JP6618242B2 - Conductive membrane and fuel cell - Google Patents

Conductive membrane and fuel cell Download PDF

Info

Publication number
JP6618242B2
JP6618242B2 JP2014122458A JP2014122458A JP6618242B2 JP 6618242 B2 JP6618242 B2 JP 6618242B2 JP 2014122458 A JP2014122458 A JP 2014122458A JP 2014122458 A JP2014122458 A JP 2014122458A JP 6618242 B2 JP6618242 B2 JP 6618242B2
Authority
JP
Japan
Prior art keywords
proton
group
ions
oxoanion
resin filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014122458A
Other languages
Japanese (ja)
Other versions
JP2016004621A (en
Inventor
良太 篠崎
良太 篠崎
土方 啓暢
啓暢 土方
智也 板倉
智也 板倉
慧祥 堀合
慧祥 堀合
進 北川
進 北川
悟史 堀毛
悟史 堀毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Denso Corp
Original Assignee
Kyoto University
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Denso Corp filed Critical Kyoto University
Priority to JP2014122458A priority Critical patent/JP6618242B2/en
Publication of JP2016004621A publication Critical patent/JP2016004621A/en
Application granted granted Critical
Publication of JP6618242B2 publication Critical patent/JP6618242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Description

本発明は、伝導膜及び燃料電池に関する。   The present invention relates to a conductive membrane and a fuel cell.

現在、固体高分子型燃料電池システムの低コスト化、システムの簡素化の観点で、100℃以上の作動温度でかつ無加湿、あるいは低加湿な条件で作動する電解質材料が望まれている。一方、従来の固体高分子型燃料電池は、パーフルオロカーボンスルホン酸に代表されるような、水を媒介としてイオン伝導を行う電解質を備えている。そのため100℃以上、無加湿又は低加湿の作動条件では、十分なイオン伝導を発揮できない。   At present, from the viewpoint of cost reduction and simplification of the polymer electrolyte fuel cell system, there is a demand for an electrolyte material that operates at an operating temperature of 100 ° C. or higher and without humidification or under low humidification conditions. On the other hand, a conventional polymer electrolyte fuel cell includes an electrolyte that conducts ions through water as represented by perfluorocarbon sulfonic acid. Therefore, sufficient ionic conduction cannot be exhibited under operating conditions of 100 ° C. or higher, no humidification, or low humidification.

高温においても電解質に含有する水分の蒸発を抑制できるものとして、ゾルゲル多孔質ガラス(特許文献1参照)、リン酸塩ハイドロゲル(特許文献2参照)等が知られている。   Known examples of sol-gel porous glass (see Patent Document 1), phosphate hydrogel (see Patent Document 2), and the like that can suppress evaporation of moisture contained in an electrolyte even at high temperatures.

特開2002−097272号公報JP 2002-097272 A 特開2003−217339号公報JP 2003-217339 A

しかし、特許文献1、2記載の技術では、水分の蒸発を抑制するためには、飽和水蒸気圧に近い加湿が必要であり、低加湿条件ではイオン伝導率、安定性においてまだ十分ではない。上記のように、従来の電解質材料では、100℃以上で、かつ無加湿又は低加湿の作動条件において、良好なイオン伝導率と安定性が得られていないのが現状である。   However, the techniques described in Patent Documents 1 and 2 require humidification close to the saturated water vapor pressure in order to suppress moisture evaporation, and the ionic conductivity and stability are not yet sufficient under low humidification conditions. As described above, in the conventional electrolyte material, good ionic conductivity and stability are not obtained under operating conditions of 100 ° C. or higher and no humidification or low humidification.

本発明は以上の点に鑑みなされたものであり、100℃以上でかつ無加湿でも使用できる伝導膜及び燃料電池を提供することを目的とする。   The present invention has been made in view of the above points, and an object thereof is to provide a conductive membrane and a fuel cell that can be used at 100 ° C. or higher and without humidification.

本発明の伝導膜は、(A)金属イオン、オキソアニオン、及びプロトン配位性分子を含み、前記オキソアニオン及び/又は前記プロトン配位性分子が、前記金属イオンに配位して配位高分子を形成しているプロトン伝導体と、(B)エンジニアリングプラスチックを含む樹脂の樹脂フィラーとを含むことを特徴とする。   The conductive membrane of the present invention includes (A) a metal ion, an oxoanion, and a proton-coordinating molecule, and the oxoanion and / or the proton-coordinating molecule is coordinated with the metal ion to increase coordination. It includes a proton conductor forming molecules, and (B) a resin filler of a resin containing an engineering plastic.

本発明の伝導膜は、高温(例えば100℃以上)においても、高いイオン伝導率を有する。そのため、本発明の伝導膜から成る電解質を備えた燃料電池は、高温下でも使用できる。   The conductive film of the present invention has high ionic conductivity even at high temperatures (for example, 100 ° C. or higher). Therefore, the fuel cell provided with the electrolyte made of the conductive film of the present invention can be used even at high temperatures.

また、本発明の伝導膜は、イオン伝導において、水を媒介としない。そのため、本発明の伝導膜から成る電解質を備えた燃料電池は、無加湿又は低加湿条件で使用でき、電解質の水分を管理するためのシステムが不要となる。   The conductive membrane of the present invention does not mediate water in ionic conduction. Therefore, the fuel cell including the electrolyte made of the conductive film of the present invention can be used in a non-humidified or low-humidified condition, and a system for managing the moisture of the electrolyte becomes unnecessary.

また、本発明の伝導膜は、薄膜化すること(例えば膜厚を500μmとすること)が容易である。そのため、伝導膜の膜抵抗を一層低減できる。   In addition, the conductive film of the present invention can be easily thinned (for example, the film thickness is 500 μm). Therefore, the film resistance of the conductive film can be further reduced.

添加材料の1種である有機ポリマーを表す説明図である。It is explanatory drawing showing the organic polymer which is 1 type of an additive material. プロトン伝導体X1についてのX線結晶構造解析の結果を表す説明図である。It is explanatory drawing showing the result of the X-ray crystal structure analysis about the proton conductor X1. 燃料電池の単セルの製造方法を表す説明図である。It is explanatory drawing showing the manufacturing method of the single cell of a fuel cell. 燃料電池の単セルの構成を表す斜視図である。It is a perspective view showing the structure of the single cell of a fuel cell.

本発明の実施形態を説明する。本発明の伝導膜は、(A)金属イオン、オキソアニオン、及びプロトン配位性分子を含み、オキソアニオン及び/又はプロトン配位性分子が、金属イオンに配位して配位高分子を形成しているプロトン伝導体と、(B)エンジニアリングプラスチックを含む樹脂の樹脂フィラーとを含む。   An embodiment of the present invention will be described. The conductive membrane of the present invention includes (A) a metal ion, an oxoanion, and a proton coordination molecule, and the oxoanion and / or proton coordination molecule coordinates to the metal ion to form a coordination polymer. A proton conductor, and (B) a resin filler of a resin containing an engineering plastic.

本発明における金属イオンは特に限定されるものではないが、オキソアニオン及び/又はプロトン配位性分子との配位結合の形成しやすさの観点から、高周期の遷移金属イオンや典型金属イオンが好ましい。中でも、コバルトイオン、銅イオン、亜鉛イオン、及びガリウムイオンが好ましい。   The metal ion in the present invention is not particularly limited, but from the viewpoint of easy formation of a coordination bond with an oxoanion and / or a proton-coordinating molecule, a high-cycle transition metal ion or a typical metal ion is used. preferable. Of these, cobalt ions, copper ions, zinc ions, and gallium ions are preferred.

本発明におけるオキソアニオンとしては、例えば、リン酸イオン、硫酸イオン等が挙げられるが、水素に対する化学的安定性から、リン酸イオンが好ましい。リン酸イオンは、プロトンが1つ配位したリン酸水素イオン、又はプロトンが2つ配位したリン酸二水素イオンの形態であってもよい。本発明におけるオキソアニオンは、例えば、縮合が起こっていない単量体の形態で金属イオンに配位しており、これによりプロトン濃度が高い状態で保持され、水分に対する安定性にも優れる。   Examples of the oxo anion in the present invention include phosphate ions and sulfate ions, and phosphate ions are preferred from the viewpoint of chemical stability against hydrogen. The phosphate ion may be in the form of a hydrogen phosphate ion in which one proton is coordinated or a dihydrogen phosphate ion in which two protons are coordinated. The oxoanion in the present invention is coordinated to a metal ion, for example, in the form of a monomer in which condensation does not occur, whereby the proton concentration is maintained at a high state and the stability to moisture is also excellent.

また、本発明におけるプロトン配位性分子は、分子内にプロトンを配位するための配位点を好ましくは2つ以上持った分子である。イオン伝導性の観点では、プロトンの配位と放出とのバランスに優れた配位点を持ったイミダゾール、トリアゾール、ベンズイミダゾール、ベンズトリアゾール、及びこれらの誘導体が好ましい。ここで誘導体とは、化学構造の一部を他の原子又は原子団で置き換えたものを意味し、その具体例としては、イミダゾールに対して、2−メチルイミダゾール、2−エチルイミダゾール、ヒスタミン、ヒスチジン等が挙げられる。   The proton-coordinating molecule in the present invention is a molecule having preferably two or more coordination points for coordinating protons in the molecule. From the viewpoint of ion conductivity, imidazole, triazole, benzimidazole, benztriazole, and derivatives thereof having a coordination point with an excellent balance between proton coordination and release are preferable. Here, the derivative means one obtained by replacing a part of the chemical structure with another atom or atomic group, and specific examples thereof include 2-methylimidazole, 2-ethylimidazole, histamine, histidine with respect to imidazole. Etc.

また、本発明におけるプロトン配位性分子としては、例えば、一般式R-NH2で表される第一級アミン、一般式R1(R2)-NHで表される第二級アミン、一般式R1(R2)(R3)-Nで表される第三級アミンが挙げられる。ここで、R、R1、R2、R3は、それぞれ独立に、アルキル基、アリール基、脂環式炭化水素基、及び複素環基のうちのいずれかである。 Examples of the proton-coordinating molecule in the present invention include a primary amine represented by the general formula R—NH 2 , a secondary amine represented by the general formula R 1 (R 2 ) —NH, And tertiary amines of the formula R 1 (R 2 ) (R 3 ) -N. Here, R, R 1 , R 2 , and R 3 are each independently any one of an alkyl group, an aryl group, an alicyclic hydrocarbon group, and a heterocyclic group.

このような第一級アミンとしては、例えば、メチルアミン、エチルアミン、プロピルアミン等の低級アルキルアミン、アニリン、トルイジン等の芳香族アミンが挙げられる。
第二級アミンとしては、例えば、ジメチルアミン、ジエチルアミン、ジプロピルアミン等のジ低級アルキルアミン、N−メチルアニリン、N−メチルトルイジン等の芳香族二級アミン等が挙げられる。
Examples of such primary amines include lower alkyl amines such as methylamine, ethylamine and propylamine, and aromatic amines such as aniline and toluidine.
Examples of secondary amines include di-lower alkylamines such as dimethylamine, diethylamine and dipropylamine, and aromatic secondary amines such as N-methylaniline and N-methyltoluidine.

第三級アミンとしては、例えば、トリメチルアミン、トリエチルアミン等のトリ低級アルキルアミンが挙げられる。また、本発明におけるプロトン配位性分子として、例えば、エチレンジアミン、そのN−低級アルキル誘導体(例えばテトラメチルエチレンジアミン)等の炭素直鎖ジアミンを挙げることができる。   Examples of the tertiary amine include tri-lower alkylamines such as trimethylamine and triethylamine. Examples of the proton-coordinating molecule in the present invention include carbon straight chain diamines such as ethylenediamine and its N-lower alkyl derivative (for example, tetramethylethylenediamine).

さらには、本発明におけるプロトン配位性分子として、ピロリジン、N−低級アルキルピロリジン(例えばN−メチルピロリジン)、ピペリジン、N−低級アルキルピペリジン(例えばN−メチルピペリジン)、モルホリン、N−低級アルキルモルホリン(例えばN−メチルモルホリン)等の飽和環状アミンを挙げることができる。   Furthermore, as the proton-coordinating molecule in the present invention, pyrrolidine, N-lower alkylpyrrolidine (for example, N-methylpyrrolidine), piperidine, N-lower alkylpiperidine (for example, N-methylpiperidine), morpholine, N-lower alkylmorpholine. A saturated cyclic amine such as (for example, N-methylmorpholine) can be mentioned.

またさらには、本発明におけるプロトン配位性分子として、ピペラジン、N−低級ジアルキルピペラジン(例えば、N、N−ジメチルピペラジン)、1、4−ジアザビシクロ [2.2.2]オクタン(別名:トリエチレンジアミン)等の飽和環状ジアミン等を挙げることができる。   Still further, as proton-coordinating molecules in the present invention, piperazine, N-lower dialkylpiperazine (for example, N, N-dimethylpiperazine), 1,4-diazabicyclo [2.2.2] octane (also known as triethylenediamine) ) And the like.

本発明におけるプロトン伝導体は、金属イオン、オキソアニオン、及びプロトン配位性分子を含むが、これら構成要素が効率的に配位高分子を形成するためには、金属イオン1モルに対して、オキソアニオンで1〜4モル、プロトン配位性分子で1〜3モルの配合比率であることが望ましい。オキソアニオン、プロトン配位性分子が1モルより少ないと配位高分子を形成しないことがあり、またオキソアニオンを4モルより多く配合した場合とプロトン配位性分子を3モルより多く配合した場合では、プロトン伝導体が固体状にならず、さらに非常に高い吸湿性を示し、形状安定性が著しく低下してしまうことがある。   The proton conductor in the present invention includes a metal ion, an oxoanion, and a proton-coordinating molecule, but in order for these constituents to efficiently form a coordination polymer, It is desirable that the mixing ratio is 1 to 4 mol for the oxoanion and 1 to 3 mol for the proton-coordinating molecule. When the amount of oxoanion and proton coordination molecule is less than 1 mole, a coordination polymer may not be formed. Also, when more than 4 moles of oxoanion and more than 3 moles of proton coordination molecules are blended. In this case, the proton conductor does not become solid, exhibits extremely high hygroscopicity, and the shape stability may be significantly reduced.

本発明におけるプロトン伝導体は、金属イオン源としての金属酸化物、オキソ酸、プロトン配位性分子を混合攪拌することで得られる。前記混合攪拌工程では、各原料を溶解又は均一に分散可能な溶媒を用いることができるが、製造コストの観点から無溶媒反応によって行うことが好ましい。また上記製造工程において、上記プロトン伝導体を200℃よりも高い温度で熱処理すると、含まれるリン酸イオンの縮合が起こることがあるため、200℃以下の温度で行うことが好ましい。   The proton conductor in the present invention can be obtained by mixing and stirring a metal oxide as a metal ion source, an oxo acid, and a proton-coordinating molecule. In the mixing and stirring step, a solvent that can dissolve or uniformly disperse each raw material can be used, but it is preferably performed by a solvent-free reaction from the viewpoint of production cost. Moreover, in the said manufacturing process, when the said proton conductor is heat-processed at temperature higher than 200 degreeC, since condensation of the phosphate ion contained may occur, it is preferable to carry out at the temperature of 200 degrees C or less.

本発明におけるプロトン伝導体は、金属イオン、オキソアニオン、及びプロトン配位性分子に加えて、添加材料を含んでいてもよい。この添加材料としては、例えば、金属酸化物、有機ポリマー、及びアルカリ金属イオンから成る群から選ばれる1種以上が挙げられる。これらの添加材料を含む場合、プロトン伝導体の高温(例えば100℃以上)における性能を損なうことなく、低温(例えば100℃未満)におけるイオン伝導率が一層高くなる。   The proton conductor in the present invention may contain an additive material in addition to the metal ion, oxoanion, and proton coordination molecule. Examples of the additive material include one or more selected from the group consisting of metal oxides, organic polymers, and alkali metal ions. When these additive materials are included, the ion conductivity at a low temperature (for example, less than 100 ° C.) is further increased without impairing the performance of the proton conductor at a high temperature (for example, 100 ° C. or more).

添加材料の添加量は、金属イオン、オキソアニオン、及びプロトン配位性分子の合計重量を100重量部としたとき、1〜20重量部の範囲が好ましく、添加材料が金属酸化物又は有機ポリマーである場合は、5〜20重量部の範囲が好ましい。添加量がこの範囲内である場合、プロトン伝導体の高温(例えば100℃以上)における性能を損なうことなく、低温(例えば100℃未満)におけるイオン伝導率が一層高くなる。   The addition amount of the additive material is preferably in the range of 1 to 20 parts by weight when the total weight of the metal ion, oxoanion and proton coordination molecule is 100 parts by weight, and the additive material is a metal oxide or an organic polymer. In some cases, the range of 5-20 parts by weight is preferred. When the addition amount is within this range, the ionic conductivity at a low temperature (for example, less than 100 ° C.) is further increased without impairing the performance of the proton conductor at a high temperature (for example, 100 ° C. or more).

前記金属酸化物としては、例えば、SiO2、TiO2、Al2O3、WO3、MoO3、ZrO2、及びV2O5から成る群から選ばれる1種以上が挙げられる。これらの金属酸化物を用いる場合、プロトン伝導体の高温(例えば100℃以上)における性能を損なうことなく、低温(例えば100℃未満)におけるイオン伝導率が一層高くなる。金属酸化物の粒子径は、5〜500nmの範囲が好ましい。粒子径がこの範囲内である場合、プロトン伝導体の高温(例えば100℃以上)における性能を損なうことなく、低温(例えば100℃未満)におけるイオン伝導率が一層高くなる。なお、粒子径とは、金属酸化物の粒子を電子顕微鏡(SEM)を用いて撮影し、得られた画像を画像解析する方法で得られる値である。 Examples of the metal oxide include one or more selected from the group consisting of SiO 2 , TiO 2 , Al 2 O 3 , WO 3 , MoO 3 , ZrO 2 , and V 2 O 5 . When these metal oxides are used, the ionic conductivity at a low temperature (for example, less than 100 ° C.) is further increased without impairing the performance of the proton conductor at a high temperature (for example, 100 ° C. or higher). The particle diameter of the metal oxide is preferably in the range of 5 to 500 nm. When the particle diameter is within this range, the ionic conductivity at a low temperature (for example, less than 100 ° C.) is further increased without impairing the performance of the proton conductor at a high temperature (for example, 100 ° C. or more). The particle diameter is a value obtained by a method in which metal oxide particles are photographed using an electron microscope (SEM) and the obtained image is subjected to image analysis.

前記有機ポリマーは、酸性官能基を有することが好ましい。酸性官能基を有する有機ポリマーを用いる場合、プロトン伝導体の高温(例えば100℃以上)における性能を損なうことなく、低温(例えば100℃未満)におけるイオン伝導率が一層高くなる。酸性官能基としては、例えば、カルボキシル基(−COOH)、スルホン酸基(−SOH)、及びホスホン酸基(−PO)のいずれかが挙げられる。有機ポリマーのpHは、4以下の範囲が好ましい。pHがこの範囲内である場合、プロトン伝導体の高温(例えば100℃以上)における性能を損なうことなく、低温(例えば100℃未満)におけるイオン伝導率が一層高くなる。 The organic polymer preferably has an acidic functional group. When an organic polymer having an acidic functional group is used, the ionic conductivity at a low temperature (for example, less than 100 ° C.) is further increased without impairing the performance of the proton conductor at a high temperature (for example, 100 ° C. or higher). Examples of the acidic functional group include any of a carboxyl group (—COOH), a sulfonic acid group (—SO 3 H), and a phosphonic acid group (—PO 3 H 2 ). The pH of the organic polymer is preferably in the range of 4 or less. When the pH is within this range, the ionic conductivity at a low temperature (for example, less than 100 ° C.) is further increased without impairing the performance of the proton conductor at a high temperature (for example, 100 ° C. or more).

前記有機ポリマーとしては、例えば、図1に示すポリアクリル酸(PAA)、ポリビニルホスホン酸(PVPA)、ポリスチレンスルホン酸(PSSA)、デオキシリボ核酸(DNA)等が挙げられる。   Examples of the organic polymer include polyacrylic acid (PAA), polyvinyl phosphonic acid (PVPA), polystyrene sulfonic acid (PSSA), and deoxyribonucleic acid (DNA) shown in FIG.

アルカリ金属イオンとしては、例えば、Li、Na、K、Rb、及びCsから成る群から選ばれる1種以上の金属イオンが挙げられる。これらのアルカリ金属イオンを用いる場合、プロトン伝導体のイオン伝導率が、低温(例えば100℃未満)、及び高温(例えば100℃以上)において一層高くなる。   Examples of the alkali metal ion include one or more metal ions selected from the group consisting of Li, Na, K, Rb, and Cs. When these alkali metal ions are used, the ionic conductivity of the proton conductor becomes higher at low temperatures (for example, less than 100 ° C.) and high temperatures (for example, 100 ° C. or more).

上記の添加剤を含む場合、本発明におけるプロトン伝導体は、例えば、金属イオン源としての金属酸化物、オキソ酸、プロトン配位性分子、及び添加剤を混合攪拌することで得られる。混合攪拌においては、全原料を一度に混合攪拌することが好ましい。   When the additive is included, the proton conductor in the present invention can be obtained, for example, by mixing and stirring a metal oxide as a metal ion source, an oxo acid, a proton-coordinating molecule, and an additive. In mixing and stirring, it is preferable to mix and stir all the raw materials at once.

前記混合攪拌工程では、各原料を溶解又は均一に分散可能な溶媒を用いることができるが、製造コストの観点から無溶媒反応によって行うことが好ましい。また上記製造工程において、上記プロトン伝導体を200℃よりも高い温度で熱処理すると、含まれるリン酸イオンの縮合が起こることがあるため、200℃以下の温度で行うことが好ましい。   In the mixing and stirring step, a solvent that can dissolve or uniformly disperse each raw material can be used, but it is preferably performed by a solvent-free reaction from the viewpoint of production cost. Moreover, in the said manufacturing process, when the said proton conductor is heat-processed at temperature higher than 200 degreeC, since condensation of the phosphate ion contained may occur, it is preferable to carry out at the temperature of 200 degrees C or less.

本発明において、エンジニアリングプラスチックとは、100℃以上でも分解、融解、破損しない耐熱性と、500kg/cm以上の引張り強さと、20000kg/cm以上の曲げ弾性率との全ての特性を満たす樹脂を意味する。エンジニアリングプラスチックとしては、例えば、ポリカーボネート、ポリフッ化ビニリデン、ポリエーテル、ポリエーテルケトン、ポリイミド、ポリエーテルイミド、及びこれらの誘導体等が挙げられる。 In the present invention, the engineering plastics, degradation even 100 ° C. or higher, melting, satisfy the heat resistance is not damaged, and 500 kg / cm 2 or more tensile strength, all the characteristics of the 20000 kg / cm 2 or more flexural modulus resin Means. Examples of the engineering plastic include polycarbonate, polyvinylidene fluoride, polyether, polyether ketone, polyimide, polyether imide, and derivatives thereof.

本発明において、プロトン伝導体と樹脂フィラーとの重量比は、1:0.1〜3の範囲内であることが好ましい。
プロトン伝導体に対する樹脂フィラーの重量比が0.1以上であることにより、伝導膜の強度が一層強くなり、脆さが低減するので、伝導膜を薄膜化することが一層容易になる。また、プロトン伝導体に対する樹脂フィラーの重量比が3以下であることにより、伝導膜中でプロトン伝導性粒子が伝導パスを形成し易くなり、伝導膜のプロトン伝導性が一層高くなる。
In this invention, it is preferable that the weight ratio of a proton conductor and a resin filler exists in the range of 1: 0.1-3.
When the weight ratio of the resin filler to the proton conductor is 0.1 or more, the strength of the conductive film is further increased and the brittleness is reduced, so that it is easier to reduce the thickness of the conductive film. In addition, when the weight ratio of the resin filler to the proton conductor is 3 or less, the proton conductive particles easily form a conduction path in the conductive film, and the proton conductivity of the conductive film is further increased.

本発明の伝導膜は、例えば、以下の方法で製造できる。
(i) プロトン伝導体の粉末と、樹脂フィラー溶液とを混合し、混合液を調製する。ここで、樹脂フィラー溶液における樹脂フィラーの濃度は特に限定されないが、例えば、0.5〜30wt%とすることができる。また、樹脂フィラー溶液における溶媒は特に限定されないが、例えば、1−メチル−2−ピロリドン、アセトン、エタノール、ジメチルアセトアミド、それらから選択される2種以上の混合溶媒等が挙げられる。
The conductive film of the present invention can be produced, for example, by the following method.
(i) Proton conductor powder and resin filler solution are mixed to prepare a mixed solution. Here, although the density | concentration of the resin filler in a resin filler solution is not specifically limited, For example, it can be 0.5-30 wt%. Moreover, the solvent in the resin filler solution is not particularly limited, and examples thereof include 1-methyl-2-pyrrolidone, acetone, ethanol, dimethylacetamide, and two or more mixed solvents selected from them.

プロトン伝導体と樹脂フィラー溶液とを混合した後、プロトン伝導体の粉末を粉砕し、さらに微細化することができる。
(ii)混合液を低圧環境に置き、脱泡する。また、溶媒の一部を蒸発させて、混合液における樹脂フィラーの濃度を適切な濃度にまで高める。なお、この(ii)の工程は省略してもよい。
After mixing the proton conductor and the resin filler solution, the proton conductor powder can be pulverized and further refined.
(ii) Place the mixture in a low pressure environment and degas. Moreover, a part of solvent is evaporated and the density | concentration of the resin filler in a liquid mixture is raised to a suitable density | concentration. The step (ii) may be omitted.

(iii)混合液を平坦な板の表面にキャストする。その後、溶媒が蒸発すると、伝導膜が得られる。なお、伝導膜の膜厚は、単位面積当りのキャスト量により調整できる。板の周囲に堤を設け、板上に混合液を多く保持すれば、膜厚が大きい伝導膜を得ることができる。なお、混合液から伝導膜を形成する方法としては、キャスト法以外の他の周知の方法を用いてもよい。   (iii) The mixed solution is cast on the surface of a flat plate. Thereafter, when the solvent evaporates, a conductive film is obtained. The film thickness of the conductive film can be adjusted by the cast amount per unit area. A conductive film having a large film thickness can be obtained by providing a bank around the plate and holding a large amount of the liquid mixture on the plate. In addition, as a method for forming the conductive film from the mixed solution, a known method other than the casting method may be used.

伝導膜の膜厚は、例えば、500μm以下とすることができ、好ましくは100μm以下とすることができる。膜厚を上記の範囲内とすると、膜抵抗が一層低下する。また、伝導膜の膜厚は、例えば、1μm以上とすることができ、好ましくは10μm以上とすることができる。この場合、伝導膜の膜強度が一層向上する。   The film thickness of the conductive film can be, for example, 500 μm or less, preferably 100 μm or less. When the film thickness is within the above range, the film resistance is further reduced. Moreover, the film thickness of a conductive film can be 1 micrometer or more, for example, Preferably it can be 10 micrometers or more. In this case, the film strength of the conductive film is further improved.

本発明の燃料電池は、上記伝導膜を電解質として使用したものである。
(実施例)
1.プロトン伝導体X1の製造
酸化亜鉛210mg、85%リン酸530μL、及びイミダゾール350mgを乳鉢に量り取り、大気雰囲気下、常温で15分間攪拌混合した。その後、80℃で15時間乾燥させて、白色粉末(プロトン伝導体X1)を得た。
The fuel cell of the present invention uses the conductive membrane as an electrolyte.
(Example)
1. Production of Proton Conductor X1 210 mg of zinc oxide, 530 μL of 85% phosphoric acid, and 350 mg of imidazole were weighed into a mortar and stirred and mixed at room temperature for 15 minutes in an air atmosphere. Then, it was made to dry at 80 degreeC for 15 hours, and white powder (proton conductor X1) was obtained.

プロトン伝導体X1における金属イオンの種類、プロトン配位性分子の種類、及び配合比率を表1に示す。   Table 1 shows the types of metal ions, the types of proton-coordinating molecules, and the blending ratio in the proton conductor X1.

この粉末のX線結晶構造解析を行い、亜鉛イオンにリン酸イオンが配位した1次元の配位高分子とイミダゾールは上記配位高分子のリン酸イオンとプロトンを介して水素結合した結晶構造であることを確認した。X線結晶構造解析の結果を図2に示す。さらに31P−MAS−NMR測定を実施し、粉末中に縮合リン酸が存在しないことを確認した。 X-ray crystal structure analysis of this powder was conducted. One-dimensional coordination polymer in which phosphate ion was coordinated to zinc ion and imidazole were crystallized by hydrogen bonding via phosphate ion and proton of the coordination polymer. It was confirmed that. The result of the X-ray crystal structure analysis is shown in FIG. Further, 31 P-MAS-NMR measurement was performed, and it was confirmed that condensed phosphoric acid was not present in the powder.

また、プロトン伝導体X1に対し、粉末X線回折測定を行い、格子パラメータを測定した。粉末X線回折測定の条件は以下のとおりである。格子パラメータの測定結果を表2に示す。   Further, powder X-ray diffraction measurement was performed on the proton conductor X1, and lattice parameters were measured. The conditions of the powder X-ray diffraction measurement are as follows. Table 2 shows the measurement results of the lattice parameters.

X線源:CuKα線
測定範囲:5°≦2θ≦40°
ステップ幅:0.04°
X-ray source: CuKα ray Measurement range: 5 ° ≦ 2θ ≦ 40 °
Step width: 0.04 °

2.プロトン伝導体X2の製造
プロトン伝導体X1の製造方法と基本的には同様の製造方法であるが、金属イオンの種類、プロトン配位性分子の種類、及び配合比率を変え、表1に示す水準のプロトン伝導体X2を製造した。そして、プロトン伝導体X2について、X線結晶構造解析、及び格子パラメータの測定を行った。格子パラメータの測定結果を上記表2に示す。
2. Production of proton conductor X2 The production method is basically the same as the production method of proton conductor X1, but the levels shown in Table 1 are changed by changing the type of metal ion, the type of proton-coordinating molecule, and the mixing ratio. Proton conductor X2 was produced. And about the proton conductor X2, the X-ray crystal structure analysis and the measurement of the lattice parameter were performed. The measurement results of the lattice parameters are shown in Table 2 above.

3.伝導膜Y1の製造
以下のようにして、伝導膜Y1を製造した。
(i) プロトン伝導体X1の粉末と、樹脂フィラー溶液とを混合し、混合液を調製した。ここで用いた樹脂フィラー溶液における樹脂フィラーの種類、溶媒の種類、及び樹脂フィラーの濃度は、表3に示すとおりである。また、調製した混合液における、プロトン伝導体X1に対する樹脂フィラーの重量比は、表3に示すとおりである。
3. Production of Conductive Film Y1 Conductive film Y1 was produced as follows.
(i) The proton conductor X1 powder and the resin filler solution were mixed to prepare a mixed solution. Table 3 shows the resin filler type, the solvent type, and the resin filler concentration in the resin filler solution used here. The weight ratio of the resin filler to the proton conductor X1 in the prepared mixed liquid is as shown in Table 3.

なお、表3における「樹脂フィラー」の列が樹脂フィラーの種類を表し、「溶媒」の列が溶媒の種類を表し、「樹脂濃度」の列が樹脂フィラー溶液における樹脂フィラーの濃度を表し、「B/A比」の列がプロトン伝導体X1に対する樹脂フィラーの重量比を表す。   In Table 3, the column “resin filler” represents the type of resin filler, the column “solvent” represents the type of solvent, the column “resin concentration” represents the concentration of resin filler in the resin filler solution, and “ The column “B / A ratio” represents the weight ratio of the resin filler to the proton conductor X1.

(ii)混合液を低圧環境に置き、脱泡した。また、溶媒の一部を蒸発させて、混合液における樹脂フィラーの濃度を調整した。
(iii)混合液を平坦な板の表面にキャストした。その後、溶媒が蒸発すると、伝導膜Y1が得られた。伝導膜Y1の膜厚は、表3における「膜厚」の列に示すように、50μmであった。この膜厚は、マイクロメーターで測定した値、もしくは光学顕微鏡や走査型電子顕微鏡での観察に基づき求めた値である。なお、キャストする混合液の量を少なくすれば、伝導膜Y1の膜厚を薄くすることができ、キャストする混合液の量を多くすれば、伝導膜Y1の膜厚を厚くすることができる。
(ii) The mixture was placed in a low pressure environment and degassed. Further, a part of the solvent was evaporated to adjust the concentration of the resin filler in the mixed solution.
(iii) The mixed solution was cast on the surface of a flat plate. Thereafter, when the solvent was evaporated, a conductive film Y1 was obtained. As shown in the “film thickness” column in Table 3, the film thickness of the conductive film Y1 was 50 μm. This film thickness is a value measured with a micrometer or a value obtained based on observation with an optical microscope or a scanning electron microscope. If the amount of the mixed liquid to be cast is reduced, the film thickness of the conductive film Y1 can be reduced, and if the amount of the mixed liquid to be cast is increased, the film thickness of the conductive film Y1 can be increased.

4.伝導膜Y2〜Y12の製造
伝導膜Y1の製造方法と基本的には同様の製造方法であるが、プロトン伝導体の種類、樹脂フィラーの種類、樹脂フィラー溶液における溶媒の種類、樹脂フィラー溶液における樹脂フィラーの濃度、及び混合液におけるプロトン伝導体に対する樹脂フィラーの重量比を種々に変えて、表3に示す伝導膜Y2〜Y12を製造した。
4). Production of conductive films Y2 to Y12 The production method is basically the same as the production method of conductive film Y1, but the type of proton conductor, the type of resin filler, the type of solvent in the resin filler solution, the resin in the resin filler solution Conductive membranes Y2 to Y12 shown in Table 3 were manufactured by varying the concentration of the filler and the weight ratio of the resin filler to the proton conductor in the mixed solution.

ただし、伝導膜Y8とY12は、プロトン伝導体に樹脂フィラー溶液を混合せず、プロトン伝導体の粉のみを直径20mmの円形の型に入れ、室温にて円と垂直な方向から370MPaの力でプレス成形することで作製した膜である。   However, the conductive membranes Y8 and Y12 are not mixed with the resin filler solution in the proton conductor, only the proton conductor powder is put in a circular mold having a diameter of 20 mm, and the force is 370 MPa from the direction perpendicular to the circle at room temperature. It is a film produced by press molding.

伝導膜Y2〜Y12の膜厚は、表3における「膜厚」の列に示す値である。伝導膜Y2〜Y7の膜厚は、100μm以下とすることができた。なお、伝導膜Y2〜Y12のいずれにおいても、まず、膜厚100μm以下の薄膜形成を試みたが、伝導膜Y8〜Y12では、材質が脆すぎるため、そのような薄膜形成が不可能であった。そのため、伝導膜Y8、Y10、Y12については、膜厚が1000μmである膜を形成した。   The film thicknesses of the conductive films Y2 to Y12 are values shown in the “film thickness” column in Table 3. The film thickness of the conductive films Y2 to Y7 could be 100 μm or less. In any of the conductive films Y2 to Y12, an attempt was first made to form a thin film with a film thickness of 100 μm or less. However, the conductive films Y8 to Y12 were too brittle, so that such a thin film could not be formed. . Therefore, for the conductive films Y8, Y10, Y12, films having a film thickness of 1000 μm were formed.

5.伝導膜Y1〜Y12の評価
(1)膜抵抗の測定
伝導膜Y1〜Y12を、図3に示すような直径10mmの円形のシートに切り出し、電解質1とした。そして、電解質1の両側から、直径9mmの板状の白金担持カーボン電極3、5を120℃にて130kgの荷重をかけて圧着し、図4に示す燃料電池の単セル7を製造した。
5). Evaluation of Conductive Films Y1 to Y12 (1) Measurement of Film Resistance Conductive films Y1 to Y12 were cut into a circular sheet having a diameter of 10 mm as shown in FIG. Then, plate-shaped platinum-supported carbon electrodes 3 and 5 having a diameter of 9 mm were pressure-bonded from both sides of the electrolyte 1 at a load of 130 kg at 120 ° C. to produce a single cell 7 of the fuel cell shown in FIG.

上記のように製造した単セル7に対して、交流インピーダンス測定を行い、膜抵抗を測定した。測定は、120℃の温度、窒素ガス気流下、無加湿の条件で行い、0.1Hz〜1MHzの周波数領域、電圧振幅は10mVの条件で行った。測定結果を上記表3における「膜抵抗」の列に示す。表3に示されているように、伝導膜Y1〜Y7の膜抵抗は顕著に低かった。
(2)膜強度の測定
伝導膜Y1〜Y12について、膜強度を測定した。その測定方法は以下のとおりである。
AC impedance measurement was performed on the single cell 7 manufactured as described above, and the membrane resistance was measured. The measurement was performed under the conditions of a temperature of 120 ° C. and a non-humidified condition under a nitrogen gas stream, a frequency region of 0.1 Hz to 1 MHz, and a voltage amplitude of 10 mV. The measurement results are shown in the column “Membrane Resistance” in Table 3 above. As shown in Table 3, the film resistance of the conductive films Y1 to Y7 was remarkably low.
(2) Measurement of film strength The film strength of the conductive films Y1 to Y12 was measured. The measuring method is as follows.

使用機器として、エー・アンド・ディー社製のテンシロンRTC−1310A型を用いた。試験片幅は10mmとし、試験片長さは35mmとした。測定は室温で実施し、試験片の長さ方向に10mm/minの速度で引っ張り、試験片の伸びに対する応力を測定し、その値から引張強度を算出した。この引張り強度を膜強度とした。   As the equipment used, Tensilon RTC-1310A type manufactured by A & D Co., Ltd. was used. The specimen width was 10 mm and the specimen length was 35 mm. The measurement was carried out at room temperature, the sample was pulled at a rate of 10 mm / min in the length direction of the test piece, the stress with respect to the elongation of the test piece was measured, and the tensile strength was calculated from the value. This tensile strength was taken as the film strength.

膜強度の測定結果を上記表3における「膜強度」の列に示す。表3に示されているように、伝導膜Y1、Y2、Y4での膜強度は顕著に高かった。なお、表3における「膜強度」の列での「×」は、膜が脆すぎて膜強度を測定できなかったことを表す。
(3)120℃での耐熱試験
伝導膜Y1〜Y12について、120℃での耐熱試験を行った。その試験方法と、耐熱性の良否の判断基準とはそれぞれ以下のとおりである。
The measurement results of the film strength are shown in the “film strength” column in Table 3 above. As shown in Table 3, the film strengths of the conductive films Y1, Y2, and Y4 were remarkably high. In Table 3, “x” in the “film strength” column indicates that the film was too brittle to measure the film strength.
(3) Heat resistance test at 120 ° C. The heat resistance test at 120 ° C. was performed on the conductive films Y1 to Y12. The test method and the judgment criteria for heat resistance are as follows.

窒素雰囲気での熱重量分析を行い、120℃まで試料を加熱した際の重量減少を測定した。その結果、(イ)熱分解による重量減少が観察されず、且つ(ロ)ホットプレート上にて膜を120℃に加熱した際に破損が生じない、という2つの条件を満たすものについては耐熱性を良好と判断し、上記(イ)、(ロ)のうち一方でも満たさなければ、耐熱性がないと判断した。   Thermogravimetric analysis was performed in a nitrogen atmosphere, and the weight loss when the sample was heated to 120 ° C. was measured. As a result, (b) no weight loss due to thermal decomposition is observed, and (b) no damage occurs when the film is heated to 120 ° C. on a hot plate. Was judged to be good, and if one of the above (a) and (b) was not satisfied, it was judged that there was no heat resistance.

耐熱試験の結果を上記表3における「耐熱試験」列に示す。表3に示されているように、伝導膜Y1〜Y7の耐熱性は顕著に高かった。
6.伝導膜Y1〜Y7が奏する効果
(1)伝導膜Y1〜Y7は、上述したように、高温下においても膜抵抗が低い。そのため、伝導膜Y1〜Y7から成る電解質を備えた燃料電池は、高温(例えば100℃以上)の条件でも使用できる。そのことにより、燃料電池の温度を高温として、電極触媒の被毒抑制をすることができる。また、燃料電池の温度を高温とすることで、排熱効率を向上させることができる。
The results of the heat test are shown in the “heat test” column in Table 3 above. As shown in Table 3, the heat resistance of the conductive films Y1 to Y7 was remarkably high.
6). Effects produced by the conductive films Y1 to Y7 (1) As described above, the conductive films Y1 to Y7 have low film resistance even at high temperatures. Therefore, the fuel cell provided with the electrolyte composed of the conductive films Y1 to Y7 can be used even under high temperature conditions (for example, 100 ° C. or higher). As a result, the temperature of the fuel cell can be increased to suppress poisoning of the electrode catalyst. Moreover, exhaust heat efficiency can be improved by raising the temperature of the fuel cell.

(2)伝導膜Y1〜Y7は、イオン伝導において水を媒介としない。そのため、伝導膜Y1〜Y7から成る電解質を備えた燃料電池は、無加湿又は低加湿条件で使用できる。また、電解質の水分を管理するシステムが不要となる。   (2) The conductive films Y1 to Y7 do not mediate water in ionic conduction. Therefore, the fuel cell including the electrolyte composed of the conductive films Y1 to Y7 can be used under non-humidified or low humidified conditions. In addition, a system for managing the water content of the electrolyte becomes unnecessary.

(3)伝導膜Y1〜Y7は固体状態であるため、伝導膜Y1〜Y7から成る電解質を備えた燃料電池では、液体の染み出しの問題、及び、染み出した液体が電極で反応することによる劣化や、混成電位により出力が低下してしまう問題が生じない。   (3) Since the conductive films Y1 to Y7 are in a solid state, in the fuel cell including the electrolyte composed of the conductive films Y1 to Y7, the problem of the liquid oozing out and the liquid that oozes out react with the electrode. There is no problem that the output is lowered due to deterioration or a mixed potential.

(4)伝導膜Y1〜Y7は、容易に薄膜化することができ、膜強度が高く、高温耐熱性が高い。   (4) The conductive films Y1 to Y7 can be easily thinned, have high film strength, and high heat resistance.

1・・・電解質、3、5・・・白金担持カーボン電極、7・・・燃料電池の単セル   DESCRIPTION OF SYMBOLS 1 ... Electrolyte, 3, 5 ... Platinum carrying carbon electrode, 7 ... Single cell of fuel cell

Claims (8)

(A)金属イオン、オキソアニオン、及びプロトン配位性分子を含み、前記オキソアニオン及び/又は前記プロトン配位性分子が、前記金属イオンに配位して配位高分子を形成しているプロトン伝導体と、
(B)エンジニアリングプラスチックを含む樹脂の樹脂フィラーと、
を含み、
前記樹脂が、ポリフッ化ビニリデン、ポリエーテルイミド、及びこれらの誘導体から成る群から選ばれる1種以上であり、
前記プロトン伝導体と前記樹脂フィラーとの重量比が、1:0.1〜3の範囲内であり、
膜厚が50μm以上500μm以下であることを特徴とするプロトン伝導膜。
(A) a proton including a metal ion, an oxoanion, and a proton coordination molecule, wherein the oxoanion and / or the proton coordination molecule is coordinated to the metal ion to form a coordination polymer A conductor,
(B) a resin filler of a resin containing engineering plastic;
Including
The resin is at least one selected from the group consisting of polyvinylidene fluoride, polyetherimide, and derivatives thereof;
The weight ratio of the proton conductor to the resin filler is in the range of 1: 0.1-3;
A proton conductive membrane having a thickness of 50 μm or more and 500 μm or less.
前記オキソアニオンが単量体であることを特徴とする請求項1に記載のプロトン伝導膜。 The proton conducting membrane according to claim 1, wherein the oxoanion is a monomer. 前記オキソアニオンが、リン酸イオン、リン酸水素イオン、及びリン酸水素イオンから成る群から選ばれる1種以上であることを特徴とする請求項1又は2に記載のプロトン伝導膜。 The oxo anion is phosphate ion, hydrogen phosphate ion, and proton conductive membrane according to claim 1 or 2, characterized in that at least one member selected from the group consisting of dihydrogen phosphate ions. 前記プロトン配位性分子が、イミダゾール、トリアゾール、ベンズイミダゾール、ベンゾトリアゾール、及びこれらの誘導体から成る群から選ばれる1種以上であることを特徴とする請求項1〜3のいずれか1項に記載のプロトン伝導膜。 The proton-coordinating molecule is at least one selected from the group consisting of imidazole, triazole, benzimidazole, benzotriazole, and derivatives thereof. Proton conducting membrane. 前記プロトン配位性分子が、一般式R-NH2で表される第一級アミン、一般式R1(R2)-NHで表される第二級アミン、一般式R1 (R2)(R3)-Nで表される第三級アミン、炭素直鎖ジアミン、飽和環状アミン、及び飽和環状ジアミンから成る群から選ばれる1種以上であることを特徴とする請求項1〜3のいずれか1項に記載のプロトン伝導膜。
(R、R1、R2、R3は、それぞれ独立に、アルキル基、アリール基、脂環式炭化水素基、及び複素環基のうちのいずれかを示す。)
It said proton coordinating molecules, Formula primary amine represented by R-NH 2, the general formula R 1 (R 2) a secondary amine represented by -NH, general formula R 1 (R 2) It is 1 or more types chosen from the group which consists of tertiary amine represented by (R < 3 >)-N, carbon linear diamine, saturated cyclic amine, and saturated cyclic diamine, The proton conducting membrane according to any one of the above.
(R, R 1 , R 2 and R 3 each independently represents an alkyl group, an aryl group, an alicyclic hydrocarbon group, or a heterocyclic group.)
前記金属イオンが、コバルトイオン、銅イオン、亜鉛イオン、及びガリウムイオンから成る群から選ばれる1種以上であることを特徴とする請求項1〜5のいずれか1項に記載のプロトン伝導膜。 The proton conductive membrane according to claim 1, wherein the metal ions are at least one selected from the group consisting of cobalt ions, copper ions, zinc ions, and gallium ions. 前記プロトン伝導体が、金属酸化物、有機ポリマー、及びアルカリ金属イオンから成る群から選ばれる1種以上である添加材料を含むことを特徴とする請求項1〜6のいずれか1項に記載のプロトン伝導膜。 The said proton conductor contains the additive material which is 1 or more types chosen from the group which consists of a metal oxide, an organic polymer, and an alkali metal ion, The any one of Claims 1-6 characterized by the above-mentioned. Proton conducting membrane. 請求項1〜7のいずれか1項に記載のプロトン伝導膜から成る電解質を有する燃料電池。 A fuel cell comprising an electrolyte comprising the proton conducting membrane according to claim 1.
JP2014122458A 2014-06-13 2014-06-13 Conductive membrane and fuel cell Active JP6618242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014122458A JP6618242B2 (en) 2014-06-13 2014-06-13 Conductive membrane and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014122458A JP6618242B2 (en) 2014-06-13 2014-06-13 Conductive membrane and fuel cell

Publications (2)

Publication Number Publication Date
JP2016004621A JP2016004621A (en) 2016-01-12
JP6618242B2 true JP6618242B2 (en) 2019-12-11

Family

ID=55223788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014122458A Active JP6618242B2 (en) 2014-06-13 2014-06-13 Conductive membrane and fuel cell

Country Status (1)

Country Link
JP (1) JP6618242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038187B2 (en) * 2017-03-02 2021-06-15 Denso Corporation Proton conductor and fuel cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6782505B1 (en) 2020-04-03 2020-11-11 株式会社Tbm A resin composition for producing a stretched sheet, a stretched sheet, and a method for producing a stretched sheet.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688139B2 (en) * 2005-03-16 2011-05-25 国立大学法人東京工業大学 Solid acid-containing composition
JP2009054350A (en) * 2007-08-24 2009-03-12 Toppan Printing Co Ltd Electrolyte membrane for direct methanol fuel cell, and membrane electrode assembly as well as fuel cell using the same
JP5373363B2 (en) * 2008-10-24 2013-12-18 国立大学法人名古屋大学 Electrolyte membrane for polymer electrolyte fuel cell, method for producing electrolyte membrane for polymer electrolyte fuel cell, polymer electrolyte fuel cell and fuel cell system
WO2012011552A1 (en) * 2010-07-23 2012-01-26 国立大学法人豊橋技術科学大学 Proton conductor and method for producing proton conductor
JP2013016418A (en) * 2011-07-06 2013-01-24 Gunze Ltd Proton-conducting electrolyte membrane, and fuel cell comprising the same
JP6139177B2 (en) * 2012-04-16 2017-05-31 株式会社デンソー Proton conductor, method for producing proton conductor, and fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11038187B2 (en) * 2017-03-02 2021-06-15 Denso Corporation Proton conductor and fuel cell

Also Published As

Publication number Publication date
JP2016004621A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
Chen et al. Highly conductive polybenzimidazole membranes at low phosphoric acid uptake with excellent fuel cell performances by constructing long-range continuous proton transport channels using a metal–organic framework (UIO-66)
Abouzari-Lotf et al. Highly durable polybenzimidazole composite membranes with phosphonated graphene oxide for high temperature polymer electrolyte membrane fuel cells
JP6139177B2 (en) Proton conductor, method for producing proton conductor, and fuel cell
Guo et al. Submicro-pore containing poly (ether sulfones)/polyvinylpyrrolidone membranes for high-temperature fuel cell applications
Kurdakova et al. PBI-based composite membranes for polymer fuel cells
Lin et al. Preparation and properties of high performance nanocomposite proton exchange membrane for fuel cell
Simari et al. Reduced methanol crossover and enhanced proton transport in nanocomposite membranes based on clay− CNTs hybrid materials for direct methanol fuel cells
Rao et al. α-ZrP nanoreinforcement overcomes the trade-off between phosphoric acid dopability and thermomechanical properties: nanocomposite HTPEM with stable fuel cell performance
Ye et al. Nafion®—titania nanocomposite proton exchange membranes
EP1474839B1 (en) Polymer electrolyte membranes for use in fuel cells
WO2016045754A1 (en) Polyoxometalate salts, proton exchange membranes and precursors, membrane-electrode assemblies, fuel cells and methods
Sinirlioglu et al. Investigation of proton conductivity of anhydrous proton exchange membranes prepared via grafting vinyltriazole onto alkaline‐treated PVDF
Zhou et al. Surfactant‐assisted sulfonated covalent organic nanosheets: extrinsic charge for improved ion transport and salinity‐gradient energy harvesting
KR102429550B1 (en) Bipolar membrane containing polydopamine
JP6618242B2 (en) Conductive membrane and fuel cell
Sinirlioglu et al. Novel composite polymer electrolyte membranes based on poly (vinyl phosphonic acid) and poly (5‐(methacrylamido) tetrazole)
He et al. Achieving Low-Energy-Barrier Ion Hopping in Adhesive Composite Polymer Electrolytes by Nanoabsorption
Prashantha et al. Nanosized TiO2‐filled sulfonated polyethersulfone proton conducting membranes for direct methanol fuel cells
Xu et al. Scalable and interfacial gap‐free mixed matrix membranes for efficient anion separation
Zholobko et al. Intermediate-Temperature Proton Exchange Membranes Based on Cerium Ultraphosphate Composited with Polybenzimidazole
Kamal et al. Single Ion Conducting Blend Polymer Electrolytes Based on LiPAAOB and PPEGMA
Wang et al. Preparation and characterization of zirconium sulfophenyl phosphate-doped sulfonated poly (phthalazinone ether sulfone) composite proton exchange membrane
US9929424B2 (en) Proton conductor, method for producing proton conductor, and fuel cell
KR101575078B1 (en) Polybenzimidasole nano-composite membrane using phosphoric acid group-containing silsesquioxane, preparing method of the same, and fuel cell including the same
KR20140142031A (en) Polybenzimidasole nano-composite membrane using phosphoric acid group-containing silsesquioxane, preparing method of the same, and fuel cell including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180814

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191112

R150 Certificate of patent or registration of utility model

Ref document number: 6618242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250