JP6621006B2 - Method for promoting stabilization of organic waste - Google Patents

Method for promoting stabilization of organic waste Download PDF

Info

Publication number
JP6621006B2
JP6621006B2 JP2015008010A JP2015008010A JP6621006B2 JP 6621006 B2 JP6621006 B2 JP 6621006B2 JP 2015008010 A JP2015008010 A JP 2015008010A JP 2015008010 A JP2015008010 A JP 2015008010A JP 6621006 B2 JP6621006 B2 JP 6621006B2
Authority
JP
Japan
Prior art keywords
waste
organic waste
air permeability
modifier
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015008010A
Other languages
Japanese (ja)
Other versions
JP2016131927A (en
Inventor
太郎 滝本
太郎 滝本
堀井 安雄
安雄 堀井
貴雄 楠田
貴雄 楠田
正明 海老原
正明 海老原
樋口 壯太郎
壯太郎 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Fukuoka University
Original Assignee
Taisei Corp
Fukuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Fukuoka University filed Critical Taisei Corp
Priority to JP2015008010A priority Critical patent/JP6621006B2/en
Publication of JP2016131927A publication Critical patent/JP2016131927A/en
Application granted granted Critical
Publication of JP6621006B2 publication Critical patent/JP6621006B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Description

本発明は、有機性廃棄物の安定化促進方法に関する。   The present invention relates to a method for promoting stabilization of organic waste.

底部に遮水工と浸出水の集排水設備が設置された埋立地に廃棄物が埋立処理される管理型最終処分場等の最終処分場は、閉鎖つまり埋立終了した後、「一般廃棄物の最終処分及び産業廃棄物の最終処分に係る技術上の基準を定める命令」で法定された廃止基準を満たすことによって廃止することができる。例えば浸出水の性状、埋立層の温度、埋立ガスの発生状況等に廃止基準が定められている。   Final disposal sites such as managed final disposal sites where waste is landfilled in landfills where impervious works and leachate collection facilities are installed at the bottom, It can be abolished by satisfying the abolition standards stipulated in the “Order for Establishing Technical Standards for Final Disposal and Final Disposal of Industrial Waste”. For example, abolition standards are established for the properties of leachate, the temperature of landfill layers, the generation status of landfill gas, and the like.

しかし、浸出水等についての廃止基準は非常に厳しく、最終処分場の閉鎖から廃止までに要する期間が長期に渡ると、その期間の維持管理費の増大や跡地利用の制限等の問題が生じる。   However, the standards for abolition of leachate etc. are very strict, and if the period required from closure of the final disposal site to abolition is long, problems such as an increase in maintenance costs and restrictions on use of the site will arise during that period.

特に、最終処分場に埋め立てられた有機性廃棄物は好気性微生物による生物処理によって分解が進み、浸出水のBODやCODが低下するようになるが、実際には埋立地表面や集排水管の近傍にしか酸素が供給されないために好気性生物処理が円滑に進まなかったり、好気性微生物で容易に分解できないフミン酸やフルボ酸等の難分解性有機物が含まれていたりするので、CODや窒素が低下し辛く、廃止までに相当な長期間を要していた。   In particular, the organic waste landfilled at the final disposal site will be decomposed by biological treatment with aerobic microorganisms, and the BOD and COD of leachate will decrease. Since oxygen is supplied only in the vicinity, aerobic biological treatment does not proceed smoothly, or it contains persistent organic substances such as humic acid and fulvic acid that cannot be easily decomposed by aerobic microorganisms. However, it took a considerable long time to abolish.

そこで、特許文献1には、最終処分場を閉鎖してから廃止するまでの期間を短縮するために、廃棄物層に空気を送り込んで、微生物による易分解性有機物の分解を促進させ、BODとCODとが廃止基準Aに達するまで、酸化剤を複数回に分けて廃棄物層に注入する最終処分場の廃止時期短縮方法が提案されている。   Therefore, in Patent Document 1, in order to shorten the period from the closing of the final disposal site until it is abolished, air is sent to the waste layer to promote the decomposition of easily decomposable organic substances by microorganisms, and BOD and Until the COD reaches the decommissioning standard A, a method for shortening the decommissioning time of the final disposal site in which the oxidizing agent is divided into a plurality of times and injected into the waste layer has been proposed.

また、特許文献2には、埋立前に廃棄物を機械的に洗浄することで、廃棄物に含まれる有機物や塩類を洗い出して廃棄物を安定化する方法や、埋立前に廃棄物に散水および通気して、廃棄物中の有機物や塩類、重金属等を洗い出し、或いは不溶化する方法が示されている。   Patent Document 2 discloses a method of stabilizing waste by washing organic matter and salts contained in the waste by mechanically washing the waste before landfill, A method is shown in which aeration is performed to wash out or insolubilize organic matter, salts, heavy metals, and the like in waste.

さらに特許文献3には、固体状の産業廃棄物で、パッキングしたときの実積率が、60%以下の廃棄物を浄水場発生汚泥、下水処理場発生汚泥、廃水処理施設での発生汚泥、建設工事に伴って発生する汚泥と配合した後に、最終処分場に埋め立てることを特徴とする汚泥の最終処分方法が提案されている。   Further, Patent Document 3 discloses that solid industrial waste, the actual volume ratio when packing is 60% or less of waste, sludge generated in water treatment plants, sewage treatment plants, sludge generated in wastewater treatment facilities, There has been proposed a final disposal method for sludge characterized by being combined with sludge generated in connection with construction work and then landfilled in a final disposal site.

特開2005−224674号公報JP 2005-224673 A 特開2009−241053号公報JP 2009-241053 A 特開2009−45566号公報JP 2009-45566 A

しかし、特許文献1に記載された方法を採用する場合、最終処分場に厚く埋め立てた廃棄物層に一様に空気を供給するのは容易ではないため、廃止までの期間を効果的に短縮できないという問題があった。   However, when the method described in Patent Document 1 is adopted, it is not easy to uniformly supply air to the waste layer thickly buried in the final disposal site, so the period until abolition cannot be effectively shortened. There was a problem.

また、特許文献2に記載された方法を採用する場合、廃棄物を最終処分場に搬入する前に外部で前処理する必要があり、前処理設備を構築する敷地の確保難という問題ばかりでなく、前処理によって発生する排水等を処理するための水処理設備等の費用が嵩むという問題があり、容易に前処理することができなかった。   In addition, when adopting the method described in Patent Document 2, it is necessary to pre-process waste before carrying it into the final disposal site, and not only the problem of securing a site for constructing pre-treatment facilities However, there is a problem that the cost of water treatment equipment for treating waste water generated by the pretreatment is increased, and the pretreatment cannot be easily performed.

そのため、現状、廃棄物は前処理されることなく最終処分場で直接埋立処理されている。具体的にトラックで搬入された有機性汚泥を含む様々な廃棄物は、敷地の端部から順に遮水工の上に一定量埋め立てられる度に覆土が施され、さらにその上に新たな廃棄物が埋め立てられ、上限に達すると最終覆土が施されている。   Therefore, at present, waste is directly landfilled at the final disposal site without being pretreated. Specifically, various types of waste including organic sludge brought in by truck are covered with soil every time a certain amount is landfilled on the impervious work in order from the end of the site. When landfilled and the upper limit is reached, the final soil covering is applied.

特に最終処分場に搬入された有機性廃棄物、例えば熱灼減量が15%以上で括られる有機性汚泥は、通気性及び通水性が悪く、埋立層内で団粒構造となって内部が嫌気化し、BOD,COD,T−N等の発生源となり、浸出水処理設備への原水の水質悪化をもたらし、最終処分場の廃止までの期間短縮の阻害要因となっている。このような有機性廃棄物には、有機性汚泥に限らず熱灼減量が15%未満の無機性汚泥や僅かでも有機物が含まれる焼却灰等が含まれる。   In particular, organic waste brought to the final disposal site, for example, organic sludge with a thermal loss reduction of 15% or more, has poor air permeability and water permeability, and has an aggregate structure in the landfill layer, making the inside anaerobic It becomes a generation source of BOD, COD, TN, etc., brings about deterioration of the quality of raw water to the leachate treatment facility, and hinders the shortening of the period until the final disposal site is abolished. Such organic waste includes not only organic sludge but also inorganic sludge having a thermal loss of less than 15%, incinerated ash containing even a small amount of organic matter, and the like.

特許文献3には、パッキングしたときの実積率が60%以下の廃棄物として、シュレッダーダストが開示されているが、金属類以外にガラスや土砂等が混入しており、その組成によっては通気性が十分に確保できないという問題もあった。   In Patent Document 3, shredder dust is disclosed as waste having an actual volume ratio of 60% or less when packed, but glass, earth and sand, etc. are mixed in addition to metals, and depending on the composition, aeration There was also a problem that sufficient sex could not be secured.

本発明の目的は、上述した問題点に鑑み、最終処分場の閉鎖から廃止までの期間を効果的に短縮することができる有機性廃棄物の安定化促進方法を提供する点にある。   In view of the above-described problems, an object of the present invention is to provide a method for promoting the stabilization of organic waste that can effectively shorten the period from closing to disposal of the final disposal site.

上述の目的を達成するため、本発明による有機性廃棄物の安定化促進方法の第一特徴構成は、特許請求の範囲の請求項1に記載した通り、最終処分場に埋め立てられる有機性廃棄物の安定化促進方法であって、熱灼減量が15%以上となる特定有機性廃棄物に対して、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材を混合する通気性改質材混合ステップと、通気性改質材が混合された特定有機性廃棄物の堆積層に通気する通気ステップと、を備え、前記通気ステップが最終処分場に埋め立てる前の特定有機性廃棄物の堆積層で実行され、前記通気ステップで硝化処理された特定有機性廃棄物を最終処分場に埋め立てる埋立ステップをさらに含む点にある。
数式1 : φ = (σ・d) / (p・s)
φは透気係数(L・cm/分・kP・cm)、σは流量(L/分)、pは入出の差圧(kP)、sは断面積(cm)、dは長さ(cm)
In order to achieve the above-described object, the first characteristic configuration of the organic waste stabilization promoting method according to the present invention is the organic waste landfilled in the final disposal site as described in claim 1 of the claims. The specific organic waste having a heat loss of 15% or more, and the air permeability coefficient φ determined by Equation 1 is at least greater than the value in the case where the air permeability modifier is not mixed. A breathable modifier mixing step for mixing a breathable modifier in an amount increasing by 50%, and a venting step for ventilating a deposited layer of the specific organic waste mixed with the breathable modifier, The aeration step is performed in a deposit layer of the specific organic waste before being landfilled in the final disposal site, and further includes a landfill step of reclaiming the specific organic waste nitrified in the aeration step in the final disposal site. .
Formula 1: φ = (σ · d) / (p · s)
φ is an air permeability coefficient (L · cm / min · kP · cm 2 ), σ is a flow rate (L / min), p is an input / output differential pressure (kP), s is a cross-sectional area (cm 2 ), and d is a length (Cm)

本願発明者らが鋭意研究を重ねた結果、通気性改質材混合ステップで、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇するまで通気性改質材が混合されると、通気ステップで、特定有機性廃棄物の堆積層に十分な空気がほぼ均等に供給可能となり、好気性生物処理が促進され、その結果、特定有機性廃棄物に含まれるアンモニア性窒素の硝化処理が促進されるという新知見が得られた。そこで、硝化処理が促進された特定有機性廃棄物を最終処分場に埋め立てると、嫌気性条件下で微生物による脱窒素処理が促進され、最終処分場の堆積層に通気設備を設けなくても、最終処分場の閉鎖から廃止までに要する期間が効果的に短縮できるようになった。 As a result of intensive studies by the inventors of the present application, in the air permeability modifier mixing step, air permeability is increased until the air permeability coefficient φ obtained by Equation 1 increases by at least 50% from the value in the case where the air permeability modifier is not mixed. When the property modifier is mixed, sufficient air can be supplied to the deposit layer of the specific organic waste in the aeration step almost uniformly, and the aerobic biological treatment is promoted. As a result, the specific organic waste New findings have been obtained that nitrification of ammonia nitrogen contained in the selenium is promoted. Therefore, when landfilling the specific organic waste whose nitrification treatment is promoted in the final disposal site, the denitrification treatment by microorganisms is promoted under anaerobic conditions, and even if a venting facility is not provided in the deposition layer of the final disposal site, The time required from closing the final disposal site to abolishing it can be effectively shortened.

同第の特徴構成は、同請求項に記載した通り、上述の第一の特徴構成に加えて、前記通気性改質材混合ステップは、通気性改質材として破砕処理された廃プラスチック及び/または廃石膏ボードを特定有機性廃棄物に混合するステップである点にある。 In the second characteristic configuration, as described in claim 2 , in addition to the first characteristic configuration described above, the breathable modifier mixing step includes waste plastic that has been crushed as a breathable modifier. And / or a step of mixing waste gypsum board with specific organic waste.

通気性改質材として破砕処理された廃プラスチック及び/または廃石膏ボードを用いると、著しい通気性改善効果が表れるようになった。   When waste plastic and / or waste gypsum board that has been crushed are used as the breathability modifier, a significant improvement in breathability has come to appear.

同第の特徴構成は、同請求項に記載した通り、上述の第一または第二の特徴構成に加えて、前記通気ステップは、通気性改質材が混合された特定有機性廃棄物の堆積層に5〜30L/(min.・m)の通気量で通気するステップである点にある。 In the third feature configuration, as described in claim 3 , in addition to the first or second feature configuration described above, the ventilation step includes a specific organic waste mixed with a breathability modifier . This is a step of ventilating the deposited layer at a flow rate of 5 to 30 L / (min. · M 3 ).

通気性改質材混合ステップで通気性改質材が混合された特定有機性廃棄物の堆積層に、通気量5〜30L/(min.・m)で通気すると、好気性生物処理が効果的に促進されるようになる。 Aerobic biological treatment is effective when aeration rate of 5-30 L / (min. · M 3 ) is passed through the deposited layer of the specific organic waste mixed with the breathable modifier in the breathable modifier mixing step. Will be promoted.

同第の特徴構成は、同請求項に記載した通り、上述の第の特徴構成に加えて、前記通気ステップは、通気性改質材が混合された特定有機性廃棄物の堆積層に15〜30L/(min.・m)の通気量で通気するステップである点にある。 In the fourth feature configuration, as described in claim 4 , in addition to the third feature configuration described above, the ventilation step includes a deposit layer of a specific organic waste mixed with a breathability modifier. This is a step of aeration with an air flow rate of 15 to 30 L / (min. · M 3 ).

さらに、15〜30L/(min.・m)の通気量で通気すると、好気性生物処理が顕著に促進される。 Furthermore, when aeration is performed at a flow rate of 15 to 30 L / (min. · M 3 ), the aerobic biological treatment is remarkably promoted.

同第の特徴構成は、同請求項に記載した通り、上述の第一から第の何れかの特徴構成に加えて、特定有機性廃棄物に有機性汚泥、生ごみ及び/または食品残渣が含まれる点にある。 In the fifth characteristic configuration, as described in claim 5 , in addition to any of the first to fourth characteristic configurations described above, organic sludge, food waste and / or foods may be added to the specific organic waste. The residue is included.

特定有機性廃棄物として、下水汚泥や浄化槽汚泥等の有機性汚泥、生ごみ、食品工場等で発生する食品残渣等を最終処分場に廃棄する場合に、効果的に安定化を促進できるようになる。   As specific organic waste, when disposal of organic sludge such as sewage sludge and septic tank sludge, food waste, food residues generated in food factories, etc., to effectively promote stabilization Become.

以上説明した通り、本発明によれば、最終処分場の閉鎖から廃止までの期間を効果的に短縮することができる有機性廃棄物の安定化促進方法を提供することができるようになった。   As described above, according to the present invention, it is possible to provide a method for promoting the stabilization of organic waste that can effectively shorten the period from closing to disposal of the final disposal site.

管理型最終処分場の要部の断面図Cross section of the main part of the managed final disposal site (a)は透気係数算出モデルの説明図、(b)は透気係数計測のための試験装置の説明図(A) is explanatory drawing of a permeability coefficient calculation model, (b) is explanatory drawing of the test apparatus for a permeability coefficient measurement. (a)は埋立前処理施設の説明図、(b)は候補となる通気性改質材が混入された特定有機性廃棄物に対する通気性試験結果の説明図(A) is an explanatory diagram of a landfill pretreatment facility, (b) is an explanatory diagram of the results of breathability tests on specific organic waste mixed with candidate breathability modifiers (a)は通気性試験に用いた供試廃棄物の組成の明図、(b),(c)は通気性試験結果の説明図(A) is a clear diagram of the composition of the test waste used in the breathability test, and (b) and (c) are explanatory diagrams of the breathability test results. ライシメータの説明図Illustration of lysimeter (a)は安定化試験に用いた供試廃棄物の組成の説明図、(b)はライシメータへの供試廃棄物の充填量の説明図、(c)は実験スケジュールの説明図(A) is an explanatory diagram of the composition of the test waste used in the stabilization test, (b) is an explanatory diagram of the filling amount of the test waste into the lysimeter, (c) is an explanatory diagram of the experiment schedule (a)から(f)は溶出試験の結果説明図(A) to (f) are diagrams explaining the results of the dissolution test. (a)から(f)は浸出水試験の結果説明図(A) to (f) are diagrams explaining the results of the leachate test (a),(b)は浸出水に対する窒素総和法による試験の結果説明図(A), (b) is an explanatory diagram of the results of the nitrogen summation test for leachate

以下、本発明による管理型最終処分場に埋め立てられる有機性廃棄物の安定化促進方法の実施形態を説明する。
図1には、クローズドタイプ(「被覆型」とも呼ばれる。)の管理型最終処分場10の構造が示されている。管理型最終処分場10(以下、単に「最終処分場10」と記す場合もある。)は、廃棄物の処理及び清掃に関する法律で定められる構造基準と維持管理基準に基づいて設置及び運営され、同法に定められた廃棄物の区分に従って埋立処分される。
Hereinafter, an embodiment of a method for promoting stabilization of organic waste buried in a managed final disposal site according to the present invention will be described.
FIG. 1 shows the structure of a closed type (also called “covered type”) managed final disposal site 10. The management-type final disposal site 10 (hereinafter may be simply referred to as “final disposal site 10”) is installed and operated based on the structural standards and maintenance management standards stipulated in the law on waste disposal and cleaning, It is disposed of in landfill according to the waste classification stipulated in the law.

管理型最終処分場10は、埋立地となる山間部の谷間や掘削地盤が堰堤3で仕切られ、埋立地の底面や斜面等にゴムシート等の難透水性の層または壁で構成される遮水工11が施され、さらに被埋立物からの浸出水を集排水する溝や管を備えた集排水設備12が設置されている。   The management-type final disposal site 10 has a mountainous valley as a landfill site and excavated ground divided by a dam 3, and is composed of a non-permeable layer or wall such as a rubber sheet on the bottom or slope of the landfill site. A waterworks 11 is applied, and a drainage facility 12 having a groove and a pipe for collecting and draining leachate from the landfill is installed.

堰堤3の近傍に集排水設備12を経由した浸出水の集水ピット4が設けられ、ポンプで浸出水処理設備17に送水される。また、図には示していないが、雨水や地下水が浸出水に混入しないように、遮水工11の外側に地下水集排水管が設けられて調整池等に集水されている。   In the vicinity of the dam 3, a water collection pit 4 for leachate via the water collection and drainage facility 12 is provided, and the water is sent to the leachate treatment facility 17 by a pump. Although not shown in the figure, a groundwater collection / drainage pipe is provided outside the impermeable work 11 so that rainwater and groundwater are not mixed into the leachate and collected in a regulating pond or the like.

最終処分場10は、不特定人が安易に進入できないように塀等で閉鎖されており、埋立地から発生する様々な臭気ガスが外部に漏洩しないように、また雨水が滲入しないように被覆施設2で覆われている。被覆施設2は、鋼製の柱で骨組みが組まれ、金属製の板状体が配置されて外気と分離されている。   The final disposal site 10 is closed with firewood, etc. so that unspecified people cannot enter easily, so that various odorous gases generated from the landfill site are not leaked to the outside, and rainwater is not infiltrated. 2 is covered. The covering facility 2 is framed by steel pillars, and a metal plate-like body is arranged to be separated from the outside air.

尚、被覆施設2の構造として、ラーメン構造、アーチ構造、平面トラス構造、高剛性曲げ材と高引張強度のケーブルを組み合わせた自己釣合型のハイブリッド構造、スペースフレーム構造、シェル構造、空気支持構造、サスペンション構造等、公知の様々な支持構造が採用可能である。   In addition, the structure of the covering facility 2 includes a ramen structure, an arch structure, a flat truss structure, a self-balanced hybrid structure combining a high-rigidity bending material and a high tensile strength cable, a space frame structure, a shell structure, and an air support structure. Various known support structures such as suspension structures can be used.

被覆施設2の下方空間には散水機構13を構成するスプリンクラーが設置され、被埋立物表面から粉塵が舞い上がらないように、また被埋立物の微生物処理が促進されるように散水機構13によって散水されるように構成されている。散水機構13は浸出水処理設備17で浄化処理された処理水を供給する給水機構6に接続されている。尚、散水機構13としてスプリンクラー等の固定設備に替えて、車両等の移動体にレインガン等を搭載した散水機構を複数備えていてもよい。被埋立物からの蒸発が激しい夏場には、浸出水処理設備17の処理水のみでは不足するため、井水や上水も活用してもよい。   A sprinkler constituting the sprinkler mechanism 13 is installed in the lower space of the covering facility 2, and water is sprinkled by the sprinkler mechanism 13 so that dust does not rise from the surface of the landfill and promotes microbial treatment of the landfill. It is comprised so that. The sprinkling mechanism 13 is connected to the water supply mechanism 6 that supplies treated water purified by the leachate treatment facility 17. In addition, it may replace with fixed facilities, such as a sprinkler, as the water spray mechanism 13, and may provide multiple water spray mechanisms which mounted a rain gun etc. in moving bodies, such as a vehicle. In the summer, when evaporation from the landfill is intense, only the treated water from the leachate treatment facility 17 is insufficient, and therefore well water and clean water may be used.

最終処分場10には、特定有機性廃棄物、焼却灰、廃プラスチック、スラグ、コンクリートくず、ガラスくず、陶磁器くず、鉱滓、瓦礫くず等が搬入されて埋め立てられる。特定有機性廃棄物とは熱灼減量が15%以上で括られる有機性汚泥を意味し、具体的に下水汚泥や浄化槽汚泥、生ごみ、食品工場等で発生する食品残渣等、或いはそれらの混合物が含まれる。   In the final disposal site 10, specific organic waste, incinerated ash, waste plastic, slag, concrete scrap, glass scrap, ceramic scrap, slag, rubble scrap, etc. are carried and landfilled. Specified organic waste means organic sludge with a heat loss reduction of 15% or more, specifically sewage sludge, septic tank sludge, food waste, food residues generated in food factories, etc., or mixtures thereof Is included.

トラックで搬入された様々な廃棄物は、特定有機性廃棄物、通気性改質材として利用可能な破砕処理された廃プラスチック及び/または廃石膏ボード、その他の廃棄物に分別され、特定有機性廃棄物と通気性改質材が混合された後に、敷地の端部から順に遮水工11の上に埋め立てられる。   Various types of waste brought in by truck are classified into specific organic waste, crushed waste plastic and / or waste gypsum board that can be used as breathable modifiers, and other waste. After the waste and the air permeability modifier are mixed, they are landed on the impermeable work 11 in order from the end of the site.

通気性改質材が混合された特定有機性廃棄物が一定量埋め立てられる度に覆土23が施され、さらにその上に新たな廃棄物が埋め立てられ、上限に達すると最終覆土23が施される。最下層または各層22の下部に通気管21が設置され、特定有機性廃棄物に通気される。   Covering soil 23 is applied each time a certain amount of the specific organic waste mixed with the air permeability modifier is landfilled, and further new waste is landfilled thereon. When the upper limit is reached, final covering 23 is applied. . A vent pipe 21 is installed in the lowermost layer or in the lower part of each layer 22 to vent the specific organic waste.

焼却灰、スラグ、コンクリートくず、ガラスくず、陶磁器くず、鉱滓、瓦礫くず等のその他の廃棄物は、上述した特定有機性廃棄物の埋立層とは別の区画(図1には示されていない)に埋め立てられる。   Other waste such as incineration ash, slag, concrete scrap, glass scrap, ceramic scrap, slag, rubble scrap, etc., is separated from the above-mentioned specific organic waste landfill layer (not shown in Fig. 1) ).

つまり、最終処分場に埋め立てられる有機性廃棄物の安定化促進方法は、熱灼減量が15%以上となる特定有機性廃棄物に通気性改質材を混合する通気性改質材混合ステップと、通気性改質材が混合された特定有機性廃棄物の堆積層に通気する通気ステップとを備えている。 That is, the method for promoting stabilization of organic waste landfilled at the final disposal site includes a breathable modifier mixing step of mixing a breathable modifier with a specific organic waste having a thermal loss of 15% or more, and And an aeration step for aerating the deposited layer of the specific organic waste mixed with the air permeability modifier.

尚、通気性改質材混合ステップで通気性改質材が混合された特定有機性廃棄物を直ちに最終処分場に埋め立てて通気ステップが実行されるように構成してもよいし、最終処分場に埋め立てる前に前処理設備で少量の特定有機性廃棄物に対して通気ステップが実行され、その後最終処分場に埋め立てられて、さらに通気ステップが実行されるように構成してもよい。   The specific organic waste mixed with the breathable modifier in the breathable modifier mixing step may be immediately refilled in the final disposal site, and the ventilation step may be executed. The aeration step may be performed on a small amount of the specific organic waste in the pretreatment facility before being landfilled, and then landed in the final disposal site, and further the aeration step may be performed.

通気性改質材混合ステップでは、特定有機性廃棄物に、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材が混合される。通気性改質材として破砕処理された廃プラスチック及び/または廃石膏ボードが効果的に用いられる。   In the breathable modifier mixing step, the breathable modifier in an amount that increases the air permeability coefficient φ obtained by Formula 1 by at least 50% to the specific organic waste than the value when the breathable modifier is not mixed. Are mixed. Waste plastics and / or waste gypsum boards that have been crushed are effectively used as the breathable modifier.

数式1 : φ = (σ・d) / (p・s)
φは透気係数(L・cm/分・kP・cm)、σは流量(L/分)、pは入出の差圧(kP)、sは断面積(cm)、dは長さ(cm)
Formula 1: φ = (σ · d) / (p · s)
φ is an air permeability coefficient (L · cm / min · kP · cm 2 ), σ is a flow rate (L / min), p is an input / output differential pressure (kP), s is a cross-sectional area (cm 2 ), and d is a length (Cm)

通気ステップでは、通気性改質材が混合された特定有機性廃棄物の堆積層に、通気管21を介して5〜30L/(min.・m)の通気量、好ましくは15〜30L/(min.・m)の通気量で空気が供給される。 In the aeration step, the aeration amount of 5 to 30 L / (min. · M 3 ), preferably 15 to 30 L / p, is passed through the ventilation pipe 21 to the deposited layer of the specific organic waste mixed with the air permeability modifier. Air is supplied with an air flow rate of (min. · M 3 ).

以下に、本発明の別実施形態を説明する。
上述した実施形態では、通気性改質材混合ステップで通気性改質材が混合された特定有機性廃棄物を最終処分場10に埋設した後に通気ステップが実行される態様を説明したが、通気性改質材が混合された特定有機性廃棄物を最終処分場10に埋設する前に通気ステップが実行される態様を採用することも可能である。
Hereinafter, another embodiment of the present invention will be described.
In the above-described embodiment, the mode in which the ventilation step is performed after the specific organic waste mixed with the breathable modifier in the breathable modifier mixing step is embedded in the final disposal site 10 has been described. It is also possible to adopt a mode in which the aeration step is performed before the specific organic waste mixed with the property modifier is embedded in the final disposal site 10.

通気ステップが実行されることにより、アンモニア成分が含まれる特定有機性廃棄物が好気性微生物により効率的に硝化処理される。そして、硝化処理された特定有機性廃棄物を最終処分場に埋め立てる埋立ステップを実行することにより、嫌気性の雰囲気下で脱窒素処理が促進されるようになる。この場合、埋立層に通気管21を設置する必要はない。   By performing the aeration step, the specific organic waste containing the ammonia component is efficiently nitrified by the aerobic microorganism. And the denitrification process comes to be promoted in an anaerobic atmosphere by performing the landfilling step of landfilling the specific organic waste subjected to nitrification in the final disposal site. In this case, it is not necessary to install the vent pipe 21 in the landfill layer.

図2(a)に示すように、一定の面積sを持った長さdの空気路に入出の差圧pをかけたときに流れる空気量をσとする。空気の粘性と圧力変化に対する空気の体積変化が無視できるものと仮定すると数式2が成り立つ。φは比例定数である。比例定数φを透気係数と定義し、数式2を変形することによって既述した数式1が得られる。
数式2 : σ = φ・p・s / d (L/min.)
As shown in FIG. 2 (a), let σ be the amount of air that flows when a differential pressure p of entry / exit is applied to an air passage of length d having a constant area s. Assuming that the volume change of the air with respect to the viscosity and pressure change of the air is negligible, Formula 2 is established. φ is a proportionality constant. By defining the proportionality constant φ as the air permeability coefficient and modifying Equation 2, Equation 1 described above can be obtained.
Formula 2: σ = φ · p · s / d (L / min.)

図2(b)に示すように、直径250mm、高さ127mmの鋳物筒状体30の両端に通気性メッシュ31を介して通気管32a,32bが装着された上下蓋体33a,33bで閉塞した試験装置を用いて通気性試験を行なった。この装置は、土の透水係数を測定する場合に一般的に使われている装置を改造したものである。   As shown in FIG. 2 (b), the casting cylinder 30 having a diameter of 250 mm and a height of 127 mm is closed by upper and lower lid bodies 33a and 33b having ventilation pipes 32a and 32b attached to both ends via a ventilation mesh 31. A breathability test was conducted using a test apparatus. This device is a modified version of a device commonly used to measure soil permeability.

鋳物筒状体30内部に特定有機性廃棄物と通気性改質材との混合物(以下、「供試廃棄物」と記す。)を充填して、下蓋33bの通気管32bから空気を供給したときに上蓋33aの通気管32aから流出する空気量を計測する。尚、混合物を充填する前に、流量計、鋳物筒状体30、通気管32a,32b等で生じる圧力損失を予め計測して、実際の測定値から減算補正する必要がある。   A mixture of specific organic waste and air permeability modifier (hereinafter referred to as “test waste”) is filled into the casting cylindrical body 30 and air is supplied from the air pipe 32b of the lower lid 33b. The amount of air flowing out from the vent pipe 32a of the upper lid 33a is measured. Before filling the mixture, it is necessary to measure in advance pressure loss caused by the flow meter, the cast cylindrical body 30, the vent pipes 32a, 32b, etc., and subtract and correct from the actual measurement value.

鋳物筒状体30に充填する供試廃棄物の通気性は締固め状態によって大きく変化するので、図3(a)に示す埋立前処理施設モデルと同程度の加重となるように締固めている。尚、数式1で算出される透気係数は供試廃棄物の締固め状態や試験装置のサイズ等に左右されることはない。試験装置では出が大気圧、入が圧力計の指示値であり、入出の差圧pはそれらの差となる。   Since the air permeability of the test waste to be filled in the casting cylindrical body 30 varies greatly depending on the compaction state, it is compacted so as to have the same weight as the landfill pretreatment facility model shown in FIG. . In addition, the air permeability coefficient calculated by Formula 1 does not depend on the compacted state of the test waste, the size of the test apparatus, or the like. In the test apparatus, the output is the atmospheric pressure, and the input is the indicated value of the pressure gauge, and the input / output differential pressure p is the difference between them.

具体的に、埋立前処理施設モデルは、有機性廃棄物を1.0〜1.5mの厚さで充填し、下から通気、上から乾燥しない程度に散水して、埋立前に有機物の安定化を促進するモデル施設である。廃棄物を厚さ1.0〜1.5m充填した時の積載荷重は単位体積の重量を1t/mとすると9.8〜14.7kN/m(0.1〜0.15kgf/cm)となる。 Specifically, the landfill pretreatment facility model is filled with organic waste with a thickness of 1.0 to 1.5m, vented from below, sprinkled to the extent that it does not dry, and stabilizes organic matter before landfill. It is a model facility that promotes the transformation. When the waste is filled with a thickness of 1.0 to 1.5 m, the load capacity is 9.8 to 14.7 kN / m 2 (0.1 to 0.15 kgf / cm, assuming that the unit volume weight is 1 t / m 3. 2 ).

これは直径5cm、重量2.5kgのランマを静置した時の荷重12.5kN/m(0.127kgf/cm)とほぼ同様であることから、供試廃棄物の上面に2.5kgランマを置くという単純操作により締固めた。実験では、平面的に均等にランマを置く方法(1/2ずつ重ねて置く方法)で高さ127mmを3層に分けてそれぞれ締固めた。 This is almost the same as the load of 12.5 kN / m 2 (0.127 kgf / cm 2 ) when a rammer having a diameter of 5 cm and a weight of 2.5 kg is left standing, so that 2.5 kg is placed on the upper surface of the test waste. It was compacted by a simple operation of placing a rammer. In the experiment, the height of 127 mm was divided into three layers and compacted by a method of placing the rammers evenly in a plane (a method of placing lambs one by two).

複数種類の通気性改質材候補として廃プラスチック、廃石膏ボード、焼却灰(A社)、焼却灰(B社)、焼却灰(C社)、不燃破砕物、溶融スラグをそれぞれ有機性汚泥に30容積%混合して通気性試験を行なった結果が図3(b)に示されている。図3(b)から、通気性改質材として廃プラスチック及び廃石膏ボードが好適であることが判明した。尚、図3(b)は、各透気係数の計測値のうち最も高い値で正規化されたデータである。   Waste plastic, waste gypsum board, incineration ash (Company A), incineration ash (Company B), incineration ash (Company C), incombustible crushed material, and molten slag as organic sludge FIG. 3B shows the result of the air permeability test performed by mixing 30% by volume. From FIG. 3 (b), it was found that waste plastic and waste gypsum board are suitable as the air permeability modifier. In addition, FIG.3 (b) is the data normalized by the highest value among the measured values of each air permeability coefficient.

次に、有機性汚泥、及び、有機性汚泥に廃プラスチック、廃石膏ボードまたは焼却灰の何れかを混合した複数種類の供試廃棄物を準備して、上述の試験装置を用いて通気性試験を行なった。図4(a)には、供試廃棄物の組成が示されている。   Next, prepare organic sludge and multiple types of test waste in which waste plastic, waste gypsum board or incinerated ash is mixed with organic sludge, and use the above-mentioned test equipment to test air permeability. Was done. FIG. 4 (a) shows the composition of the test waste.

試験装置では、通気する空気流量が少ないと流量計等による誤差が大きくなるため、6L/min.の値で実験を行なった。これを有機性汚泥1m当たりの通気量に換算すると960L/mとなり、埋立前処理モデルの有機性廃棄物への通気量を5〜30L(min.・m)とすると、数十から数百倍程度の流量に相当する。 In the test apparatus, if the flow rate of air to be ventilated is small, an error due to a flow meter or the like becomes large. The experiment was conducted with the value of. When this is converted into the amount of ventilation per 1 m 3 of organic sludge, it becomes 960 L / m 3 , and when the amount of ventilation to the organic waste of the landfill pretreatment model is 5 to 30 L (min. · M 3 ) Corresponds to several hundred times the flow rate.

図4(b),(c)に示すように、有機性汚泥に廃プラスチック、廃石膏ボードを少なくとも5体積%混合すると、有機性汚泥のみの透気係数よりも50%上昇することが確認された。尚、燃殻が混合比5〜10体積%の間でフラットになっている原因は、5体積%から10体積%に増加させたときに単位重量が増加しているためと考えられ、再実験を行なってもこの傾向は変わらない。   As shown in FIGS. 4B and 4C, when at least 5% by volume of waste plastic and waste gypsum board is mixed with organic sludge, it is confirmed that the air permeability coefficient is increased by 50% from the organic sludge alone. It was. In addition, it is thought that the reason why the fuel shell is flat between the mixing ratios of 5 to 10% by volume is that the unit weight increases when the volume is increased from 5% to 10% by volume. This trend will not change even if

次に、有機性汚泥、有機性汚泥に廃プラスチックまたは廃石膏ボードを5体積%混合した供試廃棄物を調整して、図5に示す試験装置(以下、「ライシメータ」と記す。)に充填し、有機性汚泥の安定化傾向の確認試験を行なった。図6(a)には8種類の供試廃棄物の組成が示されている。   Next, organic sludge, test waste made by mixing 5% by volume of waste plastic or waste gypsum board with organic sludge is prepared and filled in the test apparatus shown in FIG. 5 (hereinafter referred to as “lysimeter”). And the confirmation test of the stabilization tendency of organic sludge was conducted. FIG. 6A shows the composition of eight types of test waste.

ライシメータ40は、直径300mm、長さ1000mmの筒状容器41と、傾斜底面に形成された底部42と、底部に配置されたドレン管43と、筒状容器41を覆う保温シート54とを備えて構成されている。底部42に最小厚さ100mmの砕石層46が形成され、その厚み方向中央部に散気管44が設置され、エアポンプ45からの空気が散気管44を介して筒状容器41の内部に供給されるように構成されている。散気管44から供給される空気量を計測する流量計47、筒状容器41に充填された供試廃棄物の上部領域の温度を計測する温度センサ48及び下部領域の温度を計測する温度センサ49が設けられている。   The lysimeter 40 includes a cylindrical container 41 having a diameter of 300 mm and a length of 1000 mm, a bottom portion 42 formed on an inclined bottom surface, a drain pipe 43 disposed on the bottom portion, and a heat insulating sheet 54 that covers the cylindrical container 41. It is configured. A crushed stone layer 46 having a minimum thickness of 100 mm is formed on the bottom 42, an air diffuser 44 is installed at the center in the thickness direction, and air from the air pump 45 is supplied into the cylindrical container 41 through the air diffuser 44. It is configured as follows. A flow meter 47 for measuring the amount of air supplied from the air diffuser 44, a temperature sensor 48 for measuring the temperature of the upper region of the test waste filled in the cylindrical container 41, and a temperature sensor 49 for measuring the temperature of the lower region. Is provided.

図6(b)に示す充填量で、砕石層46の上部に各供試廃棄物が充填され、図6(c)に示す実験スケジュールに従って所定の間隔で散水した後に、ドレン管43に備えたバルブを解放操作して浸出水を採水して、その組成を分析した。尚、初回は液固比0.1(散水量約7L)、2回目以降は液固比0.033(散水量約2.3L)で各供試廃棄物に散水した。尚、8本のライシメータに各供試廃棄物を充填する際、10回程度に分割して充填し、その都度ランマの自重で締め固めた。汚泥の充填高さは1.0mHである。   Each test waste was filled in the upper portion of the crushed stone layer 46 at the filling amount shown in FIG. 6B, and after draining at predetermined intervals according to the experimental schedule shown in FIG. 6C, the drain pipe 43 was prepared. The valve was opened and leachate was collected and analyzed for its composition. In addition, water was sprayed to each test waste at a liquid-solid ratio of 0.1 (sprinkling amount of about 7 L) for the first time and at a liquid-solid ratio of 0.033 (watering amount of about 2.3 L) for the second and subsequent times. In addition, when each test waste was filled into eight lysimeters, it was filled in about 10 times, and each time it was compacted with the own weight of the ramma. The sludge filling height is 1.0 mH.

実験No.B−0は、有機性汚泥のみの供試廃棄物で通気量0である。実験No.WP5−0からWP5−30は、有機性汚泥に廃プラスチックを5体積%混合した供試廃棄物で、通気量を0,15,30L/mに割り振っている。実験No.PC5−0からPC5−30は、有機性汚泥に廃石膏ボードを5体積%混合した供試廃棄物で、通気量を0,5,15,30L/mに割り振っている。尚、通気量0のライシメータ40は、ドレン管43に備えたバルブを解放操作して、ドレン管からの外気の自然流入を許容する準好気性状態とし、その他のライシメータ40は、ドレン管43に備えたバルブを閉塞して散気管44から所定量の給気を行なった。 Experiment No. B-0 is a test waste containing only organic sludge and has an air flow rate of 0. Experiment No. WP5-0 to WP5-30 are test wastes in which 5% by volume of waste plastic is mixed with organic sludge, and the ventilation rate is assigned to 0, 15, 30 L / m 3 . Experiment No. PC5-0 to PC5-30 are test wastes in which 5% by volume of waste gypsum board is mixed with organic sludge, and the ventilation rate is assigned to 0, 5, 15, 30 L / m 3 . Note that the lysimeter 40 with zero air flow releases the valve provided in the drain pipe 43 to a semi-aerobic state in which natural air inflow from the drain pipe is allowed, and other lysimeters 40 are connected to the drain pipe 43. The provided valve was closed and a predetermined amount of air was supplied from the air diffuser 44.

実験開始から104日後に、ライシメータ40内の表土から10cmの領域の中心部から溶出試験用のサンプルを取り出した。   104 days after the start of the experiment, a sample for dissolution test was taken out from the center of a region 10 cm from the topsoil in the lysimeter 40.

図7(a),(b)には、実験開始前後の有機性廃棄物のBODの溶出試験結果が示されている。B−0は、実験終了後濃度が上昇したのに対し、廃プラスチックまたは廃石膏ボードを5体積%混合した有機性廃棄物は濃度が低下した。廃棄物を混合することにより通気性が改善され、速やかにBODが分解されたためである。   FIGS. 7A and 7B show the BOD dissolution test results of organic waste before and after the start of the experiment. The concentration of B-0 increased after the end of the experiment, whereas the concentration of organic waste mixed with 5% by volume of waste plastic or waste gypsum board decreased. This is because air permeability was improved by mixing the waste and BOD was quickly decomposed.

図7(c),(d)には、実験開始前後の有機性廃棄物のCODの溶出試験結果が示されている。廃プラスチック及び廃石膏ボードとも通気を15L/min・m以上与えると、実験終了後のCODは実験開始時より高くなった。通気を行なうことにより高分子状の難分解性有機物が分解されて低分子化し、CODとして検出されたと推測される。高分子状の難分解性有機物が低分子化することにより易分解性有機物となり分解が促進する。 7C and 7D show the COD dissolution test results of organic waste before and after the start of the experiment. When aeration was applied to waste plastic and waste gypsum board at 15 L / min · m 3 or more, the COD after the experiment was higher than that at the start of the experiment. It is presumed that by performing aeration, the polymer-like hard-to-decompose organic matter was decomposed to lower the molecular weight and detected as COD. When the polymer-like hardly decomposable organic substance is reduced in molecular weight, it becomes an easily decomposable organic substance and promotes decomposition.

図7(e),(f)には、実験開始前後の有機性廃棄物のT−N(トータル窒素)の溶出試験結果が示されている。T−NもCODと同様に、通気を15L/min・m以上与えると、実験開始前より実験終了後の方が、高い値を示すことが確認された。通気により低分子化が進みT−Nとして検出された結果、濃度が高くなったと推測される。 FIGS. 7E and 7F show the TN (total nitrogen) elution test results of the organic waste before and after the start of the experiment. Similarly to COD, TN was confirmed to show a higher value after the end of the experiment than before the start of the experiment when aeration of 15 L / min · m 3 or more was applied. It is presumed that the concentration became higher as a result of detection of TN as the molecular weight decreased due to aeration.

図8(a),(b)には、浸出水のBODの分析結果が示されている。どの供試廃棄物も実験開始直後からBODが低下していることが確認された。特に通気量が15L/min以上の供試廃棄物は、廃プラスチック及び廃石膏ボードともに速やかにかつ安定的に低下することが確認できた。   8A and 8B show the BOD analysis results of the leachate. It was confirmed that all test wastes had a decrease in BOD immediately after the start of the experiment. In particular, it was confirmed that the test waste having an air flow rate of 15 L / min or more rapidly and stably decreases in both the waste plastic and the waste gypsum board.

図8(c),(d)には、浸出水のCODの分析結果が示されている。廃プラスチック及び廃石膏ボードともに、通気量が15L/min以上の供試廃棄物は、通気を与えない供試廃棄物に比べて浸出水のCODが高くなった。通気により高分子状の物質が低分子化し、浸出水に可溶化し易くなったため濃度が上昇したものと推測される。   FIGS. 8C and 8D show the COD analysis results of the leachate. For both waste plastic and waste gypsum board, the test waste with an air flow rate of 15 L / min or higher had higher COD of leachate than the test waste without air flow. It is presumed that the concentration was increased because the polymer substance was reduced in molecular weight by aeration and became easier to solubilize in the leachate.

図8(e),(f)には、浸出水のT−Nの分析結果が示されている。CODと同様に、通気量が15L/min以上の供試廃棄物は、通気を与えない試料に比べてT−Nが高くなった。   FIGS. 8E and 8F show the TN analysis results of leachate. Similar to COD, the test waste with an air flow rate of 15 L / min or higher had a higher TN than the sample with no air flow.

以上の結果、熱灼減量が15%以上となる特定有機性廃棄物に対して、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材を混合することにより、通気による特定有機性廃棄物の安定化を促進可能なことが判った。   As a result of the above, for the specific organic waste whose thermal loss is 15% or more, the amount by which the air permeability coefficient φ obtained by Equation 1 is increased by at least 50% from the value in the case of not mixing the air permeability modifier It was found that the stabilization of specific organic waste by aeration can be promoted by mixing the air permeability modifier.

通気性改質材として粒径数mmから十数mm程度に破砕された廃プラスチック及び廃石膏ボードを好適に用いることができるが、これら以外であっても、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材を混合することにより、通気による特定有機性廃棄物の安定化を促進することができる。   Waste plastic and waste gypsum board crushed to a particle size of several millimeters to several tens of millimeters can be suitably used as the air permeability modifier, but even if other than these, the air permeability coefficient φ determined by Equation 1 is By mixing the air permeability modifier in an amount that is at least 50% higher than the value when the air permeability modifier is not mixed, stabilization of the specific organic waste by aeration can be promoted.

また、その際に、通気量を5〜30L/minに設定することにより、通気性を改善した特定有機性廃棄物の安定化が効果的に促進されることが判明した。そして、通気量を15〜30L/minに設定することにより、難分解性有機物の分解が一層促進されることが推察された。   Further, at that time, it was found that the stabilization of the specific organic waste with improved air permeability is effectively promoted by setting the air flow rate to 5 to 30 L / min. And it was guessed that decomposition | disassembly of a hardly decomposable organic substance is accelerated | stimulated further by setting air flow rate to 15-30 L / min.

図9(a),(b)には、供試廃棄物WP5−30の浸出水の窒素総和法による分析結果が示されている。図9(a)は図9(b)の窒素のそれぞれの形態を割合で示したものである。通気を行うと硝酸性窒素の割合が増え、アンモニア性窒素の割合が低下し、好気性微生物による硝化処理が進んでいることが確認された。この図から、硝化が進んだ段階で通気を止めて嫌気化すると埋立層内で脱窒が可能となるという新知見が得られた。   FIGS. 9A and 9B show the results of analysis by the nitrogen summation method of the leachate of the test waste WP5-30. FIG. 9A shows the respective forms of nitrogen in FIG. 9B in proportion. When aeration was performed, the ratio of nitrate nitrogen increased, the ratio of ammonia nitrogen decreased, and it was confirmed that nitrification with aerobic microorganisms was progressing. From this figure, new knowledge was obtained that denitrification can be performed in the landfill layer if the aeration is stopped and anaerobic at the stage of advanced nitrification.

つまり、熱灼減量が15%以上となる特定有機性廃棄物に対して、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材を混合する混合ステップと、通気性改質材が混合された特定有機性廃棄物の堆積層に通気する通気ステップと、前記通気ステップで硝化処理された特定有機性廃棄物を最終処分場に埋め立てる埋立ステップと、を含む有機性廃棄物の安定化促進方法を実施することにより、最終処分場に埋め立てられた特定有機性廃棄物は、嫌気性条件下で脱窒素処理が促進されるようになる。 That is, for a specific organic waste having a thermal loss of 15% or more, the air permeability is increased by at least 50% from the value when the air permeability coefficient φ obtained by Equation 1 is not mixed with the air permeability modifier. the final mixing step of mixing sex modifier, a ventilation step of venting the deposition layer of the particular organic waste breathable modifier is mixed, the specific organic waste which has been nitrified breathable step By implementing a method for promoting the stabilization of organic waste, including the landfill step of landfilling at the disposal site, denitrification treatment is promoted under certain anaerobic conditions for the specific organic waste landfilled at the final disposal site. Become so.

透気係数φを計測する際の試験装置は、上述した構造の試験装置に限るものではない。計測の際に廃棄物を締め固める加重は、上述の埋立前処理施設モデルを基準とする場合には0.1〜0.15kgf/cmが好ましいが、異なる埋立前処理施設モデルを採用する場合にはそれに応じて適宜設定すればよい。つまり、通常埋め立てられる際の条件に応じて締め固めた状態で透気係数φを計測すればよい。 The test apparatus for measuring the air permeability coefficient φ is not limited to the test apparatus having the structure described above. The weight for compacting the waste during the measurement is preferably 0.1 to 0.15 kgf / cm 2 when the above-mentioned landfill pretreatment facility model is used as a reference, but when a different landfill pretreatment facility model is adopted. May be set accordingly. That is, the air permeability coefficient φ may be measured in a state of being compacted according to the conditions for normal landfilling.

以上説明した各実施形態は、何れも本発明の一例に過ぎず、該記載により本発明の技術的範囲が限定されるものではなく、各部の具体的な構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the embodiments described above is only an example of the present invention, and the technical scope of the present invention is not limited by the description, and the specific configuration of each part exhibits the effects of the present invention. Needless to say, the design can be changed as appropriate within a range.

10:最終処分場
11:遮水工
12:集排水設備
13:散水機構
14:吸引装置
17:浸出水処理機構
21:通気管
22:埋立層
23:覆土
10: Final disposal site 11: Impervious work 12: Drainage / drainage facility 13: Sprinkling mechanism 14: Suction device 17: Leaching water treatment mechanism 21: Vent pipe 22: Landfill layer 23: Covering soil

Claims (5)

最終処分場に埋め立てられる有機性廃棄物の安定化促進方法であって、
熱灼減量が15%以上となる特定有機性廃棄物に対して、数式1で求まる透気係数φが通気性改質材を混合しない場合の値よりも少なくとも50%上昇する量の通気性改質材を混合する通気性改質材混合ステップと、
通気性改質材が混合された特定有機性廃棄物の堆積層に通気する通気ステップと、
を備え、
前記通気ステップが最終処分場に埋め立てる前の特定有機性廃棄物の堆積層で実行され、前記通気ステップで硝化処理された特定有機性廃棄物を最終処分場に埋め立てる埋立ステップをさらに含む有機性廃棄物の安定化促進方法。
数式1 : φ = (σ・d) / (p・s)
φは透気係数(L・cm/分・kP・cm)、σは流量(L/分)、pは入出の差圧(kP)、sは断面積(cm)、dは長さ(cm)
A method for promoting stabilization of organic waste landfilled at a final disposal site,
For specific organic wastes with a thermal loss reduction of 15% or more, the air permeability is improved by an amount at least 50% higher than the value obtained when the air permeability modifier φ obtained by Equation 1 is not mixed with the air permeability modifier. A breathable modifier mixing step for mixing the material;
An aeration step for venting a layer of a specific organic waste mixed with an air permeability modifier;
With
The organic waste further includes a landfill step in which the specific organic waste that has been nitrified in the aeration step is reclaimed in the final disposal site, which is executed in the deposition layer of the specific organic waste before the aeration step is landfilled in the final disposal site Stabilization promotion method.
Formula 1: φ = (σ · d) / (p · s)
φ is an air permeability coefficient (L · cm / min · kP · cm 2 ), σ is a flow rate (L / min), p is an input / output differential pressure (kP), s is a cross-sectional area (cm 2 ), and d is a length (Cm)
前記通気性改質材混合ステップは、通気性改質材として破砕処理された廃プラスチック及び/または廃石膏ボードを特定有機性廃棄物に混合するステップである請求項記載の有機性廃棄物の安定化促進方法。 2. The organic waste according to claim 1, wherein the air permeability modifier mixing step is a step of mixing waste plastic and / or waste gypsum board that has been crushed as the air permeability modifier with a specific organic waste. Stabilization promotion method. 前記通気ステップは、通気性改質材が混合された特定有機性廃棄物の堆積層に5〜30L/(min.・m)の通気量で通気するステップである請求項1または2記載の有機性廃棄物の安定化促進方法。 Said vent step, the deposition layer of the particular organic waste breathable modifier is mixed 5~30L / (min. · M 3 ) according to claim 1 or 2, wherein the step of venting aeration amount of Method for promoting stabilization of organic waste. 前記通気ステップは、通気性改質材が混合された特定有機性廃棄物の堆積層に15〜30L/(min.・m)の通気量で通気するステップである請求項記載の有機性廃棄物の安定化促進方法。 4. The organic material according to claim 3 , wherein the aeration step is a step of aeration with a ventilation amount of 15 to 30 L / (min. · M 3 ) through a deposition layer of the specific organic waste mixed with the air permeability modifier. Waste stabilization promotion method. 特定有機性廃棄物に有機性汚泥、生ごみ及び/または食品残渣が含まれる請求項1からの何れかに記載の有機性廃棄物の安定化促進方法。
The method for promoting stabilization of organic waste according to any one of claims 1 to 4 , wherein the specific organic waste contains organic sludge, garbage and / or food residue.
JP2015008010A 2015-01-19 2015-01-19 Method for promoting stabilization of organic waste Expired - Fee Related JP6621006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015008010A JP6621006B2 (en) 2015-01-19 2015-01-19 Method for promoting stabilization of organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015008010A JP6621006B2 (en) 2015-01-19 2015-01-19 Method for promoting stabilization of organic waste

Publications (2)

Publication Number Publication Date
JP2016131927A JP2016131927A (en) 2016-07-25
JP6621006B2 true JP6621006B2 (en) 2019-12-18

Family

ID=56434959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015008010A Expired - Fee Related JP6621006B2 (en) 2015-01-19 2015-01-19 Method for promoting stabilization of organic waste

Country Status (1)

Country Link
JP (1) JP6621006B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7275784B2 (en) * 2019-04-05 2023-05-18 中国電力株式会社 Deposited ash mound removal method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937367B2 (en) * 1977-06-14 1984-09-10 大成建設株式会社 Waste landfill method
JPS5632391A (en) * 1979-08-27 1981-04-01 Japan Steel Works Ltd Composting method by aerating organic sludge
JPS60116B2 (en) * 1980-11-20 1985-01-05 日本鋼管株式会社 Shellfish fermentation processing method
JPS60260488A (en) * 1984-06-04 1985-12-23 株式会社日本製鋼所 Composting treatment for high water content sludge
JP2000153295A (en) * 1998-11-17 2000-06-06 Ishizaki Sangyo Kk Surplus sludge treating method
JP2004050033A (en) * 2002-07-19 2004-02-19 Seiwa Consultant:Kk Early stabilization method for final disposal site
JP3589659B2 (en) * 2003-01-31 2004-11-17 旭化成クリーン化学株式会社 Aerobic medium-high temperature fermentation method for sludge
JP4247892B2 (en) * 2003-10-08 2009-04-02 太平洋セメント株式会社 Organic sludge treatment method
JP2009045566A (en) * 2007-08-21 2009-03-05 Taiheiyo Cement Corp Final disposal method of sludge
JP5892536B2 (en) * 2011-10-31 2016-03-23 学校法人福岡大学 Waste disposal method and waste disposal equipment

Also Published As

Publication number Publication date
JP2016131927A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
Stessel et al. A lysimeter study of the aerobic landfill concept
Fellner et al. Comparing field investigations with laboratory models to predict landfill leachate emissions
Manassero et al. Solid waste containment systems
Valencia et al. Achieving “Final Storage Quality” of municipal solid waste in pilot scale bioreactor landfills
Beaven et al. Clogging of landfill tyre and aggregate drainage layers by methanogenic leachate and implications for practice
Rafizul et al. Construction and evaluation of simulated pilot scale landfill lysimeter in Bangladesh
Mönkäre et al. Scaling up the treatment of the fine fraction from landfill mining: Mass balance and cost structure
KR100691565B1 (en) Stabilization pool for waste water slurgy in order to obtain compost heap
JP6621006B2 (en) Method for promoting stabilization of organic waste
Khasawneh et al. Landfill leachate collection and characterization
JP6484524B2 (en) Waste stabilization method and ventilation structure
JP2015150525A (en) Landfill structure and landfill method for controlled final disposal site
Malyovanyy et al. Ways to minimize environmental hazards from pollution of the environment in the zone of influence of the Hrybovychi landfill
CN111540414B (en) Method for predicting exposure concentration of organic chemical after sludge agriculture
Stegmann Development of waste management in the last 30 years
JP6234204B2 (en) Organic waste landfill treatment method and pretreatment equipment
Boni et al. Co-landfilling of pretreated waste: Disposal and management strategies at lab-scale
Heyer et al. Landfill Aftercare—Scope for Actions, Duration, Costs and Quantitative Criteria for the Completion
Hupe et al. Water infiltration for enhanced in situ stabilization
Chung et al. Utilization of stabilized and solidified sewage sludge as a daily landfill cover material
RU2703780C1 (en) Method of recycling household and other biological wastes
Madon Development of a sustainable msw landfill as an intrinsic part of a low-priced, integrated waste management facility
Davies The Aerobic Treatment of Landfill Leachate
Lozecznik Hydraulic design, operation and clogging of leachate injection pipes in bioreactor landfills
Arif Determination of Hydro-Mechanical Characteristics of Biodegradable Waste-Laboratory and Landfill Site

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191108

R150 Certificate of patent or registration of utility model

Ref document number: 6621006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees