JP6618748B2 - Method for operating hot water system and method for reconstructing hot water system - Google Patents

Method for operating hot water system and method for reconstructing hot water system Download PDF

Info

Publication number
JP6618748B2
JP6618748B2 JP2015191682A JP2015191682A JP6618748B2 JP 6618748 B2 JP6618748 B2 JP 6618748B2 JP 2015191682 A JP2015191682 A JP 2015191682A JP 2015191682 A JP2015191682 A JP 2015191682A JP 6618748 B2 JP6618748 B2 JP 6618748B2
Authority
JP
Japan
Prior art keywords
hot water
storage tank
water storage
primary
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015191682A
Other languages
Japanese (ja)
Other versions
JP2017067344A (en
Inventor
博 渡邉
博 渡邉
Original Assignee
博 渡邉
博 渡邉
株式会社スマート・リソース
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博 渡邉, 博 渡邉, 株式会社スマート・リソース filed Critical 博 渡邉
Priority to JP2015191682A priority Critical patent/JP6618748B2/en
Publication of JP2017067344A publication Critical patent/JP2017067344A/en
Application granted granted Critical
Publication of JP6618748B2 publication Critical patent/JP6618748B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ヒートポンプ給湯機を用いた給湯システムの運転方法及び給湯システムの再構築方法に関する。 The present invention relates to a method for operating a hot water supply system using a heat pump water heater and a method for reconstructing a hot water supply system .

従来の給湯システム100は、図6に示すように、給水配管110と、貯湯タンク120と、循環路130と、熱源機140とを有する。貯湯タンク120には、給水配管110からの水が供給され、熱源機140は循環路130を通る温水を加熱することによって貯湯タンク120に熱を供給する。貯湯タンク120は、密閉型貯湯タンクであり、定常状態では温水で満たされている。図示しない給湯ポンプにより貯湯タンク120内の温水が給湯負荷に排出されると、排出された温水の量と同じ量の水が給水配管110を介して貯湯タンク120に供給される。それにより貯湯タンク120内の温水の温度が設定値を下回ると、循環ポンプPにより貯湯タンク120内の温水が循環路130に供給され、熱源機140で加熱されて貯湯タンク120に戻される。   As shown in FIG. 6, the conventional hot water supply system 100 includes a water supply pipe 110, a hot water storage tank 120, a circulation path 130, and a heat source device 140. Water from the water supply pipe 110 is supplied to the hot water storage tank 120, and the heat source device 140 supplies heat to the hot water storage tank 120 by heating the hot water passing through the circulation path 130. The hot water storage tank 120 is a sealed hot water storage tank and is filled with hot water in a steady state. When hot water in the hot water storage tank 120 is discharged to a hot water supply load by a hot water supply pump (not shown), the same amount of water as the discharged hot water is supplied to the hot water storage tank 120 via the water supply pipe 110. Accordingly, when the temperature of the hot water in the hot water storage tank 120 falls below the set value, the hot water in the hot water storage tank 120 is supplied to the circulation path 130 by the circulation pump P, heated by the heat source device 140, and returned to the hot water storage tank 120.

熱源機140は例えば2台の重油式ボイラー140A,140Bが貯湯タンク120に対して並列に配置される。2台の重油式ボイラー140A,140Bの各々は、図6に示す熱交換器141A,141Bにおいて、循環路130に供給される温水と重油によって加熱された熱水との間で熱交換する。例えば一方の重油式ボイラー140Aを点検またはメインテナンスで停止する間は、他方の重油式ボイラー140Bに切り換えられる。   In the heat source unit 140, for example, two heavy oil boilers 140A and 140B are arranged in parallel to the hot water storage tank 120. Each of the two heavy oil boilers 140A and 140B performs heat exchange between hot water supplied to the circulation path 130 and hot water heated by heavy oil in the heat exchangers 141A and 141B shown in FIG. For example, while one heavy oil boiler 140A is stopped by inspection or maintenance, it is switched to the other heavy oil boiler 140B.

特許文献1,2には、熱源機140としてヒートポンプ給湯機を用いることが開示されている。特許文献1の図1では、密閉型タンク3(本願の図6の貯湯タンク120に相当)には循環路(符号なし)が連結され、循環路に対して4台のヒートポンプ給湯機2(本願の図6の熱源機140に相当)が並列に設けられている。なお、特許文献1の図1では、密閉型タンク3(本願の図6の貯湯タンク120に相当)の下流段に開放型タンク5が増設され、開放型タンク5から給湯負荷に温水が給湯されている。   Patent Documents 1 and 2 disclose that a heat pump water heater is used as the heat source device 140. In FIG. 1 of Patent Document 1, a circulation path (not shown) is connected to the sealed tank 3 (corresponding to the hot water storage tank 120 in FIG. 6 of the present application), and four heat pump water heaters 2 (this application) are connected to the circulation path. (Corresponding to the heat source device 140 of FIG. 6) is provided in parallel. In FIG. 1 of Patent Document 1, an open tank 5 is added downstream of the sealed tank 3 (corresponding to the hot water storage tank 120 in FIG. 6 of the present application), and hot water is supplied from the open tank 5 to the hot water supply load. ing.

一方、特許文献2では、本願の図6の密閉型貯湯タンク120に代えて、特許文献2の図1に示すように大気開放型貯湯タンク2(特許文献2の0010参照)が設けられている。また、本願の図6の給水配管110に代えて、特許文献2の図1では、熱源機100からの配管が貯湯タンク2に連結されている。特許文献2の開放型タンク2には循環路(符号なし)が連結され、循環路にはヒートポンプ給湯機を有する加熱ユニット3(本願の図6の熱源機140に相当)が設けられている。   On the other hand, in patent document 2, it replaces with the enclosed hot water storage tank 120 of FIG. 6 of this application, and the open air hot water storage tank 2 (refer to 0010 of patent document 2) is provided as shown in FIG. . In addition, instead of the water supply pipe 110 in FIG. 6 of the present application, a pipe from the heat source device 100 is connected to the hot water storage tank 2 in FIG. A circulation path (not indicated) is connected to the open-type tank 2 of Patent Document 2, and a heating unit 3 (corresponding to the heat source apparatus 140 in FIG. 6 of the present application) having a heat pump water heater is provided in the circulation path.

特開2007−205698号公報JP 2007-205698 A 特開2009−216265号公報JP 2009-216265 A

本願の図6、特許文献1,2の図1に示す給湯システムのいずれにおいても、本願の図6に示す熱源機140(特許文献1では4台のヒートポンプ給湯機2、特許文献2では加熱ユニット3に相当)は、図6に示す貯湯タンク120(特許文献1では密閉型タンク3、特許文献2では開放型タンク2に相当)内の温水を常に60℃〜65℃以上に保温して、レジネオラ菌等の雑菌の増殖・繁殖を抑えるために設けられている(特許文献1の0027、特許文献2の0004、0028−0029参照)。   6 of the present application, and any of the hot water supply systems shown in FIG. 1 of Patent Documents 1 and 2, the heat source device 140 shown in FIG. 6) is equivalent to the hot water storage tank 120 shown in FIG. 6 (corresponding to the closed tank 3 in Patent Document 1 and the open tank 2 in Patent Document 2), always keeping the warm water at 60 ° C. to 65 ° C. It is provided to suppress the growth and propagation of miscellaneous bacteria such as Resinella (see Patent Document 1, 0027, Patent Document 2, 0004, and 0028-0029).

ここで、温水を大量に消費するホテルやスポーツジムなどの施設に設置される給湯システムでは、図6に示す貯湯タンク120(特許文献1では開放型タンク5、特許文献2では開放型タンク2)を大容量にする必要がある。   Here, in a hot water supply system installed in a facility such as a hotel or a sports gym that consumes a large amount of hot water, a hot water storage tank 120 shown in FIG. 6 (open tank 5 in Patent Document 1, open tank 2 in Patent Document 2). It is necessary to increase the capacity.

しかし、本願の図6に示す熱源機140(特許文献2では加熱ユニット3に相当)による保温運転により、大容量の貯湯タンク130(特許文献2では開放型タンク2に相当)の温水を保温するのは、大容量となるほど貯湯タンクからの放熱量が多いため非効率である。一方、特許文献1では密閉型タンク3の容量は大きくしなくて済むので4台のヒートポンプ給湯機2の非効率の課題はないが、大容量の開放型タンク5の下流にも再加熱装置11を配置する必要がある。つまり、特許文献2では、大容量の開放型タンク5の上流では4台のヒートポンプ給湯機2と密閉型タンク3とを用いて保温し、大容量の開放型タンク5の下流では再加熱装置11により保温しなければならない。   However, the warm water of the large-capacity hot water storage tank 130 (corresponding to the open tank 2 in Patent Document 2) is retained by the heat retaining operation by the heat source device 140 (corresponding to the heating unit 3 in Patent Document 2) shown in FIG. This is inefficient because the heat dissipation from the hot water storage tank increases as the capacity increases. On the other hand, in Patent Document 1, since the capacity of the closed tank 3 does not need to be increased, there is no problem of inefficiency of the four heat pump water heaters 2, but the reheating device 11 is also provided downstream of the large capacity open tank 5. Need to be placed. That is, in Patent Document 2, heat is maintained using four heat pump water heaters 2 and the closed tank 3 upstream of the large capacity open tank 5, and the reheating device 11 is downstream of the large capacity open tank 5. Must be kept warm.

本発明の一態様は、貯湯タンクへの給湯と保温とをそれぞれ効率的に行うことができる給湯システムの運転方法を提供することを目的とする。
本発明の他の態様は、既存設備に追加することで、貯湯タンクへの給湯と保温とを効率的に行うことができる給湯システムを実現できる、給湯システムの再構築方法を提供することを目的とする。
An object of one embodiment of the present invention is to provide a method of operating a hot water supply system that can efficiently perform hot water supply and heat insulation to a hot water storage tank.
Another aspect of the present invention is to provide a hot water supply system rebuilding method that can realize a hot water supply system capable of efficiently performing hot water supply and heat insulation to a hot water storage tank by adding to existing equipment. And

(1)本発明の一態様は、
給水される水を温水にする一次熱源機と、
前記一次熱源機から供給される前記温水を貯える開放型の一次貯湯タンクと、
前記一次貯湯タンクから供給される前記温水を貯え、前記温水を給湯負荷に供給する二次貯湯タンクと、
前記二次貯湯タンクに連結され、前記二次貯湯タンクから供給される前記温水を前記二次貯湯タンクに戻して循環させる循環路と、
前記循環路に供給される前記温水を加熱して、前記二次貯湯タンク内の前記温水を保温する二次熱源機と、
を有し、
前記一次熱源機は、昇温の温度差が大きいほど高い成績係数が得られるタイプのヒートポンプ給湯機であり、
前記一次貯湯タンクの温水の温度は、前記二次貯湯タンクの温水の温度よりも高い給湯システムに関する。
(1) One aspect of the present invention is
A primary heat source machine that heats the supplied water,
An open-type primary hot water storage tank for storing the hot water supplied from the primary heat source machine;
A secondary hot water storage tank for storing the hot water supplied from the primary hot water storage tank and supplying the hot water to a hot water supply load;
A circulation path connected to the secondary hot water storage tank and circulating the warm water supplied from the secondary hot water storage tank back to the secondary hot water storage tank;
A secondary heat source machine that heats the hot water supplied to the circulation path and keeps the warm water in the secondary hot water storage tank;
Have
The primary heat source machine is a type of heat pump water heater that provides a higher coefficient of performance as the temperature difference in temperature rise is larger,
The hot water temperature of the primary hot water storage tank relates to a hot water supply system in which the temperature of the hot water of the secondary hot water storage tank is higher.

本発明の一態様によれば、貯湯負荷側への給湯の要不要に無関係に、一次熱源機の給湯運転(貯湯運転)により加熱された温水を比較的容量の大きな一次貯湯タンクに給湯する一方で、給湯負荷に給湯する比較的容量の小さい二次貯湯タンク内の温水を、二次熱源機が必要な時のみ保温運転することによって保温することができる。しかも、一次熱源機が例えばCOを冷媒とするヒートポンプ給湯機であると、ヒートポンプ給湯機により熱交換される前の給水温度と熱交換後の温水温度との差が大きいほど、成績係数(COP:Coefficient Of Performance)は、例外的に大きくなる。よって、一次貯湯タンクへの貯湯(給湯)を効率差的に行うことができる。 According to one aspect of the present invention, hot water heated by a hot water supply operation (hot water storage operation) of a primary heat source machine is supplied to a primary hot water storage tank having a relatively large capacity regardless of whether or not hot water supply to the hot water storage load side is necessary. Thus, the hot water in the secondary hot water storage tank having a relatively small capacity for supplying hot water to the hot water supply load can be kept warm by performing a heat insulation operation only when the secondary heat source machine is necessary. Moreover, when the primary heat source device is a heat pump water heater using CO 2 as a refrigerant, for example, the coefficient of performance (COP) increases as the difference between the water supply temperature before heat exchange by the heat pump water heater and the hot water temperature after heat exchange increases. : Coefficient Of Performance) is exceptionally large. Therefore, hot water storage (hot water supply) to the primary hot water storage tank can be efficiently performed.

(2)本発明の一態様では、前記一次貯湯タンクの温水の温度は、前記二次貯湯タンクの温水の温度よりも高くすることができる。こうすると、一次貯湯タンクからの高温水の供給による「差し湯」で、二次貯湯タンクを昇温させることができる。それにより、二次貯湯タンクの保温運転によるエネルギーロスを低減できる。   (2) In 1 aspect of this invention, the temperature of the warm water of the said primary hot water storage tank can be made higher than the temperature of the warm water of the said secondary hot water storage tank. If it carries out like this, a secondary hot water storage tank can be heated up with the "hot water" by supply of the high temperature water from a primary hot water storage tank. Thereby, the energy loss by the heat insulation driving | operation of a secondary hot water storage tank can be reduced.

(3)本発明の一態様では、前記一次貯湯タンクの容量は、前記二次貯湯タンクの容量よりも大きくすることができる。こうすると、一次熱源機は、低温の供給水に熱量を与えて設定温度例えば65℃に昇温させ続ける貯湯運転(給湯運転)を、例えば電気料金が安価な深夜の時間帯を利用して行うことができる。一次熱源機の貯湯運転(給湯運転)は、二次熱源機の保温運転と比較して、大温度差運転となる。一次熱源機は、大温度差運転では成績係数が高いので、効率よく貯湯することができる。   (3) In 1 aspect of this invention, the capacity | capacitance of the said primary hot water storage tank can be made larger than the capacity | capacitance of the said secondary hot water storage tank. In this way, the primary heat source unit performs a hot water storage operation (hot water supply operation) in which the amount of heat is given to the low-temperature supply water and the temperature is raised to a set temperature, for example, 65 ° C., using, for example, a midnight time zone where the electricity rate is low. be able to. The hot water storage operation (hot water supply operation) of the primary heat source machine is a large temperature difference operation compared to the heat insulation operation of the secondary heat source machine. Since the primary heat source machine has a high coefficient of performance in a large temperature difference operation, it can store hot water efficiently.

(4)本発明の一態様では、前記二次貯湯タンクは、密閉型貯湯タンクとすることができる。密閉型貯湯タンクは、タンク内の水が冷める時、底部から頂部にかけて温度分布が生ずる。再加熱時には底部側の冷たい水を頂部側に戻すという循環路を設ければ効率的に保温することができる。   (4) In one aspect of the present invention, the secondary hot water storage tank may be a sealed hot water storage tank. The closed hot water storage tank has a temperature distribution from the bottom to the top when the water in the tank cools. If a circulation path for returning the cold water on the bottom side to the top side is provided at the time of reheating, the heat can be efficiently maintained.

(5)本発明の一態様では、前記一次熱源機は、前記一次貯湯タンクに対して並列に接続される複数のヒートポンプ給湯機を含むことができる。こうすると、一次貯湯タンクの容量や、ヒートポンプ給湯機の定格等に応じて、ヒートポンプ給湯機の並列台数を決定して、一次貯湯タンクの容量に給湯能力を担保することができる。   (5) In one mode of the present invention, the primary heat source machine may include a plurality of heat pump water heaters connected in parallel to the primary hot water storage tank. If it carries out like this, according to the capacity | capacitance of a primary hot water storage tank, the rating of a heat pump water heater, etc., the parallel number of heat pump water heaters can be determined, and hot water supply capability can be ensured to the capacity | capacitance of a primary hot water storage tank.

(6)本発明の他の態様は、上述した(1)〜(5)のいずれかに記載の給湯システムに用いられる給湯サブシステムであって、給水される水を温水にする一次熱源機と、前記一次熱源機から供給される前記温水を貯える開放型の一次貯湯タンクと、を有する給湯サブシステムに関する。   (6) Another aspect of the present invention is a hot water supply subsystem used in the hot water supply system according to any one of (1) to (5) described above, and a primary heat source machine that converts hot water into hot water. And an open type primary hot water storage tank for storing the hot water supplied from the primary heat source machine.

既存設備を二次給湯システムとしての二次貯湯タンク、循環路及び二次熱源機として利用し、この既存設備に本発明の他の態様に係る給湯サブシステムを一次給湯サブシステムとして連結して、本発明の一態様に係る給湯システム被構築することができる。   Utilizing the existing equipment as a secondary hot water storage tank as a secondary hot water supply system, a circulation path and a secondary heat source machine, connecting the hot water supply subsystem according to another aspect of the present invention to this existing equipment as a primary hot water supply subsystem, A hot water supply system according to one embodiment of the present invention can be constructed.

本発明の一実施形態に係る給湯システム及び給湯サブシステムを示す図である。It is a figure showing the hot-water supply system and hot-water supply subsystem concerning one embodiment of the present invention. 大気開放型の一次貯湯タンクを示す図である。It is a figure which shows the air | atmosphere release type primary hot water storage tank. 密閉型の二次貯湯タンクを示す図である。It is a figure which shows a sealed secondary hot water storage tank. 図4(A)は一次給湯サブシステムで保温運転を実施する比較例を示し、図4(B)は一次給湯サブシステムで貯湯(給湯)運転を実施する実施例を示す図である。FIG. 4 (A) shows a comparative example in which heat insulation operation is performed in the primary hot water supply subsystem, and FIG. 4 (B) is a diagram showing an example in which hot water storage (hot water supply) operation is performed in the primary hot water supply subsystem. ヒートポンプのP−h線図である。It is a Ph diagram of a heat pump. 既存設備(二次貯湯タンク、循環路及び二次熱源機)を示す図である。It is a figure which shows the existing equipment (a secondary hot water storage tank, a circulation path, and a secondary heat source machine).

以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are indispensable as means for solving the present invention. Not always.

1.給湯システム
本実施形態に係る給湯システム1は、図1に示すように、一次給湯サブシステム2と二次給湯サブシステム3とを有する。一次給湯サブシステム2には、一次熱源機10及び一次貯湯タンク20が配置される。二次給湯サブシステム3には、二次貯湯タンク30と、循環路40と、二次熱源機50とが配置される。
1. Hot-water supply system The hot-water supply system 1 which concerns on this embodiment has the primary hot-water supply subsystem 2 and the secondary hot-water supply subsystem 3 as shown in FIG. In the primary hot water supply subsystem 2, a primary heat source device 10 and a primary hot water storage tank 20 are disposed. In the secondary hot water supply subsystem 3, a secondary hot water storage tank 30, a circulation path 40, and a secondary heat source machine 50 are arranged.

一次熱源機10は、給水配管4から給水される水を、COを冷媒とするヒートポンプ給湯機によって温水にする。一次貯湯タンク20は、一次熱源機10から供給される温水を貯える開放型貯湯タンクである。二次貯湯タンク30は、一次貯湯タンク20から供給される温水を貯え、この温水を給湯負荷5に供給する。循環路40は、二次貯湯タンク30に連結され、二次貯湯タンク30から供給される温水を二次貯湯タンク30に戻して循環させる。二次熱源機50は、二次貯湯タンク30から循環路40に供給される温水を加熱して、二次貯湯タンク30内の温水を保温する。 The primary heat source device 10 turns the water supplied from the water supply pipe 4 into warm water by a heat pump water heater using CO 2 as a refrigerant. The primary hot water storage tank 20 is an open-type hot water storage tank that stores hot water supplied from the primary heat source device 10. The secondary hot water storage tank 30 stores the hot water supplied from the primary hot water storage tank 20 and supplies this hot water to the hot water supply load 5. The circulation path 40 is connected to the secondary hot water storage tank 30 and returns the hot water supplied from the secondary hot water storage tank 30 to the secondary hot water storage tank 30 for circulation. The secondary heat source unit 50 heats the hot water supplied from the secondary hot water storage tank 30 to the circulation path 40 to keep the hot water in the secondary hot water storage tank 30 warm.

ここで、一次熱源機10は、一台または複数台のヒートポンプ給湯機12により構成される。本実施形態では、例えば3台のヒートポンプ給湯機12を一次貯湯タンク20に対して並列に設けている。各ヒートポンプ給湯機12では、冷媒であるCOガスが空気中の熱を吸収し、冷媒を圧縮することで冷媒が更に高温度とされる。給水された水と冷媒との間で熱交換が行われる。つまり、給水された水(常温)は、冷媒の熱が伝えられて、設定温度例えば65℃〜75℃の温水にされる。冷媒は、循環されることで繰り返し熱交換に用いられる。 Here, the primary heat source device 10 is configured by one or a plurality of heat pump water heaters 12. In the present embodiment, for example, three heat pump water heaters 12 are provided in parallel to the primary hot water storage tank 20. In each heat pump water heater 12, CO 2 gas, which is a refrigerant, absorbs heat in the air and compresses the refrigerant, whereby the temperature of the refrigerant is further increased. Heat exchange is performed between the supplied water and the refrigerant. That is, the supplied water (ordinary temperature) is transferred to the heat of the refrigerant and is heated to a set temperature, for example, 65 ° C. to 75 ° C. The refrigerant is repeatedly used for heat exchange by being circulated.

一次貯湯タンク20は、一次熱源機10から供給される温水を貯える通常の貯湯状態において、図2に示すように、温水の上面よりも高い位置例えば断熱壁22の天壁22Aに、大気に通じる開口24を有する大気開放型にて構成される。   The primary hot water storage tank 20 communicates with the atmosphere at a position higher than the upper surface of the hot water, for example, the top wall 22A of the heat insulating wall 22, as shown in FIG. 2, in a normal hot water storage state in which the hot water supplied from the primary heat source device 10 is stored. An open-air type having an opening 24 is used.

この一次貯湯タンク20に給湯する一次熱源機10は、貯湯運転または給湯運転と称される運転が実施される。貯湯運転(給湯運転)とは、常温例えば17℃の供給水を一次熱源機10により例えば65℃に加熱し、その温水を一次貯湯タンク20に給湯して貯湯させるものである。   The primary heat source machine 10 that supplies hot water to the primary hot water storage tank 20 is operated as a hot water storage operation or a hot water supply operation. The hot water storage operation (hot water supply operation) is a method in which water supplied at room temperature, for example, 17 ° C. is heated to, for example, 65 ° C. by the primary heat source device 10, and the hot water is supplied to the primary hot water storage tank 20 to store hot water.

一次貯湯タンク20は、水位を変化させられる貯湯槽であり、満水位になるまで一次熱源機10の貯湯運転により供給された湯を貯めておくことができる。一次貯湯タンク20は、充分な貯湯容量を有するか、または消費される湯が多い場合においては、一次熱源機10からすれば、比較的低温の供給水に熱量を与えて設定温度例えば65℃に昇温させ続ける運転をすればよく、このような運転状況が貯湯運転(給湯運転)と呼ばれる。貯湯運転(給湯運転)は、保温運転と比較して、大温度差運転となるので、一次熱源機10を、例えばCOを冷媒とするヒートポンプ給湯機12で構成することにより、後述するように成績係数(COP:Coefficient Of Performance)は例外的に高くなる。 The primary hot water storage tank 20 is a hot water storage tank whose water level can be changed, and can store hot water supplied by the hot water storage operation of the primary heat source machine 10 until the water level is full. When the primary hot water storage tank 20 has a sufficient hot water storage capacity or a large amount of hot water is consumed, the primary heat source unit 10 gives heat to a relatively low temperature supply water to a set temperature such as 65 ° C. It is only necessary to keep the temperature raised, and such an operating state is called a hot water storage operation (hot water supply operation). Since the hot water storage operation (hot water supply operation) is a large temperature difference operation as compared with the heat retention operation, the primary heat source device 10 is constituted by, for example, a heat pump water heater 12 using CO 2 as a refrigerant, as will be described later. Coefficient of performance (COP) is exceptionally high.

二次貯湯タンク30は、一次貯湯タンク20から供給される温水を貯湯し、かつ、温水温度が低下した場合には循環路40及び二次熱源機50により保温するものである。よって、保温機能が付加される限りにおいて、二次貯湯タンク30は大気開放型でも密閉型でも構わない。本実施形態では、図3に示すように二次貯湯タンク30を密閉型貯湯タンクとしている。密閉型の二次貯湯タンク30は、定常状態では例えば平均60℃の温水で満たされている。   The secondary hot water storage tank 30 stores hot water supplied from the primary hot water storage tank 20 and keeps the temperature warm by the circulation path 40 and the secondary heat source device 50 when the temperature of the hot water decreases. Therefore, as long as the heat retaining function is added, the secondary hot water storage tank 30 may be open to the atmosphere or sealed. In this embodiment, as shown in FIG. 3, the secondary hot water storage tank 30 is a sealed hot water storage tank. The sealed secondary hot water storage tank 30 is filled with warm water of, for example, an average of 60 ° C. in a steady state.

二次熱源機50は、貯湯運転(給湯運転)される一次熱源機10とは異なり、保温運転される。ここで、一般に貯湯タンクに蓄えられる湯は、タンク壁が断熱されていても自然放熱される。よって、貯湯タンクに蓄えられる湯は、タンクの底部から頂部にかけて温度分布があり、底部側は低い温度に、頂部側は高い温度になる。保温運転とは、二次貯湯タンク30の底部側の例えば60℃の温水を、循環路40に引き込み、二次熱源機50により例えば70℃に昇温して、二次貯湯タンク30の頂部側に戻す運転である。保温運転は小温度差運転となるが、常時実施する必要はなく、例えば二次貯湯タンク30の底部側の温水の温度をセンサーで測定し、例えば60℃まで降下した場合にのみ保温運転を実施すればよい。このように、必要な時だけ保温運転を実施させるために、一次貯湯タンク20と二次貯湯タンク30とを連結する配管には、加圧給水ポンプPや弁Vを設けている。なお、弁Vの切り換えにより、二次貯湯タンク30に給水配管4からの水を供給することができる。   Unlike the primary heat source device 10 that performs hot water storage operation (hot water supply operation), the secondary heat source device 50 is operated for heat insulation. Here, the hot water generally stored in the hot water storage tank is naturally radiated even if the tank wall is insulated. Therefore, the hot water stored in the hot water storage tank has a temperature distribution from the bottom to the top of the tank, and the bottom side has a low temperature and the top side has a high temperature. The heat insulation operation refers to, for example, hot water of 60 ° C. on the bottom side of the secondary hot water storage tank 30 being drawn into the circulation path 40 and heated to, for example, 70 ° C. by the secondary heat source device 50, and the top side of the secondary hot water storage tank 30. It is driving to return to. The heat insulation operation is a small temperature difference operation, but it is not always necessary to perform the operation. For example, the temperature of the hot water at the bottom side of the secondary hot water storage tank 30 is measured with a sensor, and the heat insulation operation is performed only when the temperature drops to 60 ° C., for example. do it. As described above, in order to perform the heat insulation operation only when necessary, the pressurized water supply pump P and the valve V are provided in the pipe connecting the primary hot water storage tank 20 and the secondary hot water storage tank 30. By switching the valve V, water from the water supply pipe 4 can be supplied to the secondary hot water storage tank 30.

例えば密閉型の二次貯湯タンク30は、図3に示すように、満水の温水を蓄える断熱壁32の底部側に一次貯湯タンク20からの温水が供給される供給口34Aが設けられ、断熱壁32の頂部側に給湯負荷5に温水を排出する排出口34Bが設けられる。さらに、上述した保温運転を効率的に行うために、図3に示すように、循環路40の入口40Aは、密閉型の二次貯湯タンク30の底部側に連結され、循環路40の出口40Bは二次貯湯タンク30の頂部側に連結される。   For example, as shown in FIG. 3, the sealed secondary hot water storage tank 30 is provided with a supply port 34 </ b> A to which hot water from the primary hot water storage tank 20 is supplied on the bottom side of the heat insulating wall 32 that stores hot water with full water. A discharge port 34 </ b> B for discharging hot water to the hot water supply load 5 is provided on the top side of 32. Furthermore, in order to efficiently perform the above-described heat insulation operation, the inlet 40A of the circulation path 40 is connected to the bottom side of the hermetic secondary hot water storage tank 30 and the outlet 40B of the circulation path 40 as shown in FIG. Is connected to the top side of the secondary hot water storage tank 30.

二次熱源機50の方式は特に制限はなく、本実施形態では例えば2台の重油式ボイラー50A,50Bが二次貯湯タンク30に対して並列に配置される。2台の重油式ボイラー50A,50Bの各々は、図1に示す熱交換器51A,51Bにおいて、循環路40に供給される温水と重油によって加熱された熱水との間で熱交換する。例えば一方の重油式ボイラー50Aを点検またはメインテナンスで停止する間は、他方の重油式ボイラー50Bに切り換えられる。   The method of the secondary heat source machine 50 is not particularly limited, and in the present embodiment, for example, two heavy oil boilers 50 </ b> A and 50 </ b> B are arranged in parallel to the secondary hot water storage tank 30. Each of the two heavy oil boilers 50A and 50B performs heat exchange between hot water supplied to the circulation path 40 and hot water heated by heavy oil in the heat exchangers 51A and 51B shown in FIG. For example, while one heavy oil boiler 50A is stopped by inspection or maintenance, it is switched to the other heavy oil boiler 50B.

なお、図1に示す給湯システム1では、図6に示す既存設備100としての貯湯タンク120、循環路130及び熱源機140を、図6に示す二次給湯サブシステム3(二次貯湯タンク30、循環路40及び二次熱源機50)して利用しても良い。つまり、図6に示す既存設備に、一次熱源機10と一次貯湯タンク20とを含む給湯サブシステム2を追加して、給湯システム1を構築しても良い。このとき、図1に示す二次熱源機50を構成する2台のボイラー50A,50Bの一方を、ランニングコストの低いヒートポンプ給湯機に変更して、他方のボイラーの稼働率を下げてもかまわない。   In the hot water supply system 1 shown in FIG. 1, the hot water storage tank 120, the circulation path 130, and the heat source device 140 as the existing equipment 100 shown in FIG. The circulation path 40 and the secondary heat source machine 50) may be used. That is, the hot water supply system 1 may be constructed by adding the hot water supply subsystem 2 including the primary heat source device 10 and the primary hot water storage tank 20 to the existing facility shown in FIG. At this time, one of the two boilers 50A and 50B constituting the secondary heat source device 50 shown in FIG. .

2.給湯システムの動作
2.1.一次給湯サブシステムの存在意義
一次給湯サブシステム2の開放型の一次貯湯タンク20は、水位を変化させられる貯湯槽であり、満水位になるまで一次熱源機10が生成した例えば65℃の湯を貯めておくことができる。ここで、一次給湯サブシステム2の開放型の一次貯湯タンク20の温度は、二次給湯サブシステム3の二次貯湯タンク30の温度よりも高くすることができる。こうすると、一次貯湯タンクからの高温水の供給による「差し湯」で、二次貯湯タンクを昇温させることができる。それにより、二次貯湯タンクの保温運転によるエネルギーロスを低減できる。
2. Operation of hot water supply system 2.1. Significance of the presence of the primary hot water supply subsystem The open primary hot water storage tank 20 of the primary hot water supply subsystem 2 is a hot water storage tank whose water level can be changed. Can be saved. Here, the temperature of the open-type primary hot water storage tank 20 of the primary hot water supply subsystem 2 can be made higher than the temperature of the secondary hot water storage tank 30 of the secondary hot water supply subsystem 3. If it carries out like this, a secondary hot water storage tank can be heated up by the "hot water" by the supply of the high temperature water from a primary hot water storage tank. Thereby, the energy loss by the heat insulation driving | operation of a secondary hot water storage tank can be reduced.

また、一次給湯サブシステム2の開放型の一次貯湯タンク20の容量は、二次給湯サブシステム3の二次貯湯タンク30の容量よりも大きくすることができる。それにより、一次熱源機は、低温の供給水に熱量を与えて設定温度例えば65℃に昇温させ続ける貯湯運転(給湯運転)を、電気代が安価な深夜の時間帯を利用して行うことができる。
例えば一次貯湯タンク20は、最大で一日に消費する湯量を蓄える容量とすることができ、設置スペースや耐荷重の制約の中で大きな容量を確保することが好ましい。本実施形態では、給湯システム1がホテルやスポーツジムなど多量に湯を消費する施設に配置されることを想定し、一次貯湯タンク20の容量を例えば4tの湯を蓄えられるものとする。
Further, the capacity of the open primary hot water storage tank 20 of the primary hot water supply subsystem 2 can be made larger than the capacity of the secondary hot water storage tank 30 of the secondary hot water supply subsystem 3. As a result, the primary heat source unit performs a hot water storage operation (hot water supply operation) in which the amount of heat is given to the low-temperature supply water and the temperature is raised to a set temperature, for example, 65 ° C., using a late-night time period in which the electricity bill is inexpensive. Can do.
For example, the primary hot water storage tank 20 can have a capacity for storing a maximum amount of hot water consumed in a day, and it is preferable to secure a large capacity within the constraints of installation space and load resistance. In the present embodiment, it is assumed that the hot water supply system 1 is disposed in a facility that consumes a large amount of hot water, such as a hotel or a sports gym, and the capacity of the primary hot water storage tank 20 can be stored, for example, 4 t.

一次貯湯タンク20には、好ましくは深夜の電気代が安い時間に、ヒートポンプ式の一次熱源機10から給湯する。深夜はお湯の消費が少ないので、急な熱需要は少ない点でも好ましい。ただし、一次熱源機10の稼働時間は深夜以外であっても良い。   Hot water is supplied to the primary hot water storage tank 20 from the heat pump type primary heat source unit 10 preferably at a time when the electricity bill at midnight is cheap. Since the consumption of hot water is low at midnight, it is also preferable in that the sudden heat demand is small. However, the operation time of the primary heat source machine 10 may be other than midnight.

一次給湯サブシステム2の存在意義は、給湯負荷5への給湯の要不要に関係なく、一次熱源機10が成績係数が高くなる高温度差運転である上述の給湯運転(貯湯運転)を続けること、より好ましくは電気代の安い深夜に実施し続けることにある。さらには、開放型の好ましくは大容量の一次貯湯タンク20に温水を、「差し湯」として給湯できる点である。一次給湯サブシステム2の一次貯湯タンク20は、給湯負荷5とは切り離され、かつ、タンク内の水位を可変できる開放型であり、一次熱源機10は昇温の温度差が大きいほど高い成績係数が得られるタイプのヒートポンプ給湯機であるからである。   The significance of the presence of the primary hot water supply subsystem 2 is that the primary heat source unit 10 continues the above-described hot water supply operation (hot water storage operation), which is a high temperature difference operation with a high coefficient of performance, regardless of whether or not hot water supply to the hot water supply load 5 is necessary. More preferably, it is to continue the implementation at midnight when the electricity bill is cheap. Furthermore, hot water can be supplied to the open-type, preferably large-capacity primary hot water storage tank 20 as “hot water”. The primary hot water storage tank 20 of the primary hot water supply subsystem 2 is an open type that is separated from the hot water supply load 5 and can change the water level in the tank, and the primary heat source unit 10 has a higher coefficient of performance as the temperature difference in temperature rise increases. This is because the heat pump water heater of the type that can be obtained.

2.2.二次給湯サブシステムの存在意義
二次給湯サブシステム3の存在意義は、一次給湯サブシステム2では大容量の一次貯湯タンク20を非効率に保温する必要をなくすことである。二次給湯サブシステム3では、給湯負荷5に給湯するに足る量の温水が一次貯湯タンク20から二次貯湯タンク30に蓄えられる。給湯負荷5への給湯が比較的に長い時間停止される等の必要な時にのみ、二次熱源機50が作動して、比較的容量の小さな二次貯湯タンク30の内の温水を効率的に保温することができる。
2.2. Significance of Secondary Hot Water Subsystem Subsidiary Significance of the secondary hot water subsystem 3 is that the primary hot water subsystem 2 eliminates the need to insulate the large capacity primary hot water storage tank 20 inefficiently. In the secondary hot water supply subsystem 3, an amount of hot water sufficient to supply hot water to the hot water supply load 5 is stored in the secondary hot water storage tank 30 from the primary hot water storage tank 20. Only when the hot water supply to the hot water supply load 5 is stopped for a relatively long time, the secondary heat source machine 50 is operated, and the hot water in the secondary hot water storage tank 30 having a relatively small capacity is efficiently supplied. Can keep warm.

2.3.一次給給湯システムでの給湯運転と保温運転との比較
以下、給湯運転と保温運転とを定量データを用いて比較する。入水温度17℃の供給水4.0tを65℃に昇温して、給湯負荷に供給する場合を考える。図4(A)は密閉型貯湯槽を利用し、ヒートポンプ給湯機の「保温運転」で行う比較例を示し、図4(B)は開放型貯湯槽を利用し、ヒートポンプ給湯機の「貯湯運転」で行う本実施形態の一次側給湯サブシステム2の実施例を示す。
2.3. Comparison of hot water supply operation and heat insulation operation in the primary hot water supply system Hereinafter, the hot water supply operation and the heat insulation operation will be compared using quantitative data. Consider a case where 4.0 t of feed water having an incoming water temperature of 17 ° C. is heated to 65 ° C. and supplied to a hot water supply load. FIG. 4 (A) shows a comparative example in which the closed type hot water storage tank is used and “heat insulation operation” of the heat pump water heater is performed, and FIG. 4 (B) is an open type hot water tank in which “hot water storage operation” The example of the primary side hot-water supply subsystem 2 of this embodiment performed by "is shown.

ここで、図4(A)に示す比較例の保温運転では、ヒートポンプ給湯機での昇温前後の温度差は約10℃である。一方、図4(B)に示す実施例の貯湯運転では、ヒートポンプ給湯機での昇温前後の温度差は48℃(=65℃−17℃)である。   Here, in the heat insulation operation of the comparative example shown in FIG. 4A, the temperature difference before and after the temperature rise in the heat pump water heater is about 10 ° C. On the other hand, in the hot water storage operation of the embodiment shown in FIG. 4B, the temperature difference before and after the temperature rise in the heat pump water heater is 48 ° C. (= 65 ° C.−17 ° C.).

この2つの例について、必要な消費電力量を比較する。図4(A)(B)に用いるCOを冷媒とするヒートポンプ給湯機として、2つの運転モードをもつ、三菱重工業(株)のESA30-5の使用を想定した。三菱重工業(株)のESA30-5の加熱性能は、三菱重工業(株)のウェブサイトを引用すると以下の通りである。
(A)保温運転
出力(加熱能力):13.0[kW]
入力(消費電力):8.5[kW]
成績係数COP:13.0[kW]÷8.5[kW]=1.529
(B)貯湯運転
出力(加熱能力):30.0[kW]
入力(消費電力):6.98[kW]
成績係数COP:30.0[kW]÷6.98[kW]=4.298
The required power consumption is compared for these two examples. As the heat pump water heater using CO 2 as a refrigerant used in FIGS. 4A and 4B, it was assumed that Mitsubishi Heavy Industries, Ltd. ESA30-5 having two operation modes was used. The heating performance of ESA30-5 manufactured by Mitsubishi Heavy Industries, Ltd. is as follows, referring to the website of Mitsubishi Heavy Industries, Ltd.
(A) Thermal insulation operation Output (heating capacity): 13.0 [kW]
Input (power consumption): 8.5 [kW]
Coefficient of performance COP: 13.0 [kW] ÷ 8.5 [kW] = 1.529
(B) Hot water storage operation Output (heating capacity): 30.0 [kW]
Input (power consumption): 6.98 [kW]
Coefficient of performance COP: 30.0 [kW] ÷ 6.98 [kW] = 4.298

ここで、例えばCOを冷媒とするヒートポンプ給湯機では、温度差の小さい保温運転よりも、温度差の大きい給湯運転(貯湯運転)の方が、成績係数COPが高くなっている。これは、一般のヒートポンプとは異なっている。 Here, for example, in a heat pump water heater using CO 2 as a refrigerant, a coefficient of performance COP is higher in a hot water supply operation (hot water storage operation) having a large temperature difference than in a heat retention operation having a small temperature difference. This is different from a general heat pump.

一般にヒートポンプは、図5に示す蒸発工程A、圧縮工程B、凝縮工程C及び膨張行程Dを繰り返す。ヒートポンプはこの一連のサイクルを行うことで低温部から高温部へ熱を運ぶ。低温部での温度をT1、高温部での温度をT2、蒸発工程Aで作動媒体に吸収される熱量をQ1、凝縮工程Cで作動媒体から放出される熱量をQ2、圧縮工程Bでの圧縮機からの入力エネルギーをWとすると、Q2=Q1+Wとなり、一般に、成績係数COPは次式で求められる。
COP=Q2/W
=Q2/(Q2−Q1)
=T2/(T2−T1)…(1)
Generally, the heat pump repeats the evaporation process A, the compression process B, the condensation process C, and the expansion process D shown in FIG. The heat pump carries heat from the low temperature part to the high temperature part by performing this series of cycles. The temperature in the low temperature part is T1, the temperature in the high temperature part is T2, the amount of heat absorbed by the working medium in the evaporation step A is Q1, the amount of heat released from the working medium in the condensation step C is Q2, and the compression in the compression step B If the input energy from the machine is W, Q2 = Q1 + W, and generally, the coefficient of performance COP is obtained by the following equation.
COP = Q2 / W
= Q2 / (Q2-Q1)
= T2 / (T2-T1) (1)

この(1)式からは、高温部と低温部との温度差(T2−T1)が小さいほど成績係数がよいことが分かる。つまり、一般には温度差が大きいと効率がよくないので、ヒートポンプは温度差の大きい用途には適しないとされていた。   From this equation (1), it can be seen that the smaller the temperature difference (T2-T1) between the high temperature part and the low temperature part, the better the coefficient of performance. That is, in general, since the efficiency is not good when the temperature difference is large, the heat pump is not suitable for an application having a large temperature difference.

しかし、COを冷媒とするヒートポンプ給湯機12には(1)式は適用されず、上述の通り、温度差(T2−T1)が大きい方が成績係数COPは高い。 However, the equation (1) is not applied to the heat pump water heater 12 using CO 2 as a refrigerant, and as described above, the coefficient of performance COP is higher when the temperature difference (T2−T1) is larger.

入水温度17.0[℃]の供給水4.00[t]を65.0[℃]に昇温するのに必要な熱量は次の通りである。
4.00[t]×1000[l/t]×(65.0[℃]−17.0[℃])=192000[kcal]…(2)
The amount of heat required to raise the temperature of feed water 4.00 [t] at an incoming water temperature of 17.0 [° C.] to 65.0 [° C.] is as follows.
4.00 [t] x 1000 [l / t] x (65.0 [° C] -17.0 [° C]) = 192000 [kcal] (2)

式(2)に示す熱量供給を、図4(A)に示す密閉型貯湯槽を利用してヒートポンプ給湯機の「保温運転」で行う場合には、保温運転では成績係数COP:1.529であるから、必要な消費電力量は、1.000[cal]=4.18605[J]及び1.000[Wh]=3600[J]であることを考慮すると、
192000[kcal]÷1.529×4.18605[kJ/kcal]÷3600[kJ/kWh]=146.0[kWh]…(3)
となる。
When the heat supply shown in equation (2) is performed in the “heat insulation operation” of the heat pump water heater using the sealed hot water storage tank shown in FIG. 4 (A), the coefficient of performance COP is 1.529 in the heat insulation operation. Considering that the required power consumption is 1.000 [cal] = 4.18605 [J] and 1.000 [Wh] = 3600 [J],
192000 [kcal] ÷ 1.529 × 4.18605 [kJ / kcal] ÷ 3600 [kJ / kWh] = 146.0 [kWh]… (3)
It becomes.

式(2)に示す熱量供給を、図4(B)に示す開放型貯湯槽を利用したヒートポンプ給湯機の「貯湯運転」で行う場合、貯湯運転では、成績係数COP:4.298であるから、必要な消費電力量は、
192000[kcal]÷4.298×4.18605[kJ/kcal]÷3600[kJ/kWh]=51.94[kWh]…(4)
となる。
When performing the heat supply shown in equation (2) in the “hot water storage operation” of the heat pump water heater using the open-type hot water storage tank shown in FIG. 4B, the coefficient of performance COP is 4.298 in the hot water storage operation. Power consumption is
192000 [kcal] ÷ 4.298 × 4.18605 [kJ / kcal] ÷ 3600 [kJ / kWh] = 51.94 [kWh]… (4)
It becomes.

式(3)(4)の比較から明らかなように、式(2)に示す同じ熱量供給のために必要な消費電力量が、貯湯運転時では51.94[kWh]と少ないのに対して、比較例の保温運転では146.0[kWh]と多くなる。よって、本実施形態の給湯サブシステム2を用いることにより、消費電力を低減できることが分かる。   As is clear from the comparison of equations (3) and (4), the power consumption required for the same heat supply shown in equation (2) is small at 51.94 [kWh] during hot water storage operation. In the heat insulation operation of the example, it increases to 146.0 [kWh]. Therefore, it turns out that power consumption can be reduced by using the hot-water supply subsystem 2 of this embodiment.

なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。   Although the present embodiment has been described in detail as described above, it will be easily understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. Accordingly, all such modifications are intended to be included in the scope of the present invention.

1 給湯システム、2 一次給湯サブシステム、3 二次給湯サブシステム、10 一次熱源機、12 COを冷媒とするヒートポンプ給湯機、20 一次貯湯タンク(開放型)、30 二次貯湯タンク、40 循環路、50 二次熱源機 1 hot water supply system, 2 primary hot water supply subsystem, 3 secondary hot water supply subsystem, 10 primary heat source machine, heat pump water heater using 12 CO 2 as refrigerant, 20 primary hot water storage tank (open type), 30 secondary hot water storage tank, 40 circulation Road, 50 Secondary heat source machine

Claims (6)

給水される水を温水にする一次熱源機と、
前記一次熱源機から供給される前記温水を貯える開放型の一次貯湯タンクと、
前記一次貯湯タンクから供給される前記温水を貯え、前記温水を給湯負荷に供給する二次貯湯タンクと、
前記二次貯湯タンクに連結され、前記二次貯湯タンクから供給される前記温水を前記二次貯湯タンクに戻して循環させる循環路と、
前記二次貯湯タンク内の前記温水が所定温度以下となった時に、前記循環路に供給される前記温水を加熱して、前記二次貯湯タンク内の前記温水を保温する二次熱源機と、
を有し、
前記一次熱源機は、昇温の温度差が大きいほど高い成績係数が得られるタイプのヒートポンプ給湯機である給湯システムの運転方法であって、
前記一次熱源機では、給水される常温の水を、前記二次貯湯タンク内の温水の温度よりも高い65℃〜75℃の温水に加熱して前記一次貯湯タンクに貯湯する貯湯運転が実施され、前記貯湯運転よりも昇温の温度差が小さい保温運転は実施されないことを特徴とする給湯システムの運転方法
A primary heat source machine that heats the supplied water,
An open-type primary hot water storage tank for storing the hot water supplied from the primary heat source machine;
A secondary hot water storage tank for storing the hot water supplied from the primary hot water storage tank and supplying the hot water to a hot water supply load;
A circulation path connected to the secondary hot water storage tank and circulating the warm water supplied from the secondary hot water storage tank back to the secondary hot water storage tank;
A secondary heat source machine that heats the hot water supplied to the circulation path to keep the hot water in the secondary hot water storage tank warm when the hot water in the secondary hot water storage tank becomes a predetermined temperature or lower ;
Have
The primary heat source machine is a method of operating a hot water supply system that is a heat pump water heater of a type that provides a higher coefficient of performance as the temperature difference in temperature rise is larger ,
In the primary heat source machine, a hot water storage operation is performed in which normal temperature water to be supplied is heated to a hot water of 65 ° C. to 75 ° C. higher than the temperature of the hot water in the secondary hot water storage tank and stored in the primary hot water storage tank. The operation method of the hot water supply system is characterized in that the heat insulation operation having a smaller temperature difference in temperature rise than the hot water storage operation is not performed .
請求項1に記載の給湯システムの運転方法において、
前記一次貯湯タンクの温水を前記二次貯湯タンクに供給することで、前記二次貯湯タンク内の前記温水を昇温させることを特徴とする給湯システムの運転方法
In the operation method of the hot water supply system according to claim 1,
An operation method for a hot water supply system , wherein the hot water in the secondary hot water storage tank is heated by supplying hot water from the primary hot water storage tank to the secondary hot water storage tank .
請求項1または2に記載の給湯システムの運転方法において、
前記貯湯運転により、前記二次貯湯タンクの容量よりも大きい容量の前記一次貯湯タンクに貯湯することを特徴とする給湯システムの運転方法
In the operation method of the hot water supply system according to claim 1 or 2,
An operation method of a hot water supply system , wherein hot water is stored in the primary hot water storage tank having a capacity larger than that of the secondary hot water storage tank by the hot water storage operation .
請求項1乃至3のいずれか一項に記載の給湯システムの運転方法において、
前記二次貯湯タンクは、密閉型貯湯タンクであり、
前記一次貯湯タンクの温水は前記二次貯湯タンクの底部側に供給され、前記二次貯湯タンクの温水は前記二次貯湯タンクの頂部側から前記給湯負荷に供給され、
前記二次熱源機は、前記二次貯湯タンクの底部側に連結された入り口と、前記二次貯湯タンクの頂部側に連結された出口とを有する前記循環路を流れる温水を保温することを特徴とする給湯システムの運転方法
In the operation method of the hot water supply system according to any one of claims 1 to 3,
The secondary hot water storage tank, Ri sealed hot water storage tank der,
The hot water of the primary hot water storage tank is supplied to the bottom side of the secondary hot water storage tank, the hot water of the secondary hot water storage tank is supplied from the top side of the secondary hot water storage tank to the hot water supply load,
The secondary heat source device keeps warm water flowing through the circulation path having an inlet connected to a bottom side of the secondary hot water storage tank and an outlet connected to a top side of the secondary hot water storage tank. The operation method of the hot water supply system.
請求項1乃至4のいずれか一項に記載の給湯システムの運転方法において、
前記一次熱源機として、前記一次貯湯タンクに対して並列に接続される複数のヒートポンプ給湯機を用いることを特徴とする給湯システムの運転方法
In the operation method of the hot water supply system according to any one of claims 1 to 4,
Wherein as a primary heat source unit, a method of operating a hot water supply system, which comprises using a plurality of heat pump water heater which is connected in parallel with the primary hot water storage tank.
一次給湯サブシステムを、二次給湯サブシステムとして用いられる既存システムに追加して、給湯システムを再構築する方法において、
給水される水を温水にする一次熱源機と、前記一次熱源機から供給される前記温水を貯える開放型の一次貯湯タンクと、前記一次貯湯タンク内の前記温水を供給する一次ポンプと、を含む前記一次給湯サブシステムを増設し、
前記既存システムである前記二次給湯サブシステムは、
前記二次給湯サブシステムは、
二次貯湯タンクと、
給湯負荷に供給される温水を貯湯する二次貯湯タンクと、
前記二次貯湯タンクに連結され、前記二次貯湯タンクから供給される前記温水を前記二次貯湯タンクに戻して循環させる循環路と、
前記循環路に設けられた二次ポンプと、
前記二次貯湯タンク内の前記温水が所定温度以下となった時に、前記循環路に供給される前記温水を加熱して、前記二次貯湯タンク内の前記温水を保温する二次熱源機と、
を有し、
前記二次貯湯タンクは、前記一次貯湯タンクから供給される前記温水を貯えるように、前記一次貯湯タンクと接続され、
前記一次貯湯タンクの容量は、既存の前記二次貯湯タンクの容量よりも大きく設定され、
前記一次熱源機は、昇温の温度差が大きいほど高い成績係数が得られるタイプのヒートポンプ給湯機であり、給水される常温の水を、前記二次貯湯タンク内の温水の温度よりも高い65℃〜75℃の温水に加熱する貯湯運転が実施され、前記貯湯運転よりも昇温の温度差が小さい保温運転は実施されないように設定されることを特徴とする給湯システムの再構築方法
In a method of reconstructing a hot water supply system by adding a primary hot water supply subsystem to an existing system used as a secondary hot water supply subsystem,
A primary heat source device that warms the supplied water, an open-type primary hot water storage tank that stores the hot water supplied from the primary heat source device, and a primary pump that supplies the hot water in the primary hot water storage tank. Increase the primary hot water supply subsystem,
The secondary hot water supply subsystem, which is the existing system,
The secondary hot water supply subsystem is
A secondary hot water storage tank,
A secondary hot water storage tank for storing hot water supplied to the hot water supply load;
A circulation path connected to the secondary hot water storage tank and circulating the warm water supplied from the secondary hot water storage tank back to the secondary hot water storage tank;
A secondary pump provided in the circulation path;
A secondary heat source machine that heats the hot water supplied to the circulation path when the hot water in the secondary hot water storage tank becomes a predetermined temperature or less, and keeps the hot water in the secondary hot water storage tank;
Have
The secondary hot water storage tank is connected to the primary hot water storage tank so as to store the hot water supplied from the primary hot water storage tank,
The capacity of the primary hot water storage tank is set larger than the capacity of the existing secondary hot water storage tank,
The primary heat source machine is a heat pump water heater of a type in which a higher coefficient of performance is obtained as the temperature difference of the temperature rise is larger, and the normal temperature water supplied is higher than the temperature of the hot water in the secondary hot water storage tank 65 A hot water storage system for reconstructing a hot water supply system, wherein a hot water storage operation for heating to warm water of from C to 75C is performed, and a heat insulation operation in which a temperature difference in temperature rise is smaller than that of the hot water storage operation is not performed .
JP2015191682A 2015-09-29 2015-09-29 Method for operating hot water system and method for reconstructing hot water system Active JP6618748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015191682A JP6618748B2 (en) 2015-09-29 2015-09-29 Method for operating hot water system and method for reconstructing hot water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015191682A JP6618748B2 (en) 2015-09-29 2015-09-29 Method for operating hot water system and method for reconstructing hot water system

Publications (2)

Publication Number Publication Date
JP2017067344A JP2017067344A (en) 2017-04-06
JP6618748B2 true JP6618748B2 (en) 2019-12-11

Family

ID=58494298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015191682A Active JP6618748B2 (en) 2015-09-29 2015-09-29 Method for operating hot water system and method for reconstructing hot water system

Country Status (1)

Country Link
JP (1) JP6618748B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637509B (en) * 2020-06-08 2021-02-26 河北工业大学 Novel combined heat dissipation terminal system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5076061B2 (en) * 2006-02-06 2012-11-21 東芝キヤリア株式会社 Hot water system
JP4830779B2 (en) * 2006-10-13 2011-12-07 パナソニック電工株式会社 Hot water system
JP2008145096A (en) * 2006-11-17 2008-06-26 Chugoku Electric Power Co Inc:The Hot water supply system and hot water supply method
JP5180707B2 (en) * 2008-07-07 2013-04-10 日立アプライアンス株式会社 Thermal insulation water heater
JP5291402B2 (en) * 2008-07-23 2013-09-18 株式会社日本サーモエナー Hybrid hot water supply system
JP5210906B2 (en) * 2009-02-02 2013-06-12 東芝キヤリア株式会社 Water heater
JP2013108690A (en) * 2011-11-22 2013-06-06 Hitachi Ltd Air conditioning and hot water supply combined system

Also Published As

Publication number Publication date
JP2017067344A (en) 2017-04-06

Similar Documents

Publication Publication Date Title
CN102483247B (en) Heating system and heating system control method
KR100751485B1 (en) Electric boiler
RU2669719C2 (en) Energy storage system
JP6183840B2 (en) Hot water supply system and control method thereof
JP2010043798A (en) Heat pump type hot water supply device
US10527294B2 (en) Control of a pump to optimize heat transfer
JP6618748B2 (en) Method for operating hot water system and method for reconstructing hot water system
KR101406589B1 (en) Boiler by solar with heat tanks
JP2006349201A (en) Hybrid hot water supply system
EA027263B1 (en) Heat supply method and heat supply system
WO2019142138A1 (en) Method and system of cooling in heat generation by combustion
JP2007278655A (en) Heat storage type hot water supplier
JP4830779B2 (en) Hot water system
JP5217624B2 (en) Heating system
JP3891486B2 (en) Latent heat storage type cold heat source equipment and latent heat storage type heat source equipment
JP2006308261A (en) Heat pump type hot water supplier
JP4155241B2 (en) Water heater
JP4882478B2 (en) Regenerative water heater
JP5312170B2 (en) Hot water supply system and control method thereof
JP5498130B2 (en) Boiling set temperature determination method of heat pump hot water storage type hot water supply and heating system
KR102252532B1 (en) Boiler apparatus
KR101565368B1 (en) Heat pump system having binary refrigeration cycle and control porcess of the same
JP7452584B2 (en) hot water production system
JP5370521B2 (en) Hot water storage water heater
JP5259133B2 (en) Heat pump hot water storage / heating system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150929

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191113

R150 Certificate of patent or registration of utility model

Ref document number: 6618748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250