co Ltd
Original Assignee
Nipro Corp
Harada Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nipro Corp, Harada Electronics Industry Co Ltd filed Critical Nipro Corp
Publication of JPWO2015141621A1 publication Critical patent/JPWO2015141621A1/en
Application granted granted Critical
Publication of JP6621734B2 publication Critical patent/JP6621734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/3612Physical characteristics of the blood, e.g. haematocrit, urea after treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/5907Densitometers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Analytical Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Ecology (AREA)
  • Anesthesiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

この発明は、光透過性の管路内を流れる血液の濃度をランベルト−ベールの法則に基づいて測定した測定値を較正する装置に関するものである。 The present invention relates to an apparatus for calibrating a measurement value obtained by measuring the concentration of blood flowing in a light-transmitting pipe line based on the Lambert-Beer law.

従来のランベルト−ベールの法則に基づく流体濃度の測定方法としては、例えば特許文献1記載のものが知られており、ここにおける測定方法は、半導体ウエハを洗浄処理する流体としての処理液の濃度を測定するもので、処理液供給配管の途中に測定体を複数設け、各測定体内に、処理液中を通過する光の光路長さを異ならせた光透過部を設け、処理液の性質に応じた光路長さの光透過部に光源からの光を供給し、その光透過部において処理液中を透過した光を光検出器で受光してその光の強度を調べ、その光の強度からランベルト−ベールの法則に基づいて処理液の濃度を求めている。   As a conventional method for measuring a fluid concentration based on the Lambert-Beer law, for example, a method described in Patent Document 1 is known. In this method, the concentration of a processing solution as a fluid for cleaning a semiconductor wafer is measured. In order to measure, multiple measuring bodies are provided in the middle of the processing liquid supply pipe, and each measuring body is provided with a light transmission part with different optical path lengths for light passing through the processing liquid, depending on the nature of the processing liquid. The light from the light source is supplied to the light transmission part of the optical path length, the light transmitted through the treatment liquid in the light transmission part is received by the photodetector, the intensity of the light is examined, and the Lambert is determined from the intensity of the light. -The concentration of the processing solution is determined based on Beer's law.

特開平10−325797号公報Japanese Patent Laid-Open No. 10-325797

ところで、上記従来の流体濃度の測定方法では、各光透過部における光路長さが厳密に判明しており、それゆえあらかじめ光路長さが設定された計算式を用いて流体の濃度を容易に求めることができる。その一方で、例えば樹脂チューブやガラス管等の光透過性の管路内を流れる血液の濃度が測定できると医療等の分野において極めて役立つであろうということが予想される。   By the way, in the above conventional method for measuring fluid concentration, the optical path length in each light transmitting section is strictly determined, and therefore the fluid concentration is easily obtained using a calculation formula in which the optical path length is set in advance. be able to. On the other hand, it is expected that it will be extremely useful in the field of medicine and the like if the concentration of blood flowing in a light-transmitting conduit such as a resin tube or a glass tube can be measured.

このため本願出願人は、PCT/JP/2012/075082号およびその優先権を主張したPCT/JP/2013/054664号にて、樹脂チューブやガラス管等の光透過性の管路内を流れる血液の濃度を測定する装置を提案しており、この装置は、光透過性の管路の延在方向に沿ってその管路表面上に並んだ3箇所の光供給位置A,B,Cからそれらに対し管路の反対側の表面上で管路直径方向にそれぞれ対向する3箇所の受光位置に位置する受光センサまで管路内を透過して到達する光の各受光位置での強度から、管路を直角に横切る光を受光する場合と管路を斜めに横切る光を受光する場合とのそれぞれについてランベルト−ベールの法則に基づく関係式を求めて連立させることで、管路の内径や壁厚さ等を定めることなく管路内の血液の濃度を求め得るようにしている。   For this reason, the applicant of the present application described in PCT / JP / 2012/075082 and PCT / JP / 2013/054664 which claimed the priority thereof, blood flowing in a light-transmitting conduit such as a resin tube or a glass tube. Has been proposed, and this device has three light supply positions A, B, and C arranged on the surface of the pipe along the extending direction of the light transmissive pipe. From the intensity at each light receiving position of the light passing through the pipe to the light receiving sensors located at the three light receiving positions facing each other in the diameter direction of the pipe on the surface opposite to the pipe, By obtaining the relational expression based on the Lambert-Beer law for each of the case of receiving light crossing the road at right angles and the case of receiving light crossing the pipe diagonally, the inner diameter and wall thickness of the pipe Pipe without deciding It is adapted to be determined the concentration of blood in the.

しかしながら、図3に、光透過性の管路としての4種類の樹脂チューブ(チューブA〜D)について受光センサの出力値をそれぞれ示すように、この濃度測定装置では、各濃度に対応するセンサ出力値が得られるものの、樹脂チューブが異なるとそのセンサ出力値の間に一定量のオフセットが生じるという問題があり、その原因として考えられるのは、光供給位置から供給する光の、チューブ壁内を通る回り込みである。   However, as shown in FIG. 3, the output values of the light receiving sensors are shown for four types of resin tubes (tubes A to D) as light-transmitting conduits. In this concentration measuring device, the sensor output corresponding to each concentration is shown. Although a value can be obtained, there is a problem that if the resin tube is different, a certain amount of offset occurs between the sensor output values. The possible cause is that the light supplied from the light supply position is inside the tube wall. It is a wraparound.

光供給位置A,Cからそれらに対し管路の反対側の表面上で管路直径方向にそれぞれ対向する2箇所の受光位置に位置する受光センサまで管路内を透過して到達する光の経路を考え、図4に示すように、光供給位置A,Cからそれぞれ管路を直角に横切る光の光量をIAG,ICGとするとともに、光供給位置A,Cからそれぞれ管路を斜めに横切る光の光量をIAF,ICFとし、管路を斜めに横切る場合の光路長さの増加分をlAF,lCFとすると、上記の濃度測定装置の濃度算出の基本式は、樹脂チューブ内の血液の吸光係数をεH、濃度をCHとして、

Figure 0006621734
となる(PCT/JP/2013/054664号の第8頁、[数8]参照)。The path of light that passes through the inside of the pipe from the light supply positions A and C to the light receiving sensors located at two light receiving positions on the surface opposite to the pipe in the diameter direction of the pipe. As shown in FIG. 4, the amounts of light that cross the pipes from the light supply positions A and C at right angles are IAG and ICG, and light that crosses the pipes obliquely from the light supply positions A and C, respectively. The basic equation for calculating the concentration of the above concentration measuring device is the absorption coefficient of blood in the resin tube, where IAF and ICF are IAF and ICF, and the increase in optical path length when the tube is obliquely crossed is lAF and 1CF. Is εH and the concentration is CH.
Figure 0006621734
(See PCT / JP / 2013/054664, page 8, [Equation 8]).

この一方、光供給位置A,Cからそれぞれ管路を直角方向に回り込む回り込み光量をEAG,ECG、光供給位置A,Cからそれぞれ管路を斜め方向に回り込む回り込み光量をEAF,ECFとすると、濃度算出の基本式は、

Figure 0006621734
となる。On the other hand, if the wraparound light amount that circulates in the right-angle direction from the light supply positions A and C is EAG and ECG, and the wraparound light amount that circulates in the oblique direction from the light supply positions A and C is EAF and ECF, respectively. The basic formula for calculation is
Figure 0006621734
It becomes.

これら回り込み光量EAG,ECG,EAF,ECFの値には、樹脂チューブの種類や製造ロット等の相違によるチューブ壁の入光率、透過率および内部反射等の相違も含まれ、回り込み光量の影響を解析的に求めるのは極めて困難で、樹脂チューブの相違によるオフセット量を計算で較正することは実際上できなかった。   These sneak light amounts EAG, ECG, EAF, and ECF values include differences in the light incident rate, transmittance, and internal reflection of the tube wall due to differences in resin tube types and production lots. It was extremely difficult to obtain analytically, and it was practically impossible to calibrate the offset amount due to the difference in the resin tube by calculation.

これにつき本願発明者がさらに研究を進めたところ、上記の濃度測定装置の適用対象の一つである血液透析においては正確な量の除水が可能であることを知見し、これを利用することに想到した。   As a result of further research by the inventor of the present application, it has been found that an accurate amount of water can be removed in hemodialysis, which is one of the application targets of the above-described concentration measuring device. I came up with it.

この発明は、本発明者が先に提案した血液濃度測定装置の課題を上述の知見に基づいて有利に解決するものであり、この発明の血液濃度測定値較正装置は、光透過性の管壁を持つ管路内を流れる血液の濃度を血液濃度測定装置がランベルト−ベールの法則に基づいて測定した測定値を較正する装置において
前記管路の途中に設けられた除水装置が前記管路内を流れる血液からの徐水を行っている間に、前記管路の前記徐水装置の上流部分に設けられた前記血液濃度測定装置および下流部分に設けられた前記血液濃度測定装置がそれぞれ測定した、互いに同一のオフセット量をそれぞれ含む前記徐水装置による徐水前および徐水後の血液濃度の測定値の差を求める除水前後測定値差演算手段と、
前記徐水前および徐水後の血液濃度の測定値の差と、前記管路内を流れる血液の前記徐水装置による徐水前の単位時間当たり流および前記徐水装置による単位時間当たりの徐水量とに基づいて、前記血液濃度測定装置の測定値を、前記オフセット量を除いた値に較正する測定値較正手段と、
を具えることを特徴とするものである。
The present invention advantageously solves the problem of the blood concentration measuring apparatus previously proposed by the present inventor based on the above-mentioned knowledge, and the blood concentration measurement value calibration apparatus according to the present invention has a light-transmitting tube wall. In the apparatus for calibrating the measured value of the blood concentration measuring device based on the Lambert-Beer law, the concentration of blood flowing in the pipe line having
The blood concentration measurement provided in the upstream portion of the slow water device in the pipe while the dewatering device provided in the middle of the pipe performs slow water from the blood flowing in the pipe Measurement before and after dehydration to determine the difference between blood concentration measurement values before and after slow water measurement by the slow water device respectively including the same offset amount respectively measured by the blood concentration measurement device provided in the device and downstream part A value difference calculation means;
And the difference between the measured values of the blood concentration after the Jomizu before and Jomizu, blood flowing through the conduit, and Xu water per unit time by the Jomizu device the Jomizu device volume flow per unit of time and before Jomizu by Based on the measurement value calibration means for calibrating the measurement value of the blood concentration measurement device to a value excluding the offset amount ,
It is characterized by comprising .

かかるこの発明の血液濃度測定値較正装置によれば、光透過性の管壁を持つ管路内を流れる血液の濃度を血液濃度測定装置が測定した測定値を較正するに際し、前記管路内を流れる血液をその管路の途中に設けられた徐水装置に通し、その徐水装置による徐水前の血液濃度および徐水後の血液濃度の、互いに同一のオフセット量をそれぞれ含む測定値の間の差と、前記管路内を流れる血液の前記徐水装置による徐水前の単位時間当たり流および前記徐水装置による単位時間当たりの徐水量と、に基づいて前記測定値を、前記オフセット量を除いた値に較正するので、測定値から管路固有のオフセット量の影響を除去して実際の血液濃度を高精度に求めることができる。 According to the blood concentration measurement value calibration device of the present invention, when calibrating the measurement value measured by the blood concentration measurement device with respect to the concentration of blood flowing in the pipeline having a light-transmitting tube wall, through blood flowing through the Jomizu device provided in the middle of the line, the difference between the Jomizu device of the blood concentration after the blood concentration and Jomizu before Jomizu by the measured values including the same offset amounts respectively to each other If, blood flowing through the conduit, and Xu water per unit time by the Jomizu device per unit time flow amount before Jomizu by and the Jomizu device, the measured values based on, except for the offset amount since calibration values can be obtained the actual blood concentration from the measured value to remove the influence of the pipe-specific offset amount with high accuracy.

そして、この発明の血液濃度測定値較正装置においては、前記徐水装置による徐水前および徐水後の血液濃度は、前記管路の、徐水装置の上流部分および下流部分に設けた2台の血液濃度測定装置で、徐水装置が徐水を行っている間に測定する In the blood concentration measurement value calibration apparatus according to the present invention, the blood concentrations before and after the slow watering by the slow water device are the two blood provided in the upstream portion and the downstream portion of the slow water device in the conduit. a concentration measuring device is measured during Jomizu terminal is performing Jomizu.

この発明の血液濃度測定値較正装置の一実施形態を実施するランベルト−ベールの法則に基づく血液濃度測定装置を用いた血液透析システムを例示する説明図である。It is explanatory drawing which illustrates the hemodialysis system using the blood concentration measuring apparatus based on the Lambert-Beer law which implements one Embodiment of the blood concentration measured value calibration apparatus of this invention. 上記実施形態の血液濃度測定値較正装置を実施する血液濃度測定装置による血液濃度の測定結果を別途の正規測定装置による血液濃度の測定結果と対比して経時的に示す説明図である。It is explanatory drawing which shows the measurement result of the blood concentration by the blood concentration measurement apparatus which implements the blood concentration measurement value calibration apparatus of the said embodiment with time compared with the measurement result of the blood concentration by another normal measurement apparatus. ランベルト−ベールの法則に基づく血液濃度測定装置による4種類の樹脂チューブでの血液濃度の測定結果を対比して経時的に示す説明図である。It is explanatory drawing which shows the measurement result of the blood concentration in four types of resin tubes by the blood concentration measuring apparatus based on the Lambert-Beer law in comparison with time. 上記血液濃度測定装置における樹脂チューブ内での光の回り込みを示す説明図である。It is explanatory drawing which shows the wraparound of the light in the resin tube in the said blood concentration measuring apparatus.

以下、本発明の実施の形態を実施例によって、図面に基づき詳細に説明する。ここに、図1は、この発明の血液濃度測定値較正装置の一実施形態を実施するランベルト−ベールの法則に基づく血液濃度測定装置を用いた血液透析システムを例示する説明図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view illustrating a hemodialysis system using a blood concentration measuring device based on the Lambert-Beer law, which implements one embodiment of the blood concentration measurement value calibration device of the present invention.

この実施形態の血液濃度測定値較正装置は、光透過性の管壁を持つ管路としての実質的に透明な樹脂チューブ内を流れる血液の濃度をランベルト−ベールの法則に基づいて測定する血液濃度測定装置での測定値を較正するものであり、ここでは、人工透析対象患者の腕の動脈に接続した樹脂チューブとその患者の腕の静脈に接続した樹脂チューブとを徐水装置としてのダイアライザーの血液流入口と血液流出口とにそれぞれ接続するとともに、それらの樹脂チューブを血液濃度測定装置1と血液濃度測定装置2とにそれぞれ装着し、動脈側の樹脂チューブを血液ポンプに装着して単位時間当たり流量Qの血液を患者の腕の動脈からダイアライザーに圧送可能とし、ダイアライザーの透析液流入口に透析液を供給することで、ダイアライザー内の中空糸内を通る血液からダイアライザー内でその中空糸を囲んで流れる透析液に濃度差により水を単位時間当たり所定量qだけ抽出除去し、単位時間当たり流量Qから所定量qの水を除去した血液を患者の腕の静脈に戻すとともに、除去した所定量qの水を含む透析液をダイアライザーの透析液流出口から流出させる。 Blood Concentration measurements calibration apparatus of this embodiment, substantially the concentration of the blood flowing through the transparent resin in the tube as a conduit having a light permeable tube wall Lambert - blood concentration measured based on Beer's Law The measurement value in the measuring device is calibrated. Here, the resin tube connected to the artery of the arm of the patient to be artificially dialyzed and the resin tube connected to the vein of the arm of the patient are connected to the dialyzer as a slow water device. Connected to the blood inlet and the blood outlet, respectively, the resin tubes are attached to the blood concentration measuring device 1 and the blood concentration measuring device 2, respectively, and the arterial side resin tube is attached to the blood pump for unit time. It is possible to pump blood with a flow rate of Q from the artery of the patient's arm to the dialyzer and supply dialysate to the dialysate inlet of the dialyzer. A predetermined amount q of water per unit time was extracted and removed from the blood passing through the hollow fiber into the dialysate flowing around the hollow fiber in the dialyzer due to the concentration difference, and the predetermined amount q of water was removed from the flow rate Q per unit time. The blood is returned to the veins of the patient's arm, and the dialysate containing the removed q amount of water is allowed to flow out from the dialysate outlet of the dialyzer.

ここで、血液濃度測定装置1および血液濃度測定装置2ではそれぞれ、光源としての例えば3つの発光ダイオードから出力された光が、樹脂チューブの延在方向に沿って互いに隣接して並ぶその樹脂チューブの表面上の例えば3箇所に位置する光供給箇所で樹脂チューブ内に供給され、樹脂チューブのそれらの発光ダイオードに近い側のチューブ壁と、樹脂チューブ内の血液と、それらの発光ダイオードから遠い側(反対側)のチューブ壁とを通過して、それらの光供給箇所に対しその樹脂チューブの直径方向の反対側に位置する樹脂チューブの表面上の例えば3箇所の受光箇所で例えば3つの光センサに、血液流を直角に横切る経路および血液流を斜めに横切る経路を通って到達し、光経路長さおよび樹脂チューブ内の血液の濃度の影響で減衰した光を受光したそれらの光センサの出力信号を入力されたコンピュータが、ランベルトベールの法則に基づく演算を行って、樹脂チューブ内の血液濃度に対応する測定値(表示血液濃度)CHA,CHBを出力する(詳細は前述のPCT/JP/2012/075082号およびその優先権を主張したPCT/JP/2013/054664号の明細書を参照のこと)。 Here, in each of the blood concentration measuring device 1 and the blood concentration measuring device 2, light output from, for example, three light emitting diodes as light sources is arranged adjacent to each other along the extending direction of the resin tube. It is supplied into the resin tube at the light supply points located at, for example, three places on the surface, the tube wall on the side of the resin tube near the light emitting diodes, the blood in the resin tube, and the side far from the light emitting diodes ( For example, three photosensors at three light receiving points on the surface of the resin tube located on the opposite side in the diameter direction of the resin tube with respect to those light supply points. , Reached through a path that crosses the blood flow at right angles and a path that crosses the blood flow diagonally, and is influenced by the length of the light path and the concentration of blood in the resin tube. Decay computer input output signals of the photosensors receives light is, by performing a calculation based on the Lambert-Beer law, the measurement value corresponding to the blood concentration in the resin tube (Display blood concentration) C HA, C HB is output (for details, see the specification of PCT / JP / 2012/075082 and PCT / JP / 2013/054664 which claimed the priority).

ところで、樹脂チューブのチューブ壁に供給された光は、樹脂チューブ内の血液を横切るだけでなくそのチューブ壁内をチューブ壁に沿って回りこんでも光センサに到達する。このため、血液濃度測定装置1および血液濃度測定装置2の徐水後表示血液濃度CHAおよび徐水前表示血液濃度CHBは、種類や製造ロット等によって厚さや材質等が異なるチューブ壁に応じたオフセット量を含んだものとなる。そこで、この実施形態の較正装置では、血液濃度測定装置1および血液濃度測定装置2の基準点および濃度勾配は互いに同一に調整されているものとして、以下の計算により、オフセット量をそれぞれ除いた徐水後実血液濃度HCHAおよび徐水前実血液濃度HCHBを求める。 By the way, the light supplied to the tube wall of the resin tube reaches the optical sensor not only across the blood in the resin tube but also around the tube wall along the tube wall. Therefore, the post-slow water display blood concentration C HA and the pre-slow water display blood concentration C HB of the blood concentration measurement device 1 and the blood concentration measurement device 2 are offset according to the tube wall whose thickness, material, etc. differ depending on the type, production lot, etc. Including the amount. Therefore, in the calibration device of this embodiment, it is assumed that the reference points and concentration gradients of blood concentration measuring device 1 and blood concentration measuring device 2 are adjusted to be the same as each other. The post-water actual blood concentration HC HA and the pre-slow water actual blood concentration HC HB are determined.

血液濃度測定装置1および血液濃度測定装置2の感度は正しいので、測定値の差は正しいことから、

Figure 0006621734
となり、また、単位時間当たり流量Qの血液が単位時間当たり除水量qだけ徐水されてその体積がQ−qになる分だけ濃度が高くなるから、
Figure 0006621734
となる。 Since the sensitivity of the blood concentration measuring device 1 and the blood concentration measuring device 2 is correct, the difference in measured values is correct.
Figure 0006621734
In addition, since the blood at a flow rate Q per unit time is gradually drained by the water removal amount q per unit time, and the concentration becomes higher by the amount of Q-q,
Figure 0006621734
It becomes.

(1)式よりHCHBを右辺に移項して、

Figure 0006621734
となり、(3)式に(2)式を代入すると、
Figure 0006621734
HCHBを左辺に移項して、
Figure 0006621734
従って、
Figure 0006621734
となる。From equation (1), move HC HB to the right side,
Figure 0006621734
And substituting (2) into (3),
Figure 0006621734
Move HC HB to the left side,
Figure 0006621734
Therefore,
Figure 0006621734
It becomes.

例えば、単位時間当たり血液流量Q=200ml/min
単位時間当たり徐水量 q= 20ml/min
のとき、除水前表示血液濃度 HB =23%
徐水後表示血液濃度 HA =25%
であったとすると、(4)式にこれらの数値を代入して、
徐水前実血液濃度HCHB=18.00%
これを(3)式に代入して、
徐水後実血液濃度HCHA=20.00%
となり、オフセット量を除いた実血液濃度は、徐水前18.00%、徐水後20.00%と較正される。
これらの演算および処理は上記血液濃度測定装置1,2の上記コンピュータにより行われる。従ってそれらのコンピュータは、除水前後測定値差演算手段と、測定値較正手段とを構成する。
For example, blood flow rate per unit time Q = 200 ml / min
Slow water volume per unit time q = 20ml / min
At the time of display, blood concentration displayed before water removal C HB = 23%
Displayed blood concentration after slow watering C HA = 25%
If these values are substituted into equation (4),
Real blood concentration before slow water HC HB = 18.00%
Substituting this into equation (3)
Real blood concentration after slow watering HC HA = 20.00%
Thus, the actual blood concentration excluding the offset amount is calibrated to 18.00% before slow water and 20.00% after slow water.
These calculations and processing are performed by the computer of the blood concentration measuring apparatuses 1 and 2. Accordingly, these computers constitute a measurement value difference calculation means before and after water removal and a measurement value calibration means.

また、血液透析時には別途に血液成分の検査が行われて、正確な血液濃度も知ることができる。この正確な血液濃度を用いることで、オフセット量の較正だけでなく濃度勾配の較正も行うことができる。すなわち、この正確な血液濃度は徐水前実血液濃度HCHBそのものであり、(2)式より、徐水後実血液濃度HCHAは、

Figure 0006621734
となるので、補正係数をKとすると、
Figure 0006621734
として、濃度勾配の2点較正を行うことができる。 In addition, a blood component test is separately performed during hemodialysis, so that an accurate blood concentration can be known. By using this accurate blood concentration, not only the offset amount but also the concentration gradient can be calibrated . That is, this exact blood concentration is the actual blood concentration HC HB before slow water, and the actual blood concentration HC HA after slow water is
Figure 0006621734
Therefore, if the correction coefficient is K,
Figure 0006621734
As described above, two-point calibration of the concentration gradient can be performed.

図2は、上記実施形態の血液濃度測定値較正装置としての演算および処理実施する血液濃度測定装置1,2による血液濃度の測定結果を別途の正規測定装置による血液濃度の測定結果と対比して経時的に示す説明図であり、この結果からも明らかなように、この実施形態の血液濃度測定値較正装置によれば、樹脂チューブ内を流れる血液の濃度の測定値を較正するに際し、樹脂チューブ内を流れる血液を途中でダイアライザーに通し、そのダイアライザーによる徐水前および徐水後の血液濃度のオフセット量を含む測定値の間の差と、樹脂チューブ内を流れる血液のダイアライザーによる徐水前の流量および徐水量と、に基づいて測定値を較正するので、測定値からオフセット量の影響を除去して実際の血液濃度を高精度に求めることができる。 FIG. 2 compares the blood concentration measurement results obtained by the blood concentration measurement devices 1 and 2 performing the calculation and processing as the blood concentration measurement value calibration device of the above embodiment with the blood concentration measurement results obtained by a separate normal measurement device. As is apparent from the results, according to the blood concentration measurement value calibration device of this embodiment, when calibrating the measurement value of the concentration of blood flowing in the resin tube, The blood flowing in the resin tube is passed through the dialyzer halfway, and the difference between the measured value including the offset amount of the blood concentration before and after the slow water by the dialyzer and the flow rate before the slow water by the dialyzer of the blood flowing in the resin tube and and Xu water, so to calibrate the measurement value based on, is to determine the actual blood concentration by removing the influence of the offset amount from the measured value with high precision Kill.

以上、図示例に基づき説明したが、この発明は上述の例に限定されるものでなく特許請求の範囲の記載範囲内で適宜変更し得るものである。 Has been described above based on the illustrated embodiment, the present invention is Ru der what may appropriately changed within the claimed scope of the Not claims be limited to the above example.

かくしてこの発明の血液濃度測定値較正装置によれば、光透過性の管壁を持つ管路内を流れる血液の濃度を血液濃度測定装置が測定した測定値を較正するに際し、前記管路内を流れる血液を徐水装置に通し、その徐水装置による徐水前および徐水後の血液濃度の、互いに同一のオフセット量を含む測定値の間の差と、前記管路内を流れる血液の、前記徐水装置による徐水前の単位時間当たり流量および前記徐水装置による単位時間当たりの徐水量と、に基づいて前記測定値を、前記オフセット量を除いた値に較正するので、測定値から管路固有のオフセット量の影響を除去して実際の血液濃度を高精度に求めることができる。 Thus, according to the blood concentration measurement value calibration device of the present invention, when calibrating the measurement value measured by the blood concentration measurement device with respect to the concentration of blood flowing in the pipeline having the light transmissive tube wall, The flowing blood is passed through the slow water device, and the difference between the measured values including the same offset amount of the blood concentration before and after the slow water by the slow water device and the slow flow of the blood flowing in the conduit The measured value is calibrated to a value excluding the offset amount based on the flow rate per unit time before slow watering by the water device and the slow water amount per unit time by the slow water device . The actual blood concentration can be obtained with high accuracy by removing the influence of the offset amount.

1,2 血液濃度測定装置   1, 2 Blood concentration measuring device

Claims (1)

光透過性の管壁を持つ管路内を流れる血液の濃度を血液濃度測定装置がランベルト−ベールの法則に基づいて測定した測定値を較正する装置において
前記管路の途中に設けられた除水装置が前記管路内を流れる血液からの徐水を行っている間に、前記管路の前記徐水装置の上流部分に設けられた前記血液濃度測定装置(2)および下流部分に設けられた前記血液濃度測定装置(1)がそれぞれ測定した、互いに同一のオフセット量をそれぞれ含む前記徐水装置による徐水前および徐水後の血液濃度の測定値の差(C HA −C HB )を求める除水前後測定値差演算手段と、
前記徐水前および徐水後の血液濃度の測定値の差(C HA −C HB )と、前記管路内を流れる血液の前記徐水装置による徐水前の単位時間当たり流(Q)および前記徐水装置による単位時間当たりの徐水量(q)とに基づいて、前記血液濃度測定装置(1,2)の測定値(C HA ,C HB を、前記オフセット量を除いた値(HC HA ,HC HB )に較正する測定値較正手段と、
を具えることを特徴とする血液濃度測定値較正装置
In a device for calibrating a measurement value measured by a blood concentration measurement device based on Lambert-Beer's law, the concentration of blood flowing in a pipe line having a light-transmissive tube wall,
The blood concentration measurement provided in the upstream portion of the slow water device in the pipe while the dewatering device provided in the middle of the pipe performs slow water from the blood flowing in the pipe Difference in measured values of blood concentration before and after slow watering by the slow water device each including the same offset amount respectively measured by the blood concentration measuring device (1) provided in the device (2) and the downstream part. A measured value difference calculating means before and after water removal to obtain (C HA -C HB );
Wherein the Jomizu difference before and measurements of blood concentration after Jomizu (C HA -C HB), of the blood flowing through the conduit, flow amount per unit of time before Jomizu by the Jomizu device (Q) and said Xu Based on the slow water amount (q) per unit time by the water device, the measured value (C HA , C HB ) of the blood concentration measuring device (1, 2) is a value (HC HA , Measurement value calibrating means for calibrating to HC HB ) ,
Blood Concentration measurements calibration apparatus characterized by comprising a.
JP2016508714A 2014-03-20 2015-03-16 Blood concentration measurement value calibration device Active JP6621734B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014057349 2014-03-20
JP2014057349 2014-03-20
PCT/JP2015/057689 WO2015141621A1 (en) 2014-03-20 2015-03-16 Blood level measurement calibration method

Publications (2)

Publication Number Publication Date
JPWO2015141621A1 JPWO2015141621A1 (en) 2017-04-06
JP6621734B2 true JP6621734B2 (en) 2019-12-18

Family

ID=54144589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016508714A Active JP6621734B2 (en) 2014-03-20 2015-03-16 Blood concentration measurement value calibration device

Country Status (2)

Country Link
JP (1) JP6621734B2 (en)
WO (1) WO2015141621A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115666677A (en) 2020-05-20 2023-01-31 尼普洛株式会社 Blood circulation monitoring method, dialysis apparatus, and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351686A (en) * 1990-10-06 1994-10-04 In-Line Diagnostics Corporation Disposable extracorporeal conduit for blood constituent monitoring
JPH11226119A (en) * 1998-02-17 1999-08-24 Nissho Corp Water removing quantity-monitoring mechanism in dialyzer
JP4573860B2 (en) * 2007-08-22 2010-11-04 日機装株式会社 Blood purification equipment
JP5222706B2 (en) * 2008-12-04 2013-06-26 日機装株式会社 Blood purification apparatus and blood flow calculation method thereof
JP4905475B2 (en) * 2009-02-09 2012-03-28 ニプロ株式会社 Dialysis machine
JP6027720B2 (en) * 2009-12-14 2016-11-16 日機装株式会社 Blood purification equipment
JP5736268B2 (en) * 2011-07-27 2015-06-17 日機装株式会社 Blood purification equipment

Also Published As

Publication number Publication date
JPWO2015141621A1 (en) 2017-04-06
WO2015141621A1 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
CA2935203C (en) Self calibrating blood chamber
AU2011249531B2 (en) Medical apparatus for extracorporeal blood treatment and method for determining a blood parameter value in a medical apparatus
US9700662B2 (en) Device for extracorporeal blood treatment
CA2706409C (en) Disposable extracorporeal blood circuit and apparatus for the extracorporeal treatment of blood
JP2005532099A (en) Method and apparatus for determining blood volume during extracorporeal blood processing
JP5889896B2 (en) Device and method for detecting the direction of fluid flow through a dialyzer
JP6621734B2 (en) Blood concentration measurement value calibration device
ES2442875T3 (en) Method and device for monitoring a state of a blood duct in a machine for extracorporeal blood treatment
JP3622984B2 (en) Noninvasive measurement system of hemodynamics in hemodialysis shunt
ITMI20090926A1 (en) SYSTEM AND METHOD FOR SPECTROPHOTOMETRIC MEASUREMENTS OF BLOOD PARAMETERS.
CN204411383U (en) Dialysis apparatus
Goris et al. In-line spectroscopy for the quantification of iodine in a breast perfusion phantom for dynamic contrast-enhanced dedicated breast CT imaging validation
Johnson et al. Non-invasive, optical measurement of absolute blood volume in hemodialysis patients
JP7208756B2 (en) Multi-sensor device
JPWO2020085236A5 (en) Concentration measuring device and concentration measuring method
CN108872232B (en) In-line linearization of optical sensors
JPS6325803B2 (en)
JP6383369B2 (en) Fluid concentration measuring device
JP2023115782A (en) Detection device and blood processing system
JP2017136351A (en) Method for calibrating a measurement signal and for tracking a quantitative variable
WO2014049831A1 (en) Device for measuring and method for measuring fluid concentration

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191120

R150 Certificate of patent or registration of utility model

Ref document number: 6621734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250