JP6620445B2 - Intake and discharge water temperature difference management method and intake and discharge water temperature difference management equipment - Google Patents

Intake and discharge water temperature difference management method and intake and discharge water temperature difference management equipment Download PDF

Info

Publication number
JP6620445B2
JP6620445B2 JP2015150350A JP2015150350A JP6620445B2 JP 6620445 B2 JP6620445 B2 JP 6620445B2 JP 2015150350 A JP2015150350 A JP 2015150350A JP 2015150350 A JP2015150350 A JP 2015150350A JP 6620445 B2 JP6620445 B2 JP 6620445B2
Authority
JP
Japan
Prior art keywords
intake
water
temperature difference
temperature
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015150350A
Other languages
Japanese (ja)
Other versions
JP2017031840A (en
Inventor
秀典 林
秀典 林
涼平 藤本
涼平 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2015150350A priority Critical patent/JP6620445B2/en
Publication of JP2017031840A publication Critical patent/JP2017031840A/en
Application granted granted Critical
Publication of JP6620445B2 publication Critical patent/JP6620445B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、火力発電所や原子力発電所における冷却水(海水)の取水温度と放水温度との温度差を管理する、取放水温度差管理方法および取放水温度差管理設備に関する。   The present invention relates to an intake / discharge water temperature difference management method and an intake / discharge water temperature difference management facility for managing a temperature difference between intake water temperature and discharge temperature of cooling water (seawater) in a thermal power plant or a nuclear power plant.

火力発電所や原子力発電所などでは、火力や原子力の熱により蒸発させた高温高圧の水蒸気の圧力により、発電機のタービン(羽根車)を回転させることで、電力を発生させている。タービンを回転させるには、タービンの前後で水蒸気の圧力差が存在する必要があり、この圧力差が大きいほど、タービンの熱効率は高くなる。また、発電所の水蒸気の経路には、タービンの下流側に復水器が設置されており、タービンを回転させた水蒸気が復水器で急冷され、液化して水に戻る。そして、復水器で液化された水は、給水管を通じてボイラーや原子炉などに送られ、再び熱せられて水蒸気となり、繰り返し発電に使用される。   In a thermal power plant, a nuclear power plant, etc., electric power is generated by rotating a turbine (impeller) of a generator by the pressure of high-temperature and high-pressure steam evaporated by heat of thermal power or nuclear power. In order to rotate the turbine, a pressure difference of water vapor needs to exist before and after the turbine. The larger the pressure difference, the higher the thermal efficiency of the turbine. In addition, a condenser is installed on the downstream side of the turbine in the steam path of the power plant, and the steam that rotates the turbine is rapidly cooled by the condenser, liquefied, and returned to water. And the water liquefied with the condenser is sent to a boiler, a nuclear reactor, etc. through a water supply pipe, is again heated, turns into water vapor, and is repeatedly used for power generation.

この復水器は、発電所周辺の海中から取水した海水を冷却水として使用し、配管に水蒸気が接触する際に発する潜熱を冷却水が吸収することで、水蒸気を冷却して復水する。また、復水器で使用された冷却水は海中に放水されるが、この冷却水は、高温の水蒸気から潜熱を奪っているため温度が上昇している。つまり、海中への放水時の冷却水・海水の温度(放水温度)は、海中からの取水時の冷却水の温度(取水温度)に比べて高くなっている。   This condenser uses seawater taken from the sea around the power plant as cooling water, and the cooling water absorbs latent heat generated when the steam contacts the piping, thereby cooling the steam and condensing it. In addition, the cooling water used in the condenser is discharged into the sea, but the temperature of the cooling water is rising because it removes latent heat from high-temperature steam. That is, the temperature of the cooling water and seawater (water discharge temperature) when the water is discharged into the sea is higher than the temperature of the cooling water (water intake temperature) during the intake from the sea.

このような取水温度と放水温度との温度差(取放水温度差)は、環境保護の観点から、発電事業者と地方自治体との間で締結される、環境保全協定(公害防止協定)によって一定の協定値が定められ、この協定値以下になるように管理、維持されている。しかしながら、実際の運用においては、例えば、取水口近傍の海水の温度が急に低下することで、取放水温度差が協定値を超える事態が生じるおそれがある。   The temperature difference between the intake temperature and the discharge temperature (intake / discharge temperature difference) is constant according to the environmental conservation agreement (pollution prevention agreement) concluded between the power generation company and the local government from the viewpoint of environmental protection. The agreed value is determined and managed and maintained to be below this agreed value. However, in actual operation, for example, a sudden drop in the temperature of seawater near the water intake may cause a situation where the temperature difference between intake and discharge exceeds the agreed value.

このような場合の措置として、発電出力を降下させて蒸気量を下げることにより、復水器の熱負荷を下げ、取放水温度差を低減させている。具体的には、現時点での取放水温度差(瞬時温度差)と、この瞬時温度差が終日継続した場合の1日の平均取放水温度差を算出する。次に、算出した1日の平均取放水温度差と目標とする1日の平均取放水温度差、負荷を抑制する時刻および単位負荷当たりの取放水温度差の変化量に基づいて抑制量・制御量を算出し、この抑制量だけ発電出力を降下させる。   As a measure in such a case, the heat load of the condenser is reduced by lowering the power generation output to lower the amount of steam, thereby reducing the temperature difference between intake and discharge water. Specifically, the current intake water discharge temperature difference (instantaneous temperature difference) and the average daily intake water discharge temperature difference when this instantaneous temperature difference continues throughout the day are calculated. Next, based on the calculated daily average intake and discharge temperature difference and the target daily average intake and discharge temperature difference, the time at which the load is suppressed, and the amount of change in the intake and discharge temperature difference per unit load. The amount is calculated, and the power generation output is decreased by this amount of suppression.

一方で、取放水温度差が協定値を超えるのを未然に防ぐ方策として、取水口の海水の温度や潮の干満の状態を監視し、その温度や潮の干満が一定の範囲を超えた場合に、取放水温度差を予測し、それが協定値を超えた場合に、警報を発したり発電出力を降下させたりする技術が知られている(例えば、特許文献1、2)。   On the other hand, as a measure to prevent the difference in intake and discharge water temperature from exceeding the agreed value, the temperature of the intake seawater and tides are monitored and the temperature and tides exceed a certain range. In addition, a technique is known that predicts a difference in intake and discharge water temperature and issues an alarm or reduces the power generation output when the difference exceeds an agreed value (for example, Patent Documents 1 and 2).

特開2010−121564号公報JP 2010-121564 A 特開2011−002127号公報JP 2011-002127 A

ところで、季節的な放射冷却や潮位、河川からの流水などによって、取水温度(海水温度)が急激に低下する場合があり、このような場合、発電出力を迅速に降下させる必要がある。しかしながら、従来、発電出力を降下させる際に、その都度上記のようにして抑制量を算出していたため、発電出力を降下させるまでに時間を要し、この結果、取放水温度差が協定値を超過するおそれがあった。   By the way, due to seasonal radiative cooling, tide level, flowing water from rivers, etc., the intake temperature (seawater temperature) may drop sharply. In such a case, it is necessary to drop the power generation output quickly. However, conventionally, when the power generation output is lowered, the suppression amount is calculated as described above, so it takes time until the power generation output is lowered. There was a risk of exceeding.

一方、特許文献1、2の技術では、取放水温度差の予測が難しく、正確な予測ができないために、不必要なときに発電出力を降下したり、必要なときに発電出力を降下しなかったりする場合が生じる。また、取水温度が突発的に急激に低下した場合に、発電出力を迅速に降下させて取放水温度差が協定値を超過するのを防止することはできない。   On the other hand, in the techniques of Patent Documents 1 and 2, since it is difficult to predict the difference in intake and discharge water temperature and accurate prediction is impossible, the power generation output is not lowered when it is unnecessary, or the power generation output is not lowered when necessary. May occur. In addition, when the intake water temperature suddenly decreases suddenly, the power generation output cannot be reduced rapidly to prevent the intake / discharge water temperature difference from exceeding the agreed value.

そこで、本発明は、取水温度が急激に変化した場合などであっても、取放水温度差が協定値を超過するのを防止することが可能な、取放水温度差管理方法および取放水温度差管理設備を提供することを目的とする。   Therefore, the present invention provides a management method for intake and discharge water temperature difference and a difference in intake and discharge water temperature that can prevent the intake and discharge water temperature difference from exceeding the agreed value even when the intake water temperature changes abruptly. The purpose is to provide management facilities.

前記課題を解決するために、請求項1の発明は、発電所において海中から海水を冷却水として取水した際の取水温度と、復水器を経て冷却水を海中に放水する際の放水温度との温度差を、取放水温度差として管理する取放水温度差管理方法であって、取水温度と放水温度とを測定して取放水温度差を算出するとともに、該取放水温度差に基づいて当日の平均的な取放水温度差である平均取放水温度差を算出し、前記取水温度、前記取放水温度差および前記平均取放水温度差の少なくともいずれかが第1の条件を満たす通常制御時に、所定の算出手法に従って発電出力の制御量を算出して、該制御量だけ発電出力を制御し、前記取水温度、前記取放水温度差および前記平均取放水温度差の少なくともいずれかが第2の条件を満たす緊急制御時に、第1の緊急制御工程として、発電出力をいくつ変えると取放水温度差が何度変化するかを示す、早見表に従って発電出力の制御量を取得して、該制御量だけ発電出力を制御した上で、第2の緊急制御工程として、所定の算出手法に従って発電出力の制御量を算出して、該制御量だけ制御して発電出力を適正値に制御する、ことを特徴とする。 In order to solve the above problems, the invention of claim 1 is characterized in that a water intake temperature when seawater is taken as cooling water from the sea at a power plant, and a water discharge temperature when cooling water is discharged into the sea through a condenser. Intake and discharge water temperature difference management method for managing the difference in temperature as intake and discharge water temperature difference, measuring the intake water temperature and discharge water temperature to calculate the intake and discharge water temperature difference, and based on the intake and discharge water temperature difference on the day An average intake / discharge temperature difference that is an average intake / discharge temperature difference is calculated, and during normal control, at least one of the intake temperature, the intake / discharge temperature difference, and the average intake / discharge temperature difference satisfies the first condition, A control amount of the power generation output is calculated according to a predetermined calculation method, the power generation output is controlled by the control amount, and at least one of the intake water temperature, the intake water discharge temperature difference, and the average intake water discharge temperature difference is a second condition. Meet emergency control during As a first emergency control step, preparative the number varying the power output indicating water discharge temperature difference changes many times, to obtain the control amount of the electric power output in accordance with Chart, after having controlled the power generation output only the control amount Thus, as a second emergency control step, a control amount of the power generation output is calculated according to a predetermined calculation method, and the power generation output is controlled to an appropriate value by controlling only the control amount .

この発明によれば、取水温度、取放水温度差および平均取放水温度差の少なくともいずれかが得意な値で、発電出力の制御を要する場合には、所定の算出手法に従って発電出力の制御量を算出して、この制御量だけ発電出力を制御する。一方、取水温度、取放水温度差および平均取放水温度差の少なくともいずれかが異常値で、発電出力の緊急制御を要する場合には、早見表に従って発電出力の制御量を割り出して、この制御量だけ発電出力を制御する。   According to the present invention, when at least one of the intake water temperature difference, the intake water discharge temperature difference, and the average intake water discharge temperature difference is a good value and the control of the power generation output is required, the control amount of the power generation output is set according to a predetermined calculation method. The power generation output is controlled by this control amount. On the other hand, if at least one of intake water temperature difference, intake water discharge temperature difference and average intake water discharge temperature difference is an abnormal value and emergency control of power generation output is required, the control amount of power generation output is calculated according to the quick reference table. Only control the power output.

請求項2の発明は、請求項1に記載の取放水温度差管理方法において、前記緊急制御時に、前記早見表に従って、同時に測定した放水温度と取水温度との温度差である瞬時温度差を所定値以下にするにはどのくらい発電出力を降下させればよいかを割り出して制御する、または、放水温度と該放水温度の測定時よりも所定時間前に測定した取水温度との温度差の当日の平均値である平均海水温度差を所定値以下にするにはどのくらい発電出力を降下させればよいかを割り出して制御する、ことを特徴とする。 According to a second aspect of the invention, the collected water discharge temperature difference management method according to claim 1, when the emergency control, the follow quick reference, instantaneous temperature difference which is a temperature difference between the water discharge temperature and the intake temperature measured at the same time Determine how much power generation output should be reduced to make the value below the predetermined value, or control the temperature difference between the discharge water temperature and the intake water temperature measured a predetermined time before the measurement of the discharge water temperature. It is characterized by determining and controlling how much the power generation output should be lowered in order to make the average seawater temperature difference, which is the average value of the day, equal to or less than a predetermined value .

請求項3の発明は、請求項1または2に記載の取放水温度差管理方法において、前記早見表は、過去の実績値に基づいて作成されている、ことを特徴とする。   A third aspect of the present invention is the intake / discharge water temperature difference management method according to the first or second aspect, wherein the quick reference table is created based on past performance values.

請求項4の発明は、請求項1〜3に記載の取放水温度差管理方法において、前記取放水温度差には、同時に測定した放水温度と取水温度との温度差である瞬時温度差と、放水温度と該放水温度の測定時よりも所定時間前に測定した取水温度との温度差である管理用温度差と、を含む、ことを特徴とする。   The invention of claim 4 is the intake and discharge water temperature difference management method according to claims 1 to 3, wherein the intake and discharge water temperature difference includes an instantaneous temperature difference that is a temperature difference between the discharge water temperature and the intake water temperature measured simultaneously, And a management temperature difference that is a temperature difference between the water discharge temperature and a water intake temperature measured a predetermined time before the water discharge temperature is measured.

請求項5の発明は、発電所において海中から海水を冷却水として取水した際の取水温度と、復水器を経て冷却水を海中に放水する際の放水温度との温度差を、取放水温度差として管理する取放水温度差管理設備であって、前記取水温度を測定する取水温度測定手段と、前記放水温度を測定する放水温度測定手段と、前記取水温度測定手段で測定された取水温度と前記放水温度測定手段で測定された放水温度とから取放水温度差を算出するとともに、該取放水温度差に基づいて当日の平均的な取放水温度差である平均取放水温度差を算出する温度差算出手段と、前記温度差算出手段による算出結果と、発電出力をいくつ変えると取放水温度差が何度変化するかを示す早見表と、を表示する表示手段と、を備え、前記取水温度、前記取放水温度差および前記平均取放水温度差の少なくともいずれかが第1の条件を満たす通常制御時に、所定の算出手法に従って発電出力の制御量を算出し、前記取水温度、前記取放水温度差および前記平均取放水温度差の少なくともいずれかが第2の条件を満たす緊急制御時に、第1の緊急制御工程として前記早見表に基づく制御を行った後に、第2の緊急制御工程として、所定の算出手法に従って、発電出力を適正値に制御するための発電出力の制御量を算出する、ことを特徴とする。 The invention of claim 5 relates to a temperature difference between a water intake temperature when seawater is taken as cooling water from the sea at a power plant and a water discharge temperature when water is discharged into the sea through a condenser. Intake water temperature difference management equipment managed as a difference, water intake temperature measuring means for measuring the water intake temperature, water discharge temperature measuring means for measuring the water discharge temperature, water intake temperature measured by the water intake temperature measuring means, The temperature at which the difference in intake and discharge water is calculated from the discharge water temperature measured by the discharge water temperature measuring means, and the average intake and discharge temperature difference that is the average intake and discharge temperature difference of the day is calculated based on the difference in intake and discharge temperature. Display means for displaying a difference calculation means, a calculation result by the temperature difference calculation means, and a quick reference table showing how many times the difference in the discharged water temperature changes when the power generation output is changed, and the intake water temperature The temperature difference between the intake and discharge water And a control amount of power generation output is calculated according to a predetermined calculation method during normal control in which at least one of the average intake / discharge water temperature difference satisfies the first condition, and the intake water temperature, the intake / discharge water temperature difference, and the average intake / discharge water during at least one of the temperature difference is the second condition is satisfied emergency control, after performing the control based on the previous SL quick reference to the first emergency control step, a second emergency control step, according to a predetermined calculation method The control amount of the power generation output for controlling the power generation output to an appropriate value is calculated.

請求項1に記載の発明によれば、緊急を要する場合には、早見表に従って制御量を取得して発電出力を制御するため、所定の算出手法に従って制御量を算出して発電出力を制御する場合に比べて、迅速に発電出力を制御することが可能となる。その結果、取水温度が急激に変化した場合などであっても、迅速に発電出力を制御・抑制して、取放水温度差が協定値を超過するのを防止することが可能となる。請求項1に記載の発明によれば、さらに、早見表に従った制御量だけ発電出力を制御した後に、所定の算出手法に従って制御量を算出して発電出力を制御する。このため、緊急時に迅速に発電出力を制御して、取放水温度差が協定値を超過するのを確実に防止した上で、発電出力を適正値に制御して、より多くの発電出力を確保することが可能となる。 According to the first aspect of the present invention, in the case of urgent necessity, the control amount is acquired according to the quick reference table to control the power generation output, and therefore the control amount is calculated according to a predetermined calculation method to control the power generation output. Compared to the case, the power generation output can be quickly controlled. As a result, even if the intake water temperature changes abruptly, it is possible to quickly control and suppress the power generation output and prevent the intake / discharge water temperature difference from exceeding the agreed value. According to the first aspect of the invention, the power generation output is controlled by calculating the control amount according to a predetermined calculation method after controlling the power generation output by the control amount according to the quick reference table. For this reason, the power generation output is controlled promptly in an emergency to ensure that the difference in intake and discharge water temperature does not exceed the agreed value, and then the power generation output is controlled to an appropriate value to secure more power generation output. It becomes possible to do.

一方、緊急を要しない場合には、所定の算出手法に従って制御量を算出して発電出力を制御するため、より適正・正確な制御量だけ発電出力を制御することが可能となる。その結果、発電出力をより多く確保した上で(過剰な抑制をせずに)、取放水温度差が協定値を超過するのを防止することが可能となる。   On the other hand, when an emergency is not required, the power generation output is controlled by calculating the control amount in accordance with a predetermined calculation method. Therefore, the power generation output can be controlled by a more appropriate and accurate control amount. As a result, it is possible to prevent the difference in intake and discharge water temperature from exceeding the agreed value while ensuring more power generation output (without excessive suppression).

請求項2に記載の発明によれば、早見表に従って瞬時温度差を所定値以下にするにはどのくらい発電出力を降下させればよいかが割り出されたり平均海水温度差を所定値以下にするにはどのくらい発電出力を降下させればよいかが割り出されたりする。このため、緊急時に瞬時温度差や平均海水温度差を所定値以下にするように迅速に発電出力を制御することが可能となる。 According to the invention described in claim 2, the mean sea temperature difference or how much the power output it is only necessary to drop indexed to below a predetermined value of the instantaneous temperature difference in accordance with Chart below a predetermined value To do so, it is determined how much power generation output should be reduced . Therefore, the Rukoto quickly Gyosu control the power output to the instantaneous temperature difference and mean sea temperature difference below a predetermined value becomes possible in an emergency.

請求項3に記載の発明によれば、過去の実績値に基づいて早見表が作成されているため、実績に基づいた適正な制御量だけ発電出力を制御することが可能となる。その結果、取放水温度差が協定値を超過するのをより確実に防止することが可能となり、また、発電出力を過剰に抑制せずにより多くの発電出力を確保することが可能となる。   According to the invention described in claim 3, since the quick reference table is created based on the past actual value, it is possible to control the power generation output by an appropriate control amount based on the actual result. As a result, it is possible to more reliably prevent the intake / discharge water temperature difference from exceeding the agreed value, and it is possible to secure more power generation output without excessively suppressing the power generation output.

請求項4に記載の発明によれば、取放水温度差として、瞬時温度差のみならず管理用温度差が含まれているため、より適正な取放水温度差を算出することが可能となる。すなわち、従来のように同じ時点(現時点)における取水温度と放水温度とを比較するのではなく、取水口から取水された冷却水が放水口から放水されるまでの時間を考慮して、放水温度の測定時よりも前に測定された取水温度に基づいて管理用温度差を算出する。このため、取水された冷却水がどのくらい温度上昇して放水されたか、という温度差を管理用温度差として算出することが可能となり、より適正な取放水温度差を算出することが可能となる。このため、例えば、取水口の海水の温度が突発的に低下した場合でも、この低温の冷却水・海水がどのくらい温度上昇して放水されたか、という管理用温度差が算出され、協定値を超えるのをより防止・抑制することが可能となる。この結果、復水器の熱負荷(発電出力)を調整する必要等が低減され、安定した発電(高い発電効率での発電)が可能となる。   According to the fourth aspect of the present invention, the intake / discharge water temperature difference includes not only the instantaneous temperature difference but also the management temperature difference, so that a more appropriate intake / discharge water temperature difference can be calculated. That is, instead of comparing the water intake temperature and the water discharge temperature at the same time point (current time) as in the past, the water discharge temperature is considered in consideration of the time until the cooling water drawn from the water intake is discharged from the water discharge port. The temperature difference for management is calculated based on the water intake temperature measured before the measurement. For this reason, it becomes possible to calculate the temperature difference of how much the cooled cooling water has been discharged and discharged as a management temperature difference, and it is possible to calculate a more appropriate intake / discharge water temperature difference. For this reason, for example, even if the temperature of the seawater at the intake port suddenly decreases, the temperature difference for management is calculated as to how much the low-temperature cooling water / seawater has been discharged and discharged, exceeding the agreed value It becomes possible to prevent / suppress more. As a result, the necessity for adjusting the heat load (power generation output) of the condenser is reduced, and stable power generation (power generation with high power generation efficiency) becomes possible.

請求項5に記載の発明によれば、取放水温度差および平均取放水温度差とともに早見表が表示手段に表示されるため、取放水温度差や平均取放水温度差が異常値で緊急を要する場合に、早見表を見て制御量を取得することで、請求項1の発明と同様に、迅速に発電出力を制御することが可能となる。   According to invention of Claim 5, since a quick reference table is displayed on a display means with an intake / discharge water temperature difference and an average intake / discharge water temperature difference, an intake / discharge water temperature difference or an average intake / discharge water temperature difference is an abnormal value and requires an emergency. In this case, it is possible to quickly control the power generation output as in the first aspect of the invention by obtaining the control amount by looking at the quick reference table.

この実施の形態に係る取放水温度差管理方法を実施するための取放水温度差管理設備を示す概略構成ブロック図である。It is a schematic block diagram showing the intake / discharge water temperature difference management facility for carrying out the intake / discharge water temperature difference management method according to this embodiment. 図1の取放水温度差管理方法が適用される発電ユニットを示す模式図である。It is a schematic diagram which shows the electric power generation unit to which the intake / discharge water temperature difference management method of FIG. 1 is applied. 図1の取放水温度差管理方法による監視結果を示す図である。It is a figure which shows the monitoring result by the intake / discharge water temperature difference management method of FIG. 図1の取放水温度差管理方法における早見表を示す図である。It is a figure which shows the quick reference table in the intake / discharge water temperature difference management method of FIG. 図1の取放水温度差管理方法における海水温度差計算シートを示す図である。It is a figure which shows the seawater temperature difference calculation sheet | seat in the intake / discharge water temperature difference management method of FIG.

以下、この発明を図示の実施の形態に基づいて説明する。   The present invention will be described below based on the illustrated embodiments.

図1〜図5は、この発明の実施の形態を示し、図1は、この実施の形態に係る取放水温度差管理方法を実施するための取放水温度差管理設備1を示す概略構成ブロック図である。この取放水温度差管理方法および設備1は、火力発電所や原子力発電所を含む発電所において、海中から海水を冷却水Wとして取水した際の取水温度と、復水器104などを経て冷却水Wを海中に放水する際の放水温度との温度差を、取放水温度差として管理するものである。取放水温度差管理設備1は、主として、取水温度計(取水温度測定手段)2と、放水温度計(放水温度測定手段)3と、管理コンピュータ(環境監視計器)4と、海水温度差計算シートと、を備え、取水温度計2と放水温度計3は、管理コンピュータ4と通信自在に接続されている。   FIGS. 1-5 shows embodiment of this invention, FIG. 1 is a schematic block diagram which shows the intake / discharge water temperature difference management equipment 1 for implementing the intake / discharge water temperature difference management method concerning this embodiment. It is. This intake / discharge water temperature difference management method and facility 1 is used in a power plant including a thermal power plant and a nuclear power plant, when the sea water is taken from the sea as the cooling water W, the cooling water through the condenser 104 and the like. The temperature difference from the water discharge temperature when water is discharged into the sea is managed as the intake water discharge temperature difference. The intake water discharge temperature difference management equipment 1 is mainly composed of an intake water thermometer (water intake temperature measuring means) 2, a water discharge thermometer (water discharge temperature measuring means) 3, a management computer (environmental monitoring instrument) 4, and a seawater temperature difference calculation sheet. The water intake thermometer 2 and the water discharge thermometer 3 are connected to the management computer 4 in a communicable manner.

ここで、取放水温度差には、同時に測定した放水温度と取水温度との温度差である瞬時温度差と、放水温度と該放水温度の測定時よりも所定時間前に測定した取水温度との温度差である管理用温度差と、を含む。   Here, the intake water discharge temperature difference includes the instantaneous temperature difference that is the difference between the discharge water temperature and the intake water temperature measured at the same time, and the intake water temperature measured a predetermined time before the discharge water temperature is measured. Temperature difference for management which is a temperature difference.

まず、水蒸気S1や冷却水Wの流れなどについて簡単に説明する。図2に示すように、ボイラー101で生成された水蒸気S1がタービン102に送られてタービン102が回転し、タービン102に連結された発電機103によって発電される。また、タービン102を通過した水蒸気S1は、復水器104によって復水されて発電用水S2となり、第1のポンプ105によってボイラー101に送られて、再び水蒸気S1となる。   First, the flow of the steam S1 and the cooling water W will be briefly described. As shown in FIG. 2, the steam S <b> 1 generated by the boiler 101 is sent to the turbine 102 to rotate the turbine 102, and power is generated by the generator 103 connected to the turbine 102. The steam S1 that has passed through the turbine 102 is condensed by the condenser 104 to become power generation water S2, and is sent to the boiler 101 by the first pump 105 to become steam S1 again.

一方、海中の海水は、第2のポンプ108によって取水口106から冷却水Wとして取水され、復水器104に送られる。そして、冷却水Wは、復水器104において水蒸気S1を冷却して復水することで昇温し、放水口107から海中に放水される。また、この実施の形態では、このような発電ユニットを3機備えているものとする。   On the other hand, seawater in the sea is taken as cooling water W from the water intake 106 by the second pump 108 and sent to the condenser 104. Then, the cooling water W rises in temperature by cooling the steam S1 in the condenser 104 and condensing it, and is discharged from the water outlet 107 into the sea. In this embodiment, it is assumed that three such power generation units are provided.

取水温度計2は、冷却水Wの取水温度を測定する温度計である。すなわち、取水口106の周辺に配設され、取水口106から取水される冷却水(海水)Wの温度を常時、リアルタイムに測定し、測定結果を管理コンピュータ4に送信する。   The intake thermometer 2 is a thermometer that measures the intake temperature of the cooling water W. That is, the temperature of the cooling water (seawater) W that is disposed around the water intake 106 and is taken from the water intake 106 is always measured in real time, and the measurement result is transmitted to the management computer 4.

放水温度計3は、冷却水Wの放水温度を測定する温度計である。すなわち、放水口107の周辺に配設され、放水口107から海中に放水される冷却水Wの温度を常時、リアルタイムに測定し、測定結果を管理コンピュータ4に送信する。   The water discharge thermometer 3 is a thermometer that measures the water discharge temperature of the cooling water W. That is, the temperature of the cooling water W disposed around the water outlet 107 and discharged from the water outlet 107 into the sea is always measured in real time, and the measurement result is transmitted to the management computer 4.

管理コンピュータ4は、各発電ユニットを管理、制御する管理室に配設され、図1に示すように、主として、記憶部(記憶手段)41と、温度差算出部(温度差算出手段)42と、ディスプレイ(表示手段)43と、これらを制御などする中央処理部44と、を備えている。   The management computer 4 is disposed in a management room that manages and controls each power generation unit. As shown in FIG. 1, the management computer 4 mainly includes a storage unit (storage unit) 41, a temperature difference calculation unit (temperature difference calculation unit) 42, and , A display (display means) 43, and a central processing unit 44 for controlling them.

記憶部41は、取水温度計2で測定された取水温度を時系列に記憶するメモリである。すなわち、取水温度計2で測定された取水温度を、計測日時とともに順次記憶、蓄積するものである。   The storage unit 41 is a memory that stores the water intake temperature measured by the water intake thermometer 2 in time series. That is, the intake temperature measured by the intake thermometer 2 is sequentially stored and accumulated together with the measurement date and time.

温度差算出部42は、取水温度計2で測定された取水温度と放水温度計3で測定された放水温度とから取放水温度差を算出するとともに、該取放水温度差に基づいて当日の平均的な取放水温度差である平均取放水温度差を算出などするタスク・プログラムである。この際、放水温度計3と取水温度計2とで同時に測定された放水温度と取水温度との温度差を、瞬時温度差として算出するとともに、放水温度計3で測定された放水温度と、該放水温度の測定時よりも所定時間前に取水温度計2で測定され記憶部41に記憶された取水温度との温度差を、管理用温度差として算出する。   The temperature difference calculation unit 42 calculates the intake water temperature difference from the water intake temperature measured by the water intake thermometer 2 and the water discharge temperature measured by the water discharge thermometer 3, and the average of the day based on the water intake temperature difference It is a task program that calculates an average intake / discharge temperature difference, which is a typical intake / discharge temperature difference. At this time, the temperature difference between the water discharge temperature and the water intake temperature simultaneously measured by the water discharge thermometer 3 and the water intake thermometer 2 is calculated as an instantaneous temperature difference, and the water discharge temperature measured by the water discharge thermometer 3 A temperature difference from the intake water temperature measured by the intake water thermometer 2 and stored in the storage unit 41 a predetermined time before the discharge water temperature is calculated as a management temperature difference.

また、ディスプレイ43は、温度差算出部42による算出結果や早見表Cなどを表示するものである。すなわち、温度差算出部42は、瞬時温度差や管理用温度差などをリアルタイムに順次算出して、その算出結果などをディスプレイ43に表示する。   The display 43 displays the calculation result by the temperature difference calculation unit 42, the quick reference table C, and the like. That is, the temperature difference calculation unit 42 sequentially calculates an instantaneous temperature difference, a management temperature difference, and the like in real time, and displays the calculation result on the display 43.

具体的には、図3に示すような監視結果Rを逐次リアルタイムに取得、算出してディスプレイ43に表示するものであり、監視結果Rには、各発電ユニット(各号機)の発電機出力R1、取水口瞬時温度R2、取水口管理用温度R3、放水口瞬時温度R4、瞬時温度差R5、管理用温度差R6、予想海水平均温度差R7、平均海水温度差R8および緊急時負荷抑制目安R9を含む。   Specifically, the monitoring result R as shown in FIG. 3 is sequentially acquired and calculated in real time and displayed on the display 43. The monitoring result R includes the generator output R1 of each power generation unit (each unit). , Intake port instantaneous temperature R2, intake port management temperature R3, discharge port instantaneous temperature R4, instantaneous temperature difference R5, management temperature difference R6, expected seawater average temperature difference R7, average seawater temperature difference R8, and emergency load suppression guideline R9 including.

発電機出力R1は、発電機103による現在(現時点)の発電出力を示し、発電ユニットを監視、制御するシステムから受信、取得して表示する。取水口瞬時温度R2は、取水温度計2で測定された現在の取水温度を示し、取水温度計2から受信、取得して表示する。取水口管理用温度R3は、現在よりも所定時間前に取水温度計2で測定された取水温度を示し、記憶部41から取得して表示する。   The generator output R1 indicates the current (current) power generation output of the generator 103, is received from the system that monitors and controls the power generation unit, is acquired, and displayed. The water intake instantaneous temperature R2 indicates the current water intake temperature measured by the water intake thermometer 2, is received from the water intake thermometer 2, acquired, and displayed. The intake management temperature R3 indicates the intake temperature measured by the intake thermometer 2 a predetermined time before the present time, and is acquired from the storage unit 41 and displayed.

ここで、所定時間は、取水口106から取水された冷却水Wが放水口107から放水されるまでに要する時間に基づいて設定されている。つまり、放水口107から放水された冷却水Wが取水口106から取水された時点では何度であったかを、取水口管理用温度R3が示すように設定されている。具体的には、過去の実測値やシミュレーションなどに基づいて、予め設定されている。シミュレーションの場合、冷却水Wが通過する経路や通過速度などに基づいて、取水口106から取水された冷却水Wが放水口107から放水されるまでに要する時間を算出し、この時間を所定時間として設定する。   Here, the predetermined time is set based on the time required for the cooling water W taken from the water intake port 106 to be discharged from the water discharge port 107. That is, the intake port management temperature R3 indicates how many times the cooling water W discharged from the discharge port 107 was taken from the intake port 106. Specifically, it is set in advance based on past actual measurement values or simulations. In the case of simulation, the time required for the cooling water W taken from the water intake port 106 to be discharged from the water discharge port 107 is calculated based on the route through which the cooling water W passes, the passing speed, and the like, and this time is calculated for a predetermined time. Set as.

放水口瞬時温度R4は、放水温度計3で測定された現在の放水温度を示し、放水温度計3から受信、取得して表示する。ここで、この実施の形態では、3つの発電ユニットが同じ取水口106から冷却水Wを取水しており、取水口瞬時温度R2と取水口管理用温度R3は、すべての発電ユニットにおいて同値となる。これに対して、各発電ユニットで放水口107が異なり、放水口瞬時温度R4および以下の瞬時温度差R5等は、発電ユニットごとに異なる値となる。   The water outlet instantaneous temperature R4 indicates the current water discharge temperature measured by the water discharge thermometer 3, is received from the water discharge thermometer 3, acquired, and displayed. Here, in this embodiment, three power generation units take cooling water W from the same water intake 106, and the water intake instantaneous temperature R2 and the water intake management temperature R3 have the same value in all power generation units. . On the other hand, the water outlet 107 is different in each power generation unit, and the water outlet instantaneous temperature R4 and the following instantaneous temperature difference R5 and the like have different values for each power generation unit.

瞬時温度差R5は、放水温度計3と取水温度計2とで現在(同時に)測定された放水温度と取水温度との温度差であり、次式によって算出して表示する。   The instantaneous temperature difference R5 is a temperature difference between the water discharge temperature and the water intake temperature currently (simultaneously) measured by the water discharge thermometer 3 and the water intake thermometer 2, and is calculated and displayed by the following equation.

瞬時温度差R5=放水口瞬時温度R4−取水口瞬時温度R2   Instantaneous temperature difference R5 = outlet instantaneous temperature R4-intake instantaneous temperature R2

この瞬時温度差R5は、現時点における放水温度と取水温度との温度差を示す。   This instantaneous temperature difference R5 indicates a temperature difference between the water discharge temperature and the water intake temperature at the present time.

管理用温度差R6は、放水温度計3で測定された現在の放水温度と、該放水温度の測定時(現在)よりも所定時間前に取水温度計2で測定された取水温度との温度差であり、次式によって算出して表示する。   The management temperature difference R6 is a temperature difference between the current water discharge temperature measured by the water discharge thermometer 3 and the water intake temperature measured by the water intake thermometer 2 a predetermined time before the time of measurement (current) of the water discharge temperature. It is calculated and displayed by the following formula.

管理用温度差R6=放水口瞬時温度R4−取水口管理用温度R3   Management temperature difference R6 = Water outlet instantaneous temperature R4-Intake management temperature R3

この管理用温度差R6は、取水された冷却水Wが復水器104などを経てどのくらい温度上昇して放水されたか、を示す。   This management temperature difference R6 indicates how much the temperature of the taken cooling water W has risen and discharged through the condenser 104 and the like.

予想海水平均温度差(平均取放水温度差)R7は、現在(現時刻)から24時まで、現在の管理用温度差R6が続いた場合の当日(今日)の平均温度差(管理用温度差R6の平均値)であり、次式によって算出して表示する。   Estimated seawater average temperature difference (average intake and discharge water temperature difference) R7 is the current (current) average temperature difference (management temperature difference) when the current management temperature difference R6 continues from the present (current time) to 24:00. R6 average value), which is calculated and displayed by the following equation.

予想海水平均温度差R7=(「当日の現在までの管理用温度差R6の平均値」×「当日の現在までの経過時間」+「現在の管理用温度差R6」×「当日の24時までの残り時間」)÷「1日の時間」
ここで、「1日の時間」=24時間×60分=1440分 である。
Expected seawater average temperature difference R7 = ("average value of management temperature difference R6 up to the current day" x "elapsed time to date of current day" + "current temperature difference R6 for management" x "until 24:00 on that day Remaining time ”) ÷“ day time ”
Here, “time of day” = 24 hours × 60 minutes = 1440 minutes.

平均海水温度差(平均取放水温度差)R8は、当日の現在までの管理用温度差R6の平均値であり、次式によって算出して表示する。   The average seawater temperature difference (average intake and discharge water temperature difference) R8 is an average value of the management temperature difference R6 up to the present day, and is calculated and displayed by the following equation.

平均海水温度差R8=「当日の現在までの放水口瞬時温度R4の平均値」−「当日の現在までの取水口管理用温度R3の平均値」   Average seawater temperature difference R8 = “Average value of outlet instantaneous temperature R4 to date of current day” − “Average value of intake port management temperature R3 to date of current day”

ここで、発電事業者と地方自治体等との間では、取水温度と放水温度との温度差(取放水温度差)を協定値以下にすることが締結されている。すなわち、瞬間的・一時的な取放水温度差が所定値M1(例えば、10℃)以下であり、1日の平均的な取放水温度差が所定値M2(M2<M1、例えば、7℃)以下でなければならないと定められている。そして、この実施の形態では、管理用温度差R6が瞬間的・一時的な取放水温度差に該当し、平均海水温度差R8が1日の平均的な取放水温度差に該当する。   Here, it has been concluded that the temperature difference between the intake water temperature and the discharge temperature (intake water discharge temperature difference) is equal to or less than the agreed value between the power generation company and the local government. That is, the instantaneous / temporary intake / discharge temperature difference is equal to or less than a predetermined value M1 (for example, 10 ° C.), and the average daily intake / discharge temperature difference is the predetermined value M2 (M2 <M1, for example, 7 ° C.). It must be the following. In this embodiment, the management temperature difference R6 corresponds to an instantaneous / temporary intake / discharge temperature difference, and the average seawater temperature difference R8 corresponds to an average intake / discharge temperature difference for one day.

緊急時負荷抑制目安R9は、発電出力の変化量と放水温度(取放水温度差)の変化量との概略関係を示す情報であり、この実施の形態では、過去の実績値に基づいて、単位出力だけ負荷降下させた場合の取放水温度差の減少量を示す。例えば、発電出力を10MW降下させた場合の取放水温度差(瞬時温度差R5、管理用温度差R6)の減少温度を示す。   The emergency load suppression guideline R9 is information indicating a rough relationship between the amount of change in the power generation output and the amount of change in the discharge water temperature (intake / discharge water temperature difference). In this embodiment, the unit is based on the past actual value. Indicates the amount of decrease in intake and discharge water temperature difference when the load is lowered by the output. For example, the decrease temperature of the intake and discharge water temperature difference (instantaneous temperature difference R5, management temperature difference R6) when the power generation output is lowered by 10 MW is shown.

この緊急時負荷抑制目安R9は、過去の実測値やシミュレーションなどに基づいて、予め設定されている。また、この実施の形態では、1号機と2号機の緊急時負荷抑制目安R9が同値で、3号機の緊急時負荷抑制目安R9とは異なる値となっている。   This emergency load suppression standard R9 is set in advance based on past actual measurement values, simulations, and the like. Further, in this embodiment, the emergency load suppression guideline R9 for Unit 1 and Unit 2 is the same value, and is different from the emergency load control guideline R9 for Unit 3.

早見表Cは、発電出力(負荷)をいくつ変えると取放水温度差が何度変化するかを示す負荷抑制早見表であり、過去の実績値に基づいて作成されている。すなわち、図4に示すように、発電出力を25MW下げると取放水温度差が何度減少するか、発電出力を50MW下げると取放水温度差が何度減少するか、というように、出力変化量ごとの温度変化量が示されている。この早見表Cにおける出力変化量と温度変化量の値は、後述する海水温度差計算シートによる算出結果を簡略化した概算値であって、海水温度差計算シートによる算出結果に比べて精度が低い。また、海水温度差計算シートが過去の実績値に基づいて算出するため、早見表Cも過去の実績値に基づいて作成されている。   The quick reference table C is a load suppression quick reference table showing how many times the difference in intake and discharge water temperature changes when the power generation output (load) is changed, and is created based on past performance values. That is, as shown in FIG. 4, the output change amount is such that when the power generation output is lowered by 25 MW, the intake water discharge temperature difference decreases, or when the power generation output is reduced by 50 MW, the intake water discharge temperature difference decreases. The amount of temperature change for each is shown. The values of the output change amount and the temperature change amount in this quick reference table C are approximate values obtained by simplifying the calculation results obtained from the seawater temperature difference calculation sheet described later, and are less accurate than the calculation results obtained from the seawater temperature difference calculation sheet. . Further, since the seawater temperature difference calculation sheet is calculated based on the past actual value, the quick reference table C is also created based on the past actual value.

海水温度差計算シートは、汎用コンピュータにインストールされ、過去の実績値に基づく所定の算出手法(算出式)に従って、平均海水温度差R8が所定値以下になるように、発電出力の制御量(負荷量)を算出するソフトウエア・プログラムである。すなわち、図5に示すような海水温度差計算シートをディスプレイ43に表示し、入力された所定のパラメータに基づいて順次算出する。   The seawater temperature difference calculation sheet is installed on a general-purpose computer and, according to a predetermined calculation method (calculation formula) based on past actual values, the control amount (load) of the power generation output is set so that the average seawater temperature difference R8 is not more than a predetermined value. A software program for calculating (quantity). That is, a seawater temperature difference calculation sheet as shown in FIG. 5 is displayed on the display 43 and is sequentially calculated based on the input predetermined parameters.

まず、入力された「現在時刻」、「平均海水温度差」(R8)、「瞬時海水温度差」(R6)、「ユニット負荷」に基づいて、1日平均海水温度差予測(予想海水平均温度差R7)を算出、表示する。また、入力された「1日平均海水温度差の目標値」、「負荷抑制を開始する時刻」、「負荷に対する海水温度差変化量」に基づいて、終日時(当日の終了時)の平均海水温度差R8を「1日平均海水温度差の目標値」以下にするための、発電出力の負荷量・出力値を算出する。   First, based on the input “current time”, “average seawater temperature difference” (R8), “instantaneous seawater temperature difference” (R6), “unit load”, daily average seawater temperature difference prediction (expected seawater average temperature) The difference R7) is calculated and displayed. In addition, based on the input “target value of daily average seawater temperature difference”, “time to start load suppression”, and “change in seawater temperature difference relative to load”, average seawater at the end date and time (at the end of the day) A load amount / output value of the power generation output for calculating the temperature difference R8 to be equal to or smaller than the “daily average seawater temperature difference target value” or less is calculated.

ここで、「1日平均海水温度差の目標値」を上記所定値M2に設定してもよいし、所定値M2よりも低く設定してもよい。また、「負荷に対する海水温度差変化量」は、単位負荷変化量当たりの取放水温度差(放水温度)の温度変化量であり、各発電ユニットの過去の実績値が記憶され、発電ユニットを選択することで入力可能となっている。   Here, the “target value of the daily average seawater temperature difference” may be set to the predetermined value M2 or lower than the predetermined value M2. “Seawater temperature difference change relative to load” is the temperature change of intake / discharge water temperature difference (water discharge temperature) per unit load change, and the past actual value of each power generation unit is stored, and the power generation unit is selected. It is possible to input by doing.

そして、平均海水温度差R8を「1日平均海水温度差の目標値」以下にするには、発電出力をいくつにすればよいかを、「負荷抑制を開始する時刻」と「負荷に対する海水温度差変化量」とに基づいて算出する。その算出手順はどのようなものであってもよいが、例えば、1日の平均海水温度差R8を「1日平均海水温度差の目標値」以下にするために必要な、「負荷抑制を開始する時刻」以降の平均的な取放水温度差を算出し、次に、この取放水温度差にするための発電出力値を算出する。このように、負荷量を制御量として算出しているが、発電出力の変化量・抑制量を制御量として算出してもよい。   Then, in order to make the average seawater temperature difference R8 equal to or less than the “daily average seawater temperature difference target value” or less, the number of power generation outputs should be determined as “the time when load suppression starts” and “the seawater temperature relative to the load”. It is calculated based on the “difference change amount”. Any calculation procedure may be used. For example, “load suppression start” is necessary to make the daily average seawater temperature difference R8 equal to or less than the “daily average seawater temperature difference target value”. The average intake and discharge water temperature difference after “time to perform” is calculated, and then the power generation output value for making this intake and discharge water temperature difference is calculated. As described above, the load amount is calculated as the control amount, but the change amount / suppression amount of the power generation output may be calculated as the control amount.

ここで、図5の海水温度差計算シートには、発電出力を下げた場合に、取放水温度差が下がるまでに所定のタイムラグがあることが図示されている。これにより、「負荷抑制を開始する時刻」をいつにしたらよいか、「1日平均海水温度差の目標値」をいくつにしたらよいか、などをより適正に判断、入力できるようになっている。また、この実施の形態では、入力された「負荷抑制を開始する時刻」よりも所定時間(例えば、1時間)遅い時刻に負荷抑制を開始する場合の負荷量も、参考として算出、表示する。これにより、より適正な時刻と負荷量で発電出力を制御することが可能となる。   Here, the seawater temperature difference calculation sheet of FIG. 5 illustrates that when the power generation output is lowered, there is a predetermined time lag before the intake / discharge water temperature difference decreases. As a result, it is possible to more appropriately determine and input, for example, when to set the "time to start load suppression" and what should be set to "the target value of the daily average seawater temperature difference". . In this embodiment, the load amount when load suppression is started at a time later than the input “time to start load suppression” by a predetermined time (for example, one hour) is also calculated and displayed as a reference. As a result, it is possible to control the power generation output at a more appropriate time and load.

次に、このような構成の取放水温度差管理設備1を用いた取放水温度差管理方法などについて説明する。   Next, an intake / discharge water temperature difference management method using the intake / discharge water temperature difference management facility 1 having such a configuration will be described.

まず、常時リアルタイムに、取水温度計2によって取水温度を測定して(取水温度測定工程)、管理コンピュータ4の記憶部41に取水温度を時系列に記憶し(記憶工程)、放水温度計3によって放水温度を測定する(放水温度測定工程)。続いて、温度差算出部42によって、上記のようにして、現在(現時点)における瞬時温度差R5、管理用温度差R6や予想海水平均温度差R7、平均海水温度差R8を逐次算出して(温度差算出工程)、その算出結果・監視結果Rと早見表Cなどをディスプレイ43の同一画面に表示する(表示工程)。   First, the water intake temperature is always measured in real time by the water intake thermometer 2 (water intake temperature measuring step), the water intake temperature is stored in the storage unit 41 of the management computer 4 in time series (memory step), and the water discharge thermometer 3 is used. The water discharge temperature is measured (water discharge temperature measurement step). Subsequently, the instantaneous temperature difference R5, the management temperature difference R6, the predicted seawater average temperature difference R7, and the average seawater temperature difference R8 are sequentially calculated by the temperature difference calculating unit 42 as described above ( The temperature difference calculation step), the calculation result / monitoring result R and the quick reference table C are displayed on the same screen of the display 43 (display step).

この状態で、取水温度、取放水温度差(R5、R6)および平均取放水温度差(R7、R8)の少なくともいずれかが得意な値で第1の条件を満たす通常制御時に、所定の算出手法に従って発電出力の制御量を算出して、該制御量だけ発電出力を制御する(通常制御工程)。すなわち、この実施の形態では、瞬時温度差R5が所定の閾値以上になると管理コンピュータ4が警報を発し、この警報を受けて海水温度差計算シートを起動し、所定のパラメータを入力して負荷量を算出し、所定の許可を得て発電出力をこの負荷量に制御する。   In this state, a predetermined calculation method during normal control satisfying the first condition with at least one of the intake water temperature difference, intake water discharge temperature difference (R5, R6) and average intake water discharge temperature difference (R7, R8). The control amount of the power generation output is calculated according to the control amount, and the power generation output is controlled by the control amount (normal control process). That is, in this embodiment, when the instantaneous temperature difference R5 exceeds a predetermined threshold value, the management computer 4 issues an alarm, receives the alarm, activates a seawater temperature difference calculation sheet, inputs a predetermined parameter, and loads And the power generation output is controlled to this load amount with a predetermined permission.

ここで、この実施の形態では、発電ユニットを直接制御するのではなく、発電ユニットを監視、制御するシステムに制御指令(負荷量、制御量を含む)を送信することで、発電出力を制御する。   Here, in this embodiment, the power generation output is controlled by transmitting a control command (including a load amount and a control amount) to a system that monitors and controls the power generation unit instead of directly controlling the power generation unit. .

一方、取水温度、取放水温度差(R5、R6)および平均取放水温度差(R7、R8)の少なくともいずれかが異常値で第2の条件を満たす緊急制御時(通常制御時よりも急を要する時)には、早見表Cに従って発電出力の制御量を取得して、所定の許可を得て該制御量だけ発電出力を制御する(第1の緊急制御工程)。すなわち、この実施の形態では、平均海水温度差R8が所定の閾値以上になると管理コンピュータ4が警報を発し、この警報を受けて、早見表Cに従って発電出力の制御量を取得して、該制御量だけ発電出力を制御する。この際、例えば、早見表Cと瞬時温度差R5に従って、瞬時温度差R5を所定値(所望値)以下にするにはどのくらい発電出力を降下させればよいかを割り出し、制御する。または、早見表Cと平均海水温度差R8に従って、平均海水温度差R8を所定値(所望値)以下にするにはどのくらい発電出力を降下させればよいかを割り出し、制御してもよい。   On the other hand, at least one of intake water temperature, intake / discharge water temperature difference (R5, R6) and average intake / discharge water temperature difference (R7, R8) is an abnormal value and satisfies the second condition, which is more sudden than normal control. When necessary, the control output power generation amount is acquired according to the quick reference table C, and the power generation output is controlled by the control amount with a predetermined permission (first emergency control step). That is, in this embodiment, when the average seawater temperature difference R8 becomes equal to or greater than a predetermined threshold, the management computer 4 issues an alarm, receives this alarm, acquires the control amount of the power generation output according to the quick reference table C, and performs the control. Controls the power output by the amount. At this time, for example, according to the quick reference table C and the instantaneous temperature difference R5, it is determined and controlled how much the power generation output should be lowered to make the instantaneous temperature difference R5 equal to or less than a predetermined value (desired value). Alternatively, according to the quick reference table C and the average seawater temperature difference R8, it may be determined and controlled how much the power generation output should be lowered in order to make the average seawater temperature difference R8 below a predetermined value (desired value).

続いて、早見表Cに従った制御量だけ発電出力を制御した後に、所定の算出手法に従って発電出力の制御量を算出し、該制御量だけ発電出力を制御する(第2の緊急制御工程)。すなわち、通常制御工程と同様に、海水温度差計算シートによって負荷量を算出して、発電出力をこの負荷量に制御する。   Subsequently, after controlling the power generation output by the control amount according to the quick reference table C, the control amount of the power generation output is calculated according to a predetermined calculation method, and the power generation output is controlled by the control amount (second emergency control step). . That is, as in the normal control step, the load amount is calculated by the seawater temperature difference calculation sheet, and the power generation output is controlled to this load amount.

このように、この実施の形態では、瞬時温度差R5が所定の閾値以上の場合に通常制御を行い、平均海水温度差R8が所定の閾値以上の場合に緊急制御を行っているが、その他の条件を満たすときに、通常制御や緊急制御を行うようにしてもよい。例えば、取水温度や管理用温度差R6、予想海水平均温度差R7が所定の値に達した場合や、海水の温度変化率が所定値以上に達した場合に、通常制御や緊急制御を行うようにしてもよい。また、瞬時温度差R5が第1の閾値L1以上の場合に通常制御を行い、瞬時温度差R5が第2の閾値L2(L1<L2)以上の場合に緊急制御を行うようにしてもよい。   As described above, in this embodiment, the normal control is performed when the instantaneous temperature difference R5 is equal to or larger than the predetermined threshold, and the emergency control is performed when the average seawater temperature difference R8 is equal to or larger than the predetermined threshold. When the condition is satisfied, normal control or emergency control may be performed. For example, when the intake temperature, the management temperature difference R6, and the predicted seawater average temperature difference R7 reach a predetermined value, or when the temperature change rate of the seawater reaches a predetermined value or more, normal control or emergency control is performed. It may be. Alternatively, normal control may be performed when the instantaneous temperature difference R5 is equal to or greater than the first threshold value L1, and emergency control may be performed when the instantaneous temperature difference R5 is equal to or greater than the second threshold value L2 (L1 <L2).

以上のように、この取放水温度差管理方法によれば、緊急を要する場合には、早見表Cに従って制御量を取得して発電出力を制御するため、海水温度差計算シートによって制御量を算出して発電出力を制御する場合に比べて、迅速に発電出力を制御することが可能となる。その結果、取水温度が急激に変化した場合などであっても、迅速に発電出力を制御・抑制して、取放水温度差(瞬間的・一時的な取放水温度差と、1日の平均的な取放水温度差とを含む)が協定値を超過するのを防止することが可能となる。   As described above, according to this intake and discharge water temperature difference management method, when urgent is required, the control amount is obtained according to the quick reference table C and the power generation output is controlled, so the control amount is calculated by the seawater temperature difference calculation sheet. As compared with the case where the power generation output is controlled, the power generation output can be controlled more quickly. As a result, even if the intake water temperature changes abruptly, the power generation output is quickly controlled / suppressed, and the difference in intake / discharge water temperature (instantaneous / temporary intake / discharge water temperature difference and average daily) It is possible to prevent exceeding the agreed value).

一方、緊急を要しない通常制御時には、海水温度差計算シートによって制御量を算出して発電出力を制御するため、より適正・正確な制御量だけ発電出力を制御することが可能となる。その結果、発電出力をより多く確保した上で(過剰な抑制をせずに)、取放水温度差が協定値を超過するのを防止することが可能となる。   On the other hand, during normal control that does not require an emergency, the control output is calculated by controlling the seawater temperature difference calculation sheet and the power generation output is controlled. Therefore, the power generation output can be controlled by a more appropriate and accurate control amount. As a result, it is possible to prevent the difference in intake and discharge water temperature from exceeding the agreed value while ensuring more power generation output (without excessive suppression).

さらに、早見表Cに従った制御量だけ発電出力を制御した後に、海水温度差計算シートによって制御量を算出して発電出力を制御する。このため、緊急時に迅速に発電出力を制御して、取放水温度差が協定値を超過するのを確実に防止した上で、発電出力を適正値に制御して、より多くの発電出力を確保することが可能となる。   Furthermore, after controlling the power generation output by the control amount according to the quick reference table C, the control amount is calculated by the seawater temperature difference calculation sheet to control the power generation output. For this reason, the power generation output is controlled promptly in an emergency to ensure that the difference in intake and discharge water temperature does not exceed the agreed value, and then the power generation output is controlled to an appropriate value to secure more power generation output. It becomes possible to do.

また、過去の実績値に基づいて早見表Cが作成されているため、実績に基づいた適正な制御量だけ発電出力を制御することが可能となる。その結果、取放水温度差が協定値を超過するのをより確実に防止することが可能となり、また、発電出力を過剰に抑制せずにより多くの発電出力を確保することが可能となる。   Moreover, since the quick reference table C is created based on the past actual values, it is possible to control the power generation output by an appropriate control amount based on the actual results. As a result, it is possible to more reliably prevent the intake / discharge water temperature difference from exceeding the agreed value, and it is possible to secure more power generation output without excessively suppressing the power generation output.

一方、取放水温度差として、瞬時温度差R5のみならず管理用温度差R6が含まれているため、より適正な取放水温度差を算出することが可能となる。すなわち、従来のように同じ時点(現時点)における取水温度と放水温度とを比較するのではなく、取水口106から取水された冷却水Wが放水口107から放水されるまでの時間を考慮して、放水温度の測定時よりも前に測定された取水温度に基づいて管理用温度差R6を算出する。このため、取水された冷却水Wがどのくらい温度上昇して放水されたか、という温度差を管理用温度差R6として算出することが可能となり、より適正な取放水温度差を算出することが可能となる。このため、例えば、取水口106の海水の温度が突発的に低下した場合でも、この低温の冷却水Wがどのくらい温度上昇して放水されたか、という管理用温度差R6が算出され、協定値を超えるのをより防止・抑制することが可能となる。この結果、復水器104の熱負荷(発電出力)を調整する必要等が低減され、安定した発電(高い発電効率での発電)が可能となる。   On the other hand, since the intake temperature difference includes not only the instantaneous temperature difference R5 but also the management temperature difference R6, a more appropriate intake / discharge temperature difference can be calculated. That is, instead of comparing the water intake temperature and the water discharge temperature at the same time point (current time) as in the past, the time until the cooling water W taken from the water intake port 106 is discharged from the water discharge port 107 is taken into consideration. The management temperature difference R6 is calculated based on the intake water temperature measured before the time of measuring the water discharge temperature. For this reason, it becomes possible to calculate the temperature difference of how much the cooled cooling water W has been heated and discharged as the management temperature difference R6, and it is possible to calculate a more appropriate intake and discharge water temperature difference. Become. For this reason, for example, even when the temperature of the seawater at the intake port 106 suddenly decreases, a management temperature difference R6 indicating how much the low-temperature cooling water W has risen and discharged is calculated, and the agreed value is obtained. It is possible to prevent or suppress the excess. As a result, the necessity for adjusting the heat load (power generation output) of the condenser 104 is reduced, and stable power generation (power generation with high power generation efficiency) becomes possible.

また、取放水温度差管理設備1によれば、瞬時温度差R5や平均海水温度差R8の監視結果Rとともに、早見表Cがディスプレイ43の同一画面上に表示される。このため、ディスプレイ43で平均海水温度差R8などが異常値であることを確認した場合に、ディスプレイ43の同一画面上で早見表Cを見て制御量を迅速に取得することができる。その結果、上記のようにして、迅速に発電出力を制御して、取放水温度差が協定値を超過するのを防止することが可能となる。   Further, according to the intake and discharge water temperature difference management facility 1, the quick reference table C is displayed on the same screen of the display 43 together with the monitoring result R of the instantaneous temperature difference R5 and the average seawater temperature difference R8. For this reason, when it is confirmed that the average seawater temperature difference R8 or the like is an abnormal value on the display 43, the control amount can be quickly acquired by looking at the quick reference table C on the same screen of the display 43. As a result, as described above, it is possible to quickly control the power generation output and prevent the intake / discharge water temperature difference from exceeding the agreed value.

以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。例えば、瞬時温度差R5と管理用温度差R6の双方を取放水温度差として算出、管理しているが、一方のみを算出、管理してもよい。また、海水温度差計算シートを汎用コンピュータに備えているが、管理コンピュータ4に備えてもよい。   Although the embodiment of the present invention has been described above, the specific configuration is not limited to the above embodiment, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention. For example, both the instantaneous temperature difference R5 and the management temperature difference R6 are calculated and managed as the discharge water temperature difference, but only one of them may be calculated and managed. Moreover, although the seawater temperature difference calculation sheet is provided in the general-purpose computer, it may be provided in the management computer 4.

1 取放水温度差管理システム
2 取水温度計(取水温度測定手段)
3 放水温度計(放水温度測定手段)
4 管理コンピュータ
41 記憶部(記憶手段)
42 温度差算出部(温度差算出手段)
43 ディスプレイ(表示手段)
104 復水器
106 取水口
107 放水口
W 冷却水(海水)
C 早見表
1 Intake and discharge temperature difference management system 2 Intake thermometer (Intake temperature measurement means)
3 Water discharge thermometer (water discharge temperature measurement means)
4 management computer 41 storage section (storage means)
42 Temperature difference calculation part (temperature difference calculation means)
43 Display (display means)
104 Condenser 106 Water intake 107 Water outlet W Cooling water (seawater)
C quick reference

Claims (5)

発電所において海中から海水を冷却水として取水した際の取水温度と、復水器を経て冷却水を海中に放水する際の放水温度との温度差を、取放水温度差として管理する取放水温度差管理方法であって、
取水温度と放水温度とを測定して取放水温度差を算出するとともに、該取放水温度差に基づいて当日の平均的な取放水温度差である平均取放水温度差を算出し、
前記取水温度、前記取放水温度差および前記平均取放水温度差の少なくともいずれかが第1の条件を満たす通常制御時に、所定の算出手法に従って発電出力の制御量を算出して、該制御量だけ発電出力を制御し、
前記取水温度、前記取放水温度差および前記平均取放水温度差の少なくともいずれかが第2の条件を満たす緊急制御時に、第1の緊急制御工程として、発電出力をいくつ変えると取放水温度差が何度変化するかを示す、早見表に従って発電出力の制御量を取得して、該制御量だけ発電出力を制御した上で、第2の緊急制御工程として、所定の算出手法に従って発電出力の制御量を算出して、該制御量だけ制御して発電出力を適正値に制御する、
ことを特徴とする取放水温度差管理方法。
Intake and discharge temperature that manages the temperature difference between the intake temperature when seawater is taken as cooling water from the sea at the power plant and the discharge temperature when cooling water is discharged into the sea via a condenser as the intake and discharge temperature difference. A difference management method,
Calculate the intake and discharge temperature difference by measuring the intake temperature and discharge temperature, and calculate the average intake and discharge temperature difference that is the average intake and discharge temperature difference of the day based on the intake and discharge temperature difference,
During normal control in which at least one of the intake water temperature, the intake water discharge temperature difference, and the average intake water discharge temperature condition satisfies the first condition, a control amount of the power generation output is calculated according to a predetermined calculation method, and only the control amount is calculated. Control power generation output,
At the time of emergency control in which at least one of the intake water temperature, the intake water discharge temperature difference, and the average intake water discharge temperature condition satisfies the second condition, as a first emergency control step, the number of power generation outputs is changed to change the intake water discharge temperature difference. After obtaining the control amount of the power generation output according to the quick reference table showing how many times it changes, and controlling the power generation output by the control amount, as a second emergency control step, control of the power generation output according to a predetermined calculation method Calculate the amount, and control the power generation output to an appropriate value by controlling only the control amount,
Intake and discharge water temperature difference management method characterized by that.
前記緊急制御時に、前記早見表に従って、
同時に測定した放水温度と取水温度との温度差である瞬時温度差を所定値以下にするにはどのくらい発電出力を降下させればよいかを割り出して制御する、
または、放水温度と該放水温度の測定時よりも所定時間前に測定した取水温度との温度差の当日の平均値である平均海水温度差を所定値以下にするにはどのくらい発電出力を降下させればよいかを割り出して制御する、
ことを特徴とする請求項1に記載の取放水温度差管理方法。
During the emergency control, according to the quick reference table,
Determine how much power generation output should be reduced to control the instantaneous temperature difference, which is the temperature difference between the water discharge temperature and the intake water temperature measured at the same time, to be below a predetermined value.
Or, to reduce the average seawater temperature difference, which is the average value of the temperature difference between the water discharge temperature measured on the day before the water discharge temperature and the water intake temperature measured a predetermined time before the time of measurement, how much the power generation output is reduced. To determine and control what to do,
The intake / discharge water temperature difference management method according to claim 1.
前記早見表は、過去の実績値に基づいて作成されている、
ことを特徴とする請求項1または2のいずれか1項に記載の取放水温度差管理方法。
The quick reference table is created based on past performance values,
The intake / discharge water temperature difference management method according to any one of claims 1 and 2.
前記取放水温度差には、同時に測定した放水温度と取水温度との温度差である瞬時温度差と、放水温度と該放水温度の測定時よりも所定時間前に測定した取水温度との温度差である管理用温度差と、を含む、
ことを特徴とする請求項1〜3のいずれか1項に記載の取放水温度差管理方法。
The intake water discharge temperature difference includes the instantaneous temperature difference between the water discharge temperature measured simultaneously and the water intake temperature, and the temperature difference between the water discharge temperature and the water intake temperature measured a predetermined time before the water discharge temperature is measured. Including a management temperature difference,
The intake / discharge water temperature difference management method according to any one of claims 1 to 3.
発電所において海中から海水を冷却水として取水した際の取水温度と、復水器を経て冷却水を海中に放水する際の放水温度との温度差を、取放水温度差として管理する取放水温度差管理設備であって、
前記取水温度を測定する取水温度測定手段と、
前記放水温度を測定する放水温度測定手段と、
前記取水温度測定手段で測定された取水温度と前記放水温度測定手段で測定された放水温度とから取放水温度差を算出するとともに、該取放水温度差に基づいて当日の平均的な取放水温度差である平均取放水温度差を算出する温度差算出手段と、
前記温度差算出手段による算出結果と、発電出力をいくつ変えると取放水温度差が何度変化するかを示す早見表と、を表示する表示手段と、
を備え、
前記取水温度、前記取放水温度差および前記平均取放水温度差の少なくともいずれかが第1の条件を満たす通常制御時に、所定の算出手法に従って発電出力の制御量を算出し、
前記取水温度、前記取放水温度差および前記平均取放水温度差の少なくともいずれかが第2の条件を満たす緊急制御時に、第1の緊急制御工程として前記早見表に基づく制御を行った後に、第2の緊急制御工程として、所定の算出手法に従って、発電出力を適正値に制御するための発電出力の制御量を算出する、
ことを特徴とする取放水温度差管理設備。
Intake and discharge temperature that manages the temperature difference between the intake temperature when seawater is taken as cooling water from the sea at the power plant and the discharge temperature when cooling water is discharged into the sea via a condenser as the intake and discharge temperature difference. Difference management equipment,
Water intake temperature measuring means for measuring the water intake temperature;
Water discharge temperature measuring means for measuring the water discharge temperature;
The intake water temperature difference is calculated from the water intake temperature measured by the water intake temperature measuring means and the water discharge temperature measured by the water discharge temperature measuring means, and the average water intake and discharge temperature of the day based on the water intake and discharge temperature difference. A temperature difference calculating means for calculating an average intake water discharge temperature difference which is a difference;
Display means for displaying a calculation result by the temperature difference calculating means, and a quick reference table showing how many times the power discharge output changes the intake / discharge water temperature difference;
With
During normal control in which at least one of the intake water temperature, the intake water discharge temperature difference, and the average intake water discharge temperature difference satisfies the first condition, a control amount of the power generation output is calculated according to a predetermined calculation method,
The intake temperature, at least one second condition is satisfied emergency control of the intake water discharge temperature difference and the average intake water discharge temperature difference, after performing control based on the previous SL quick reference to the first emergency control step As a second emergency control step, according to a predetermined calculation method, a control amount of the power generation output for controlling the power generation output to an appropriate value is calculated.
Intake and discharge water temperature difference management equipment.
JP2015150350A 2015-07-30 2015-07-30 Intake and discharge water temperature difference management method and intake and discharge water temperature difference management equipment Active JP6620445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150350A JP6620445B2 (en) 2015-07-30 2015-07-30 Intake and discharge water temperature difference management method and intake and discharge water temperature difference management equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150350A JP6620445B2 (en) 2015-07-30 2015-07-30 Intake and discharge water temperature difference management method and intake and discharge water temperature difference management equipment

Publications (2)

Publication Number Publication Date
JP2017031840A JP2017031840A (en) 2017-02-09
JP6620445B2 true JP6620445B2 (en) 2019-12-18

Family

ID=57985782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150350A Active JP6620445B2 (en) 2015-07-30 2015-07-30 Intake and discharge water temperature difference management method and intake and discharge water temperature difference management equipment

Country Status (1)

Country Link
JP (1) JP6620445B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7167525B2 (en) * 2018-07-31 2022-11-09 中国電力株式会社 Temperature difference management support device and temperature difference management support program
CN114294979B (en) * 2021-12-30 2024-02-23 淮安兄弟生物科技有限公司 Steam condensate recycling system for glycyrrhetinic acid extraction

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202149B2 (en) * 2008-07-16 2013-06-05 中国電力株式会社 Management method of generator output limit due to temperature difference of intake and drainage
JP5474415B2 (en) * 2009-06-17 2014-04-16 中国電力株式会社 Temperature difference rise alarm generation method
JP2013209897A (en) * 2012-03-30 2013-10-10 Chugoku Electric Power Co Inc:The Monitoring system
JP5632041B1 (en) * 2013-05-22 2014-11-26 中国電力株式会社 Power plant

Also Published As

Publication number Publication date
JP2017031840A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
Park et al. Development of a novel power curve monitoring method for wind turbines and its field tests
US10393453B2 (en) Method for detecting deficiencies in a cooling tower of a thermal facility in operation
JP2010133701A (en) System and method for controlling liquid level in vessel
JP6620445B2 (en) Intake and discharge water temperature difference management method and intake and discharge water temperature difference management equipment
TWI289861B (en) Structured approach for risk-informing deterministic safety analyses
JP6429529B2 (en) Gas-consuming power generation system
JP6485179B2 (en) Intake and discharge water temperature difference management system and intake and discharge water temperature difference management method
SA517390600B1 (en) Method for cooling a turbo machine
JP2015209665A (en) Plant monitoring control system
CN105736255B (en) A kind of determination method that marine wind electric field water chiller overtemperature is shut down
JP5256052B2 (en) Power load control device, power load control method, and power load control program
JP2014227911A (en) Power-generating plant
JP5922190B2 (en) Intake and discharge water temperature difference management device and intake and discharge water temperature difference management method
JP5398597B2 (en) Cooling water temperature control device and cooling water temperature control method
CN114139401B (en) Overload capacity estimation method and device for oil immersed transformer
JP2007071834A (en) Electricity supply plan forming system and the forming method for electricity supply plan
Cook et al. Impacts of temperature thresholds on power generation in the Upper Mississippi River Basin under different climate scenarios
Demachi et al. Maintenance index for system safety assessment for aging nuclear power plant
JP7379250B2 (en) Power monitoring and control device, power monitoring and control program
JP5730101B2 (en) Method for controlling local power system with power generation system and local power system
Tripathi et al. Fuzzy Inference System based Fault Detection in Smart Grid
JP2023131248A (en) Temperature difference management support device and temperature difference management support method
TWM619160U (en) Real-time minimum frequency value estimation system for power system
JP2022109882A (en) Electric power system management device and electric power system management method
ABDUSAMAD et al. The Influence of Heat Loss on Wind Generators to Implement Condition-Monitoring System Based on the Application of the Polynomial Regression Model

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191105

R150 Certificate of patent or registration of utility model

Ref document number: 6620445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150