JP6616551B2 - ランダムアクセスチャンネルを送受信する方法及びそのための装置 - Google Patents

ランダムアクセスチャンネルを送受信する方法及びそのための装置 Download PDF

Info

Publication number
JP6616551B2
JP6616551B2 JP2019501923A JP2019501923A JP6616551B2 JP 6616551 B2 JP6616551 B2 JP 6616551B2 JP 2019501923 A JP2019501923 A JP 2019501923A JP 2019501923 A JP2019501923 A JP 2019501923A JP 6616551 B2 JP6616551 B2 JP 6616551B2
Authority
JP
Japan
Prior art keywords
rach
resource
ssb
rach resource
resources
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019501923A
Other languages
English (en)
Other versions
JP2019522942A5 (ja
JP2019522942A (ja
Inventor
ウンソン キム
ヒョンソ コ
ソクヒョン ユン
キチュン キム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=64016195&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6616551(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2019522942A publication Critical patent/JP2019522942A/ja
Publication of JP2019522942A5 publication Critical patent/JP2019522942A5/ja
Priority to JP2019202385A priority Critical patent/JP6898976B2/ja
Application granted granted Critical
Publication of JP6616551B2 publication Critical patent/JP6616551B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

本発明は、ランダムアクセスチャンネルを送受信する方法及びそのための装置に関し、より詳細には、同期信号ブロックとランダムアクセスチャンネルのためのリソースをマッピングし、同期信号ブロックと対応するランダムアクセスチャンネルのためのリソースを介してランダムアクセスチャンネルを送受信する方法及びそのための装置に関する。
時代の流れに沿って、より多くの通信機器が、より大きい通信トラフィックを求めるにつれて、既存のLTEシステムより向上した無線広帯域通信である次世代5Gシステムが求められている。NewRATと称される、かかる次世代5Gシステムでは、Enhanced Mobile Broad Band(eMBB)/Ultra−reliability and low−latency communication(URLLC)/Massive Machine−Type Communications(mMTC)などと通信シナリオが区分される。
ここで、eMBBは、高スペクトル効率(High Spectrum Efficiency)、高ユーザ体感データレート(High User Experienced Data Rate)、高ピークデータレート(High Peak Data Rate)などの特性を有する次世代移動通信シナリオであり、URLLCは超高信頼性(Ultra Reliable、超低待機時間(Ultra Low Latency)、超高有用性(Ultra High Availability)などの特性を有する次世代移動通信シナリオであり(e.g., v2X, Emergency Service, Remote Control)、mMTCは低コスト(Low Cost)、低エネルギー(Low Energy)、短いパケット(Short Packet)、大規模接続性(Massive Connectivity)の特性を有する次世代移動通信シナリオである。(e.g., IoT).
本発明はランダムアクセスチャンネルを送受信する方法及びそのための装置を提供しようとする。
本発明で遂げようとする技術的目的は以上で言及した事項に限定されず、言及していない別の技術的課題は、以下に説明する本発明の実施例から、本発明の属する技術の分野における通常の知識を有する者によって考慮され得る。
本発明の実施例に係る無線通信システムにおいて、端末がランダムアクセスチャンネル(Random Access Channel;RACH)を送信する方法であって、実際に送信される同期信号ブロック(Synchronization Signal Block;SSB)に関する情報及びRACHリソースに対するRACH設定情報を受信して、前記実際に送信されるSSBに関する情報及びRACH設定情報をベースとして、実際に送信されるSSBにマッピングされたRACHリソースのうち、少なくとも1つのRACHリソースでRACHを送信することを含み、前記実際に送信されるSSBは、前記RACH設定情報をベースとしたRACH設定周期内において、前記実際に送信されるSSBの数の正の整数倍だけ繰り返してRACHリソースにマッピングされる。
このとき、前記実際に送信されるSSBの数の正の整数倍だけ繰り返してマッピングされて、残りのRACHリソースは前記実際に送信されるSSBにマッピングされない。
また、前記実際に送信されるSSBにマッピングされないRACHリソース上において、前記RACH以外の上りリンク信号を送信するか、または下向きリンク信号を受信する。
また、RACHリソース当たりマッピング可能なSSBの数が1より小さい場合、1つのSSBは前記1つのRACHリソースにマッピング可能なSSBの数の逆数だけ連続したRACHリソースにマッピングされる。
本発明に係る無線通信システムにおいて、ランダムアクセスチャンネル(Random Access Channel;RACH)を送信する端末であって、基地局と無線信号を送受信するトランシーバー(Transceiver)、および前記トランシーバーと連結され、前記トランシーバーを制御するように構成されたプロセッサーを含み、前記プロセッサーは、実際に送信される同期信号ブロック(Synchronization Signal Blocks;SSBs)に関する情報及びRACHリソースに対するRACH設定情報を受信するように前記トランシーバーを制御し、前記実際に送信されるSSBに関する情報及びRACH設定情報をベースとして、実際に送信されるSSBにマッピングされたRACHリソースのうち、少なくとも1つのRACHリソースでRACHを送信するように前記トランシーバーを制御して、前記実際に送信されるSSBは、前記RACH設定情報をベースとしたRACH設定周期内において、前記実際に送信されるSSBの数の正の整数倍だけ繰り返してRACHリソースにマッピングされる。
このとき、前記実際に送信されるSSBの数の正の整数倍だけ繰り返してマッピングされて、残りのRACHリソースは前記実際に送信されるSSBにマッピングされない。
また、前記実際に送信されるSSBにマッピングされないRACHリソース上において、前記RACH以外の上りリンク信号を送信するか、または下りリンク信号を受信する。
また、RACHリソース当たりマッピング可能なSSBの数が1より小さい場合、1つのSSBは前記1つのRACHリソースにマッピング可能なSSBの数の逆数だけ連続したRACHリソースにマッピングされる。
本発明の実施例に係る無線通信システムにおいて、基地局がランダムアクセスチャンネル(Random Access Channel;RACH)を受信する方法であって、実際に送信される同期信号ブロック(Synchronization Signal Blocks;SSBs)に関する情報及びRACHリソースに対するRACH設定情報を送信して、前記実際に送信されるSSBに関する情報及び前記RACH設定情報をベースとして、前記実際に送信されるSSBにマッピングされたRACHリソース上において、RACH受信を行うことを含み、前記実際に送信されるSSBは、前記RACH設定情報をベースとしたRACH設定周期内において、前記実際に送信されるSSBの数の正の整数倍だけ繰り返してRACHリソースにマッピングされる。
このとき、前記RACHを受信したRACHリソースをベースとして、前記RACHを送信した端末が獲得しようとする同期に対応する実際に送信されるSSBに関する情報を獲得する。
本発明に係る無線通信システムにおいて、ランダムアクセスチャンネル(Random Access Channel;RACH)を受信する基地局であって、端末と無線信号を送受信するトランシーバー(Transceiver)、および前記トランシーバーと連結され、前記トランシーバーを制御するように構成されたプロセッサーを含み、前記プロセッサーは、実際に送信される同期信号ブロック(Synchronization Signal Blocks;SSBs)に関する情報及びRACHリソースに対するRACH設定情報を送信するように前記トランシーバーを制御して、前記実際に送信されるSSBに関する情報及び前記RACH設定情報をベースとして、前記実際に送信されるSSBにマッピングされたRACHリソース上において、前記RACH受信を行うように前記トランシーバーを制御して、前記実際に送信されるSSBは、前記RACH設定情報をベースとしたRACH設定周期内において、前記実際に送信されるSSBの数の正の整数倍だけ繰り返してRACHリソースにマッピングされる。
本発明によれば、同期信号ブロックとランダムアクセスチャンネルのためのリソースをマッピングし、同期信号ブロックとマッピングされないランダムアクセスチャンネルのためのリソースを介しては他の信号が送受信できるようにすることで、効率的な初期アクセス手続きを行うことができる。
本発明で得られる効果は以上に言及した効果に制限されなく、言及しなかった他の効果は下記の記載から本発明が属する当該技術分野の当業者に明確に理解可能であろう。
以下に添付する図面は、本発明に関する理解を助けるために詳細な説明の一部として含まれるものであり、本発明に関する実施例を提供し、詳細な説明と共に本発明の技術的思想を説明する。
既存のLTE/LTE−Aシステムにおけるランダムアクセスプリアンブルフォーマットを例示する図である。 新しい無線アクセス技術(new radio access technology, NR)で利用可能なスロット構造を例示する図である。 送受信機ユニット(transceiver unit,TXRU)及び物理的アンテナ観点からハイブリッドビームフォーミング構造を抽象的に示す図である。 新しい無線アクセス技術(new radio access technology, NR)システムのセルを例示する図である。 SSブロック送信及びSSブロックにリンクされたRACHリソースを例示する図である。 ランダムアクセスチャンネル(random access channel,RACH)プリアンブルの構成/フォーマットと受信機の機能(function)を例示する図である。 RACHプリアンブルを受信するためにgNBに形成される受信(receiving,Rx)ビームを例示する図である。 RACH信号及びRACHリソースに関連して、本発明の説明に用いられる用語を説明するための図である。 RACHリソースセットを例示する図である。 RACHリソースの境界整列に関する本発明を説明するための図である。 BCが有効な場合に対するRACH用スロット(SLOTRACH)内にミニスロットを設定する方法を例示する図である。 BCが有効な場合に対するRACH用スロット(SLOTRACH)内にミニスロットを設定するその他の方法を例示する図である。 BCが有効ではない場合に対するRACH用スロット(SLOTRACH)内にミニスロットを設定する方法を例示する図である。 ガードタイムを用いてミニスロットを設定する方法を例示する図である。 BCが有効であり、正規スロットと同じ長さでミニスロットを連結してデータを送信する例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 RACHリソースを構成する方法、及びRACHリソースを割り当てる方法に関する実施例を示す図である。 本発明に係る送信装置10及び受信装置20の構成要素を示すブロック図である。
以下、本発明に係る好適な実施の形態を、添付の図面を参照して詳しく説明する。添付の図面と共に以下に開示される詳細な説明は、本発明の例示的な実施の形態を説明するためのものであり、本発明が実施し得る唯一の実施の形態を示すためのものではない。以下の詳細な説明は、本発明の完全な理解を提供するために具体的な細部事項を含む。しかし、当業者にとってはこのような具体的な細部事項なしにも本発明を実施できることは明らかである。
いくつかの場合、本発明の概念が曖昧になることを避けるために、公知の構造及び装置を省略したり、各構造及び装置の核心機能を中心にしたブロック図の形式で示すことができる。また、本明細書全体を通じて同一の構成要素については、同一の図面符号を付して説明する。
以下に説明する技法(technique)及び装置、システムは、様々な無線多元接続システムに適用することができる。多元接続システムの例には、CDMA(code division multiple access)システム、FDMA(frequency division multiple access)システム、TDMA(time division multiple access)システム、OFDMA(orthogonal frequency division multiple access)システム、SC−FDMA(single carrier frequency division multiple access)システム、MC−FDMA(multi carrier frequency division multiple access)システムなどがある。CDMAは、UTRA(Universal Terrestrial Radio Access)又はCDMA2000のような無線技術(technology)によって具現することができる。TDMAは、GSM(Global System for Mobile communication)、GPRS(General Packet Radio Service)、EDGE(Enhanced Data Rates for GSM Evolution)(i.e.,GERAN)などのような無線技術によって具現することができる。OFDMAは、IEEE(Institute of Electrical and Electronics Engineers)802.11(WiFi)、IEEE802.16(WiMAX)、IEEE802−20、E−UTRA(evolved−UTRA)などのような無線技術によって具現することができる。UTRAは、UMTS(Universal Mobile Telecommunication System)の一部であり、3GPP(3rd Generation Partnership Project)LTE(Long Term Evolution)は、E−UTRAを用いるE−UMTSの一部である。3GPP LTEは、下りリンク(downlink、DL)ではOFDMAを採択し、上りリンク(uplink、UL)ではSC−FDMAを採択している。LTE−A(LTE−advanced)は、3GPP LTEの進化した形態である。説明の便宜のために、以下では、本発明が3GPPベース通信システム、例えば、LTE/LTE−A,NRに適用される場合を仮定して説明する。しかし、本発明の技術的特徴がこれに制限されるものではない。例えば、以下の詳細な説明が、移動通信システムが3GPP LTE/LTE−A/NRシステムに対応する移動通信システムに基づいて説明されても、3GPP LTE/LTE−A/NR特有の事項以外は、他の任意の(any)移動通信システムにも適用可能である。
例えば、本発明は、3GPP LTE/LTE−Aシステムのように、eNBがUEに下りリンク/上りリンク時間/周波数リソースを割り当て、UEがeNBの割り当てによって下りリンク信号を受信し、上りリンク信号を送信する非−競合ベース(non−contention based)通信だけでなく、WiFiのような競合ベース(contention based)通信にも適用することができる。非−競合ベース通信技法は、接続ポイント(access point,AP)或いは上記接続ポイントを制御する制御ノード(node)が、UEと前記APとの間の通信のためのリソースを割り当てるが、競合ベース通信技法は、APに接続しようとする複数のUE間の競合によって通信リソースが占有される。競合ベース通信技法について簡略に説明すると、競合ベース通信技法の一種として搬送波感知多元接続(carrier sense multiple access,CSMA)がある。CSMAとは、ノード或いは通信器機が周波数帯域(band)のような、共有送信媒体(shared transmission medium)(共有チャネルともいう。)上でトラフィック(traffic)を送信する前に、同一の共有送信媒体上に他のトラフィックがないことを確認する確率的(probabilistic)媒体接続制御(media access control,MAC)プロトコル(protocol)を指す。CSMAにおいて送信装置は受信装置にトラフィックを送信することを試みる前に、他の送信が進行中であるか否か決定する。言い換えれば、送信装置は、送信を試みる前に、他の送信装置からの搬送波(carrier)の存在を検出(detect)することを試みる。搬送波が感知されると、送信装置は、自身の送信を開始する前に、進行中の他の送信装置によって送信が完了(finish)することを待つ。結局、CSMAは、「sense before transmit」或いは「listen before talk」の原理に基づいた通信技法といえる。CSMAを用いる競合ベース通信システムにおいて送信装置間の衝突を回避するための技法としてCSMA/CD(Carrier Sense Multiple Access with Collision Detection)及び/又はCSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)が用いられる。CSMA/CDは、有線LAN環境での衝突検出技法であり、イーサネット(ethernet)環境で通信をしようとするPC(Personal Computer)やサーバー(server)がまず、ネットワーク上で通信が行われているか確認した後、他の装置(device)がデータを前記ネットワーク上で送信している場合、待ってからデータを送る。すなわち、2人以上のユーザ(例え、PC、UEなど)が同時にデータを送信する場合、前記同時送信間に衝突が発生するが、CSMA/CDは、前記衝突を監視し、柔軟性あるデータ送信がなされるようにする技法である。CSMA/CDを用いる送信装置は、特定規則を用いて他の送信装置によるデータ送信を感知し、自身のデータ送信を調節する。CSMA/CAは、IEEE802.11標準に明示されている媒体接近制御プロトコルである。IEEE802.11標準に従うWLANシステムは、IEEE802.3標準で用いられたCSMA/CDを用いず、CA、すなわち、衝突を回避する方式を用いている。送信装置は、常にネットワークの搬送波を感知して、ネットワークが空になるとき、目録に登載された自身の位置によって、定められた時間を待ってからデータを送る。目録内で送信装置間の優先順位を決め、これを再設定(reconfiguration)するためには様々方法が用いられる。IEEE802.11標準の一部バージョンに従うシステムでは、衝突が起きることがあり、この場合には衝突感知手順が行われる。CSMA/CAを用いる送信装置は、特定規則を用いて、他の送信装置によるデータ送信と自身のデータ送信との間の衝突を回避する。
後述する本発明の実施例において「仮定する」という表現は、チャネルを送信する主体が該当「仮定」に符合するようにチャネルを送信することを意味する。前記チャネルを受信する主体は、前記チャネルが該当「仮定」に符合するように送信されたという前提の下に、該当「仮定」に符合する形態で前記チャネルを受信或いは復号するものであることを意味する。
本発明において、特定のリソースでチャネルがパンクチャリングされるとは、前記チャネルのリソースマッピング過程で前記チャネルの信号が前記特定のリソースにマッピングされるものの、前記チャネルの送信時にパンクチャリングされるリソースにマッピングされた信号部分は除外されたまま送信されることを意味する。言い換えれば、パンクチャリングされる特定のリソースは、該当チャネルのリソースマッピング過程で前記該当チャネルのリソースとしてカウントされるものの、前記該当チャネルの信号のうち、前記特定のリソースにマッピングされた信号は実際には送信されない。前記該当チャネルの受信装置はパンクチャリングされた特定のリソースにマッピングされた信号部分は送信されなかったと仮定し、前記該当チャネルを受信、復調或いは復号する。反面、特定のリソースでチャネルがレートマッチングされるとは、前記チャネルのリソースマッピング過程で前記チャネルが前記特定のリソースに全くマッピングされないことにより、前記チャネルの送信に使用されないことを意味する。言い換えれば、レート−マッチングされる特定のリソースは、該当チャネルのリソースマッピング過程で該当チャネルのリソースとして全くカウントされない。前記該当チャネルの受信装置はレート−マッチングされた特定のリソースが前記該当チャネルのマッピング及び送信に全然使用されなかったと仮定して、前記該当チャネルを受信、復調又は復号する。
本発明において、UEは、固定していても移動性を有してもよく、基地局(base station,BS)と通信してユーザデータ及び/又は各種制御情報を送受信する各種器機がこれに属する。UEは、端末(Terminal Equipment)、MS(Mobile Station)、MT(Mobile Terminal)、UT(User Terminal)、SS(Subscribe Station)、無線器機(wireless device)、PDA(Personal Digital Assistant)、無線モデム(wireless modem)、携帯器機(handheld device)などと呼ぶことができる。また、本発明において、BSは、一般に、UE及び/又は他のBSと通信する固定局(fixed station)のことをいい、UE及び他のBSと通信して各種データ及び制御情報を交換する。BSは、ABS(Advanced Base Station)、NB(Node−B)、eNB(evolved−NodeB)、BTS(Base Transceiver System)、接続ポイント(Access Point)、PS(Processing Server)等の他の用語と呼ぶこともできる。特に、UTRANの基地局はNode−Bと、E−UTRANの基地局はeNBと、新しい無線アクセス技術ネットワーク(new radio access technology network)の基地局はgNBと呼ばれる。以下では、説明の便宜のために、BSをgNBと通称する。
本発明でいうノード(node)とは、UEと通信して無線信号を送信/受信し得る固定した地点(point)のことを指す。様々な形態のeNBを、その名称に関係なくノードとして用いることができる。例えば、BS、NB、eNB、ピコセルeNB(PeNB)、ホームeNB(HeNB)、gNB、リレー(relay)、リピータ(repeater)などをノードとすることができる。また、ノードは、gNBでなくてもよい。例えば、無線リモートヘッド(radio remote head、RRH)、無線リモートユニット(radio remote unit、RRU)とすることもできる。RRH、RRUなどは、一般に、gNBの電力レベル(power level)よりも低い電力レベルを有する。RRH或いはRRU(以下、RRH/RRU)は、一般に、光ケーブルなどの専用回線(dedicated line)でgNBに接続されているため、一般に、無線回線で接続されたgNBによる協調通信に比べて、RRH/RRUとgNBによる協調通信を円滑に行うことができる。1つのノードには少なくとも1つのアンテナが設置される。前記アンテナは物理アンテナを意味することもでき、アンテナポート、仮想アンテナ、又はアンテナグループを意味することもできる。ノードは、ポイント(point)とも呼ばれる。
本発明でいうセル(cell)とは、1つ以上のノードが通信サービスを提供する一定の地理的領域を指す。したがって、本発明で特定セルと通信するということは、前記特定セルに通信サービスを提供するgNB或いはノードと通信するということを意味する。また、特定セルの下りリンク/上りリンク信号は、前記特定セルに通信サービスを提供するgNB或いはノードからの/への下りリンク/上りリンク信号を意味する。UEに上りリンク/下りリンク通信サービスを提供するセルを特にサービングセル(serving cell)という。また、特定セルのチャネル状態/品質は、前記特定セルに通信サービスを提供するgNB或いはノードとUE間に形成されたチャネル或いは通信リンクのチャネル状態/品質を意味する。3GPPベース通信システムにおいて、UEは、特定ノードからの下りリンクチャネル状態を、前記特定ノードのアンテナポートが前記特定ノードに割り当てられたCRS(Cell−specific Reference Signal)リソース上で送信されるCRS及び/又はCSI−RS(Channel State Information Reference Signal)リソース上で送信するCSI−RSを用いて測定することができる。
一方、3GPPベース通信システムは、無線リソースを管理するためにセル(cell)の概念を用いているが、無線リソースと関連するセル(cell)は、地理的領域のセル(cell)とは区別される。
地理的領域の「セル」は、ノードが搬送波を用いてサービスを提供できるカバレッジ(coverage)と理解することができ、無線リソースの「セル」は、前記搬送波によって設定(configure)される周波数範囲である帯域幅(bandwidth,BW)に関連する。ノードが有効な信号を送信できる範囲である下りリンクカバレッジと、UEから有効な信号を受信できる範囲である上りリンクカバレッジは、当該信号を運ぶ搬送波に依存するので、ノードのカバレッジは、前記ノードが用いる無線リソースの「セル」のカバレッジと関連することもある。したがって、「セル」という用語は、時にはノードによるサービスのカバレッジを、時には無線リソースを、時には前記無線リソースを用いた信号が有効な強度で到達できる範囲を意味することに用いることができる。
一方、3GPP通信標準は、無線リソースを管理するために、セル(cell)の概念を用いる。無線リソースに関連した「セル」とは下りリンクリソース(DL resources)と上りリンクリソース(UL resources)の組み合わせ、つまりDLコンポーネント搬送波(component carrier,CC)とUL CCの組み合わせで定義される。セルはDLリソース単独、又はDLリソースとULリソースの組み合わせで設定される(configured)ことができる。搬送波集成が支援される場合、DLリソース(又は、DL CC)の搬送波周波数(carrier frequency)とULリソース(又は、UL CC)の搬送波周波数(carrier frequency)との間のリンケージ(linkage)はシステム情報によって指示されることができる。例えば、システム情報ブロックタイプ2(System Information Block Type2,SIB2)リンケージ(linkage)によってDLリソースとULリソースの組み合わせが指示されることができる。ここで、搬送波周波数とは各セル又はCCの中心周波数(center frequency)を意味する。以下では、1次周波数(primary frequency)上で動作するセルを1次セル(primary cell,Pcell)又はPCCと言い、2次周波数(Secondary frequency)(又はSCC)上で動作するセルを2次セル(secondary cell,Scell)又はSCCと言う。下りリンクでPcellに対応する搬送波は下りリンク1次CC(DL PCC)と言い、上りリンクでPcellに対応する搬送波はUL1次CC(DL PCC)と言う。ScellとはRRC(Radio Resource Control)連結開設(connection establishment)がなされた後に設定可能であり、追加的な無線リソースを提供するために使われることができるセルを意味する。UEの性能(capabilities)によって、ScellがPcellと一緒に、前記UEのためのサービングセルの集団(set)を形成することができる。下りリンクでScellに対応する搬送波はDL2次CC(DL SCC)と言い、上りリンクで前記Scellに対応する搬送波はUL2次CC(UL SCC)と言う。RRC_CONNECTED状態にあるが、搬送波集成が設定されていないか搬送波集成を支援しないUEの場合、Pcellにだけ設定されたサービングセルがただ一つ存在する。
3GPPベース通信標準は、上位層からの情報を運ぶリソース要素に対応する下りリンク物理チャンネルと、物理層によって使用されるものの上位層からの情報を運ばないリソース要素に対応する下りリンク物理信号を定義する。例えば、物理下りリンク共有チャネル(physical downlink shared channel,PDSCH)、物理ブロードキャストチャネル(physical broadcast channel,PBCH)、物理マルチキャストチャネル(physical multicast channel,PMCH)、物理制御フォーマット指示子チャネル(physical control format indicator channel,PCFICH)、物理下りリンク制御チャネル(physical downlink control channel,PDCCH)及び物理ハイブリッドARQ指示子チャネル(physical hybrid ARQ indicator channel,PHICH)が下りリンク物理チャネルとして定義されており、参照信号と同期信号が下りリンク物理信号として定義されている。パイロット(pilot)とも呼ばれる参照信号(reference signal,RS)は、gNBとUEとが互いに知っている予め定義された特別な波形の信号を意味するが、例えば、セル特定的RS(cell specific RS)、UE−特定的RS(UE−specific RS,UE−RS)、ポジショニングRS(positioning RS,PRS)及びチャネル状態情報RS(channel state information RS,CSI−RS)が下りリンク参照信号として定義される。3GPP LTE/LTE−A標準は、上位層からの情報を運ぶリソース要素に対応する上りリンク物理チャネルと、物理層によって用いられるが、上位層からの情報を運ばないリソース要素に対応する上りリンク物理信号を定義している。例えば、物理上りリンク共有チャネル(physical uplink shared channel,PUSCH)、物理上りリンク制御チャネル(physical uplink control channel,PUCCH)、物理ランダムアクセスチャネル(physical random access channel,PRACH)が上りリンク物理チャネルとして定義され、上りリンク制御/データ信号のための復調参照信号(demodulation reference signal,DMRS)と上りリンクチャネル測定に用いられるサウンディング参照信号(sounding reference signal,SRS)が定義される。
本発明で、PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared Channel)はそれぞれ、DCI(Downlink Control Information)/CFI(Control Format Indicator)/下りリンクACK/NACK(ACKnowlegement/Negative ACK)/下りリンクデータを運ぶ時間−周波数リソースの集合或いはリソース要素の集合を意味する。また、PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)はそれぞれ、UCI(Uplink Control Information)/上りリンクデータ/ランダムアクセス信号を運ぶ時間−周波数リソースの集合或いはリソース要素の集合を意味する。本発明では、特に、PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACHに割り当てられたり、これに属した時間−周波数リソース或いはリソース要素(Resource Element,RE)をそれぞれ、PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE又はPDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACHリソースと称する。以下では、ユーザ機器がPUCCH/PUSCH/PRACHを送信するという表現は、それぞれ、PUSCH/PUCCH/PRACH上で、或いは、を通じて、上りリンク制御情報/上りリンクデータ/ランダムアクセス信号を送信することと同じ意味で使われる。また、gNBがPDCCH/PCFICH/PHICH/PDSCHを送信するという表現は、それぞれ、PDCCH/PCFICH/PHICH/PDSCH上で、或いは、を通じて、下りリンクデータ/制御情報を送信することと同じ意味で使われる。
以下では、CRS/DMRS/CSI−RS/SRS/UE−RSが割り当てられた或いは設定された(configured)OFDMシンボル/副搬送波/REを、CRS/DMRS/CSI−RS/SRS/UE−RSシンボル/搬送波/副搬送波/REと称する。例えば、トラッキングRS(tracking RS,TRS)が割り当てられた或いは設定されたOFDMシンボルは、TRSシンボルと称し、TRSが割り当てられた或いは設定された副搬送波は、TRS副搬送波と称し、TRSが割り当てられた或いは設定されたREはTRS REと称する。また、TRS送信のために設定された(configured)サブフレームを、TRSサブフレームと称する。また、ブロードキャスト信号が送信されるサブフレームを、ブロードキャストサブフレーム或いはPBCHサブフレームと称し、同期信号(例えば、PSS及び/又はSSS)が送信されるサブフレームを、同期信号サブフレーム或いはPSS/SSSサブフレームと称する。PSS/SSSが割り当てられた或いは設定された(configured)OFDMシンボル/副搬送波/REをそれぞれ、PSS/SSSシンボル/副搬送波/REと称する。
本発明で、CRSポート、UE-RSポート、CSI−RSポート、TRSポートとは、それぞれ、CRSを送信するように設定された(configured)アンテナポート、UE−RSを送信するように設定されたアンテナポート、CSI−RSを送信するように設定されたアンテナポート、TRSを送信するように設定されたアンテナポートを意味する。CRSを送信するように設定されたアンテナポートは、CRSポートによってCRSが占有するREの位置によって相互区別でき、UE−RSを送信するように設定された(configured)アンテナポートは、UE−RSポートによってUE−RSが占有するREの位置によって相互区別でき、CSI−RSを送信するように設定されたアンテナポートは、CSI−RSポートによってCSI−RSが占有するREの位置によって相互区別できる。したがって、CRS/UE−RS/CSI−RS/TRSポートという用語が、一定リソース領域内でCRS/UE−RS/CSI−RS/TRSが占有するREのパターンを意味する用語として用いられることもある。
本発明で使われる用語及び技術のうち具体的に説明しない用語及び技術については、3GPP LTE/LTE−A標準文書、例えば3GPP TS 36.211、3GPP TS 36.212、3GPP TS 36.213、3GPP TS 36.321及び3GPP TS 36.331などと、3GPP NR標準文書、例えば3GPP TS 38.211、3GPP TS 38.212、3GPP 38.213、3GPP 38.214、3GPP 38.215、3GPP TS 38.321及び3GPP TS 36.331などを参照することができる。
LTE/LTE−AシステムにおけるUEは、電源がオンされる、又は新たにセルに接続しようとする場合、前記セルとの時間及び周波数同期を獲得し、前記セルの物理層セル識別子(physical layer cell IDentity)Ncell IDを検出(detect)するなどのセル探索(initial cell search)過程(procedure)を行う。このために、UEはeNBから同期信号、例えば、1次同期信号(Primary Synchronization Signal, PSS)及び2次同期信号(Secondary Synchronization Signal, SSS)を受信してeNBと同期を取り、セル識別子(identity, ID)などの情報を獲得することができる。初期セル探索を終えたUEは、eNBへのアクセスを完了するために、ランダムアクセス過程(random access procedure)を行うことができる。このために、UEは、物理ランダムアクセスチャンネル(physical random access channel, PRACH)を通じてプリアンブル(preamble)を送信し、PDCCH及びPDSCHを通じてプリアンブルへの応答メッセージを受信することができる。上述のような手順を行ったUEは、その後、一般的な上りリンク/下りリンク信号送信手順として、PDCCH/PDSCH受信及びPUSCH/PUCCH送信を行うことができる。前記ランダムアクセス過程は、ランダムアクセスチャンネル(random access channel, RACH)過程とも称される。ランダムアクセス過程は初期アクセス、上りリンク同期調整、リソース割り当て、ハンドオーバーなどの用途に様々に用いられる。
RACHプリアンブルを送信した後、UEは予め−設定された時間ウィンドウ内でランダムアクセス応答(random access response, RAR)の受信を試みる。具体的に、LTE/LTE−AシステムにおけるUEは、時間ウィンドウ内でRA−RNTI(Random Access RNTI)を持つPDCCH(以下、RA−RNTI PDCCH)(例え、PDCCHにおいてCRCがRA−RNTIでマスクされる)の検出を試みる。RA−RNTI PDCCH検出時に、UEは、RA−RNTI PDCCHに対応するPDSCH内に、自身のためのRARが存在するか否かを確認する。RARは、UL同期化のためのタイミングオフセット情報を示すタイミングアドバンス(timing advance, TA)情報、ULリソース割り当て情報(ULグラント情報)、臨時端末識別子(例え、temporary cell−RNTI, TC−RNTI)などを含む。UEは、RAR内のリソース割り当て情報及びTA値に基づいてUL送信(例え、Msg3)を行うことができる。RARに対応するUL送信にはHARQが適用される。したがって、UEは、Msg3を送信した後、Msg3に対応する受信応答情報(例え、PHICH)を受信することができる。
図1は、既存のLTE/LTE−Aシステムにおけるランダムアクセスプリアンブルフォーマットを例示する図である。
既存のLTE/LTE−Aシステムにおけるランダムアクセスプリアンブル、すなわち、RACHプリアンブルは、物理層において長さTCPの循環前置(cyclic prefix)及び長さTSEQのシーケンスからなる。パラメータ値TCPのTSEQは以下の表にリストされており、フレーム構造とランダムアクセス設定(configuration)に依存する。プリアンブルフォーマットは上位層により制御される。3GPP LTE/LTE−Aシステムにおけるセルのシステム情報及び移動性制御情報によってPRACH設定情報をシグナリングする。前記PRACH設定情報は、該当セル内のRACH過程に用いられる、ルートシーケンスインデックス、Zadoff−Chuシーケンスの循環シフト単位(NCS)、ルートシーケンスの長さ、プリアンブルフォーマットなどを示す。3GPP LTE/LTE−Aシステムにおいて、プリアンブルフォーマット、またRACHプリアンブルが送信可能な時期であるPRACH機会(opportunity)は、前記RACH設定情報の一部であるPRACH設定インデックスによって指示される(3GPP TS 36.211のセクション5.7及び3GPP TS 36.331の「PRACH−Config」を参照)。RACHプリアンブルに用いられるZCシーケンスの長さは、プリアンブルフォーマットで定められている(表4を参照)。
Figure 0006616551
LTE/LTE−AシステムにおけるRACHプリアンブルはULサブフレームから送信される。ランダムアクセスプリアンブルの送信は、特定の時間及び周波数リソースに制限(restrict)される。このようなリソースをPRACHリソースと呼び、PRACHリソースは、インデックス0が無線フレームにおいて低い番号のPRB及びサブフレームに対応するように、前記無線フレーム内のサブフレーム番号と、周波数ドメインにおいてPRBの増加順で番号付けられる。ランダムアクセスリソースがPRACH設定インデックスで定義される(3GPP TS 36.211標準文書を参照)。PRACH設定インデックスは(eNBによって送信される)上位層信号によって与えられる。
RACHプリアンブルのうち、シーケンス(以下、プリアンブルシーケンス)はZadoff−Chuシーケンスを用いる。RACHのためのプリアンブルシーケンスは、1つ又は複数のルートZadoff−Chuシーケンスから生成された、ゼロ相関ゾーンを有するZadoff−Chuシーケンスから生成される。ネットワークは、UEが使用することが許容(allow)されるプリアンブルシーケンスのセットを設定(configure)する。既存のLTE/LTE−Aシステムにおいて、各セル内で利用可能な64個のプリアンブルシーケンスがある。セル内の64個のプリアンブルシーケンスのセットは、先ず、増加する(increasing)循環シフト(cyclic shift)の手順(order)で、論理(logical)インデックスRACH_ROOT_SEQUENCEを有するルートZadoff−Chuシーケンスの利用可能な全ての循環シフトを含ませることによって見つかる(found)。ここで、RACH_ROOT_SEQUENCEは(該当セルの)システム情報の一部としてブロードキャストされる。64個のプリアンブルシーケンスが単一ルートZadoff−Chuシーケンスから生成できない場合、前記64個のプリアンブルシーケンスの全てが見つかるまで追加(additional)プリアンブルシーケンスが連続的(consecutive)論理インデックスを有するルートシーケンスから得られる(obtain)。前記論理ルートシーケンスの手順(order)は循環的(cyclic)であり、論理インデックス0が論理インデックス837に連続する。論理ルートシーケンスインデックスと物理ルートシーケンスインデックスuとの関係は、プリアンブルフォーマット0−3に対しては表2で与えられ、プリアンブルフォーマット4に対しては表3で与えられる。
Figure 0006616551
Figure 0006616551

Figure 0006616551
Figure 0006616551
u−番目のルートZadoff−Chuシーケンスは次式で定義される。
[式1]
Figure 0006616551
前記Zadoff−Chuシーケンスの長さNZCは、下記の表で与えられる。
Figure 0006616551
前記u−番目ルートZadoff−Chuシーケンスから、長さNZC−1のゼロ相関ゾーンを有するランダムアクセスプリアンブルが、xu,v(n) = x((n+C) mod NZC)による循環シフトで定義される。ここで、前記循環シフトは次式で与えられる。
[式2]
Figure 0006616551
CSは、プリアンブルフォーマット0〜3に対して表5で与えられ、プリアンブルフォーマット4に対して表6で与えられる。
Figure 0006616551
Figure 0006616551
パラメータzeroCorrelationZoneConfigは上位層によって提供される。上位層によって提供されるパラメータHigh−speed−flagは、制限されていない(unrestricted)セット又は制限された(restricted)セットの使用を決定する。
変数(variable)dは、大きさ1/TSEQのドップラーシフトに該当する循環シフトであり、次式で与えられる。
[式3]
Figure 0006616551
pは、(pu)mod NZC=1を満たす(fulfil)最小(smallest)の負ではない整数である。循環シフトの制限されたセットに対するパラメータはdに依存する。NZC≦d<NZC/3に対して、パラメータは以下のように与えられる。
[式4]
Figure 0006616551
ZC/3≦d<NZC−NCS)/2に対して、パラメータが以下のように与えられる。
[式5]
Figure 0006616551
の全ての他の値に対して、制限されたセット内に何ら循環シフトがない。
RACHの基底帯域(baseband)信号である時間−連続(time−continuous)ランダムアクセス信号s(t)は、次式で定義される。
[式6]

Figure 0006616551
ここで、0≦t<TSEQ−TCP、βPRACHは3GPP TS 36.213に特定された送信電力PPRACHに 一致させる(conform)ための振幅(amplitude)スケーリング因子(factor)であり、k=nRA PRBRB sc−NUL RBRB sc/2である。NRB scは、1つのRBを成す副搬送波の数を示す。NUL RBは、ULスロットにおけるRBの数を示し、UL送信帯域幅に依存する。周波数ドメイン内の位置(location)は、3GPP TS 36.211のセクション5.7.1から導出(derive)される、パラメータnRA PRBによって制御される。因子(factor)K=△f/△fRAは、ランダムアクセスプリアンブルと上りリンクデータ送信との間の副搬送波間隔の差を説明する(account for)。ランダムアクセスプリアンブルのための副搬送波間隔である変数△fRAと物理リソースブロック内の前記ランダムアクセスプリアンブルの周波数=ドメイン位置を決定する固定した(fixed)オフセットである変数φは以下の表で与えられる。
Figure 0006616551
LTE/LTE−Aシステムにおいて副搬送波間隔△fは、15kHz又は7.5kHzであるが、表7のように、ランダムアクセスプリアンブルのための副搬送波間隔△fRAは、1.25kHz又は0.75kHzである。
より多くの通信機器がより大きい通信容量を要求するにつれて、既存の無線アクセス技術(radio access technology,RAT)に比べて向上したモバイルブロードバンド通信の必要性が台頭している。また、複数の機器及びモノを連結して、いつでもどこでも様々なサービスを提供する大規模(massive)MTCも次世代通信において考慮される主なイッシュの1つである。また、信頼性(reliability)及び遅れ(latency)に敏感なサービス/UEを考慮した通信システムデザインが論議されている。このように進歩したモバイルブロードバンド通信、大規模MTC、URLLC(Ultra−Reliable and Low Latency Communication)などを考慮した次世代RATの導入が論議されている。現在、3GPPでは、EPC以後の次世代移動通信システムに対する研究が行われている。本発明では、便宜のために、該当技術を新RAT(new RAT, NR)又は5G RATと称する。
NR通信システムは、データレート、容量(capacity)、遅れ(latency)、エネルギー消費及び費用面から、既存の4世代(4G)システムより非常に改善した性能を支援することが求められる。よって、NRシステムは、帯域幅、スペクトル、エネルギー、シグナリング効率、及びビット当たりコスト(cost)の面で相当な進歩が必要である。
<OFDMニューマロロジー>
新RATシステムは、OFDM送信方式又はこれと類似している送信方式を用いる。新RATシステムは、LTEのOFDMパラメータとは異なるOFDMパラメータを従ってもよい。または、新RATシステムは、既存のLTE/LTE−Aのニューマロロジーをそのまま従ってもよく、より大きいシステム帯域幅(例え、100MHz)を有してもよい。または、1つのセルが複数のニューマロロジーを支援してもよい。すなわち、互いに異なるニューマロロジーで動作するUEが1つのセル内で共存してもよい。
<サブフレームの構造>
3GPP LTE/LTE−Aシステムにおいて用いられる無線フレームは、10ms(307200T)の長さを有して、10個の均等な大きさのサブフレーム(subframe, SF)からなる。一無線フレーム内の10個のサブフレームにはそれぞれ番号が付与されてもよい。ここで、Tはサンプリング時間を示し、T=1/(2048*15kHz)で表される。それぞれのサブフレームの長さは1msであり、2個のスロットからなる。一無線フレーム内で20個のスロットは0から19まで順次にナンバリングされる。それぞれのスロット長は0.5msである。一サブフレームを送信するための時間は、送信時間間隔(transmission time interval, TTI)と定義される。時間リソースは無線フレーム番号(或いは無線フレームインデックスともいう)、サブフレーム番号(或いはサブフレームインデックスともいう)、スロット番号(或いはスロットインデックス)などで分けられる。TTIとは、データがスケジュールされる間隔を意味する。例えば、現在のLTE/LTE−AシステムにおいてULグラント又はDLグラントの送信機会は1msごとに存在し、1msより短時間でUL/DLグラント機会が数回存在することはない。よって、既存のLTE/LTE−AシステムにおいてTTIは1msである。
図2は、新しい無線アクセス技術(new radio access technology, NR)において利用可能なスロット構造を例示する図である。
データ送信遅れを最小化するために、5世代の新RATでは、制御チャンネルとデータチャンネルが時間分割多重化(time division multiplexing, TDM)されるスロット構造が考慮されている。
図2において斜線領域は、DCIを運ぶDL制御チャンネル(例え、PDCCH)の送信領域を示し、黒い領域は、UCIを運ぶUL制御チャンネル(例え、PUCCH)の送信領域を示す。ここで、DCIはgNBがUEに伝達する制御情報であり、前記DCIは前記UEが知るべきセル設定(configuration)に関する情報、DLスケジューリングなどのDL特定的(specific)情報、またULグラントなどのようなUL特定的情報などを含んでもよい。また、UCIはUEがgNBに伝達する制御情報であり、前記UCIはDLデータに対するHARQ ACK/NACK報告、DLチャンネル状態に対するCSI報告、またスケジューリング要請(scheduling request, SR)などを含んでもよい。
図2においてシンボルインデックス1からシンボルインデックス12までのシンボル領域は、下りリンクデータを運ぶ物理チャンネル(例え、PDSCH)の送信に用いられてもよく、上りリンクデータを運ぶ物理チャンネル(例え、PUSCH)の送信に用いられてもよい。図2のスロット構造によれば、1つのスロット内でDL送信とUL送信とが順次行われ、DLデータの送信/受信と前記DLデータに対するUL ACK/NACKの受信/送信が前記1つのスロット内で行われる。結果として、データ送信エラーが発生するとき、データの再送信までかかる時間を減らすことになり、これにつれて最終データ伝達の遅れを最小化することができる。
このスロット構造では、gNBとUEが送信モードから受信モードへの切換過程又は受信モードから送信モードへの切換過程のためのタイムギャップ(time gap)が必要である。このような送信モードと受信モードとの切換過程のためにスロット構造においてDLからULへ切り換えられる時点の一部OFDMシンボルがガード期間(guard period, GP)として設定される。
既存のLTE/LTE−AシステムにおいてDL制御チャンネルは、データチャンネルとTDMされ、制御チャンネルであるPDCCHはシステムの全帯域に広がって送信される。しかし、新RATでは、一システムの帯域幅が少なくとも略100MHzに達することが予想されるため、制御チャンネルを全帯域に広げて送信するには無理がある。UEがデータの送信/受信のために、下りリンク制御チャンネルを受信するために全帯域をモニタリングすることは、UEのバッテリー消耗増大及び効率性阻害の可能性がある。よって、本発明では、DL制御チャンネルがシステム帯域、すなわち、チャンネル帯域内の一部の周波数帯域でローカライズ(localize)されて送信されてもよく、分散(distribute)されて送信されてもよい。
NRシステムにおいて基本送信単位(basic transmission unit)はスロットである。スロット区間(duration)は正規(normal)循環前置(cyclic prefix, CP)を有する14個のシンボル、又は延長CPを有する12個のシンボルからなる。また、スロットは、使われた副搬送波間隔の関数として時間でスケーリングされる。
<アナログビームフォーミング(analog beamforming)>
近来、論議されている5世代移動通信システムは、広い周波数帯域を用いて、複数のユーザへの高い送信率を保持しながらデータを送信するために、高い超高周波帯域、すなわち、6GHz以上のミリメートル周波数帯域を用いる方案を考慮している。3GPPでは、これをNRと称しているが、本発明ではNRシステムと称する。しかし、ミリメートル周波数帯域は、高過ぎる周波数帯域を用いることによって、距離による信号の減殺が激しく示される周波数特性を有する。よって、少なくとも6GHz以上の帯域を用いるNRシステムは、激しい伝播減殺特性を補償するために、信号送信を全方向ではなく特定方向へとエネルギーを集めて送信することで、激しい伝播減殺によるカバレッジ減少の問題を解決する狭ビーム(narrow beam)送信法を用いる。しかし、1つの狭ビームのみを用いてサービスする場合、1つの基地局がサービスできる範囲が狭くなるので、基地局は複数の狭ビームを集めて広帯域でサービスすることになる。
ミリメートル周波数帯域、すなわち、ミリメートル波長(millimeter wave, mmW)帯域では、波長が短くなり、同一面積に複数のアンテナ要素(element)を取り付けることができる。例えば、1cm程度の波長の30GHz帯域では、5 by 5cmのパネル(panel)に0.5ラムダ(lamda)(波長)間隔で2−次元(dimension)配列の形態として全100個のアンテナ要素を取り付けることができる。したがって、mmWでは、複数のアンテナ要素を用いて、ビームフォーミングの利得を高めて、カバレッジを増加させたり、処理量(throughput)を高めることが考えられる。
ミリメートル周波数帯域で狭ビームを形成するための方法として、基地局やUEにおいて数多くのアンテナに適宜な位相差を用いて同信号を送信することで、特定方向のみにおいてエネルギーを高くするビームフォーミング方式が主に考慮されている。このようなビームフォーミング方式には、デジタル基底帯域(baseband)信号に位相差を形成するデジタルビームフォーミング、変調されたアナログ信号に時間遅れ(すなわち、循環シフト)を用いて位相差を形成するアナログビームフォーミング、デジタルビームフォーミングとアナログビームフォーミングとを両方用いるハイブリッドビームフォーミングなどがある。各アンテナ要素で送信パワー及び位相調節ができるようにトランシーバーユニット(transceiver unit, TXRU)を有すれば、各周波数リソースに対して独立したビームフォーミングが可能となる。しかし、100個余りのアンテナ要素の全てにTXRUを設けるには、コスト面において実効性が落ちる問題がある。すなわち、ミリメートル周波数帯域は、激しい伝播減殺の特性を補償するために、数多くのアンテナを使用しなければならず、デジタルビームフォーミングはアンテナの数分だけRFコンポーネント(例えば、デジタルアナログコンバータ(DAC)、ミキサー(mixer)、電力増幅器(power amplifier)、線形増幅器(linear amplifier)など)が必要となるため、ミリメートル周波数帯域においてデジタルビームフォーミングを具現するためには、通信機器の値段が増加してしまう問題点がある。したがって、ミリメートル周波数帯域のように、多くのアンテナが必要な場合は、アナログビームフォーミング又はハイブリッドビームフォーミング方式が考慮される。アナログビームフォーミング方式は、1つのTXRUに複数のアンテナ要素をマッピングし、アナログ位相シフター(analog phase shifter)でビーム(beam)の方向を調節する。かかるアナログビームフォーミング方式は、全帯域において1つのビーム方向のみを形成することができるため、周波数選択的なビームフォーミング(beamforming, BF)はできないというデメリットがある。ハイブリッドBFは、デジタルBFとアナログBFとの中間形態であって、Q個のアンテナ要素よりも少ないB個のTXRUを有する方式である。ハイブリッドBFの場合、B個のTXRUとQ個のアンテナ要素の連結方式によって差異はあるが、同時に送信可能なビームの方向はB個以下に制限される。
上述したように、デジタルビームフォーミングは、送信する又は受信されたデジタル基底帯域信号に対して信号処理を行うため、多重のビームを用いて同時に多方向に信号を送信又は受信することができるが、一方、アナログビームフォーミングは、送信する又は受信されたアナログ信号を変調した状態でビームフォーミングを行うため、1つのビームがカバーできる範囲を超える多方向に信号を同時に送信又は受信することができない。通常、基地局は広帯域送信又は多重アンテナ特性を用いて、同時に複数のユーザと通信を行うが、基地局がアナログ又はハイブリッドビームフォーミングを用いて、1つのビーム方向にアナログビームを形成する場合には、アナログビームフォーミングの特性から、同じアナログビームの方向内に含まれるユーザとしか通信できない。後述する本発明に係るRACHリソース割り当て及び基地局のリソース活用方案は、アナログビームフォーミング又はハイブリッドビームフォーミングの特性から生じる制約事項を反映した上で提案される。
<ハイブリッドアナログビームフォーミング(hybrid analog beamforming)>
図3は、送受信ユニット(transceiver unit, TXRU)及び物理的アンテナの観点におけるハイブリッドビームフォーミングの構造を抽象的に示した図である。
複数のアンテナが用いられる場合、デジタルビームフォーミングとアナログビームフォーミングとを組み合わせたハイブリッドビームフォーミング法が台頭している。このとき、アナログビームフォーミング(又は、RFビームフォーミング)は、RFユニットがプリコーディング(又は、コンバイニング)を行う動作を意味する。ハイブリッドビームフォーミングにおいて、基底帯域(baseband)ユニットとRFユニットはそれぞれプリコーディング(又は、コンバイニング)を行い、これによって、RFチェーン(chain)の数とD/A(又はA/D)コンバータの数を減らしながらもデジタルビームフォーミングに近づく性能が出せるというメリットがある。便宜のために、ハイブリッドビームフォーミングの構造は、N個のTXRUとM個の物理的アンテナとで表現されることができる。送信端から送信するL個のデータレイヤーに対するデジタルビームフォーミングは、N−by−L行列で表され、その後、変換されたN個のデジタル信号は、TXRUを経てアナログ信号に変換された後、M−by−N行列で表されるアナログビームフォーミングが適用される。図3において、デジタルビームの数はLであり、アナログビームの数はNである。さらに、NRシステムでは、アナログビームフォーミングをシンボル単位に変更できるように基地局を設計し、特定の地域に位置するUEにより効率的なビームフォーミングを支援する方向が考慮されている。ひいては、N個のTXRUとM個のRFアンテナを1つのアンテナパネル(panel)と定義するとき、NRシステムでは、互いに独立したハイブリッドビームフォーミングが適用可能な複数のアンテナパネルを導入する方案まで考慮されている。このように、基地局が複数のアナログビームを活用する場合、各々のUEにおいて信号受信に有利なアナログビームが異なることがあるため、少なくとも同期信号、システム情報、ページングなどについては、特定のスロット又はサブフレーム(subframe, SF)において、基地局が適用する複数のアナログビームを各シンボルで変更して、全てのUEに受信機会を与えるようにするビームスイーピング動作が考慮されている。
近来、3GPP標準化団体では、5G無線通信システムである新RATシステム、すなわち、NRシステムにおいて単一物理ネットワーク上に、複数の論理ネットワークを具現するネットワークスライシングが考慮されている。前記論理ネットワークは、様々な要求条件を有する様々なサービス(例え、eMBB、mMTC、URLLCなど)が支援できる必要があり、NRシステムの物理層システムでは、前記様々なサービスに伴われる可変的な(variable)ニューマロロジーを有することのできる直交周波数分割多重化(orthogonal frequency division multiplexing, OFDM)方式を支援する方案が考慮されている。言い換えれば、前記NRシステムでは、各時間及び周波数リソース領域(region)において互いに独立したニューマロロジーを有するOFDM方式(又は、マルチアクセス(multiple access)方式)が考慮される。
また、近来、スマート機器の登場によって、データトラフィックが激しく増加するにつれて、NRシステムではさらに高い通信容量(例え、データ収率など)を支援することが求められている。前記通信容量を高める1つの方案として、複数の送信(又は受信)アンテナを活用してデータ送信を行う方案が考えられる。前記複数のアンテナに対してデジタルビームフォーミングを適用しようとする場合、各アンテナごとにRFチェーン(例え、電力増幅器(power amplifier)、ダウンコンバータ(down converter)などRF素子からなるチェーン)とデジタル−to−アナログ(digital−to−analog, D/A)又はアナログ−to−デジタル(analog−to−digital, A/D)コンバータが必要となり、このような構造は、高いハードウェア複雑さ及び高い電力消耗を引き起こして、実用性が低下する。よって、NRシステムでは、複数のアンテナが用いられる場合、上述したデジタルビームフォーミングとアナログビームフォーミングとを混用するハイブリッドビームフォーミング法が考慮される。
図4は、新しい無線アクセス技術(new radio access technology, NR)システムのセルを例示する図である。
図4を参照すれば、NRシステムでは、既存LTEなどの無線通信システムに1つの基地局が1つのセルを形成していたこととは異なり、複数のTRPが1つのセルを構成する方案が論議されている。複数のTRPが1つのセルを構成する場合、UEをサービスするTRPが変更されても、絶えない通信が可能となり、UEの移動性を管理することが容易であるというメリットがある。
LTE/LTE−AシステムにおいてPSS/SSSは、全−方位(omni−direction)に送信されるのに対して、mmWaveを適用するgNBがビーム方向を全−方位に回しながらPSS/SSS/PBCHなどの信号をビームフォーミングして送信する方法が考慮されている。このように、ビーム方向を回しながら信号を送信/受信することをビームスイーピング(beam sweeping)又はビームスキャニングという。本発明における「ビームスイーピング」は送信機側の行動であり、「ビームスキャニング」は受信機側の行動である。例えば、gNBが最大N個のビーム方向を持つことができると仮定すると、N個のビーム方向のそれぞれに対してPSS/SSS/PBCHなどの信号を送信する。すなわち、gNBは、自分が持つことのできる又は支援しようとする方向をスイーピングしながら、それぞれの方向に対してPSS/SSS/PBCHなどの同期信号を送信する。又は、gNBがN個のビームを形成できる場合、いくつかのビームを束ねて1つのビームグループとして構成することができ、各ビームグループでPSS/SSS/PBCHが送信/受信されることができる。このとき、1つのビームグループは、1つ以上のビームを含む。同方向に送信されるPSS/SSS/PBCHなどの信号が1つのSSブロックと定義されてもよく、1つのセル内に複数のSSブロックが存在してもよい。複数のSSブロックが存在する場合、各々のSSブロックを区分するために、SSブロックインデックスを使用してもよい。例えば、一システムにおいて10個のビーム方向にPSS/SSS/PBCHが送信される場合、同方向へのPSS/SSS/PBCHが1つのSSブロックを構成することができ、当該システムでは、10個のSSブロックが存在することと理解されてもよい。本発明において、ビームインデックスは、SSブロックインデックスとして解釈されてもよい。
図5は、SSブロック送信及びSSブロックにリンクされたRACHリソースを例示する図である。
gNBが1つのUEと通信を行うためには、前記gNBと前記UEとの間の最適なビーム方向を検出する必要があり、前記UEの動きに応じて最適なビーム方向も変化するため、最適なビーム方向を追跡し続ける必要がある。gNBとUEとの間の最適なビーム方向を検出する過程をビーム獲得(beam acquisition)過程といい、最適なビーム方向を追跡し続ける過程をビーム追跡(beam tracking)過程という。ビーム獲得過程は、1)UEがgNBに最初にアクセスを試みる初期アクセス、2)UEが1つのgNBから他のgNBへ移るハンドオーバー、3)UEとgNBと間の最適なビームを探すビーム追跡を行ううち、最適なビームをなくして、前記gNBと最適な通信状態を持続することができなくなったり、通信不可に入ったりする状態、すなわち、ビーム失敗(beam failure)を復旧するためのビーム回復(beam recovery)などが必要である。
現在、開発中のNRシステムの場合、多重ビームを使用する環境におけるビーム獲得のための多段階のビーム獲得過程が論議されている。多段階ビーム獲得過程において、gNBとUEが初期アクセス段階(stage)では広(wide)ビームを用いて連結セットアップを行い、連結セットアップが完了した後、前記gNBと前記UEは狭(narrow)ビームを用いて最適な品質で通信を行う。本発明において主に論議されるNRシステムのビーム獲得ために様々な方式が論議されているが、現在、最も活発に論議される方式は以下のようである。
1)gNBはUEが初期アクセス段階でgNBを検出し、すなわち、セル探索(cell search)又はセル獲得(cell acquisition)を行い、広ビームの各々のチャンネル品質を測定して、ビーム獲得の1次段階で使用する最適な広ビームが検出できるようにするために、広ビーム別に同期ブロック(synchronization block)を送信する。2)UEは各ビームの同期ブロックに対してセル探索を行い、各ビームのセル検出(detection)の結果を用いて下りリンクビーム獲得を行う。3)UEは自分で検出したgNBに自身が接続しようとしていることを通知するためにRACH過程を行う。4)UEがRACH過程と同時に広ビームレベルで下りリンクビーム獲得の結果(例え、ビームインデックス)をgNBに通知するために、前記gNBはビーム別に送信された同期ブロックと、RACH送信のために使用されるRACHリソースを連結又は関連させておく。UEが検出した最適なビーム方向と連結されたRACHリソースを用いてRACH過程を行う場合、gNBはRACHプリアンブルを受信する過程で前記UEに適した下りリンクビームに関する情報を得る。
<ビーム対応性(beam correspondence, BC)>
多重−ビームの環境では、UEと送信及び受信ポイント(transmission and reception point, TRP)間のTxビーム及び/又は受信(reception, Rx)ビーム方向をUE及び/又はTRPが正確に決定できるか否かが問題になる。多重−ビームの環境においてTRP(例え、eNB)或いはUEのTX/RX相互(reciprocal)能力(capability)によって信号送信を繰り返し又は信号受信のためのビームスイーピングが考慮される。TX/RX相互能力はTRP及びUEにおけるTX/RXビーム対応性(correspondence)ともいう。多重−ビームの環境においてTRP及びUEでTX/RX相互能力が有効(hold)でない場合、UEは下りリンク信号を受信したビーム方向に上りリンク信号を送れないことがある。ULの最適な経路とDLの最適な経路とが異なる可能性があるためである。TRPにおけるTX/RXビーム対応性は、TRPがTRPの1つ以上のTXビームに関するUEの下りリンク測定に基づいて、当該上りリンク受信のためのTRP RXビームを決定することができれば、及び/又は、TRPがTRPの1つ以上RXビームに関するTRP’の上りリンク測定に基づいて、当該下りリンク送信に対するTRP TXビームを決定することができれば、有効である(hold)。UEにおけるTX/RXビーム対応性は、UEがUEの1つ以上のRXビームに関するUEの下りリンク測定に基づいて、当該上りリンク送信のためのUE RXビームを決定することができれば、及び/又はUEがUEの1つ以上のTXビームに関する上りリンク測定をベースとしたTRPの指示(indication)に基づいて、当該下りリンク受信に対するUE TXビームを決定することができれば、有効である(hold)。
LTEシステム及びNRシステムにおいて、gNBへの初期アクセス、すなわち、前記gNBが使用するセルを介した前記gNBへの初期アクセスのために使用するRACH信号は、以下の要素を用いて構成され得る。
* 循環前置(cyclic prefix, CP):以前/前の(OFDM)シンボルから入る干渉を防ぎ、様々な時間遅れを有してgNBに到着するRACHプリアンブル信号を1つの同時間帯に束ねる役割である。つまり、セルの最大半径に符合するようCPを設定すると、前記セル内のUEが同一のリソースから送信したRACHプリアンブルがRACH受信のためにgNBが設定したRACHプリアンブル長に該当するRACH受信ウィンドウ内に入るようになる。一般に、CP長は、最大送信遅れ(maximum round trip delay)より同等か大きく設定される。
* プリアンブル: 信号が送信されたことをgNBが検出するためのシーケンスが定義され、プリアンブルは該シーケンスを運ぶ役割をする。
* ガードタイム(guard time, GT): RACHカバレッジにおいてgNBと最遠方から送信され遅れて、前記gNBに入るRACH信号がRACHシンボル区間(duration)以後に入る信号に干渉しないようにするために定義された区間であって、この区間においてUEは信号を送信しないため、GTはRACH信号として定義されないことがある。
図6は、RACHプリアンブルの構成/フォーマットと受信機の機能(function)を例示する図である。
UEは同期信号により得られたgNBのシステムのタイミングに合わせて指定されたRACHリソースを介してRACH信号を送信する。gNBは複数のUEからの信号を受信することになる。一般に、gNBは、RACH受信のために、図5に例示する過程を行う。RACH信号に対してCPは最大送信遅れの以上に設定されるため、gNBは最大送信遅れとCP長との間の任意の点を信号受信のための境界(boundary)として設定することができる。前記境界点を信号受信のための開始点とし、この開始点からシーケンス長に該当する長さだけの信号に対して相関(correlation)を適用すると、gNBはRACH信号の存否と循環シフトの情報を得ることができる。
gNBが運用する通信環境がミリメートル帯域のように多重ビームを使用する環境である場合、RACH信号が多方向から前記gNBに入り、前記gNBは多方向から入るRACH受信のために、ビーム方向を変えながらRACHプリアンブル(すなわち、PRACH)に対する検出を行う。上述したように、アナログビームを使用する場合、gNBは1つの時点には一方向だけに対してRACH受信を行うしかない。この理由によって、gNBがRACHプリアンブルの検出を適宜に行えるようにするためのRACHプリアンブル及びRACH過程を設計する必要がある。本発明は、gNBにおいてビーム対応性(beam correspondence, BC)が有効な場合と、BCが有効ではない場合とを考慮して、NRシステム、特にビームフォーミングが適用できる高周波帯域のためのRACHプリアンブル及び/又はRACH過程を提案する。
図7は、RACHプリアンブルを受信するために、gNBに形成される受信(receiving, Rx)ビームを例示する図である。
BCが有効ではない場合、SSブロックに対して、RACHリソースがリンクされている状態でgNBはSSブロックの送信ビーム方向に受信ビームを形成しても、ビーム方向が外れることがあるため、複数の方向に対して、すなわち、受信ビームを変えながらRACHプリアンブル検出を行う/試みるビームスキャニングが行えるように、図7(a)に例示するフォーマットでRACHプリアンブルが設定されることができる。一方、BCが有効な場合、同期信号ブロック(SSブロック)に対して、RACHリソースがリンクされているために、gNBは1つのRACHリソースに対して、SSブロックを送信するために使用したビーム方向に受信ビームを形成して、その方向のみに対してRACHプリアンブルの検出を行えばよい。よって、図7(b)に例示するフォーマットでRACHプリアンブルを設定することができる。
上述したように、UEの下りリンクビーム獲得報告及び下りリンク選好(preferred)ビーム報告とgNBのBCによるビームスキャニングというRACH過程における2つの目的を反映して、RACH信号及びRACHリソースを構成する。
図8は、RACH信号及びRACHリソースに関連して、本発明の説明に用いられる用語を説明するための図である。以下、本発明では、RACH信号が以下のような形態で設定されてもよい。
* RACHリソース要素(RACH resource element): RACHリソース要素は、UEがRACH信号を送信する基本単位である。異なるRACHリソース要素は、各々異なるUEによってRACH信号送信のために使用されるため、各RACHリソース要素内のRACH信号にCPが挿入される。UE間信号に対する保護は、既にCPによって保持されるため、GTはRACHリソース要素間には不要である。
* RACHリソース(RACH resource): RACHリソースは、1つのSSブロックと連結されている連結したRACHリソース要素の集合で定義される。RACHリソースが連続的に隣接して割り当てられる場合、RACHリソース要素と同様に、連続した2つのRACHリソースが各々異なるUEによる信号送信のために使用されることができるため、各RACHリソース内のRACH信号にCPが挿入されてもよい。CPによって、時間遅れによる信号検出歪曲が防止されるため、RACHリソースとRACHリソースとの間にGTは不要である。ただし、RACHリソースが1つのみで構成される場合、すなわち、RACHリソースが連続的に構成されない場合、RACHリソースの後ろにPUSCH/PUCCHが割り当てられることができるため、PUSCH/PUCCHの前にGTが挿入されてもよい。
* RACHリソースセット(RACH resource set): RACHリソースセットは、連結したRACHリソースの集合である。セルに複数のSSブロックが存在し、前記複数のSSブロックのそれぞれ(respectively)に連結されたRACHリソースが連結される場合、前記連結されたRACHリソースが1つのRACHリソースセットと定義される。RACHリソースからなるRACHリソースセットがPUSCH/PUCCHのような異なる信号と合える部分であるRACHリソースセットの最後にGTが挿入される。GTは、上述したように、信号を送信しない区間であるため、信号として定義されなくてもよい。GTは、図8に図示されない。
* RACHプリアンブル繰り返し(RACH preamble repetition): gNBの受信ビームスキャニングのためのRACHプリアンブルを構成する場合、すなわち、gNBが受信ビームスキャニングを行えるように、RACHプリアンブルフォーマットを設定する場合、RACHプリアンブル内において同一の信号(つまり、同一のシーケンス)が繰り返されると、繰り返された信号そのものがCPの役割となるため、繰り返される信号間にCPが不要であるが、異なる信号を用いてプリアンブルがRACHプリアンブル内で繰り返される場合は、プリアンブルとプリアンブルとの間にCPが必要である。RACHプリアンブルとRACHプリアンブルとの間にはGTが不要である。以下、同一信号の繰り返しを仮定した上、本発明を説明する。例えば、RACHプリアンブルが「CP + プリアンブル + プリアンブル」の形態で構成される場合、前記RACHプリアンブル内のプリアンブルは、同一のシーケンスからなると仮定して本発明を説明する。
図8は、gNBの観点から複数のSSブロックに対するRACHリソースと、各RACHリソース内のRACHプリアンブルを示す図であり、gNBは、前記RACHリソースが設定された時間領域において該当セル上の各RACHリソース内のRACHプリアンブルの受信を試みる。UEは、セルの全てのSSブロックに対するRACHリソースの各々においてRACHプリアンブルを送信するのではなく、特定のSSブロック(例え、受信品質の良いSSブロック)とリンクされたRACHリソースを介して自身のRACHプリアンブルを送信する。上述したように、互いに異なるRACHリソース要素、又は、互いに異なるRACHリソースは、互いに異なるUEによるRACHプリアンブル送信に使用されてもよい。
図9は、RACHリソースセットを例示する図である。図9(a)は、BCが有効なgNBのセル上にRACHリソース当たり2つのRACHリソース要素が設定された場合の例示であり、図9(b)は、BCが有効なgNBのセル上にRACHリソース当たり1つのRACHリソース要素が設定された場合の例示である。図9(a)によれば、SSブロックにリンクされたRACHリソース内において2つのRACHプリアンブルが送信されてもよい。図9(b)によれば、SSブロックにリンクされたRACHリソース内において1つのRACHプリアンブルが送信されてもよい。
図8において説明したRACH信号構成の特性を用いて、RACHリソースの効率性を最大化するために、RACHリソースセットが図9のように構成される。図9のように、RACHリソースの使用/割り当ての効率性を高めるためには、RACHリソースセット内のRACHリソース間に空き区間を割り当てず、RACHリソース又はRACHリソースが完全に連結されて使用されるように設定されてもよい。
しかし、図9のように、RACHリソースを設定する場合、以下のような問題が発生する。1)BCが有効であり、SSブロック #Nに該当するRACHリソースの受信のために、gNBがSSブロック #Nの方向にビームを形成して受信する場合、データ又は制御チャンネルのために定義されたOFDMシンボル(OFDM symbol, OS)の途中で受信ビームが変更されるため、RACHリソースに割り当てられた周波数リソース以外のリソースを部分的にしか使用できないという問題点が生じる。すなわち、図9(a)の例のように、SSブロック #1を受信するために、gNBが受信ビームを形成すると、OS #4はデータチャンネル又は制御チャンネル用として使用できないという問題点が生じる。2)BCが有効ではなく、gNBがRACHリソース要素内においてRxビームスキャニングを行うとき、SSブロック #1に対応するRACHリソースに対しては、OS#1/OS#2/OS#3の境界に合わせて、OSの各々においてRxビームを形成して、データ/制御信号を受信しながらRACHプリアンブル検出を行うことができるが、SSブロック #2に該当するRACHリソースに対するビームスキャニングを行うとき、OS#4に該当する区間においてデータ/制御信号の受信のためのビーム方向と、RACHプリアンブル受信のためのビーム方向とが一致せず、RACHプリアンブルを検出するに問題が生じる可能性がある。
要するに、RACH信号受信のために、gNBが受信ビームの方向を変更しながらビームスキャニングを行い、受信ビームを変更する時点がデータ又は制御チャンネルのために定義されるOFDMシンボル境界から外れる場合、RACHリソースとして割り当てられた周波数リソースではない周波数領域においてサービスされるデータ又は制御チャンネルのリソース使用/割り当ての効率性が低下する問題が生じる。この問題点を解決するために、本発明は、多重ビームシナリオにおいてgNBがビーム方向を変更しながらRACHプリアンブルの検出ができるようにすると同時に、前記gNBがRACHリソース以外の全ての無線リソースをデータ及び制御チャンネルのために使用できるようにするために、OFDMシンボル境界と整列(align)される構造でRACHリソースを割り当てることを提案する。例えば、BCが有効な場合、RACHリソース又は前記RACHリソースを介して送信されるRACHプリアンブルは、図10のように、2つの方法でOFDMシンボル境界と整列される。
図10は、RACHリソースの境界整列に関する本発明を説明するために示された図である。図10は、例えば、BCが有効で、且つ1つのRACHリソースに2つのRACHリソース要素が送信される場合である。BCが有効ではない場合、図7(a)又は図8(a)のように、1つのRACHプリアンブルが1つのCPと複数の連続したプリアンブルから構成されてもよく、この場合でも、以下の本発明を適用することができる。1つのRACHリソースに1つのRACHリソース要素のみが送信されてもよく、この場合でも以下の本発明を適用することができる。
1)OFDMシンボル境界とRACHリソース境界とを一致させる方法の1つ(以下、方法1)は、図10(a)のように、gNBによるRACHプリアンブル検出能力、前記gNBのカバレッジ、RACHプリアンブルの副搬送波間隔を反映して、RACHプリアンブルのCP長とプリアンブル長を決めた後、これを用いてRACHリソース要素を設定する。gNBは、RACHリソース容量(capacity)を反映して、RACHリソース当たりRACHリソース要素の数を決めて、RACHリソースを設定することができる。gNBは、連結して使用するそれぞれのRACHリソースの境界をデータ及び制御チャンネルのために使用するOFDMシンボル境界と一致するようにRACHリソースを設定する。この場合、RACHリソース間には空き区間が発生することがある。この空き区間は何ら信号も送信しない区間として設定されてもよい。又は、RACHリソース内の最後のRACHリソース要素に限って、ポストフィックス(post−fix)として信号がさらに送信されてもよい。すなわち、RACHリソース内のRACHリソース要素のうち、時間ドメインにおいて最後のRACHリソース要素を用いてRACHプリアンブルを送信するUEは、自身のRACHプリアンブルにポストフィックス(post−fix)信号をさらに送信し、前記最後のRACHリソース要素ではなくRACHリソース要素を用いてRACHプリアンブルを送信するUEは、ポストフィックス信号を追加せずに送信することができる。
2)OFDMシンボル境界とRACHリソース境界とを一致させる他の方法(以下、方法2)は、図10(b)の例示のように、RACHリソース境界をOFDMシンボル境界と整列させるために、CP長及びプリアンブル長を設定する。しかし、RACHリソース当たりRACHリソース要素の数が変化するため、RACHプリアンブル長をOFDMシンボル境界に合わせて変更する場合、前記RACHプリアンブル内のプリアンブルシーケンスの特性が変わってしまう恐れがある。すなわち、プリアンブルの生成に使用されるZCシーケンスの長さは、表4に示すように、プリアンブルフォーマットに応じて839又は139と定められているが、RACHプリアンブル長をOFDMシンボル境界に合わせるために、プリアンブル長を調節する場合、プリアンブルシーケンスであるZCシーケンスの特性が変わる恐れがある。よって、RACHプリアンブルフォーマットが定められて、RACHリソース当たりRACHリソース要素が定められると、RACHプリアンブル長は固定するものの、RACHリソースがOFDMシンボル境界と整列されるように、CP長をRACHプリアンブルフォーマットの設定で定められた長さより大きくすることが可能である。すなわち、この方法は、プリアンブルシーケンスの特性を保持するように、RACHプリアンブル内の各プリアンブル長は固定し、CP長をOFDMシンボル境界に合わせて延長することで、RACHリソースの境界、つまり、前記RACHリソースを介して送信/受信されるRACHプリアンブルの境界をデータ/制御チャンネルの送信用OFDMシンボル(すなわち、一般OFDMシンボル)境界と合わせることである。この場合、gNBは、一部RACHリソース要素のCP長のみを延長するように設定(すなわち、一部RACHプリアンブルのCP長のみを延長するように設定)するか、又は全てのRACHリソース要素のCP長を適宜に延長するように設定(つまり、各RACHプリアンブルのCP長を適宜に延長するように設定)することができる。よって、例えば、gNBがOFDMシンボルからなる時間領域にRACHリソースを設定する場合、前記gNBは、CP長とシーケンス部分の長さを示すプリアンブルフォーマットを設定するが、シーケンス部分の長さは、当該RACHプリアンブルに含まれたプリアンブルの数に応じて特定の長さ(例え、RACHのためのZCシーケンスの長さ)から得られたプリアンブル長の正の整数倍であり、CP長は、前記一般OFDMシンボルの全長から前記プリアンブル部分の長さを引いた値と同一になるようにプリアンブルフォーマットを設定してシグナリングすることができる。全てのOFDMシンボルの長さが同一の場合、本発明に係るRACHプリアンブルフォーマットは、プリアンブルの予め定義された長さ(例え、予め定義された長さのZCシーケンスから得られたプリアンブル長)の正の整数倍とCP長との和がOFDMシンボル長の複数倍と同一になるように定義される。UEは、セルのSSブロックを検出して、前記SSブロックと連結されたRACHリソースから送信するRACHプリアンブルを生成するとき、gNBが設定したプリアンブルフォーマットによって特定の長さのシーケンス(例えば、ZCシーケンス)を用いて、RACHプリアンブルに含まれる各プリアンブルを生成して、CPを前記プリアンブル又は前記プリアンブルの繰り返しの前に付加して、前記RACHプリアンブルを生成する。
方法1及び方法2は、BCが有効ではなく、gNBがRxビームスキャニングを行う場合でも同様に適用することができる。方法1及び方法2について、BCが有効な場合には、RACHプリアンブルが1つのプリアンブルを含むフォーマットで構成される可能性が高く、一方、BCが有効ではない場合には、RACHプリアンブルがプリアンブルの繰り返しを含むように構成される可能性が高いという点を除けば、図10を参考して説明した方法1及び方法2は、BCが有効ではなく、gNBがRxブームスキャニングを行おうとする場合でも同様に適用することができる。例えば、BCが有効ではなく、gNBがRxビームスキャニングを行おうとする場合は、前記gNBはRACHプリアンブルがプリアンブルの繰り返しを含む形態で、プリアンブルフォーマット(例え、図7(a)又は図8(a)を参照)を設定してシグナリングするが、方法1の形態でRACHリソースを設定して、一RACHリソースの最後から次のRACHリソースの開始直前までを空き区間又はポストフィックス区間とみてRACHプリアンブルをモニタリングするか、又は方法2の形態でRACHリソースを構成して、RACHプリアンブルの境界がOFDMシンボルの境界と一致すると仮定して、前記gNBが設定した各RACHリソース内においてRACHプリアンブルをモニタリングすることができる。
本発明において提案された前記RACHリソース割り当て方案は、RACHリソースのために使用される1つのスロット又は複数のスロットにおいてRACHリソースが占める周波数リソース以外の周波数リソースをデータリソース又は制御チャンネルリソースとして効率的に使用するためのものである。したがって、RACHリソースを考慮したデータ/制御チャンネルリソースの効率的な使用のために、gNBは、RACHリソースとして割り当てたスロットに対して、ビームをいずれの単位で形成するのかに関する情報を用いて、データ又は制御チャンネルをスケジュールする。また、UEは、gNBがいずれのOFDMシンボル単位でスケジュールするのかに関する情報を受信することで、前記情報に基づいてデータ又はデータチャンネルを送信することができる。このために、gNBがデータ又は制御チャンネルをRACHリソースが割り当てられた時間領域にスケジュールするために、2つの方法が考慮される。
* ミニスロット割り当て
RACHリソースが割り当てられた時間領域にスケジュールされる場合、スケジュールされるチャンネルは、1つのビーム領域に含まれるため、該チャンネルが割り当てられたリソースの時間長さは、RACHリソースの時間長さより短く、1つのRACHリソースに対して複数の短い長さのスロットを含むことができる。
gNBが各RACHリソースにおいてビームの方向を設定して動作し、RACHリソースが割り当てられた時間領域とRACHリソースが割り当てられない時間領域とにおいて、gNBがUEにリソースを割り当てる時間単位が一致しない場合、gNBはRACHリソースが占める時間領域においてスケジュールするためのスロットを定義して、これに関する情報をUEに通知する。以下では、RACHリソースが占める時間領域においてスケジューリングに使用されるスロットをミニスロットと称する。このような構造においてミニスロットを介してデータ又は制御チャンネルが送信されるためには、いくつか考慮すべき事項がある。例えば、以下のような事項を考慮する。
1)RACHリソースが割り当てられたスロットに対して、1つのミニスロットを定義する場合:
図11は、BCが有効な場合に対するRACH用スロット(SLOTRACH)内にミニスロットを設定する方法を例示する図である。
UEは、システム情報を通じてgNBが使用するRACHリソースに対する全ての情報を知っている。したがって、SSブロック当たり割り当てられたRACHリソースを全て含む最小のOFDMシンボルの集合が1つのミニスロットとして定義される。また、gNBがRACHリソースが割り当てられた時間にスケジューリングを行う場合、UEはミニスロットをTTIの長さと解釈して、データ又は制御チャンネルを送信する。1つの正規(normal)スロット内に複数のミニスロットを含む場合、UEはいずれのミニスロットからデータ/制御チャンネルを送信するかを決定する。UEがデータ/制御チャンネルの送信に使用するミニスロットを決定する方法には大きく以下の2つがある。
> A. gNBが上りリンクデータ/制御チャンネルの送信をスケジュールする場合、DCIを通じて、UEがスロット内でいずれのミニスロットを介して送信するかを指定することができる。
> B. UEは多重ビームシナリオにおいて持続にビームを追跡する。このとき、UEは、現在サービスされているサービングビームがいずれのSSブロックと連結されているかの情報を事前にgNBから伝達されたら、前記UEはサービングビームに関連するSSブロックと連結されたRACHリソースと同一の時間領域を自身が送信する時間として解釈する。UEがスケジュールされたスロット内に前記UEのサービングビームに関連するSSブロックと連結されたRACHリソースが存在しない場合、前記UEはビーム不一致(mismatch)が生じたと判断することができる。
2)RACHリソースが割り当てられたスロットに対して複数のミニスロットを定義する場合:
図12は、BCが有効な場合に対するRACH用スロット(SLOTRACH)内にミニスロットを設定する他の方法を例示する図である。
RACHリソースが割り当てられたスロットに対して、複数のミニスロットを定義することは、1つのRACHリソースが割り当てられたスロット内に複数のミニスロットが存在するという点を除けば、基本的に、RACHリソースが割り当てられたスロットに対して複数のミニスロットを定義することと類似している。図11に示された方法と同様に動作するが、図12のように、RACHリソースを全て含む最小のOFDMシンボルの集合がいくつかに区分され、それぞれがミニスロットとして定義される。この場合、gNBは、一次には、RACHリソースを含む最小のOFDMシンボルの集合をどうように分けて使用するかをUEに通知する。例えば、gNBはビットマップの形態でRACHリソースを含む最小のOFDMシンボルをどのように分けるかをUEに指示することができる。或いは、RACHリソースを含む最小のOFDMシンボルを同等に複数分割できる場合、割り当てるミニスロットの数を通知することもできる。また、スケジュールされたUEが複数のミニスロットのうち、いずれのミニスロットを介してデータ/制御チャンネルを送信するかをgNBが指示する。gNBはいずれのミニスロットを介してデータ/制御チャンネルを送信するかをDCIを通じて直接指示したり、或いはRACHリソースが割り当てられた時間領域においてUEがスケジュールされる場合、いずれのミニスロットを使用するかを予め(例え、連結セットアップ時に)前記UEに通知することができる。又は、UE IDのような前記UEと前記gNBが共有している情報を用いて、予め定められた規則に従って、使用するミニスロットを決定することもできる。
3)BCが有効ではなく、プリアンブルが繰り返される間に行われる場合:
図13は、BCが有効ではない場合に対するRACH用スロット(SLOTRACH)内にミニスロットを設定する方法を例示する図である。
BCが有効ではない場合には、上述したように、gNBは1つのRACHリソースが割り当てられたスロット内で受信機のビーム方向を変えながらビームスキャニングを行う。よって、BCが有効であり、RACHリソースが割り当てられたスロット内に複数のミニスロットが存在する場合と同様に運用される。そのために、図12に示したように、RACHリソースを含む最小のOFDMシンボルの集合に対してビームスキャニングをどのように行うのかに関する情報と、それぞれのビームがいずれのSSブロックと連結されているのかに関する情報を伝達して、この情報を前記UEはいずれのミニスロットにスケジュールされ得るのかに関する情報として利用することができる。この場合、UEは、スケジュールされることのできる複数のミニスロットのうち、データ/制御チャンネルがいずれのミニスロットにスケジュールされたのかは、図12の方法と同様に、DCIを通じて伝達されるか、RRC信号を通じて予め約束されているか、又はgNBとUEが共有する情報を用いて予め定義された規則によって定義されることができる。
4)グラント−フリー(grant−free)スケジュールの場合:
> A. UEがグラント−フリーリソースから送信するデータ/制御チャンネルの時間リソースがRACHリソースと重なる場合、前記データ/制御チャンネルが前記RACHリソースの時間領域に対して定義されたミニスロットで送信されることができる。ところが、グラント−フリースケジューリングであり、UEが前記グラント−フリースケジューリングによって、すなわち、グラント−フリーリソースによって送信するデータ/制御チャンネルの信号フォーマットが正規スロットあるか、又は正規スロットよりも短いスロットであるが、RACHリソース領域に対して定義されたミニスロットよりは長い場合、また前記ミニスロット長が正規スロット長に比べて短過ぎて、前記ミニスロットを介したデータ/制御チャンネルの送信が指定したコーティング率に比べて高過ぎる場合、前記UEは、i)送信をドロップする、ii)送信ブロックサイズ(transport block size)を変更する、又はiii)複数のミニスロットが利用可能な場合には複数のミリスロットを用いて、当該データ/制御チャンネルを送信することができる。一方、ミニスロット長で送信しても、指定したコーディング率に比べて低い場合は、指定されている送信ブロックサイズで送信することもできる。
> B.グラント−フリースケジューリングであり、UEが前記グラント−フリースケジューリングによって、すなわち、グラント−フリーリソースによって送信するデータ/制御チャンネルの信号フォーマットがミニスロットよりも短い場合は、上述した方式によって定められたミニスロット位置を通じて正常に送信することができる。つまり、グラント−フリースケジューリングによるデータ/制御チャンネルが時間ドメインにおいてミニスロットよりも短い長さのリソースを要する場合、UEはRACHリソース(すなわち、RACHプリアンブル)長に合わせて設定されたミニ−スロットのうち、前記データ/制御チャンネルと同一のgNB Rxビームに該当するミニスロットによって、前記データ/制御チャンネルを送信する。このとき、送信ブロックサイズを予め設定された信号フォーマットと比較して、ミニスロット長に比例して、予め定められた規則に従って大きくすることができる。例えば、グラント−フリースケジューリングで送信する信号フォーマットが2つのOFDMシンボルを用いるものと定義され、RACHスロット内のミニスロット長が3つのOFDMシンボルに対応する場合、グラント−フリースケジュールのデータ/制御チャンネルが送信可能な送信ブロックサイズが1.5倍になることができる。
5)ガードタイム又は空き区間(blank duration)にミニスロット割り当て:
図14は、ガードタイムを用いてミニスロットを設定する方法を例示する図である。
gNBは、ガードタイムとして設定された区間の一部又はガードタイムの用途ではなくても1つのスロット内にRACHリソースを構成した後に残ったスロット内の空き区間に対しては自由に受信ビームを設定することができる。したがって、gNBは、RACHリソースに関する情報と共に、スロット内においてRACHリソース受信のためのビームと独立して使用可能なミニスロットに関する情報をUEへ知らせ、前記UEは、ガードタイムに設定されたミニスロットに対して、動的スケジューリングがあると期待することができる。割り当てられたミニスロットの位置は、上述した方法(例え、RACHスロット内に設定されるミニスロット長、位置、ビーム方向などを通知する方法)が使用される。
6)短いPUCCHリソース割り当て:
TDDシステムの場合、制御チャンネルを短い長さにして、1つのスロット内の一部区間に送信する方式が可能である。NRシステムの場合、1つのスロットに対してスロットの前部には下りリンク制御チャンネルを、スロットの最後には上りリンク制御チャンネルを送信する方式が論議されており、特に、このように送信される上りリンク制御チャンネルを短いPUCHHという。短いPUCCHは、スロットの最後の1〜2つのシンボルに送信されるようにチャンネルが構成されるため、上述したミニスロットで送信されることができる。しかし、上述したように、1つのスロット内においてビーム方向が変化するため、短いPUCCHは常にスロットの最後に配置されるとは限らない。したがって、短いPUCCHがRACHリソースが割り当てられたスロット領域にスケジュールされる場合、UEは、サービスされているビームと同方向のビーム(すなわち、gNB Rxビーム、又は前記gNB Rxビームに相応するUE Txビーム)或いはgNBが短いPUCCHに対して予めリンクを形成しているビーム(すなわち、gNB Rxビーム、又は前記gNB Rxビームに相応するUE Txビーム)が存在するミニスロットにおいて短いPUCCH送信を行う。このとき、PUCCHはミニスロット内の最後のシンボルの位置、又はgNBがシグナリングを通じて指定するシンボルの位置或いは規則で決定されるシンボルの位置から送信されることができる。しかし、UEは、サービスされているビームと同方向のビーム又はgNBが短いPUCCHに対して予めリンクを形成しているビームが存在しない場合は、前記短いPUCCH送信をドロップしてもよい。
* ミニスロット連結(concatenation)
RACHリソースセットに対する受信ビームを形成するステップにおいて、各RACHリソースの受信ビームの方向が大きく変わらない場合、RACHリソースセット区間にかけて送信する長いスロットを介してデータ又は制御チャンネルが送信されることも可能である。これを上述したミニスロットを連結して使用するミニスロット連結と称する。
図15は、BCが有効であり、正規スロットと同一の長さでミニスロット連結を行ってデータを送信する例を示す図である。特に、図15は、BCが有効な場合、RACHリソース区間において連結したミニスロットの送信及び参照信号の挿入を例示する図である。例えば、正規スロットと同一の長さになるように、ミニスロットが連結して得られた長いスロット(long slot)にかけて1つのデータパケットが送信され得る。この場合、1つのデータパケットが長いスロット内のミニスロットに分割されて送信される。
このように連結したミニスロットを用いたデータ送信の場合、gNBがSSブロック送信方向情報を用いて各RACHリソースに受信ビームを形成するために、UEはそれぞれのSSブロックを最良の品質で受信できる方向に信号を送信することが望ましい。したがって、gNBはRACHリソース時間領域において(BCが有効ではない場合)各OFDMシンボル、又は(BCが有効な場合)各RACHリソースの受信ビーム形成に関する情報(例え、SSブロックとの関連情報)をUEへ通知する。このとき、連結されたミニスロットを送信して、正規スロットに対して定義されたフォーマットで参照信号(reference signal)を送信する場合、UEによる信号送信中にgNBの受信ビームの方向が変化するため、データチャンネルの受信が円滑に行われないことがある。したがって、gNBの受信ビーム方向の変化を反映して、gNBの受信ビーム方向の変化の単位で参照信号が挿入されることが必要である。このためには、RACHリソース区間に割り当てられる連結したミニスロットのための参照信号構造を定義することが望ましい。RACHリソース区間に連結したミニスロットフォーマットのデータ又は制御チャンネルが割り当てられたUEは、連結されたミニスロットフォーマットの参照信号を送信する。
PUSCH又はPUCCHを送信するとき、PUSCH又はPUCCHのUE Txビーム方向に対して1つの安定したgNB Rxビームが存在しない場合、又は複数のビームが類似した品質である場合、ビームダイバーシティー特性が利用できるように、連結されたミニスロットを介してPUSCH又はPUCCHを送信することで、PUSCH又は長いPUCCHの安定した受信が可能である。この場合、gNBはRACHリソース領域においてPUSCH又はPUCCHを送信することで、RACHリソースが割り当てられた時間リソースを効率的に利用することができる。
さらに、gNBは、多重ビーム環境においてサービスを安定的に維持するために、最良の品質を有するビームがサービングビームとして維持されるように、送信ビーム又は受信ビーム対するビームトラッキングを行う。したがって、gNBはRACHリソースが割り当てられたスロット区間内において前記gNBが受信ビームを変更する特性を用いて、UEがPUSCH、長いPUCCH、又は短いPUCCHの各RACHリソース領域の繰り返し送信又はビームトラッキングのために定義されるRSを複数のミニスロットにかけて送信するように指示することで、前記gNBはgNB受信ビーム又はUE送信ビームに対する品質を測定してビームトラッキングを行うこともできる。すなわち、ビームトラッキングに対するリソースの効率的な利用のために、RACHリソースが割り当てられた時間領域に対して特性に合う物理チャンネル送信を指示して、これをビームトラッキングのためのリソースとして利用することができる。言い換えれば、ビームトラッキングに対するリソースの効率的な利用のために、gNBはRACHリソースが割り当てられた時間領域に設定されたミニスロットの各々に符合するUE Txビームで物理チャンネルを送信するようにUEに指示して、各ミニスロット内の物理チャンネルをビームトラッキングのために使用することができる。ビームトラッキングのための信号をUEが効率的に送信するためには、上述したように、gNBがビーム方向の変更情報をUEへ通知して、前記UEは、この情報と予め定義された規則に従って参照信号をgNBの各受信ビームに挿入して送信する。gNBは、このように送信された参照信号を用いて受信ビーム区間に対するチャンネル推定用信号又はビームトラッキングのための信号品質測定用信号として前記参照信号を使用することができる。
ビームダイバーシティーによるgNBにおける受信のために送信されたPUSCH又は長いPUCCHの送信時、前記gNBは受信ビームの各区間で信号の受信を試みるため、アンテナ利得が異なる特性を有することができる。よって、前記UEは、受信ビームの各方向(例え、各RACHリソース領域)に関してPUSCH/PUCCHの送信電力を異なるように設定することができる。このために、前記gNBは、前記UEに各々のRACHリソース領域で開ループ(open loop)電力制御用経路損失(pathloss)計算のための参照チャンネル/信号情報及び電力制御パラメータを別途に設定するように通知することができる。UEは、この情報を用いて、各RACHリソース時間領域で異なる送信電力を設定して送信する。
これとは異なり、ビームトラッキング(又は、ビーム管理)のための用途として、複数のRACHリソース領域別に送信する際には、gNBによる受信信号の品質を測定するために、各RACHリソース領域において同一の送信電力を維持する必要がある。したがって、この場合には、1つの電力を制御するために必要とされる参照チャネル/信号は1つだけであり、前記参照チャンネル/信号に対する情報をgNBが通知するか、規則に従って予め定義される場合、UEは前記参照チャンネル/信号を用いて送信電力の大きさを決定して、前記送信電力を全ての領域に同様に適用して、PUSCH/PUCCHを送信することができる。
各ULチャンネルごとに、gNBはRACHリソース送信時間領域、すなわち、該当セルにRACHリソースが設定された時間領域を介したULデータ又は制御チャンネルがビームダイバーシティーのための用途であるかビームトラッキングのための用途であるかをUEへ通知して、前記用途に合わせて前記UEが電力制御動作を行うようにすることができる。
<PRACH設定(Configuration)>
PRACH設定(Configuration)は、RACHリソースの時間/周波数の情報を含み、Remaining Minimum System Information(RMSI)に含まれる。RMSIは、SIB1(System Information Block 1)と解釈されてもよく、PBCH(Physical Broadcast Channel)を介してMIB(Master System Information Block)を受信した後、UEが獲得すべきシステム情報である。
PRACH設定(Configuration)情報を受信すると、UEはPRACH設定(Configuration)に含まれたRACHプリアンブル集合のうち、少なくとも1つのRACHプリアンブルを用いて、指定された時間及び周波数リソース上においてPRACH Msg.1を送信することができる。また、PRACH設定(Configuration)情報に含まれるRACHプリアンブルフォーマットによって、CP長、繰り返し回数、副搬送波間隔(Subcarrier Spacing)及びシーケンス長などを獲得することができる。
以下、PRACH設定(Configuration)に関する詳しい事項について説明する。
1.時間ドメインにおけるRACHリソース設定(Configuration)
図16乃至図17を参照して、時間ドメインにおけるRACHリソース設定(Configuration)について説明する。ここで、RACHリソースは、PRACH Msg.1が送信可能な時間/周波数リソースを意味する。RACHリソースにおけるRACHプリアンブルインデックス設定(Configuration)について説明すると、RACHリソースは、選好する下りリンク送信ビームの方向を識別するために、SSブロックと関連付けられる。すなわち、時間ドメインにおける各RACHリソースはSSブロックインデックスと関連付けられる。
また、時間ドメインにおけるRACHリソースセットは、セル内においてSSブロックのデフォルト周期(default periodicity)の観点から定義できる。1つのSSブロックに関連した複数のRACHリソースが時間ドメインにおいて前記RACHリソースセット内にあってもよい。図16を参照すれば、SSブロック周期及びRACHリソースセット周期が、図16のように設定されてもよい。RACHリソースセットの周期は、SSブロック周期に基づいて決定され、RACHリソースセットの周期内で複数のRACHリソースが設定されてもよい。一方、前記RACHリソースセットの周期は、上述のように、PRACH設定情報によって設定されてもよく、この場合、RACHリソースセットの周期は、PRACH設定周期と同一であってもよい。本発明においてPRACH設定周期、すなわち、RACH設定周期は該当RACH設定によるRACHリソースのセットが示される時間周期を意味してもよい。
図16において、RACHリソースが割り当てられる各々の時間インスタンス(time instance)はRACH Occasionと称される。すなわち、シーケンスドメインを考慮せずに、時間ドメイン及び周波数ドメインのみを考慮すると、1つのRACHリソースは1つのRACH Occasionと称することができる。RACHリソースセットの周期がSSブロック周期に基づいて決定される場合、正確なタイミングインスタンス(timing instance)は該当RACHリソースに関連したSSブロックの送信タイミングからのオフセットとして指示されることができる。RACHリソースセット内のRACH Occasionの正確な位置もUEに提供される。
図17は、SSブロックとRACHリソースとの関連を指示する方法を例示する図である。各RACHリソースセットは、SSブロック周期を用いて設定される。時間ドメインにおける正確な開始位置は、SSブロックに対応するRACHリソースセットごとに異なり得るため、各々のSSブロックから対応RACHリソースセットまでのタイミングオフセットがシグナリングされる。
RACHリソースの持続期間(duration)は、PRACHプリアンブルフォーマットによって決定される。ガードタイムを含むRACHプリアンブル長(例え、プリアンブルフォーマット)は、セルカバレッジで設定される。また、プリアンブルの繰り返し回数は、RACHリソースの持続期間(duration)を決定する。したがって、RACHリソースの設定は、CP長に対するRACHプリアンブルフォーマットに加えて、プリアンブル長の指示のためのRACHシーケンスの繰り返し回数を含む。
一方、上述のように、多重ビームを使用するNRシステムにおいて初期下りリンクのビーム獲得過程は、最良の品質を有するSSブロックに対する検出によって優先して行われる。これにより、UEが選好するdownlink beamに関する情報を、初期RACH課程を通じて基地局へ通知する。よって、NRシステムでは、UEが検出したSSブロックに該当するビームインデックスに関する情報を、RACHプリアンブル送信のためのリソースの位置によって間接的に通知することができる。例えば、図5のように、RACHリソースは、各々のSSブロックにリンクされており、UEは基地局に各々のSSブロックに連結されたRACHリソースの形態でビームインデックスに関する情報を通知する。すなわち、UEが検出したSSブロックと関連したRACHリソースを用いてPRACHを送信することで、UEは、選考する下りリンクビーム、つまりSSブロックを基地局に通知することができる。
このように、基本的に、RACHリソースの時間/周波数リソースはSSブロックと連結されているため、初期アクセス段階で使用するSSブロックの基本送信周期に基づいてRACHリソースを割り当てることが望ましい。ただし、基地局のセルに位置したUEの数が少ない場合には、RACHリソースも基本送信周期に比べて間欠的に割り当てられてもよい。したがって、本発明では、RACHリソースが割り当てられたスロットをRACHスロットとして定義して、RACHスロットの周期をSSブロックの基本送信周期の倍数に割り当てることを提案する。上述では、多重ビーム環境を説明したが、単一ビーム環境でも同様な構造を維持するために、同一の方式でRACHリソースを割り当てることが効率的でもある。また、前記RACHスロットの周期は、上述したPRACH設定情報によって設定されるRACH設定周期に関連していてもよく、1つのRACH設定周期内において同一の位置にあるか、又は同一のインデックスを有するRACHスロット間の周期は、前記RACH設定周期と同一であってもよい。ネットワーク/gNBがUEに送信するRACHリソース割り当て情報のうちRACH時間リソースに関する情報は以下を含んでもよい。
1)関連したSSブロックインデックス
2) SSブロックからRACHスロットの位置
3)SSブロック周期の倍数又はSSブロック周期の関数で表されるRACHスロットの周期
4)SSブロックの周期に対するRACHスロットの周期が1より大きいとき、曖昧ではなく正確な位置を通知するためのオフセット値。このとき、前記オフセット値はサブフレーム番号0を基準として設定される。
このように、RACHリソースが割り当てられる時間/周波数リソースがSSブロックと連結される場合、UEがRACHを送信できる時点であるRACHリソースの数は、基本的に、SSブロックの数と同一である。通常、RACHリソースは、RACHプリアンブルを送信可能な時間、周波数、コードドメインリソースを全て含むが、本発明では、説明の便宜のために、通常、RACHリソースがRACHプリアンブルを送信可能な時間/周波数リソースブロックの意味として使われる。ただし、プリアンブルシーケンスと共に言われるRACHリソースは、シーケンスドメイン、つまり、コードドメインを含む概念として使われる。例えば、RACHリソースが同一時間/周波数リソースを共有すると表現される場合、前記RACHリソースは時間/周波数リソースの観点からは1つのRACHリソースであるが、シーケンスドメインまで考慮すれば、複数のRACHリソースに該当する。
しかし、基地局内に存在するUEの数が多くない環境では、各SSブロックに異なるRACHリソースを割り当てることは非効率的である。よって、基地局が同一の受信ビームでRACHプリアンブルが受信できるか、又は同時に複数のビームを介してRACHプリアンブルが受信できる場合、複数のSSブロックと連結されたRACHリソースに対して同一の時間/周波数リソースを割り当てることもできる。つまり、複数のSSブロックが1つのRACH時間−周波数リソースと関連することもできる。この場合、RACHリソースに対するSSブロックは、前記RACHリソースにおいて使用されるプリアンブルインデックス又はプリアンブルインデックスセットによって区分されてもよい。つまり、RACHリソースの数は、SSブロックの数と同等か小さく割り当てられてもよい。
基地局はRACHリソースをいずれの時間/周波数領域に割り当てるかを決定して、これに関する情報をシステム情報を通じてUEへ通知する。LTEシステムの場合、プリアンブルフォーマットに従って、1つ又は2つのサブフレームがRACHスロットを構成したため、基地局がPRACH設定情報によって、特定のサブフレームの位置を指定すると、UEは時間ドメインにおいてRACHリソースの位置を分かることができた。一方、NRシステムは、基地局の設定及び環境に応じて、これとは異なる形態の情報を要する。特に、NRシステムにおいてRACHプリアンブルは、高い(high)ドップラー周波数に対する堅牢さ(robustness)、受信ビームスキャニング(Rx beam scanning)、TDD/FDDに一致した設計などの理由によって短い基本シーケンスを定義して、これをビームスキャニング及びカバレッジの確保のために基本シーケンスを繰り返す形態で設定するため、基地局又は環境に応じてRACH時間リソースの位置が非常に可変的である。さらに、NRシステムでは、ごく小さい大きさの複数のスモールセルでシステムが構成されてもよい。この場合、RACHプリアンブル長が非常に短くなり、時間ドメインにおいて複数のRACHプリアンブルが送信できるRACHスロットが設定されることが可能である。例えば、図18のように、RACH時間リソース情報がUEに提供されることができる。
図18は、RACH時間リソース情報を例示する図である。RACHリソースの時間リソース関連情報、すなわち、PRACH時間リソース情報は、以下のような情報を含むことができる。:
1)RACHリソースのSSブロック位置に対するRACHリソース/スロットの相対的な位置、又はSS周期に対するRACHスロットの位置;
2)RACHスロット内でRACHリソースの開始するOFDMシンボルの位置;
3)RACHリソースに対するプリアンブルフォーマット(つまり、CP長、 シーケンス長)及びシーケンス繰り返し回数;及び/又は
4)上述のように定義されたRACHリソースを時間軸にいくつかを割り当てるかについての情報。複数のRACHリソースが割り当てられ、前記複数のRACHリソースが時間軸上で連続(consecutive)しない場合、各々の位置に対応する情報、例えば、各々のRACHリソースに対する相対的な位置又は絶対的な位置。
一方、複数のSSブロックと連結されたRACHリソースが同一の時間/周波数リソースを共有しても、UEはビーム獲得情報を基地局に伝達するために、同一の時間/周波数リソースに対して、いずれのSSブロックと連結されたRACHリソースに対するものであるかを区分して、RACHプリアンブルを送信する。このために、1つのRACHリソース内で利用可能なプリアンブルシーケンスが各SSブロックに分けられて割り当てられる必要がある。LTE及びNRシステムにおけるプリアンブルシーケンスは、基本シーケンスを決定するルートシーケンス、また各ルートシーケンス内においてゼロ相関特性を有する循環シフトされたバージョンのシーケンス及び直交カバーシーケンスの組み合わせからなる。このとき、リソースの効率性を高めるために、RACHリソース内でプリアンブルシーケンスの数を多く確保するために、複数のルートシーケンスが割り当てられてもよい。通常、ルートシーケンス間の交差相関(cross correlation)が、循環シフトされたバージョンの異なる又は直交カバーシーケンスの異なるシーケンス間の交差相関よりも大きい。また、UEに適したビームとは異なるビームから入る信号は、ビーム特性によって受信信号が弱いため、UEに対するビーム方向と相違するビーム方向に対しては、該当シーケンス間に交差相関を少し大きくてもRACH受信性能に大きい影響を与えない。したがって、同一の時間/周波数リソースを複数のRACHリソースが共有する場合、各々のRACHリソースはできれば小さい交差相関を有するプリアンブルシーケンスからなることが望ましい。仮に、上述した実施例のように、RACHプリアンブルシーケンスがルートシーケンスと前記ルートシーケンス内の循環シフトバージョン又は直交カバーシーケンスが異なるシーケンスの組み合わせからなる場合、優先して、同一のルートシーケンス内の循環シフトバージョンの異なるプリアンブルシーケンス又は同一のルートシーケンス内の直交カバーシーケンスの異なるプリアンブルシーケンスが同一のビーム、つまり1つのSSブロックと連結されたRACHリソースに対して割り当てられ、その後、互いに異なるルートシーケンスインデックスが割り当てられる。例えば、図19のように、プリアンブルシーケンスがRACH時間/周波数リソースに割り当てられる。
図19は、RACHプリアンブルシーケンスの割り当て例を示す図である。
図19を参照すれば、1つの時間/周波数リソースに対して、ルートシーケンスで{15, 27, 127, 138}が割り当てられ、各々のルートシーケンスに対して、直交カバー{0, 1}及び循環シフトバージョン{0, 1, 2, 3}が割り当てられる。このとき、前記時間/周波数リソースに対して2つのRACHリソースが割り当てられる場合、N−th SSブロックと連結されたRACHリソースに対して、OCCインデックス循環シフトバージョンからなるZCインデックスが優先して割り当てられ、2つのルートシーケンス{15, 27}からなるRACHプリアンブルシーケンスセットが割り当てられる。(N+1)−th SSブロックと連結されたRACHリソースに対しても、同一手順でRACHプリアンブルシーケンスセットが割り当てられる。基地局はRACHリソースをUEへ通知するために、各RACHリソースのRACHプリアンブルシーケンスセットを構成するための情報を通知して、予め定義された規則に従って、RACHプリアンブルシーケンスセット内のRACHプリアンブルシーケンスの手順を決定する。このとき、前記予め定義された規則は、{OCCインデックス、循環シフトバージョン}に対して優先してRACHプリアンブルシーケンスインデックスを増加させて、次に、ルートシーケンスインデックスをベースとして、次のRACHプリアンブルシーケンスインデックスを増加させる。すなわち、シーケンス間交差相関特性の低い順で優先的にRACHプリアンブルシーケンスインデックスが増加される。
2.周波数ドメインにおけるRACHリソース設定(Configuration)
PRACH設定(Configuration)は、RACHリソースの周波数領域に関する情報を提供することができる。UEが未だセルに接続していない状況で、UEがPRACH送信を試みるとき、全体のシステム帯域幅又はリソースブロックインデックシングを認識できないことがある。
LTEシステムでは、同期化信号がシステム帯域幅の中心から送信され、PBCHはシステム帯域幅を提供するため、UEはRACHリソースの正確な位置を容易に獲得することができる。しかし、NRの場合、同期化信号がシステム帯域幅の中心から送信されることが補償されない。よって、NRの場合、UEがPRACHを送信するためのリソースブロックインデックシングを得ることが容易ではない。したがって、周波数ドメインからRACHリソース位置を提供する方法が求まれる。
IDLEモードのUEは、SSブロックに基づいて周波数同期を獲得するため、RACHリソースの周波数位置に関する情報は、SSブロック帯域幅の観点から提供されることが望ましい。すなわち、周波数ドメインにおけるRACHリソースは、UEがSSブロックを検出するSSブロック帯域幅内に位置すべきである。RACHプリアンブルの送信帯域幅は、PSS/SSS/PBCHの15kHzデフォルト副搬送波間隔に固定された値を有する。例えば、RACHプリアンブルの送信帯域幅は15kHzのデフォルト副搬送波間隔において1.08MHzに固定されてもよい。また、RACHプリアンブルの送信帯域幅が1.08MHzである場合、15kHz副搬送波間隔を仮定したSSブロックの送信帯域幅は、RACH送信帯域幅の4倍である。ネットワークはSSブロック内の周波数ドメインにおいてRACHリソースの正確な位置を提供する必要がある。
仮に、ネットワークが、PSS/SSS/PBCHが送信されるSSブロックの外側にRACHリソースを設定する場合、前記RACHリソースに関する情報は、SSブロックの帯域幅及びRACHの帯域幅に基づいてシグナリングされなければならない。このとき、全体のシステム帯域幅は、SSブロック帯域幅の単位でインデックシングされる。
3.時間領域におけるリソースの数
NR PRACHプリアンブルとして短いZCシーケンスが使用されるが、前記短いZCシーケンスは、CP及びRACHプリアンブルで定義された時間リソースにおいてシーケンス不足を引き起こす。この問題を解決するために、RACHスロット内において、複数の時間及び周波数リソースがRACHリソースに割り当てられてもよく、gNBは周波数リソース情報の他に、RACHスロットにおいて使用される時間リソースの量をUEに通知する必要がある。
4.シーケンス情報
LTEシステムでは、64個のシーケンスがRACHリソースに割り当てられ、ルートコード(つまり、ルートシーケンス)が割り当てられると、ゼロ交差相関特性によって他のルートコードを使用する前に、前記ルートコードの循環シフトバージョンがプリアンブルインデックスにまずマッピングされる。
NR−PRACHにおいても同一の特性が再使用される。ゼロ交差相関特性を有するシーケンスがRCHプリアンブルのために先ず割り当てられてもよく、ここで、ゼロ交差相関は循環シフトバージョン及び(定義された場合)予め定義された直交カバーによって提供される。ルートコードが割り当てられると、直交カバーは予め定義された規則又は設定によって割り当てられ、前記ルートコード及び前記直交カバーを有する循環シフトバージョンがプリアンブルインデックスにマッピングされる。
要するに、gNBによってUEにシグナリングされるPRACH設定は、以下のパラメータを含む:
− 時間/周波数ドメインにおけるRACHリソース割り当て:プリアンブルフォーマット(CP持続時間及びZCシーケンスの繰り返し回数)
− シーケンス情報:ルートコードインデックス、(定義された場合)直交カバーインデックス、循環シフト長
5.RACHスロットのパターン
RACHリソースが含まれ得る特定の時間間隔内の複数のスロットパターンは、RACH msg 1副搬送波間隔に基づいて決定される。
(1) RACHスロットパターンの設定方法1
SSブロックの送信周期が5msの場合、5ms周期内の全ての第一のスロットは、SSブロック送信のために予約される。仮に、SSブロック送信周期が10msの場合、10ms周期内の第一のハーフフレームの第一のスロットは全てSSブロック送信のために予約される。
NRにおいてSSブロック送信のためのスロットの位置、すなわち、SSブロック送信が可能なSSブロック候補スロット位置について定義しているが、前記候補スロット位置において常にSSブロックが送信されるのではない。つまり、候補スロット位置が常にSSブロック送信のために予約されるのではない。
一方、RACHリソースに対するRACHスロットパターンは、SSブロック送信のための候補スロットの位置に大きく依存する。しかし、SSブロック送信のための候補スロット位置のみに依存してRACHスロットパターンを定義することは、リソース柔軟性面において効率的ではないため、SSブロックが実際に送信されるスロットを考慮して、RACHスロットパターンを定義すべきである。したがって、本発明では、RACHリソースに対するRACHスロット割り当て(allocation)に対する規則を以下のように定義する。
− SSブロックが送信可能なスロットは、実際に送信されたSSブロックによってRACHリソースのために予約される。このとき、実際に送信されたSSブロックに関する情報は、RMSIを通じてシグナリングされる。
− RACHスロットがPRACH設定(Configuration)によってRACHリソースとして予約されていても、RACHスロットはSSブロック送信周期によっては、RACHリソースとして使用されないことがある。
− 例えRACHスロットがPRACH設定(Configuration)によってRACHリソースとして予約されていても、RMSIを通じて実際にSSブロックが送信されることでシグナリングされたRACHスロットは、RACHリソースとして使用されないことがある。
実際に送信されるSSブロックの位置はネットワークの選択によって決定されるため、該当情報はRMSIを通じてUEにシグナリングされるが、実際に送信されSSブロックパターン及び相違するSSブロック送信周期に応じてRACHリソースに対して固定した単一RACHスロットパターンを定義することは難しい。よって、RACHスロットパターンを定義するための原則は、実際に送信されたSSブロックに関する情報がRACHリソース設定よりも優先されることのみで定義することができる。
RACHリソースに対するRACHスロット設定区間(duration)は、10ms/20msであってもよく、かかるRACHスロット設定区間は、ネットワーク作動及び負荷を考慮して決定される。また、80ms及び160msのようにより大きい周期を有するRACHリソースに対するRACHスロットパターン設定(Configuration)を支援するためにネットワークは、20msスロットパターンのような基本スロットパターンに基づいてRACHスロットパターンの周期を提供する。
具体的には、RACHリソースを含むことのできるスロットパターンは、SSブロックが送信される可能性のある候補スロットの位置とは関係なく設定されてもよく、SSブロックが送信される可能性のある候補スロットの位置に設定されてもよい。
図20は、6GHz以下の帯域の10msウィンドウ内においてSSブロックが送信可能な候補スロットの位置を示す図である。6GHz以下においてSSブロック送信に使用され得る副搬送波間隔(Subcarrier Spacing)は、15kHzと30kHzであり、SSブロックが送信可能な数(L)は最大8個である。
仮に、6GHzにおいてRACHプリアンブル送信のために、l.25kHz又は5kHzの副搬送波間隔を有する長いシーケンス(long sequence)が使用される場合、RACHリソースとして予約可能なRACHスロットパターン設定(RACH slot pattern configuration)は、長さ1msのスロットに基づいて設定される。[表8]は、上述のように、長さ1msのスロットに基づいて設定されたRACHスロットパターン設定の例示である。
なお、以下の[表8]に用いられるRACHプリアンブルフォーマットの正確な情報は、別途にシグナリングされてもよい。
Figure 0006616551
Figure 0006616551

一方、短いシーケンスのRACHスロットパターンの場合は、15/30/60/120kHzのようにRACHプリアンブルの副搬送波間隔(Spacing)を有するPUSCHスロット境界と整列されることを考慮して、Msg 1の副搬送波間隔に基づいて決定される。RACHスロットパターンがMsg 1の副搬送波間隔に基づいて決定されるとは、Msg 1の副搬送波間隔によって決定されるスロット長を基準単位としてRACHスロットパターン情報を決定し、UEにシグナリングすることである。Msg 1の副搬送波間隔は、6GHz以下において15/30kHzの副搬送波間隔のみ使用され、6GHz以上においては60/120kHzの副搬送波間隔が使用される。
SSブロックの副搬送波間隔とMsg 1の副搬送波間隔とは相違し得る。例えば、6GHz未満の帯域幅では、SSブロックの副搬送波間隔が15kHzであり、Msg 1の副搬送波間隔が30kHz、又はSSブロックの副搬送波間隔が30kHzであり、Msg 1の副搬送波間隔が15kHzであってもよい。同様に、SSブロックの副搬送波間隔が120kHzであり、Msg 1の副搬送波間隔が60kHz、又はSSブロックの副搬送波間隔が240kHzであり、Msg 1の副搬送波間隔が120kHzであってもよい。
一方、RACHスロットパターンは、上りリンクスロット設定情報に関するものであるため、RACHスロットパターンは、少なくともMsg 1ニューマロロジーのResolutionを有する。したがって、SSブロックの副搬送波間隔とは関係なく、RACHリソースに対するRACHスロットパターンは、SSブロックが送信され得るスロット/時間区間(duration)を考慮して、Msg 1の副搬送波間隔に基づいて決定される。また、上述のように、SSブロック割り当てを考慮したRACHリソース割り当ての原理は、長いシーケンスベースRACHプリアンブルに対して論議したことと同様に、実際に送信されたSSブロックに関する情報がRACHリソース設定よりも優先することのみで定義できる。
また、15kHz副搬送波間隔を有するRACHプリアンブルフォーマットの場合、RACHスロット長が15kHzの副搬送波間隔に基づいて決定される。すなわち、この場合、RACHスロット長は1msであり、よって15kHzの副搬送波間隔を有するRACHプリアンブルは、1msスロット内において少なくとも1つのシンボル(好ましくは、2つ以上のシンボル)に配置されるRACHスロットパターンを有してもよい。また、15kHzの副搬送波間隔に基づくRACHスロット長は1msであるため、前記15kHzの副搬送波間隔に基づくRACHスロットパターンは、長さ1msのスロットの観点から、RACHスロットパターンが定義される長いシーケンスに対するRACHスロットパターンとして利用されてもよい。
つまり、15kHzの副搬送波間隔を有するRACHプリアンブルフォーマットに対するスロットパターンは、前記[表8]のように、長いシーケンスを有するRACHプリアンブルフォーマットと同一のパターンを使用することができる。
また、30kHzの副搬送波間隔を有するRACHプリアンブルフォーマットの場合、RACHスロット長は、30kHzの副搬送波間隔に基づいて決定される。すなわち、RACHスロット長は0.5msであり、無線フレーム当たり20スロットを含む。同様に、60kHzの副搬送波間隔を有するRACHプリアンブルフォーマットの場合、RACHスロットパターンは、0.25msスロット、すなわち、無線フレーム当たり40スロットを含み、RACHプリアンブルフォーマットが120kHzの副搬送波間隔を有する場合、RACHスロットパターンは、無線フレーム当たり80スロットに基づいて決定される。よって、RACHスロットパターンは、RACHプリアンブルの副搬送波間隔によって特定されることができる。言い換えれば、RACHプリアンブルの副搬送波間隔によって、M個の状態(state)が特定される必要があり、副搬送波間隔による各状態は異なるRACHスロット頻度(特定の時間区間内におけるRACHスロットの数)及び/又は周期性を有する。
その他の方法では、15kHz副搬送波間隔のためのRACHスロットパターンのような基本スロットパターン(basic slot pattern)が時間領域において繰り返されることで、さらに広い副搬送波間隔のために使用されることができる。
かかる方法は、上述した長さ1msのスロットをベースとしたRACHスロットパターンを再使用するが、副搬送波間隔によるスロット長をscale down方式で縮約してパターンを構成する方式である。例えば、副搬送波間隔が30kHzである場合、スロット長が0.5msに減縮されて無線フレームには20個のスロットが含まれる。すなわち、[表8]においてRACHスロットパターン設定インデックス0の場合、偶数のフレームにおいて、スロットインデックス0がRACHリソースとして予約される。つまり、RACHスロットパターンの基準は、10msの無線フレームに10個のスロットが含まれるとみなされる。これを30kHzの副搬送波間隔を有するスロットにスケーリングする場合、10msの無線フレーム内において10個のスロットが2グループを存在する。すなわち、該当時間の長さ(10ms)の間、RACHスロットパターン基準(RACH slot pattern base)として10個のスロットを有する2つのスロットパターンが存在する。このとき、実際にRACHリソースに割り当てられるスロットはRACHスロットパターン基準単位でシグナリングすることができるが、例えば、毎偶数システムのフレームナンバーごとに、以下のようにビットマップをシグナリングし、RACHリソースに割り当てられたスロットを特定することができる。
− 11’: 10ms無線フレーム内で繰り返される2つ束の10個単位のスロットパターンが全てRACHリソースのためのRACHスロットパターンとして有効である。
− 10’: 10ms無線フレーム内で繰り返される2つ束の10個単位のスロットパターンのうち、一番目のパターンのみがRACHリソースのためのRACHスロットパターンとして有効である。
− 01’: 10ms無線フレーム内で繰り返される2つ束の10個単位のスロットパターンのうち、二番目のパターンのみがRACHリソースのためのRACHスロットパターンとして有効である。
同様に、60kHzの副搬送波間隔を有するスロットで前記RACHスロットパターン基準をスケーリングすれば、10ms無線フレーム内で10個のスロット束が4つ存在するが、該当時間の長さ(10ms)の間に、10個のスロットをRACHスロットパターンウィンドウとして有する4つのRACHスロットパターンが存在し、120kHzの副搬送波間隔を有するスロットの場合、8つのRACHスロットパターンが存在する。
すなわち、15kHzの副搬送波間隔に基づいて、まずRACHスロットパターン設定(slot pattern configuration)を構成して、RACHスロットパターンのスロット長を決定する副搬送波間隔が増加するにつれて、基準時間(例えば、10ms)内において複数のスロットパターンが繰り返されてもよく、繰り返されるN個のスロット束のうち、実際RACHリソースとして用いられる束がいずれなのかをビットマップなどの形態でシグナリングすることができる。
(2) RACHスロットパターン設定方法2
長いシーケンスのためのRACHプリアンブルが少なくとも1msの長さであるため、RACHスロットパターンは、長さ1msのスロットの観点から設定される。図20は、6GHz帯域以下の場合、10msのウィンドウ内において、SSブロックが送信可能なスロットの位置を示す。ただし、図20に示すように、SSブロックが送信可能な候補スロットの位置は定義されるが、前記候補スロットが常にSSブロックのために予約されるのではない。また、RACHリソースのためのRACHスロットパターンは、SSブロック送信のためのスロットの位置に大きく依存する。よって、実際にSSブロックを送信したスロットを考慮して、RACHスロットパターンを定義することは現実的に難しい。よって、本発明では、帯域幅に応じて送信可能なSSブロックの最大数を考慮して、RACHリソースのためのスロット割り当て(allocation)を提案する。
Figure 0006616551
表9は、6GHz以下の帯域において無線フレーム内のRACHリソースのためのRACHスロットインデックスを示す。表9を参照して、SSブロックの最大数に相応するRACHリソースの最大数を支援する方法を説明すると、6GHz以下の帯域では主にCDM/FDMed方式が用いられるため、RACHリソースは5msのSSブロック送信周期(period)を考慮して論議され、RACHリソースパターンは10ms/20ms区間(duration)内に設定される。
なお、80ms/160msウィンドウ内でRACHリソース割り当てを支援するためには、RACHリソースの開始位置に対するオフセット値は10ms又は20msのような基本時間区間(duration)に基づいて決定される。
一方、短いシーケンスの場合、RACHスロットパターンは、15/30/60/120kHzのように、RACHプリアンブルの副搬送波間隔を有するPUSCHスロットの境界に整列されることを考慮して、Msg 1の副搬送波間隔に基づいて決定される。Msg 1の副搬送波間隔の場合、6GHz以下の帯域では、15/30kHzの副搬送波間隔が用いられ、6GHz以上の帯域では、60/120kHzの副搬送波間隔が用いられる。
SSブロックの副搬送波間隔とMsg 1に対する副搬送波間隔とは相違してもよい。例えば、6GHz未満の帯域幅では、SSブロックの副搬送波間隔が15kHzであり、Msg 1の副搬送波間隔が30kH、又はSSブロックの副搬送波間隔が30kHzであり、Msg 1の副搬送波間隔が15kHzであってもよい。同様に、6GHz以上の帯域幅では、120kHzの副搬送波間隔を有するSSブロックと60kHzの副搬送波間隔を有するMsg 1が送信されるか、240kHzの副搬送波間隔を有するSSブロック及び120kHzの副搬送波間隔を有するMsg 1が送信されてもよい。一方、RACHスロットパターンは、上りリンクスロット構成情報に関するものであるため、Msg 1ニューマロロジーのResolutionに基づいて設定される。したがって、SSブロックの副搬送波間隔には関係なく、RACHリソースに対するRACHスロットパターンは、SSブロックが送信可能なスロット/時間区間(duration)を考慮して、Msg 1の副搬送波間隔に基づいて決定される。ここで、RACHスロットパターンがMsg 1の副搬送波間隔に基づいて決定されるとは、Msg 1の副搬送波間隔によって決定されるスロット長を基準単位としてRACHスロットパターン情報を決定して、UEにシグナリングすることである。
また、15kHzの副搬送波間隔を有するRACHプリアンブルフォーマットの場合、RACHスロット長が15kHzの副搬送波間隔に基づいて決定される。すなわち、この場合、RACHスロット長は1msであり、よって15kHzの副搬送波間隔を有するRACHプリアンブルは、1msスロット内において少なくとも1つのシンボル(好ましくは、2つ以上のシンボル)に配置されるRACHスロットパターンを有する。また、15kHzの副搬送波間隔に基づくRACHスロット長は1msであるため、前記15kHzの副搬送波間隔に基づくRACHスロットパターンは、長さ1msのスロット観点からRACHスロットパターンが定義される、長いシーケンスに対するRACHスロットパターンとしても利用される。
また、30kHzの副搬送波間隔を有するRACHプリアンブルフォーマットの場合、RACHスロット長は30kHzの副搬送波間隔に基づいて決定される。すなわち、RACHスロット長は0.5msであり、無線フレーム当たり20スロットを含む。図21は、6GHz未満の帯域においてSSブロックが送信可能なスロットの位置を示す。無線フレーム内におけるRACHリソースのためのスロットの位置は、SSブロックの副搬送波間隔及びRACH Msg 1の副搬送波間隔に基づいて、[表10]のように決定される。
Figure 0006616551
RACHスロットパターンは60kHzの副搬送波間隔を用いる場合、長さ0.25msのスロット及び無線フレーム当たり40スロットを含むことをベースとし、120kHzの副搬送波間隔を用いる場合、長さ0.125msのスロット及び無線フレーム当たり80スロットを含むことをベースとする。したがって、RACHスロットパターンは、RACHプリアンブルの副搬送波間隔に応じて相違してもよい。図22は、6GHz以上の帯域において、SSブロックの副搬送波間隔及びMsg 1の副搬送波間隔をベースとしてSSブロックが送信可能なスロットの位置を示し、無線フレーム内でRACHリソースのためのスロットの位置は、SSブロックの副搬送波間隔及びRACH Msg 1の副搬送波間隔をベースとして、[表11]のように決定される。
Figure 0006616551
要するに、RACHプリアンブルのための副搬送波間隔当たりM個の状態(state)が特定される必要があり、副搬送波間隔による各状態は相違するRACHスロットの頻度及び/又は周期を有してもよい。
6. ATSS(Actual Transmitted Synchronization Signal)及びRACHリソース間の優先順位
以下では、RACHリソース設定のためのRACHスロットパターンに含まれた特定のスロットにおいてSSブロックが実際に送信される場合(以下、実際に送信されるSSブロックは「ATSS」と称する)、又はPRACH設定ウィンドウ(configuration window)又はPRACH設定周期(Configuration Period)内の特定のRACHスロットパターンに該当する区間でATSSが生じた場合、これを解決する方案を提案する。
RACHリソースとATSSとの衝突関係は、上述したRACHスロットパターン設定方法1及び2のいずれにおいても生じ得る。ただし、相違点は、方法1の場合、スロット単位におけるATSSとの衝突が生じるが、方法2の場合は、SSブロックの送信周期によって衝突が生じる。
かかる問題をより効率的に解決するために、RACHスロットパターンを設定する前記[表8]の3列目に対応するシステムフレームナンバーが偶数であるか否かによって、RACHスロット設定インデックス(slot configuration index)が変更されるが、これとは異なり、特定のm個のスロットを基本単位として、例えば、10個又は20個のスロットを基本単位として、前記RACHスロットパターン設定表(slot pattern configuration table)を構成することができる。
このとき、RACHプリアンブルフォーマット、msg 1の副搬送波間隔及びRACHスロットパターンを構成するスロット長に応じて、RACHスロットパターン設定(slot pattern configuration)のための基準が変更されてもよい。例えば、1msのスロットの場合、RACHスロットパターン設定の基準は10個のスロットになってもよく、0.25msのスロットの場合、RACHスロットパターン設定の基準は20個のスロットになってもよい。以下では、RACHスロットパターンを決定する単位長さをRACHスロットパターンベース(slot pattern base)といい、このRACHスロットパターンベースは絶対的時間単位、すなわち、ms単位よりはスロットの数で単位が指定されると仮定する。
RACHリソース設定(Configuration)のためのRACHスロットパターンベースを前記[表8]のような方式で構成すれば、以下の[表12]のようである。
Figure 0006616551
ただし、[表8]と[表12]との相違点は、RACHスロットパターンベース(slot pattern base)の長さ単位でRACHスロットパターン設定表を構成することである。すなわち、実際RACHリソース設定ウィンドウ(resource configuration window)内において1つ以上のRACHスロットパターンベースが繰り返されてもよい。RACHリソース設定ウィンドウ(resource configuration window)は、RACHリソースが設定される時間区間を指定して、該当ウィンドウ単位でRACHリソース設定を繰り返す。例えば、RACHスロットパターンベース(Slot pattern base)は10スロットであるが、RACHリソース設定ウィンドウが40個のスロットからなる場合、40個のスロットの間に10個のスロット単位のRACHスロットパターンベースが4回繰り返されることになる。このとき、繰り返される4個のRACHスロットパターンベース(slot pattern base)は全てRACHリソースとして割り当てられてもよく、一部のみがRACHリソースとして割り当てられてもよい。すなわち、4個のRACHスロットパターンベース#0、#1、#2、#3のうち、RACHリソースとして割り当てられるRACHスロットパターンベース番号をシグナリングすることができる。例えば、
− 全てがRACHリソースとして割り当てられる場合: 1111
− 一部RACHスロットパターンベースのみがRACHリソースとして割り当てられる場合:何番目のRACHスロットパターンベースがRACHリソースとして割り当てられるのかを直接にシグナリング(例えば、1番、3番のRACHスロットパターンベースがRACHリソースとして割り当てられる場合 - 0101)
一方、このように、特定のRACHスロットパターンベースをRACHリソースとして設定するか否かを決定してシグナリングするとき、SSブロックの送信周期を共に考慮する。例えば、前記実施例において、RACHスロット長が1msであり、SSブロックの送信周期が20msであると仮定すると、SSブロックが送信されるフレームに該当する区間においてはRACHリソースが設定されないことと設定することができる。より具体的には、RACHスロットパターンベース#0、#1、#2、#3はそれぞれ、長さ10msに該当する0番目、1番目、2番目、3番目のフレームにマッピングされるが、SSブロックが0番、2番のフレークで送信される場合、RACHスロットパターンベース#0、#2はRACHリソース設定から除外される。また、1、3番のフレームにおいてRACHリソースのためのRACHスロットパターンが適用される。しかし、SSブロック送信周期が40msである場合、0番目のフレームはRACHリソース設定から除外され、1,2,3番目のフレームがRACHリソースとして設定されるが、RACHリソースとして設定されないフレームに対しては別途のシグナリングは必要である。
PRACH設定ウィンドウがRACHスロットパターンベースの1より大きい整数倍の長さである場合、繰り返されるRACHスロットパターンベースのうち、RACHリソースとして有効なRACHスロットパターンベース番号をシグナリングすると、UEは該当RACHスロットパターンベースが適用される区間だけにおいてRACHリソースが設定されることと認知して、他の区間はRACHリソースとして認知しない。
言い換えれば、RACHリソースの使用のために有効なRACHスロットパターンベース区間の一部がATSSと重なる場合、
1) 該当RACHスロットパターンベース全区間がRACHリソースとして用いられない。ただし、この場合でも、PRACH設定ウィンドウ内においてATSSと重ならない有効なRACHスロットパターンベースがさらに存在する場合には用いられる。
2) 該当RACHスロットパターンベース区間においてハーフフレーム単位でATSSが含まれたハーフフレーム又はフレームはRACHリソースとして用いられず、ATSSが含まれていないハーフフレーム又はフレームはRACHリソースとして用いられる。特に、PRACH設定ウィンドウ内において複数のRACHスロットパターンベースが存在して、SSブロック送信周期がRACHスロットパターンベースの長さよりも長いとき、本方式を適用することができる。
3) 該当RACHスロットパターンベース区間内においてATSSが含まれたスロットはRACHリソースとして用いられず、ATSSが含まれていないスロットをRACHリソースとして用いる。特に、PRACH設定ウィンドウ(configuration window)内に1つのRACHスロットパターンベース(slot pattern base)のみが存在して、SSブロックの送信周期がRACHスロットパターンベース(slot pattern base)の長さと同一の場合には、必ずこの方式を使用する。
4) 前記1)、2)、3)のうち、いずれの方式でATSSとの衝突を避けてRACHリソースを使用するかについて、別途のシグナリング又は約束が必要であり、この3つの方式は、条件/環境に応じて組み合わせ/選択することができる。
RACHリソース設定のためのRACHスロットパターンは、上述のように、短いシーケンスの場合、Msg 1の副搬送波間隔をベースとしてRACHスロットパターンをシグナリングし、長いシーケンスの場合は、15kHzの副搬送波間隔に基づいて構成されるスロット長(1ms)をベースとしてRACHスロットパターンをシグナリングすることを提案した。また、短いシーケンスベースのMsg 1の場合、RACHスロットパターンをMsg 1で構成する理由は、事実上、PUSCH送信のためのスロット境界整列(slot boundary alignment)のためである。そうであれば、Msg 3のようなPUSCHを送信するとき、Msg 1の副搬送波間隔をそのまま従うべきであると解釈されるが、様々な理由によって、Msg 1の副搬送波間隔とMsg 3の副搬送波間隔とは異なってもよい。また、ネットワークがフォールバックモードなどの動作のために、副搬送波間隔やスロット長のような基本(default)ニューマロロジー又は参照ニューマロロジー(reference numerology)を設定することができるが、この場合、RACHリソース設定のためのRACHスロットパターンは、基本(default)ニューマロロジー又は参照ニューマロロジー(reference numerology)をベースとして決定される。なお、このような基本(default) ニューマロロジー又は参照ニューマロロジー(reference numerology)は、ネットワークがPRACH設定(Configuration)又はシステム情報としてUEにシグナリングすることができる。また、基本ニューマロロジー又は参照ニューマロロジーは、特定値で直接指定されるか、Msg 1の各副搬送波間隔ごとにRACHリソース設定のためのスロットパターンを決定するRACHスロットのニューマロロジーと連結される。
7. RACHリソースとSSブロックインデックスとの連携
以下では、初期アクセス状態において、基地局の送信ビーム方向とRACHリソースに対する連結情報をUEにシグナリングする方法を具体的に説明する。基地局の送信ビーム方向とは、上述のように、SSブロックのビーム方向を示し、さらにUEが初期アクセス状態でSSブロックの他に特定のRSを観測/測定できる場合、該当RSを示してもよい。例えば、前記特定のRSはCSI-RSであってもよい。
NRでは、基地局のビームの数に応じて、複数のSSブロックが形成されて送信されてもよい。また、各々のSSブロックは固有なインデックスを有してもよく、UEはPSS/SSSを検出してPBCHをデコーティングすることで、該当PSS/SSS/PBCHが属するSSブロックのインデックスを類推することができる。その後、基地局が送信するシステム情報には、RACH設定情報が含まれるが、前記RACH設定情報は、複数のRACHリソースに対するリスト、前記複数のRACHリソースを識別するための情報及び各RACHリソースとSSブロックに対する連結情報を含んでもよい。
上述のように、RACHリソースをUEがPRACHプリアンブルを送信可能な時間/周波数リソースに限定したことと同様に、後述でもRACHリソースは、時間/周波数リソースに限定される。以下では、時間軸におけるRACH位置のみならず、周波数軸におけるRACH位置を指示する方法も説明する。上述において1つのRACHリソースは1つ以上のSSブロックと連結され、時間軸に連続しているRACHリソースをRACHリソースセットと定義したことがある。時間軸のみならず周波数軸に連続している複数のRACHリソースセットを1つのRACHリソースブロックとして定義する。
図23は、RACHリソースブロックを例示する図である。
図23のように、RACHリソースブロックは、RACHリソースが集合している1つの時間/周波数チャンクとして定義され、RACHリソースブロック内のそれぞれのRACHリソースは、時間/周波数の位置によって決定される固有なインデックスを有する。
RACHリソースブロック内のRACHリソースインデックスは、特定の規則に従ってマッピングされる。例えば、周波数−時間の手順又は時間−周波数の手順でRACHリソースインデックスが与えられる。例えば、図21を参照すると、周波数−時間の手順の場合、RACHリソースブロック内のRACHリソースが以下のようにインデックスされる。
- RACHリソース #0 (時間、周波数): (0,0)、
- RACHリソース #1: (1, 0)
- RACHリソース #2: (2, 0)
- ……….
ここで、RACHリソースブロックにおいて時間軸の長さの単位は、RACHプリアンブルフォーマットによって決定されてもよく、周波数軸の長さの単位は、RACHリソース帯域幅(例えば、1.08MHz)又はリソースブロックグループ(Resource Block Group, RBG)単位によって決定されてもよい。
一方、UEが特定のRACHプリアンブルを送信することで、システム情報送信を要請する場合、一システム/セル内にはSSブロックの数又はシステム情報送信の目的のために、複数のRACHリソースブロックが指定されてもよい。特に、SSブロックの数が多い場合、上述したように、それぞれのSSブロックに該当する全てのRACHリソースを連続して設定する場合、上りリンク/下りリンクデータサービスに大きく制約が加わることがあるため、ネットワークは時間/周波数軸に連続的なRACHリソースをRACHリソースブロックと設定して、前記設定されたRACHリソースブロックのそれぞれを不連続的に配置することができる。よって、複数のRACHリソースブロックが設定されてもよく、それぞれのRACHリソースブロックが固有のインデックスを有してもよい。
言い換えれば、RACHリソースブロックが設定された区間(以下、RACH設定区間)が1つのシステム/セル内で指定されてもよく、前記RACH設定区間内で1つ以上のRACHブロックが存在してもよい。図22は、本発明に係るRACH設定区間を例示する図である。ネットワーク/gNBがUEに通知するべき情報には、RACH設定区間の長さ、RACHリソースブロック(つまり、RACHブロック)の数、各RACHブロックの位置などがある。図24のように、RACH設定区間(つまり、RACH設定周期)内の各RACHブロック間の間隔がUEに通知されてもよい。例えば、ネットワーク/gNBは、RACHブロック#0からのスロットの数又は絶対時間単位のオフセット情報のような相対的な位置をRACHブロックの位置情報として通知するか、RACH設定区間内においてRACHブロックの開始スロットインデックスをRACHブロック別に直接に通知することもできる。
RACHリソースブロック内の各RACHリソースは固有な設定を有してもよい。この場合、各RACHリソースはRACHリソースの発生頻度及び周期が相違してもよく、各RACHリソースは特定のSSブロック、CSI−RS又は下りリンクビーム方向に連結されてもよい。このような連結関係がある場合、前記連結関係に関する情報もUEに提供される。図22は、RACHリソースブロック内の各RACHリソースの設定を例示する図である。特定のRACHリソース周期内においてRACHリソースとして予約可能なスロットインデックスが標準文書に定義されてもよく、図25のように、RACHリソースの発生頻度に応じて互いに異なる設定番号が割り当てられてもよい。ネットワーク/gNBは、システム情報を通じて特定の設定番号を通知することで、特定のRACHリソースがどんな発生頻度/周期を有するのかをUEに通知することができる。
ネットワークは、UEにRACHリソースブロック(すなわち、RACHブロック)の数及び各RACHリソースブロックの開始点(例え、スロットインデックス)を通知することができる。さらに、ネットワークは、各RACHリソースブロックに関する情報をUEに通知するとき、時間軸におけるRACHリソースの数(Nt)、周波数軸におけるRACHリソースの数(Nf)を通知する。Nt及びNfは、各RACHリソースブロックにおいて相違してもよい。ネットワーク/gNBは、RACHリソースブロック内においてRACHリソースインデックスをRACHリソースの時間/周波数の位置に応じてマッピングし、各RACHリソースの周期/発生頻度の情報(例え、設定番号)、連結されるSSブロック又はCSI−RSインデックスなどの情報をUEに通知する。このとき、前記各RACHリソースの周期/発生頻度は、上述のように、RACHリソースの発生頻度に応じて設定された特定の設定番号を指示することで通知することができる。
また、RACHプリアンブルフォーマットは、各RACHリソースごとに設定されてもよい。もちろん、システムにおいて全てのRACHプリアンブルフォーマットを一様に構成することもできるが、現実的にはRACHリソースブロック内においては副搬送波間隔、繰り返し回数などを同一に維持して、RACHリソースブロック間には上述したRACHプリアンブルフォーマットを相違するように設定してもよい。ただし、同一のRACHリソースブロック内においてRACHプリアンブルの繰り返し回数は同一に設定されるが、該当RACHリソースブロックに含まれたそれぞれのRACHリソースは互いに異なるプリアンブルシーケンスを使用するように設定されてもよい。例えば、RACHリソースブロック内のそれぞれのRACHリソースは、ルートインデックス又は循環シフト(cyclic shift, CS)バージョンなどが相違するように設定されてもよい。
RACH設定に対するシグナリングの観点から再び説明すると、ネットワークはRACHプリアンブル送信のための時間/周波数リソース、つまり、RACHリソースを識別する過程を行う。このために、本発明において、RACHリソースインデックスは、RACHリソースブロックインデックスとRACHリソースブロック内のRACHリソースインデックスによって決定され、各RACHリソースインデックスのRACHリソースの発生頻度/周期は、複数のRACH設定番号のそれぞれに対応される。さらに、ネットワークは各RACHリソースで使用可能なRACHプリアンブル情報をUEに送信し、連結されているSSブロックインデックス又はCSI−RSインデックス情報を送信する。これによって、UEは特定の下りリンクビーム方向に対してRACHを行おうとするとき、使用するRACH時間/周波数リソース及びプリアンブルリソースに関する情報を獲得することができ、該当リソースを用いてRACHを行うことができる。
一方、上述したように、RACHリソース設定のためのRACHスロットパターンの決定において、RACHリソースを含むことのできるRACHスロットパターンはSSブロックが送信可能なスロットとは関係なく設定されるか、又はSSブロックが送信可能なスロットに対して設定されてもよい。
(1) RACHリソースのマルチプレキシング(TDM/FDM/CDM)
6GHz以下の帯域においてSSブロックは最大8個まで送信できるが、最大8個のSSブロックが送信される場合のために、RACHスロットパターンウィンドウ(slot pattern window)内でRACHリソースが予約され得るスロットが必ず8個必要な場合もあるが、必ずしも8個を予約しなくてもよい。一応、SSブロックの数だけRACHリソースのための長さ1msのスロットを8個予約することは、システムの大きいオーバーヘッドとして作用して、6GHz以下の帯域であるため、mmWaveとは異なってデジタルビームフォーミングが適用できるため、一時点にgNBが一方向のみに信号を送信/受信しなければならないという制約がなくなるためである。
よって、6GHz以下の帯域におけるRACHリソースは、設定されたスロット内においてCDM又はFDMされ得る。すなわち、送信されるSSブロックの数が多くなるほど、周波数軸リソースを増やすか、RACHプリアンブルリソースをSSブロック同士に分けて使用する。
一方、6GHz以上の帯域におけるSSブロックは、最大に64個又は128個まで送信できるが、128個のSSブロックが送信された場合、このために128個のRACHリソースをTDMに常に設定すべきではない。小さい副搬送波間隔を有する場合とは異なり、大きい副搬送波間隔を使用する場合、時間軸にスロット長は減るが、128個のRACHリソースを常にTDMに設定しておくのは、ネットワークの負担となる。よって、SSブロック送信のためには、1つの方向のみにビームフォーミングを行うが、gNBの能力に応じて同時に複数の方向にRACHプリアンブルを受信するか、同時に複数の方向に信号送信が可能な場合、前記6GHz以下のシステムと同様に、RACHリソースのTDMに加えてCDM/FDMを共に考慮する。
このために、指示されるRACHスロットパターン設定(slot pattern configuration)下において、該当スロットでFDMされるリソースの数が共にシグナリングされる。RACHプリアンブル送信のための周波数軸情報、すなわち、RACHリソースがFDMされる場合、開始周波数情報(starting frequency information)といくつかの周波数帯域がRACHリソースとして割り当てられるか、開始周波数から周波数が増加する方向に周波数が割り当てられるのか、減少する方向に周波数が割り当てられるのかがシグナリング又はUEとgNBとの間に特定の方向に約束されている必要がある。周波数軸に複数のリソースがRACHリソースとしてFDMされる場合、特定の時点又は特定のスロットからFDMされるリソース又は帯域に対してインデックシングすることができ、各SSブロックでマッピングされる周波数リソースインデックス情報がシグナリングされるか、UEとgNBとの間に特定の方式で約束されている必要がある。
また、RACHプリアンブルを用いてCDMされる場合、各SSブロック別に何個のRACHプリアンブルが割り当てられるのかに関する情報がシグナリングされる。また、CDM/FDMされる場合を考慮して、各SSブロックに割り当てられるRACHプリアンブルの数がシグナリングされる。
(2) RMSI(SIB 1/2)内におけるATSSブロック
SSブロックは最大8個又は128個送信できるが、実際のシステムにおいては8個又は128個以下で送信できる。gNBが何個のSSブロックを送信したかの情報を別途にシグナリングしない場合、UEはこの情報を正確に知っているため、gNBはこの情報をRMSI(Remaining Minimum System Information)を通じてシグナリングする。この情報をActual Transmitted SS blocks(ATSS)という。
RACHリソースは、システムの無駄を防ぐために、標準で具現する最大のSSブロック送信数を仮定して割り当てるより、実際に送信されたSSブロックをベースとして割り当てることが望ましい。前記[表9]のように、RACHリソース割り当てのためのRACHスロットパターンを構成する場合、RACHスロットパターン設定(slot pattern configuration)において指示したスロットにSSブロックが送信されるか、又は送信されないことがあるが、この情報は前記RMSIに含まれたATSSを通じて検出することができる。前記RACHスロットパター設定方法2においても、RACHリソースのためのRACHスロットパターンは、SSブロックが送信可能なスロットを除外して設定したが、実際のRACHリソースとのマッピングはATSSをベースとする。RACHスロットパターン設定(Slot pattern configuration)とATSS情報とが一部衝突する場合、すなわち、RACHスロットパターンにおいて指示したスロットにSSブロックが送信されることとATSSを指示するRMSIが通知する場合、UEは該当スロットにおいてはSSブロックが送信されるため、RACHリソースとして用いられないことと認知する。つまり、該当スロットにおけるRACHプリアンブル送信を試みることなく、該当スロットはSSブロックとRACHリソース関連(association)のためのマッピング方式からも除外する。
一方、UEはPRACH設定(configuration)とATSS情報とを組み合わせて、使用可能なRACHスロットの数及び位置を確認する。時間軸上で可用なスロットの数及びRACHプリアンブルフォーマットによるRACHスロット内のRACHリソースの数、周波数軸リソースの数、及び/又は各SSブロックで使用可能なRACHプリアンブルの数の情報を組み合わせて、SSブロックとRACHリソースとの関関連係を決定する。すなわち、SSブロックとRACHリソースとの関関連係は、RACHリソース割り当てのためのRACHスロットパターン及びSSブロックの最大数によって予め規定されるのではなく、提供されるシグナリングによって決定されてマッピングされるものである。
仮に、RACHリソース間TDMされた後、RACHリソースがFDMされれば、周波数軸リソースの位置と共に、周波数軸リソースの数、1つのSSブロックがいくつの周波数リソースに割り当てられるのかに関する情報、各周波数リソースに割り当てられるRACHプリアンブルの数に関する情報がシグナリングされる。仮に、RACHリソース間TDMされた後、RACHリソースがCDMされれば、各SSブロックで使用可能なRACHプリアンブルの数の情報がシグナリングされる。
言い換えれば、NsをSSブロックの数とするとき、以下の情報をシグナリングする。
− Nf: 一時点にFDMされるRACHリソースの数、
− Nfc: 1つの周波数リソースにおいて使用可能なRACHプリアンブルの数
− Nfs:1つのSSブロックと関連(association)され得る周波数リソースの数
− Nc: 各SSブロック別に割り当てられるRACHプリアンブルの数
UEは、RACHスロットパターン設定(configuration)とATSS情報とを組み合わせて、時間軸上で可用なRACHリソースとして使用できるスロットの数及び位置を検出し、シグナリングされたRACHプリアンブルフォーマットを用いて、時間軸上でのRACHリソースの数を算出する。
その後、前記シグナリングされた周波数及びコードドメインの情報を組み合わせて、RACHリソースとして使用可能な時間/周波数/コード情報を算出し、該当RACHリソース別にインデックシングを行った後、SSブロックと該当RACHリソースのインデックスとのマッピングを算出する。なお、UEがRACHリソースインデックスを計算する方式は、UEとネットワークとの間に予め約束された方式で行われ、実際に送信されたSSブロックは、SSブロックインデックスの昇順に、RACHリソースインデックスの昇順にそれぞれマッピング/関連(mapping/association)される。
すなわち、ATSSを指示するRMSIを通じてシグナリングされたSSブロックインデックスが2,4,5,7であり、RACHリソースインデックスが0,1,2,3であるとき、2番SSブロックは0番RACHリソースと、4番SSブロックは1番RACHリソースと、5番SSブロックは2番RACHリソースと、7番SSブロックは3番RACHリソースとそれぞれマッピングされる。
RACHリソースをインデックシングする手順は、インデックシングの基準時間/周波数領域においてコードリソースの順にインデックスして、同時にコードリソースに対してインデックスした後、周波数リソースにインデックスが増加して、またコードリソースの順にインデックスする。または、同時間において周波数リソースに対して全てインデックスした後、時間リソースに移ってインデックスを与える。
与えられた手順で、RACHリソースに対するインデックシングを行った後、全体のRACHリソースの数とSSブロックの数とが常に一致するとは限らない。この場合、主にRACHリソースの数がSSブロックの数より同等か大きくなるが、全てのATSSと関連した後に残ったRACHリソースがあり、これによって、RACHリソース設定ウィンドウ(resource configuration window)又はRACHスロットパターン設定ウィンドウ(slot pattern configuration window)内において、いずれのSSブロックとも関連しないRACHリソースがある場合、該当RACH時間/周波数リソースは、RACHリソースとして予約されない。UEは、該当リソースからRACHが送信されると仮定されず、常に上りリンクが送信されるとも仮定されない。仮に、特定のATSSと関連したRACHリソースがない場合、すなわち、RACHリソースがSSブロックの数に比べて足りない場合、このためにネットワークは、UEがRACHリソースのためのRACHスロットパターン設定(slot pattern configuration)に含まれた特定のスロットと隣接したスロットをRACHリソースとして許容するシグナリングを送信してもよい。
このとき、前記シグナリングを通じて、特定のスロットインデックス及びスロットの数を指定することができ、暗黙に該当RACHスロットパターン設定(slot pattern configuration)において指示したスロットのうち、最後又は指示された特定のスロットと隣接したスロットの中で、SSブロックが送信されない最初のスロットをRACHリソースとして設定することができる。
または、RACHスロットパターン設定(slot pattern configuration)とATSSの情報とが衝突するスロットの数だけUEがさらにRACHリソースとして使用できるようにする。2つのスロットがSSブロック送信に用いられる場合、UEは該当RACHスロットパターン設定が指示するスロットのうち、SSブロック送信に使用された2つのスロットにそれぞれ隣接するスロットをRACHのためのスロットとして用いることができる。もちろん、該当スロットは、SSブロック送信のために使用されないスロットであり、隣接したスロットにおいてSSブロックが送信される場合、その以後のスロットを選択する。その後、残ったRACHリソースに対する処理は、上述と同様である。
いずれのSSブロックとも関連しないRACHリソースがある場合のためのその他の方法としては、残りのRACHリソースに対して、第一のATSSから再び順にマッピングする。すなわち、ATSSの数よりもRACHリソースが多くてもよく、好ましくは、ATSS別にk回繰り返してRACHリソースをマッピングする。言い換えれば、ATSSはRACHリソースにk回循環的に(cyclically)関連される。図26によれば、ATSSが3個であり、RACHリソースが8個である場合、3個のATSSが3個のRACHリソースにマッピングされ、また次の3個のRACHリソースにマッピングされ、2個のRACHリソースはATSSと関連しない。ATSSとRACHリソースとの数の関係は、PRACH設定ウィンドウ(configuration window)内において各ATSSが少なくとも1つのRACHリソースにマッピングされ、ネットワークの自由度によってATSSとRACHリソースのマッピングパターンがk回繰り返される。ATSSをRACHリソースにk回繰り返しマッピングしたにも残ったRACHリソースがある場合、該当RACHリソースは、実際にはRACHリソースとして予約されず、残りのRACHリソースがスロット/ミニスロット長単位である場合、UEは該当スロットにおいてDCIモニタリングを行う。このとき、kは正の整数であり、kはATSSをRACHリソースにマッピングできる最大回数である。つまり、kはfloor(RACHリソースの数/ATSSの数)であってもよい。つまり、ATSSをPRACH設定ウィンドウ内において正の整数であるkだけ繰り返しマッピングして、残りのRACHリソースはRACHリソースとして有効ではないこと意味する。
また、PRACH設定ウィンドウ内において各ATSSが少なくとも1つのRACHリソースにマッピングされるパターンは繰り返される。上述した例から具体的に説明すると、特定の区間のPRACH設定ウィンドウ内において3個のATSSが8個のRACHリソースにそれぞれ2回ずつマッピングされ、2個のRACHリソースが残った場合、同一のパターンで次の区間のPRACH設定ウィンドウにおいても、3個のATSSが8個のRACHリソースに順次に2回繰り返してマッピングされ、2個のRACHリソースが有効ではないRACHリソースであって、RACHリソースとして予約されない。
一方、前記PRACH設定ウィンドウは、前記PRACH設定ウィンドウが別途のシグナリングを通じて設定されるなどの格別な事情のない限り、RACH設定周期と同一の区間を有してもよい。すなわち、PRACH設定ウィンドウは、格別な説明のない限り、PRACH設定周期と同一であってもよい。
(3) RRCシグナリングを通じたATSSの指示
上述したATSSはPRACH設定と同時に送信される情報であって、PBCH送信以後のシステムの最も基本的な情報を送信するRMSI、すなわち、SIB1/2によって送信される情報である。ただし、該当情報はセルの全てのUEに放送すべき情報であって、最大128個のSSブロックの送信可否を指示するにはシグナリングのオーバーヘットの負担が相当である。
よって、RMSIにおいてはATSSに関する情報をフールビットマップではなく圧縮したビットマップ(compressed bit map)として送信する。ランダムアクセス手続き以後のシステムでは、サービングセルの測定のために、正確なATSS情報を提供するが、これはRRCを通じて伝達する。RMSIを通じて受信したATSS情報とRRCで受信したATSSの情報とが相違することがあるが、この場合、RRCシグナリングによるATSS情報がRMSIで送信した情報に優先する。この場合、RACHリソースに対するUEの動作に追加的な要素が考慮される。
UEはRACHリソースとして割り当てられた時間/周波数にはPUSCH/PUCCH及びいずれの下りリンクチャンネルを送受信することと仮定されない。RACHのために予約された(reserved)リソースは、SSブロックが送信されるリソースの次にリソース割り当ての優先順位を持つ。しかし、RMSIを通じて受信したATSSのうち一部のSSブロックが実際には送信されなかったことを、RRCを通じて送信されるATSS情報によってUEが知った場合、UEは実際に送信されないSSブロックと関連(association)されたRACHリソースを全て解除(release)する。つまり、解除されたリソースではRACHプリアンブルが送信されないことと仮定する。さらに、解除されたリソースは下りリンクリソースとして用いられてもよい。すなわち、UEは解除されたリソース/スロットにおいてDCIモニタリングを行う。
8. RACHスロット内におけるリソース割り当て
RACHスロットに対する情報が明確に提供されると、各RACHスロット内のRACHリソースは、RACHプリアンブルフォーマットとPRACH Msg 1によって指示される、副搬送波間隔(Subcarrier Spacing)の組み合わせに基づいて獲得され得る。
また、スロット内のRACHリソースの位置を正確に通知するために、ネットワークは、図27のように、RACHリソースの開始シンボルインデックスのような、RACHスロット類型情報をシグナリングする。このとき、開始シンボルインデックスは、0,1,又は2になり得る。RACHスロット類型情報シグナリングは、各RACHスロットごとに行われるが、シグナリングオーナーヘッドを減らすために、全てのRACHスロットに対して行うことがさらに望ましい。
(1) 周波数ドメイン設定
RACHリソースの周波数の位置は、周波数部分(Bandwitdh Part; BWP)内の上りリンクのための初期BWP及びRACH送信のためのリソース割り当て情報に基づいてシグナリングされる。
(2) RACHスロット内におけるRACHリソース割り当て
短いシーケンスベースのRACHプリアンブルを用いる場合、1つのRACHスロット内に複数のRACHリソースが含まれてもよい。この場合、RACHリソースは連続的に又は非連続的に割り当てられるが、RACHリソースの非連続的な割り当ては、柔軟性及び待機時間の減少の面からはメリットがあるが、ネットワークはいずれのシンボルがRACHのために予約されているかを指示する必要がある。よって、リソース効率及びシグナリングオーバーヘッドを考慮するとき、RACHリソースはRACHスロット内において連続的に割り当てられた方が好ましい。すなわち、RACHスロットに含まれたリソースの全てがRACHリソースとして使用されなくても、RACHスロットに複数のRACHリソースが含まれた場合、連続的に配置された方が好ましい。
一方、RACHリソースが連続的であるとき、RACHスロット内にある連続したRACHリソースのうち、最後に位置したRACHリソースは、RACHプリアンブルフォーマットBが適用され、残りのRACHリソースにはRACHプリアンブルフォーマットA/Bが適用される。
また、NRにおいて、URLLCなどを支援するために、RACHスロットの設定を以下のように行う。
− オプション1: RACHスロット内のRACHリソース割り当ては、ミニスロットをベースとして設定され、前記ミニスロット長は、IDLEモードのRMSI又は他のシステム情報送信によって決定される。
− オプション2: RACHスロットパターンはミニスロットをベースとして設定され、前記ミニスロットはIDLEモードのシステムによって支援される。
− オプション3: 動的又は半静的なシグナリングはRACHリソース設定に優先する。
一方、オプション1及び2の場合、RACHスロット内において、RACHリソースはミニスロット内で連続的に割り当てられ、RACHリソースは前記連続的にRACHリソースが割り当てられたミニスロット以後に来るミニスロットには割り当てられない。また、オプション1及び2の場合、RACHリソースが割り当てられるミニスロットに含まれるRACHリソースの開始シンボルインデックスがシグナリングされるか、RACHスロット内でミニスロットが同一のRACHリソース割り当てパターンを有してもよい。
しかし、オプション2の場合、RACHスロット内に含まれるミニスロット数の増加につれてRACHスロットパターン数が増加して、これによって、RACHスロットパターンを指定するためのオーバーヘットが大きくなり得る。よって、リソースの動的な使用及び柔軟性のために、ネットワークシグナリングは、RACHリソース設定に優先してもよい。しかし、RACHリソースは、優先順位の高いIDLEモードにおいて予約されるため、上述した方法は好ましくない。
<RACHリソース関連(Association)>
RACHリソース情報を獲得すると、RACHリソース当たり関連したSSブロックインデックスを獲得する必要がある。このために最も簡単な方法は、RACHリソース当たり関連したSSブロックインデックスをシグナリングすることである。しかし、シグナリングオーバーヘッドを減らすために、SSブロックは定義された規則を用いてRACHリソースにマッピングされるようにする。例えば、前記予め定義された規則は、SSブロックが時間領域において順次方式でRACHリソースグループにマッピングされ、実際に送信されたSSブロックがRACHリソースグループにまたマッピングされる方法が考えられる。
(1) 有効(Effective)RACHスロット及び有効(Effective)RACHシンボルの誘導(Derivation)
TDD/FDDにおいて実際に送信されたSSブロックの時間位置とは関係なく、PRACH設定に従って、RACHスロット上にRACHリソースをマッピングするため、UEはPRACH設定に含まれた情報及びRMSIを通じて送信された実際に送信されたSSブロックに関する情報を組み合わせて、有効RACHスロットを導出する。また、SSブロック送信のための候補スロットの位置が常にSSブロック送信のために予約されるのではない。すなわち、上述したように、それぞれのSSブロックが実際に送信されるか否かに関する情報は、RMSI、すなわち、実際に送信されたSSブロック情報によって指示される。
言い換えれば、UEはRMSIを通じて送信された実際に送信されたSSブロックの情報及びPRACH設定情報を組み合わせ、予め定義された規則を考慮して、有効RACHスロットを導出する。
また、UEが有効RACHスロットを導出すると、UEはシグナリングされたRACHプリアンブルフォーマット及び全てのセルに特定されたRACHスロットの開始シンボルインデックスに基づいて、有効なRACHシンボルを導出する。また、UEが有効RACHシンボルを導出するとき、すなわち、SFI(Slot Format Indication)によって上りリンクと表示されたシンボルが有効RACHシンボルであることがあるため、SFIを考慮して有効RACHシンボルを導出する。ここで、有効RACHシンボルは、RACHプリアンブルフォーマットによって定義された連続したシンボルの数を満たす。また、1つの有効RACHシンボルの集合は、1つのRACH Ocassionと定義される。
また、RACHリソースが常にRACHスロット内において連続的に割り当てられるか否か、及びRACHスロット当たりRACH Occasionの数が全てのRACHスロットにわたって同一か否かを決定する必要があるため、RACHスロット当たりRACH Occasionの数がセルに応じて相違する場合、明示的なシグナリングを行う。また、UEがRACH Occasionの全数を算出するために、ネットワークは2次元の時間/周波数リソース領域においてRACH-Config indexを通じて、FDMされるRACHリソースの数をシグナリングする。
(2) 有効RACHリソース又は有効RACH OccasionをSSブロックにマッピングするための規則
PRACH設定周期内で割り当てられるRACH Occasionの全数が決まれると、各SSブロックをRACH Occasionにマッピングする方法を決定する。仮に、SSブロック当たりRACH Occasionの数が1つである場合、すなわち、SSブロック及びRACH Occasionの一対一のマッピングが行われる場合、各SSブロックをRACH Occasionにマッピングする方法は容易に決定できる。その理由は、SSブロックを順次方式でRACH Occasionにマッピングして済むからである。同様に、FDMed RACH Occasionがある場合、SSブロックは先にFDMされたRACH Occasionにマッピングされた後、時間領域のRACH Occasionにマッピングされた方が好ましい。このとき、RACH Occasionの時間周期は、PRACH設定周期によって設定される。
一方、図28は、4個のシンボル長を有するRACHプリアンブルフォーマット、時間スロットにおいて4個のRACH Occasion及び開始シンボルインデックスが2と仮定された場合を示す。図28を参照して、SSブロックとRACH Occasionとのマッピング関係を説明すると、FDMされたRACH Ocassionが存在するとき、SSブロックが先ず周波数側にマッピングされ、次に時間軸にマッピングされる方式を用いてもよい。
RACHリソースのマッピングパターンの周期は、実際に送信されたSSブロック及びSSブロックの有効RACH Occasionとのマッピング規則に基づいて決定されるため、RACHリソースのマッピングパターンの周期及びPRACH設定周期は互いに異なってもよい。
より一般的なマッピング規則を作るために、以下の媒介変数を仮定してみる。
− X: RACH Occasionの全数
− NSSB_per_RO: RACH Occasion当たりSSブロックの数
− Nseq_per_SSB_per_RO: RACH送信Occasionに対するSSブロック当たりCBRAプリアンブルの数
− M: SSブロック当たりRACH Occasionの数、MはNseq_per_SSB/ Nseq_per_SSB_per_ROによって獲得される。
− Fd: 1つのSSブロックに同時にマッピング可能なRACH Occasionの数
1) M≧1の場合、
SSブロックが複数のRACH Occasionとマッピングされる一対多のマッピング関係を成し、Mの値がM>1の整数であり、Fd=1である場合、TDMed M個のRACH Occasionが順次に1つのSSブロックにマッピングされてもよい。
言い換えれば、RACH Occasion当たりSSブロックの数である1/Mの値が1よりも小さい場合、SSブロックはMだけのRACH Occasionにマッピングされることができ、このとき、1個のSSブロックにマッピングされるRACH Occasionは連続したRACH Occasionであってもよい。
仮に、Fd>1である場合、M RACH Occasionは、周波数−時間順にSSブロックにマッピングされる。好ましくは、MはFdの倍数である場合、単一SSブロックが所定時間でFDMされたRACH Occasionにマッピングされることができる。仮に、複数のSSブロックが同時に1つのRACH Occasionにマッピングされる場合には、ネットワークが同時に複数のSSブロックに対応するビームを受信可能な方向であることが保障されている必要がある。
上述した内容をまとめると、以下の[表13]のようである。
Figure 0006616551
2) M<1の場合
これから複数のSSブロックが1つのRACH Occasionにマッピングされる場合、すなわち、多対一のマッピングが行われる場合を説明する。Mの値が0<M<1であれば、1/M=Nにおいて、Nは1つのRACH OccasionにマッピングされるSSブロックの数と定義し、複数のSSブロックは、1つのRACH OccasionにCDMされ、複数のSSブロックに対応するビーム方向は、ネットワークが同時に受信できる方向と仮定する。
RACHプリアンブルインデックスが、RACH Occasionに64個のRACHプリアンブルインデックスが割り当てられることのように、最大に割り当てられる場合、SSブロックの各々にマッピングされたRACHプリアンブルは、RACHプリアンブルがSDM(Spatial Division Multiple Access)方式で受信されるという仮定下において、RACH受信性能を増加させるために、comb−typeでマッピングされてもよい。言い換えれば、2つのSSブロックが1つのRACH Occasionにマッピングされる場合、他のRACHプリアンブルインデックスは前記2つのSSブロックにマッピングされる。このとき、RACHプリアンブルの受信性能が向上されるように、SSブロック当たり割り当てられた実際の循環シフトはN*Ncsと定義される。
一方、複数のSSブロックが1つのRACH Occasionに関連するとき、各SSブロックに対するCBRAのプリアンブルインデックスは、RACH性能向上のために非連続的にマッピングされてもよい。また、複数のSSブロックを複数のRACH Ocassionにマッピングすることを考慮してもよいが、このマッピング方式は具現の複雑さをもたらすため、マッピング類型から除外した方がさらに好ましい。
(4) RACHリソースをRACHプリアンブルにマッピングするための規則
RACHリソース及びRACHリソースグループ当たりRACHプリアンブルの最大数が制限されるため、RACHプリアンブルはRACHリソース/RACHリソースグループにルートインデックスの循環シフトが増加して、ルートインデックスが増加し、時間領域が増加する方向に割り当てられる。このとき、第一のRACHリソースにマッピングされる開始ルートインデックスはシグナリングされる。
IDLE状態において少なくともRACH手続きに対して、セルのターゲットカバレッジを考慮して、RACHリソースごとに異なるRACHプリアンブルフォーマットを使用する理由がないため、共通のRACHプリアンブルフォーマットを同一の繰り返し回数で全てのRACHリソースに適用する。
1)実施例1: RACH Occasion又はSSブロック当たりRACHプリアンブルの数
RACHプリアンブルをRACH Occasionにマッピングするために、UEが知るべきRACHプリアンブル及び支援されるRACHプリアンブル値の範囲に関する情報が[表14]に示される。また、UEはSSブロック当たりCBRA(Contention Based Random Access)に対するRACHプリアンブルの数及びSSブロック当たりRACH Occasionの数に基づいて、RACH Occasion当たりRACHプリアンブルの数を計算することができ、SSブロック当たりRACH Occasionの数をシグナリングすることができる。
Figure 0006616551
M≧1であるとき、CBRAのためのRACH Occaion当たりRACHプリアンブルの数は、SSブロック当たりCBRAに対するRACHプリアンブルの数をMに割ったRACHプリアンブルの数で算出される。このとき、0ではない残りがある場合、RACH Occasionにマッピングされない残りのRACHプリアンブルは、SSブロックに関連する最大又は最小のインデックスを有するRACH Occasionに割り当てられる。または、RACHプリアンブルはラウンドロビン方式でRACH Occasionにマッピングされてもよい。例えば、SSブロック当たりRACHプリアンブルの数が48であり、SSブロックにマッピングされたRACH Occasionの数が4である場合、RACH Occasion当たりプリアンブルの数は12となる。なお、SSブロック当たりRACHプリアンブルの数が48であり、SSブロックにマッピングされたRACH Occasionの数が5である場合、各RACH Occasionにおいて少なくとも9個のRACHプリアンブルが用いられる。また、残りの3個のRACHプリアンブルは、SSブロックにマッピングされたRACH Occasionの各々に対して周波数−時間順にRACH Occasionインデックスに対して、順にマッピングされる。
一方、M<1である場合、すなわち、複数のSSブロックが1つのRACH Occasionにマッピングされ、同一のRA−RNTIが複数のSSブロックの間に共有される場合、RACH Occasion当たりRACHプリアンブルの数は、最大に64 RAPIDである。仮に、複数のSSブロックに対するRACHプリアンブルの和が64より大きくない場合、UEはシグナリングされたRACH Occasionに対するSSブロック当たりRACHプリアンブルの数を用いることができる。しかし、複数のSSブロックに対するRACHプリアンブルの和が64より大きい場合は、RACH OccasionにおけるSSB当たりRACHプリアンブルの数は64を超えないように、UEによって利用可能なRACHプリアンブル番号を再計算することができる。例えば、Mが1/4であり、SSブロック当たりRACHプリアンブルの数が16の場合、4個のSSブロックに対するSSブロック当たりRACHプリアンブルの和が64より大きくないため、RACH Occasion当たり16個のプリアンブルが用いられる。すなわち、Mが1/4であり、SSブロック当たりRACHプリアンブルの数は32であれば、RACH OccasionのSSブロック当たりRACHプリアンブルの数は16に制限される。
一方、複数のSSブロックが1つのRACH OccasionにマッピングされるM<1である場合、RA−RNTIは同一の時間/周波数の位置においてSSブロックごとに割り当てられる。言い換えれば、Mが1/4であり、SSブロック当たりRACHプリアンブルの数が32である場合、SSブロックに特定されたRA−RNTIを有するRACH Occasionには32*4個のRACHプリアンブルが用いられ、RACH Occasionに対する各SSブロック別に相違するRARを生成する。これは、仮想SSブロックインデックスを計算するか否かとは関係なく、RA−RNTIを計算する方法に関係している。
2)実施例2:SSブロック及びRACH OccasionをRACHプリアンブルインデックスにマッピングさせる方法
SSブロック当たりRACHプリアンブルの数とRACH Occasion当たりRACHプリアンブルの数は、RACHプリアンブルインデックスマッピング規則に従って決定される。RACHプリアンブルインデックスは、RACHリソースグループ内にマッピングされる。単一SSブロックが1つのRACHリソースグループに関わると仮定すると、RACHプリアンブルインデックスは、SSブロックに関わるRACH Occasionにマッピングされる。
M≧1である場合、RACH Occasion当たりRACHプリアンブルの数がNpreamble_occasionであり、各RACH Occasionが#n(n=0, 1, … , M−1)インデックスを有する場合、n番目のRACH OccsionはRACHプリアンブルインデックス{0〜(Npreamble_occasion−1)+(n*NPreamble_occasion)}を有する。
一方、M<1である場合、RACH OccasionにおいてSSブロック間にRA−RNTIが共有されて、SSブロック当たり算出されたRACHプリアンブルの数がNpreamble_SSBであると仮定すると、RACHプリアンブルインデックス{(0〜Npreamble_SSB−1)+(m*Npreamble_SSB)}がm番目のSSブロックに割り当てられる。ここで、mは実際に送信されたSSブロックに基づいて再順序化されたSSブロックインデックスである。また、RACH Occasionは、Npreamble_occasionに対するRACHプリアンブルインデックスは、0乃至Npreamble_occasionの値を有してもよく、ここでNpreamble_occasionは64であってもよい。
なお、各SSブロックにRA−RNTIを割り当て、各SSブロックにRACHプリアンブルインデックス{0乃至(Npreamble_SSB−1)}を割り当てる。RACH Occasionに関連されるRACHプリアンブルの数は、m*Npreamble_SSBであってもよく、ここで、mはRACH Occasion上にマッピングされたSSブロックの数であり、Npreamble_SSBはSSブロック当たりRACHプリアンブルの数であり、シグナリングによって獲得することができる。
3)実施例3:RACH Occasion/SSブロックをRACHプリアンブルにマッピングさせる方法
基本的に、RACHプリアンブルは、RACH Occasionにルートインデックスの循環シフトが増加し、ルートインデックスが増加する方向に割り当てられる。仮に、RACHリソースグループがFd=1であるTDMed RACH Occasionからなる場合、RACHプリアンブルはRACHリソースグループにルートインデックスの循環シフトが増加し、ルートインデックスが増加して、時間領域が増加する方向、すなわち、RACH Occasion指数が増加する方向に割り当てられる。
また、RACHリソースグループがFd>1であるTDMed RACH Occasionからなる場合、RACHプリアンブルはRACHリソースグループにルートインデックスの循環シフトを増加させ、ルートインデックスを増加させ、周波数領域を増加させて、時間領域を増加させる方向に割り当てられる。
RACHプリアンブルシーケンスが各RACHリソースグループで相違する場合、通常、RACHプリアンブルはルートインデックスの循環シフトを増加させ、ルートインデックスを増加させて、Fd>1である場合には周波数領域を増加させ、時間領域を増加させる方向に割り当てられる。
(5) PRACH設定周期内のRACH Occasionの全数
PRACH設定に含まれた、サブフレーム内のRACHスロットの数、RACHスロット内のRACH Occasionの数、PRACH設定インデックス当たりサブフレームの数、2ビット値で表される時間インスタンス内のFDMed RACH Occasionの数及びPRACH設定周期を掛け算することで、RACH Occasionの全数が計算できる。
また、UEは前記情報に基づいて、2次元時間/周波数領域上におけるRACH Occasionの全数を導出することができる。
一方、PRACH設定周期(period)内において、RACH Occasionの全数と実際に送信されたSSブロックとが関係するために求められるRACH Occasionは正確に一致しないことがある。RACH Occasionの全数が、求められたRACH Occasionより大きい場合、残りのRACH OccasionはRACH Occasionのために使用されず、上りリンクデータ送信のために用いられる。なお、RACH Occasionの全数が、求められるRACH Occasionの数より少ない場合は、ネットワークにおいて設定エラーとして認識して、このような種類の設定は避ける。
図29は、本発明を行う送信装置10及び受信装置20の構成要素を示すブロック図である。
送信装置10及び受信装置20は、情報及び/又はデータ、信号、メッセージなどを運ぶ無線信号を送信又は受信できるRF(Radio Frequency)ユニット13, 23と、無線通信システム内の通信に関する各種情報を記憶するメモリ12, 22、前記RFユニット13, 23及びメモリ12, 22などの構成要素と動作的に連結されて、前記構成要素を制御して、当該装置が上述した本発明の実施例の少なくとも1つを実行するようにメモリ12, 22及び/又はRFユニット13, 23を制御するように構成された(configured)プロセッサー11, 21をそれぞれ備える。
メモリ12, 22はプロセッサー11, 21の処理及び制御のためのプログラムを格納することができ、入/出力される情報を仮記憶することができる。メモリ12, 22がバッファーとして活用されてもよい。
プロセッサー11, 21は、通常、送信装置又は受信装置内の各種モジュールの動作全般を制御する。特に、プロセッサー11, 21は、本発明を実行するための各種制御機能を果たすことができる。プロセッサー11, 21は、コントローラ(controller)、マイクロコントローラ(microcontroller)、マイクロプロセッサー(microprocessor)、マイクロコンピュータ(microcomputer)などと称してもよい。プロセッサー11, 21はハードウェア(hardware)又はファームウェア(firmware)、ソフトウェア、又はこれらの組み合わせによって具現されてもよい。ハードウェアを用いて本発明を具現する場合には、本発明を実行するように構成されたASICs(application specific integrated circuits)又はDSPs(digital signal processors)、DSPDs(digital signal processing devices)、PLDs(programmable logic devices)、FPGAs(field programmable gate arrays)などがプロセッサー11, 21に備えられる。なお、ファームウェア又はソフトウェアを用いて本発明を具現する場合には、本発明の機能又は動作を行うモジュール、手順又は関数などを含むようにファームウェア又はソフトウェアを構成して、本発明が実行できるように構成されたファームウェア又はソフトウェアは、プロセッサー11, 21内に備えられたり、メモリ12, 22に記憶されてプロセッサー11, 21によって駆動されてもよい。
送信装置10のプロセッサー11は、前記プロセッサー11又は前記プロセッサー11に連結されたスケジューラーからスケジュールされて外部に送信される信号及び/又はデータに対して所定の符号化(coding)及び変調(modulation)を行った後、RFユニット13に送信する。例えば、プロセッサー11は送信しようとするデータ列を逆多重化及びチャンネル符号化、スクランブリング、変調の過程などを経て、K個のレイヤーに変換する。符号化されたデータ列は、コードワードとも称され、MAC層が提供するデータブロックである輸送ブロックと等価である。一輸送ブロック(transport block, TB)は、一コードワードで符号化され、各コードワードは1つ以上のレイヤーの形態で受信装置に送信される。周波数上り変換のために、RFユニット13は、オシレータ(oscillator)を含んでもよい。RFユニット13は、N個(N は1以上の正の整数)の送信アンテナを含んでもよい。
受信装置20の信号処理過程は、送信装置10の信号処理過程の逆となる。プロセッサー21の制御下において、受信装置20のRFユニット23は、送信装置10によって送信された無線信号を受信する。前記RFユニット23は、N個の受信アンテナを含み、前記RFユニット23は、受信アンテナで受信された信号のそれぞれを周波数下り変換して(frequency down−convert)基底帯域信号として復元する。RFユニット23は、周波数下り変換のためにオシレータを含んでもよい。前記プロセッサー21は、受信アンテナを通じて受信された無線信号に対する復号(decoding)及び復調(demodulation)を行い、送信装置10が本来送信しようとしたデータに復元することができる。
RFユニット13, 23は、1つ以上のアンテナを備える。アンテナは、プロセッサー11, 21の制御下において本発明の一実施例によって、RFユニット13, 23によって処理された信号を外部に送信するか、外部から無線信号を受信して、RFユニット13, 23に伝達する機能を行う。アンテナは、アンテナポートとも称される。各アンテナは、1つの物理アンテナに該当するか、1つより多い物理アンテナ要素(element)の組み合わせから構成(configured)されてもよい。各アンテナから送信された信号は、受信装置20によってさらに分解されることはできない。該当アンテナに対応して送信された参照信号(reference signal, RS)は、受信装置20の観点から本アンテナを定義して、チャンネルが一物理アンテナからの単一(single)無線チャンネルであるか、又は前記アンテナを含む複数の物理アンテナ要素(element)からの合成(composite)チャンネルであるかとは関係なく、前記受信装置20が前記アンテナに対してチャンネルを推定できるようにする。すなわち、アンテナは前記アンテナ上のシンボルを伝達するチャンネルが前記同一のアンテナ上の他のシンボルが伝達される前記チャンネルから導出できるように定義される。複数のアンテナを用いてデータを送受信する多重入出力(Multi−Input Multi−Output, MIMO)機能を支援するRFユニットの場合には、2つ以上のアンテナと連結されてもよい。
本発明においてRFユニット13, 23は、受信ビームフォーミングと送信ビームフォーミングを支援することができる。例えば、本発明において、RFユニット13,23は、図3に例示された機能を行うように構成される。また、本発明においてRFユニット13, 23は、トランシーバー(Transceiver)とも称される。
本発明の実施例において、UEは上りリンクでは送信装置10として動作して、下りリンクでは受信装置20として動作する。本発明の実施例において、gNBは上りリンクでは受信装置20として動作して、下りリンクでは送信装置10として動作する。以下、UEに備えられたプロセッサー、RFユニット及びメモリはUEプロセッサー、UE RFユニット及びUEメモリとそれぞれ称されて、gNBに備えられたプロセッサー、RFユニット及びメモリはgNBプロセッサー、gNB RFユニット及びgNBメモリとそれぞれ称される。
本発明のgNBプロセッサーは、ATSSに関する情報及びRACHリソースに対するRACH設定情報を端末に送信して、RACHリソース上においてRACHを受信すると、前記RACHが送信されたRACHリソースをベースとして、端末が獲得しようとする同期に対応するSSBに関する情報を獲得することができる。すなわち、RACHが送信されたRACHリソースをベースとして端末がATSSのうち、RSRP値が最良なもので測定して、選択されたビームに対応するSSBに関する情報を知ることができる。よって、gNBプロセッサーはATSSにマッピングされないRACHリソースからはRACHを受信することができない。
本発明のUEプロセッサーは、基地局から受信したATSS情報及びRACHリソースに関する情報に基づいて、ATSSとRACHリソースをマッピングし、ATSS情報に基づいて、受信したSSBのうち、RSRP値が最良なもので選択されたSSBにマッピングされるRACHリソース上において、RACHを送信する。よって、ATSSにマッピングされないRACHリソースでは、RACHを送信しない。
一方、ATSSにマッピングされないRACHリソースでは、RACHリソース以外の上りリンク送信が生じてもよく、下りリンクを受信してもよい。
このとき、UEプロセッサーは、RACH設定周期内において、ATSSの数の正の整数倍だけ繰り返してRACHリソースにATSSをマッピングして、マッピングした後に残ったRACHリソースを介してはRACHを送信しない。また、前記ATSSを繰り返してマッピングする繰り返し回数は、RACHリソースの数をATSSの数で割り算した値よりも小さい整数のうち最大の整数と同一であってもよい。また、RACHリソースにマッピング可能なSSBの数が1よりも小さい場合、その値の逆数だけ連続したRACHリソースに1つのSSBをマッピングする。
本発明のgNBプロセッサー又はUEプロセッサーはアナログ又はハイブリッドビームフォーミングが使用される6GHz以上の高周波帯域において動作するセル上に本発明を適用するように構成されてもよい。
上述のような本発明の好適な実施例に関する詳細な説明は、当業者が本発明を具現して実施できるように提供される。上述では、本発明の好適な実施例を参照して説明したが、当該技術分野における熟練した当業者には、添付する特許請求の範囲に記載された本発明の思想及び領域から逸脱しない範囲内で本発明を様々に修正及び変更できるということが理解できる。したがって、本発明は、ここに示した実施の形態に制限されるものではなく、ここに開示した原理及び新規な特徴と一致する最広の範囲を与えるためのものである。
上述したようなランダムアクセスチャンネルを送受信する方法及びそのための装置は、5世代NewRATシステムに適用される例を中心として説明したが、5世代NewRATシステムの他にも様々な無線通信システムに適用可能である。

Claims (19)

  1. 無線通信システムにおいて、端末(UE)がランダムアクセスチャンネル(RACH)を送信する方法であって、
    少なくとも1つの同期信号ブロック(SSB)の送信に関連する第1情報、及び(i)前記RACHを送信するための複数のRACHリソース、(ii)前記複数のRACHリソース内の前記RACHを送信するための時間区間に関連する第2情報を受信するステップと
    前記時間区間内の前記複数のRACHリソースのうちの少なくとも1つの第1RACHリソースへの前記少なくとも1つのSSBのマッピングを決定するステップであって、前記マッピングは、前記時間区間内において、正の整数回による前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの繰り返しマッピングを含む、ステップと、
    前記少なくとも1つのSSBにマッピングされた前記少なくとも1つの第1RACHリソースのうち、1つのRACHリソースで前記RACHを送信するステップと、を含み、
    前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの前記正の整数回の繰り返しマッピングの後、前記複数のRACHリソースは、前記少なくとも1つのSSBにマッピングされないままである少なくとも1つの第2RACHリソースを更に含み、
    前記RACHは、前記少なくとも1つのSSBにマッピングされないままである前記少なくとも1つの第2RACHリソースで送信されない、ランダムアクセスチャンネル送信方法。
  2. RACHリソース当たりにマッピング可能なSSBの数が1より小さい場合、1つのSSBは、RACHリソース当たりにマッピング可能なSSBの数の逆数だけ連続した第1RACHリソースにマッピングされる、請求項1に記載のランダムアクセスチャンネル送信方法。
  3. 無線通信システムにおいて、ランダムアクセスチャンネル(RACH)を送信するよう構成された端末であって、
    トランシーバーと、
    少なくとも1つのプロセッサーと、
    前記少なくとも1つのプロセッサーと動作可能に接続可能な少なくとも1つのコンピュータメモリと、を含み、
    前記少なくとも1つのコンピュータメモリは、実行されるとき、前記少なくとも1つのプロセッサーに、
    前記トランシーバーを通じて、少なくとも1つの同期信号ブロック(SSB) の送信に関連する第1情報、及び(i)前記RACHを送信するための複数のRACHリソース、(ii)前記複数のRACHリソース内の前記RACHを送信するための時間区間に関連する第2情報を受信し、
    前記時間区間内の前記複数のRACHリソースのうちの少なくとも1つの第1RACHリソースへの前記少なくとも1つのSSBのマッピングを決定し、前記マッピングは、前記時間区間内において、正の整数回による前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの繰り返しマッピングを含み、
    前記トランシーバーを通じて、前記少なくとも1つのSSBにマッピングされた前記少なくとも1つの第1RACHリソースのうち、1つのRACHリソースで前記RACHを送信することを含む動作を実行させる命令を格納し、
    前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの前記正の整数回の繰り返しマッピングの後、前記複数のRACHリソースは、前記少なくとも1つのSSBにマッピングされないままである少なくとも1つの第2RACHリソースを更に含み、
    前記端末により、前記RACHは、前記少なくとも1つのSSBにマッピングされないままである前記少なくとも1つの第2RACHリソースで送信されない、端末。
  4. RACHリソース当たりにマッピング可能なSSBの数が1より小さい場合、1つのSSBは、RACHリソース当たりにマッピング可能なSSBの数の逆数だけ連続した第1RACHリソースにマッピングされる、請求項3に記載の端末。
  5. 無線通信システムにおいて、基地局がランダムアクセスチャンネル(RACH)を端末から受信する方法であって、
    少なくとも1つの同期信号ブロック(SSB) の前記端末の送信に関連する第1情報、及び(i)前記端末が前記RACHを送信するための複数のRACHリソース、(ii)前記端末が前記複数のRACHリソース内の前記RACHを送信するための時間区間に関連する第2情報前記端末に送信するステップと
    前記時間区間内の前記複数のRACHリソースのうちの少なくとも1つの第1RACHリソースへの前記少なくとも1つのSSBのマッピングを決定するステップであって、前記マッピングは、前記時間区間内において、正の整数回による前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの繰り返しマッピングを含む、ステップと、
    前記少なくとも1つのSSBにマッピングされた前記少なくとも1つの第1RACHリソースのうち1つのRACHリソースで前記RACHを前記端末から受信するステップと、を含み、
    前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの前記正の整数回の繰り返しマッピングの後、前記複数のRACHリソースは、前記少なくとも1つのSSBにマッピングされないままである少なくとも1つの第2RACHリソースを更に含み、
    前記端末により、前記RACHは、前記少なくとも1つのSSBにマッピングされないままである前記少なくとも1つの第2RACHリソースで送信されない、ランダムアクセスチャンネル受信方法。
  6. 前記RACH受信された前記第1RACHリソースに基づいて前記端末が獲得しようとする同期に対応する前記少なくとも1つのSSBに関する情報を獲得するステップを更に含む、請求項に記載のランダムアクセスチャンネル受信方法。
  7. 無線通信システムにおいて、ランダムアクセスチャンネル(RACH)を端末から受信するよう構成された基地局であって、
    トランシーバーと、
    少なくとも1つのプロセッサーと、
    前記少なくとも1つのプロセッサーと動作可能に接続可能な少なくとも1つのコンピュータメモリと、を含み、
    前記少なくとも1つのコンピュータメモリは、実行されるとき、前記少なくとも1つのプロセッサーに、
    前記トランシーバーを通じて、少なくとも1つの同期信号ブロック(SSB) の前記端末の送信に関連する第1情報、及び(i)前記端末が前記RACHを送信するための複数のRACHリソース、(ii)前記端末が前記複数のRACHリソース内の前記RACHを送信するための時間区間に関連する第2情報前記端末に送信し、
    前記時間区間内の前記複数のRACHリソースのうちの少なくとも1つの第1RACHリソースへの前記少なくとも1つのSSBのマッピングを決定し、前記マッピングは、前記時間区間内において、正の整数回による前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの繰り返しマッピングを含み、
    前記トランシーバーを通じて、前記少なくとも1つのSSBにマッピングされた前記少なくとも1つの第1RACHリソースのうち1つのRACHリソースで前記RACHを前記端末から受信することを含む動作を実行させる命令を格納し、
    前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの前記正の整数回の繰り返しマッピングの後、前記複数のRACHリソースは、前記少なくとも1つのSSBにマッピングされないままである少なくとも1つの第2RACHリソースを更に含み、
    前記端末により、前記RACHは、前記少なくとも1つのSSBにマッピングされないままである前記少なくとも1つの第2RACHリソースで送信されない、基地局。
  8. 前記時間区間内における前記正の整数回による前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの前記繰り返しマッピングは、前記時間区間内に前記少なくとも1つの第1RACHリソース上にk回マッピングされる前記少なくとも1つのSSBのうちの各SSBを含み、kは前記繰り返しマッピングの前記正の整数回である、請求項1に記載のランダムアクセスチャンネル送信方法。
  9. 前記少なくとも1つのSSBは、前記少なくとも1つの第1RACHリソースのうちのk個の異なるグループの第1RACHリソースにマッピングされる、請求項8に記載のランダムアクセスチャンネル送信方法。
  10. 前記少なくとも1つのSSBのうちの各SSBが、前記時間区間内に前記少なくとも1つの第1RACHリソース上へk回マッピングされた後、前記少なくとも1つの第2RACHリソースは前記少なくとも1つのSSBにマッピングされないままである、請求項8に記載のランダムアクセスチャンネル送信方法。
  11. 前記時間区間内における前記正の整数回による前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの前記繰り返しマッピングは、前記時間区間内に前記少なくとも1つの第1RACHリソース上にk回マッピングされる前記少なくとも1つのSSBのうちの各SSBを含み、kは前記繰り返しマッピングの前記正の整数回である、請求項3に記載の端末。
  12. 前記少なくとも1つのSSBは、前記少なくとも1つの第1RACHリソースのうちのk個の異なるグループの第1RACHリソースにマッピングされる、請求項11に記載の端末。
  13. 前記少なくとも1つのSSBのうちの各SSBが、前記時間区間内に前記少なくとも1つの第1RACHリソース上へk回マッピングされた後、前記少なくとも1つの第2RACHリソースは前記少なくとも1つのSSBにマッピングされないままである、請求項11に記載の端末。
  14. 前記時間区間内における前記正の整数回による前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの前記繰り返しマッピングは、前記時間区間内に前記少なくとも1つの第1RACHリソース上にk回マッピングされる前記少なくとも1つのSSBのうちの各SSBを含み、kは前記繰り返しマッピングの前記正の整数回である、請求項5に記載のランダムアクセスチャンネル受信方法。
  15. 前記少なくとも1つのSSBは、前記少なくとも1つの第1RACHリソースのうちのk個の異なるグループの第1RACHリソースにマッピングされる、請求項14に記載のランダムアクセスチャンネル受信方法。
  16. 前記少なくとも1つのSSBのうちの各SSBが、前記時間区間内に前記少なくとも1つの第1RACHリソース上へk回マッピングされた後、前記少なくとも1つの第2RACHリソースは前記少なくとも1つのSSBにマッピングされないままである、請求項14に記載のランダムアクセスチャンネル受信方法。
  17. 前記時間区間内における前記正の整数回による前記少なくとも1つの第1RACHリソース上への前記少なくとも1つのSSBの前記繰り返しマッピングは、前記時間区間内に前記少なくとも1つの第1RACHリソース上にk回マッピングされる前記少なくとも1つのSSBのうちの各SSBを含み、kは前記繰り返しマッピングの前記正の整数回である、請求項7に記載の基地局。
  18. 前記少なくとも1つのSSBは、前記少なくとも1つの第1RACHリソースのうちのk個の異なるグループの第1RACHリソースにマッピングされる、請求項17に記載の基地局。
  19. 前記少なくとも1つのSSBのうちの各SSBが、前記時間区間内に前記少なくとも1つの第1RACHリソース上へk回マッピングされた後、前記少なくとも1つの第2RACHリソースは前記少なくとも1つのSSBにマッピングされないままである、請求項17に記載の基地局。
JP2019501923A 2017-05-03 2018-05-03 ランダムアクセスチャンネルを送受信する方法及びそのための装置 Active JP6616551B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019202385A JP6898976B2 (ja) 2017-05-03 2019-11-07 ランダムアクセスチャンネルを送受信する方法及びそのための装置

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US201762501086P 2017-05-03 2017-05-03
US62/501,086 2017-05-03
US201762507752P 2017-05-17 2017-05-17
US62/507,752 2017-05-17
US201762566546P 2017-10-02 2017-10-02
US62/566,546 2017-10-02
US201762570672P 2017-10-11 2017-10-11
US62/570,672 2017-10-11
US201762587479P 2017-11-17 2017-11-17
US62/587,479 2017-11-17
US201862616511P 2018-01-12 2018-01-12
US62/616,511 2018-01-12
PCT/KR2018/005119 WO2018203673A1 (ko) 2017-05-03 2018-05-03 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019202385A Division JP6898976B2 (ja) 2017-05-03 2019-11-07 ランダムアクセスチャンネルを送受信する方法及びそのための装置

Publications (3)

Publication Number Publication Date
JP2019522942A JP2019522942A (ja) 2019-08-15
JP2019522942A5 JP2019522942A5 (ja) 2019-10-17
JP6616551B2 true JP6616551B2 (ja) 2019-12-04

Family

ID=64016195

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2019501923A Active JP6616551B2 (ja) 2017-05-03 2018-05-03 ランダムアクセスチャンネルを送受信する方法及びそのための装置
JP2019202385A Active JP6898976B2 (ja) 2017-05-03 2019-11-07 ランダムアクセスチャンネルを送受信する方法及びそのための装置
JP2021098807A Active JP7155347B2 (ja) 2017-05-03 2021-06-14 ランダムアクセスチャンネルを送受信する方法及びそのための装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2019202385A Active JP6898976B2 (ja) 2017-05-03 2019-11-07 ランダムアクセスチャンネルを送受信する方法及びそのための装置
JP2021098807A Active JP7155347B2 (ja) 2017-05-03 2021-06-14 ランダムアクセスチャンネルを送受信する方法及びそのための装置

Country Status (11)

Country Link
US (4) US10952246B2 (ja)
EP (3) EP3471497B1 (ja)
JP (3) JP6616551B2 (ja)
KR (4) KR101960319B1 (ja)
CN (2) CN110574483B (ja)
AU (1) AU2018261298B2 (ja)
BR (1) BR112019009899B1 (ja)
MX (1) MX2019002592A (ja)
RU (1) RU2727183C1 (ja)
SG (1) SG11201900189YA (ja)
WO (1) WO2018203673A1 (ja)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809602B (zh) * 2017-05-05 2022-06-03 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法
CN114900890A (zh) 2017-05-05 2022-08-12 北京三星通信技术研究有限公司 基站、终端及随机接入前导检测、随机接入信道配置方法
JP2020502923A (ja) * 2017-06-01 2020-01-23 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてランダムアクセスチャネルを送受信する方法及びそのための装置
JP7119011B2 (ja) * 2017-06-15 2022-08-16 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 広帯域コンポーネントキャリアの周波数位置インデックス化
US10980064B2 (en) * 2017-06-16 2021-04-13 Futurewei Technologies, Inc. Radio communications using random access in wireless networks
EP4132212A3 (en) * 2017-06-16 2023-06-07 Beijing Xiaomi Mobile Software Co., Ltd. Distributed unit configuration update
WO2019004909A1 (en) * 2017-06-26 2019-01-03 Telefonaktiebolaget Lm Ericsson (Publ) SIGNALING LOCATIONS OF REFERENCE SIGNALS IN CREAMS AND MINI-CRÉNEAUX
US10555338B2 (en) * 2017-08-11 2020-02-04 Mediatek Inc. NR-PRACH multiple Msg1 transmission
KR102395189B1 (ko) * 2017-08-17 2022-05-06 삼성전자주식회사 무선 통신 시스템에서 비-승인 통신을 위한 장치 및 방법
US10630412B2 (en) * 2017-08-19 2020-04-21 Lg Electronics Inc. Method for transmitting a PRACH preamble in a wireless communication and apparatus therefor
CN109462890B (zh) * 2017-09-30 2019-11-05 华为技术有限公司 随机接入方法及装置
US11044756B2 (en) * 2017-10-09 2021-06-22 Qualcomm Incorporated Supplementary uplink random access channel procedures
US11778657B2 (en) * 2017-10-27 2023-10-03 Apple Inc. Control resource set information in physical broadcast channel
US10880927B2 (en) * 2017-11-17 2020-12-29 Qualcomm Incorporated Mapping rules between synchronization signal blocks and random access channel resources
KR102489733B1 (ko) * 2017-11-17 2023-01-18 삼성전자주식회사 무선 통신 시스템에서 랜덤 억세스 채널을 전송하기 위한 방법 및 장치
US10880867B2 (en) * 2017-11-17 2020-12-29 Qualcomm Incorporated Selecting a new radio uplink resource to transmit a random access procedure communication
US11050598B2 (en) * 2017-11-28 2021-06-29 Qualcomm Incorporated Carrier information signaling in a 5G network
CN108391314B (zh) * 2018-02-12 2022-06-03 宇龙计算机通信科技(深圳)有限公司 一种前导码的确定方法、装置及终端
CN109451585B (zh) * 2018-04-04 2020-07-14 华为技术有限公司 一种通信方法及装置
JP7158174B2 (ja) * 2018-05-10 2022-10-21 シャープ株式会社 基地局装置、端末装置、通信方法、および、集積回路
US10951383B2 (en) * 2018-05-11 2021-03-16 Asustek Computer Inc. Method and apparatus for determining slot configuration in a wireless communication system
US10944604B2 (en) * 2018-05-25 2021-03-09 Qualcomm Incorporated System and method for communication sub-channel bandwidth adjustment in a millimeter wave (MMW) communication system
US10432798B1 (en) 2018-05-25 2019-10-01 At&T Intellectual Property I, L.P. System, method, and apparatus for service grouping of users to different speed tiers for wireless communication
US10419943B1 (en) * 2018-06-15 2019-09-17 At&T Intellectual Property I, L.P. Overlay of millimeter wave (mmWave) on citizens broadband radio service (CBRS) for next generation fixed wireless (NGFW) deployment
US10798537B2 (en) 2018-07-09 2020-10-06 At&T Intellectual Property I, L.P. Next generation fixed wireless qualification tool for speed-tier based subscription
WO2020019208A1 (zh) * 2018-07-25 2020-01-30 北京小米移动软件有限公司 消息传输的方法及装置
US11706794B2 (en) * 2018-08-08 2023-07-18 Interdigital Patent Holdings, Inc. Physical random access for NR-U
US11595998B2 (en) * 2018-08-20 2023-02-28 Qualcomm Incorporated Separation of synchronization signal blocks for access and backhaul random access channel transmissions
WO2020145007A1 (ja) * 2019-01-09 2020-07-16 ソニー株式会社 通信装置、通信制御装置、通信方法、通信制御方法及びコンピュータプログラム
CN111277382B (zh) * 2019-01-18 2021-10-22 维沃移动通信有限公司 一种随机接入过程的信息传输方法及终端
CN111565471B (zh) * 2019-02-14 2022-05-03 大唐移动通信设备有限公司 一种信息传输方法、装置及设备
US11219070B2 (en) * 2019-02-21 2022-01-04 Qualcomm Incorporated Variable random access channel (RACH) signature mapping
EP3952488A4 (en) * 2019-03-29 2022-05-04 Sony Group Corporation COMMUNICATION DEVICE AND COMMUNICATION METHOD
US20200314912A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Random access channel frequency multiplexing for a non-terrestrial network
CN111757536B (zh) * 2019-03-29 2022-08-02 中国移动通信有限公司研究院 一种确定可用于传输的资源的方法及装置
MX2021012854A (es) * 2019-04-26 2021-12-10 Ericsson Telefon Ab L M Dispositivo de red, dispositivo terminal y metodos en los mismos.
CN114073163B (zh) * 2019-07-09 2023-11-10 瑞典爱立信有限公司 用于随机接入过程的方法和装置
WO2021012137A1 (en) * 2019-07-22 2021-01-28 Qualcomm Incorporated Repeating transmission of random access sequences
US11490426B2 (en) * 2019-08-16 2022-11-01 Qualcomm Incorporated Two-root preamble design for delay and frequency shift
US11743830B2 (en) * 2019-08-16 2023-08-29 Nokia Technologies Oy Panel activation at a user equipment
US11606820B2 (en) * 2019-10-30 2023-03-14 Qualcomm Incorporated Sharing a physical random access channel (PRACH) configuration for avoiding collisions of PRACH communications
US20220408491A1 (en) * 2019-11-08 2022-12-22 Lenovo (Beijing) Ltd. Method and apparatus for prach repetitions
US11357041B2 (en) * 2019-11-27 2022-06-07 Qualcomm Incorporated Simultaneous message transmissions in RACH with multiple TRP
WO2021127958A1 (en) * 2019-12-24 2021-07-01 Qualcomm Incorporated Random access message repetition techniques in beamformed communications
US11197171B2 (en) * 2020-01-23 2021-12-07 Qualcomm Incorporated Beam configuration of a smart MMW repeater for forwarding RACH message 2
US11540239B2 (en) 2020-01-24 2022-12-27 Qualcomm Incorporated Synchronization signal block transmission using spatial division multiplexing
US20210266974A1 (en) * 2020-02-21 2021-08-26 Qualcomm Incorporated Physical random access channel repetition and receive-beam sweep and associated beam refinement
EP3902367A3 (en) * 2020-03-31 2022-01-19 ASUSTek Computer Inc. Method and apparatus for random access preamble partition for small data transmission in a wireless communication system
US11622389B2 (en) * 2020-05-06 2023-04-04 Qualcomm Incorporated Method and apparatus for RACH communication with multi subcarrier spacing configuration
CN113965940A (zh) * 2020-07-20 2022-01-21 中兴通讯股份有限公司 测量下行路损的方法、系统、设备及介质
US11363629B2 (en) 2020-07-31 2022-06-14 Huawei Technologies Canada Co., Ltd. Method, apparatus and system for medium access control
JP2023126995A (ja) * 2020-08-05 2023-09-13 シャープ株式会社 端末装置、基地局装置、および、通信方法
US20220077922A1 (en) * 2020-09-09 2022-03-10 Qualcomm Incorporated Synchronization signal block forwarding
US11665742B2 (en) * 2020-11-23 2023-05-30 Qualcomm Incorporated RACH type selection and different sets of RACH parameters
WO2022146213A1 (en) * 2020-12-30 2022-07-07 Telefonaktiebolaget Lm Ericsson (Publ) Random access for wireless communication network
WO2022170473A1 (en) * 2021-02-09 2022-08-18 Zte Corporation Methods, devices, and systems for configuring random access channel occasion allocation
WO2023284962A1 (en) * 2021-07-15 2023-01-19 Nokia Technologies Oy Synchronization signal block beam sweep enabled directional repeater
US11950297B2 (en) 2021-08-06 2024-04-02 Qualcomm Incorporated Repetition-based contention-free random access
WO2023087018A1 (en) * 2021-11-15 2023-05-19 Commscope Technologies Llc Systems and methods for beamforming of broadcast and synchronization channels
WO2023100353A1 (ja) * 2021-12-03 2023-06-08 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2023135765A1 (ja) * 2022-01-14 2023-07-20 株式会社Nttドコモ 端末及び通信方法
CN117676776A (zh) * 2022-08-10 2024-03-08 北京三星通信技术研究有限公司 通信方法和用户设备
KR20240036339A (ko) * 2022-09-13 2024-03-20 한국전자통신연구원 무선 통신 시스템에서의 랜덤 액세스 방법 및 장치

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE306115T1 (de) * 2000-05-09 2005-10-15 Mathew A Mcpherson Schalllochform und -lage und deckplattenkonstruktion in einer akustischen gitarre
KR101196897B1 (ko) 2006-01-20 2012-11-01 에릭슨 엘지 주식회사 무선통신 시스템 내에서 랜덤 액세스 채널에 주파수 대역을 할당하는 방법 및 장치와, 그의 랜덤 액세스 채널 상에서의 신호 송수신 장치 및 방법
KR101010581B1 (ko) * 2006-08-09 2011-01-25 삼성전자주식회사 이동통신 시스템에서 랜덤액세스 프로시져를 이용한 정보의 송수신방법 및 장치
KR20090053946A (ko) 2006-09-15 2009-05-28 인터디지탈 테크날러지 코포레이션 랜덤 액세스 파라미터의 동적 업데이트를 위한 방법 및 장치
ES2763569T3 (es) 2006-10-25 2020-05-29 Samsung Electronics Co Ltd Procedimiento eficaz y fiable de acceso aleatorio en un sistema de comunicaciones móviles
CN101247647B (zh) * 2007-02-15 2011-10-26 中兴通讯股份有限公司 一种增强上行链路实现快速切换的方法
ES2424757T5 (es) 2007-10-24 2018-04-26 Huawei Technologies Co., Ltd. Sistema de comunicación móvil, aparato de estación de base, aparato de estación móvil y método de comunicación móvil
WO2010121432A1 (zh) * 2009-04-24 2010-10-28 华为技术有限公司 上行同步方法及装置
US8948154B2 (en) * 2010-02-10 2015-02-03 Qualcomm Incorporated Method and apparatus for sending and receiving a low-complexity transmission in a wireless communication system
US9363829B2 (en) 2012-02-24 2016-06-07 Interdigital Patent Holdings, Inc. Random access in dynamic and shared spectrums
TWI620456B (zh) 2012-07-23 2018-04-01 內數位專利控股公司 在dss頻帶唯上鏈操作中頻率同步、功率控制及胞元配置方法及裝置
WO2014181156A1 (en) 2013-05-10 2014-11-13 Nokia Corporation Compact dci for machine type communications
CN104619025A (zh) 2013-11-01 2015-05-13 中兴通讯股份有限公司 随机接入信道资源分配方法和系统
US9907092B2 (en) 2014-10-09 2018-02-27 Qualcomm Incorporated Uplink synchronization without preamble in SC-FDMA
US9537548B2 (en) * 2014-10-27 2017-01-03 Nokia Solutions And Networks Oy Random access channel using basis functions
US20190104549A1 (en) 2014-11-26 2019-04-04 Idac Holdings, Inc. Initial access in high frequency wireless systems
CN107432035B (zh) * 2015-02-27 2021-04-09 瑞典爱立信有限公司 电信网络中的随机接入资源
US10333671B2 (en) * 2015-04-06 2019-06-25 Lg Electronics Inc. Method for transmitting and receiving signal based on shared resource in wireless communication system, and apparatus therefor
EP3281481A4 (en) * 2015-04-08 2018-12-05 Nokia Solutions and Networks Oy Random access response message transmission
WO2016210302A1 (en) * 2015-06-25 2016-12-29 Interdigital Patent Holdings, Inc. Methods and apparatus for initial cell search and selection using beamforming
JP6737868B2 (ja) * 2015-07-06 2020-08-12 華為技術有限公司Huawei Technologies Co.,Ltd. データ送信方法、無線ネットワーク装置、及び通信システム
US10075985B2 (en) * 2015-08-17 2018-09-11 Intel IP Corporation Uplink synchronization with assisted mmWAVE enhanced node B
US9930656B2 (en) * 2015-12-21 2018-03-27 Intel IP Corporation Cell search and synchronization in millimeter-wave capable small cells
US10615862B2 (en) * 2016-04-13 2020-04-07 Qualcomm Incorporated System and method for beam adjustment request
JP6683840B2 (ja) * 2016-05-11 2020-04-22 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 制御信号送信のための方法及び装置
CN115002910A (zh) * 2016-09-30 2022-09-02 北京三星通信技术研究有限公司 一种v2x通信中的发送资源确定方法和设备
US11696218B2 (en) * 2016-10-21 2023-07-04 Qualcomm Incorporated Multiplexing initial access and data transmissions in assisted millimeter wave systems
CN106507439B (zh) * 2016-10-28 2019-12-10 宇龙计算机通信科技(深圳)有限公司 一种传输信息的方法、基站及终端
US10405354B2 (en) 2016-12-09 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for RACH procedure in wireless systems
US10568130B2 (en) * 2016-12-22 2020-02-18 Qualcomm Incorporated Techniques and apparatuses for multiple types of physical random access channel (PRACH) transmission utilization
US10721774B2 (en) * 2017-04-24 2020-07-21 Qualcomm Incorporated Frequency hopping configuration for a multi-tone physical random access channel transmission
US11533750B2 (en) * 2017-10-09 2022-12-20 Qualcomm Incorporated Random access response techniques based on synchronization signal block transmissions
US10880927B2 (en) 2017-11-17 2020-12-29 Qualcomm Incorporated Mapping rules between synchronization signal blocks and random access channel resources

Also Published As

Publication number Publication date
JP6898976B2 (ja) 2021-07-07
KR102329424B1 (ko) 2021-11-22
CN115720381A (zh) 2023-02-28
CN110574483B (zh) 2022-12-06
BR112019009899B1 (pt) 2022-12-13
RU2727183C1 (ru) 2020-07-21
AU2018261298B2 (en) 2020-04-09
US20200053786A1 (en) 2020-02-13
US11134516B2 (en) 2021-09-28
KR20210101198A (ko) 2021-08-18
KR101960319B1 (ko) 2019-03-20
CN110574483A (zh) 2019-12-13
EP3471497B1 (en) 2021-08-18
US20210136815A1 (en) 2021-05-06
JP2019522942A (ja) 2019-08-15
KR20180122561A (ko) 2018-11-13
US10952246B2 (en) 2021-03-16
US20190150190A1 (en) 2019-05-16
KR102163925B1 (ko) 2020-10-12
US11595992B2 (en) 2023-02-28
MX2019002592A (es) 2019-07-04
AU2018261298A1 (en) 2019-01-31
EP3920651A1 (en) 2021-12-08
EP4167677A1 (en) 2023-04-19
JP2020039155A (ja) 2020-03-12
WO2018203673A1 (ko) 2018-11-08
EP3471497A1 (en) 2019-04-17
US10397953B2 (en) 2019-08-27
KR20190029554A (ko) 2019-03-20
BR112019009899A2 (pt) 2020-04-22
EP3471497A4 (en) 2019-07-24
SG11201900189YA (en) 2019-02-27
JP2021141615A (ja) 2021-09-16
JP7155347B2 (ja) 2022-10-18
KR20200116878A (ko) 2020-10-13
US20220007414A1 (en) 2022-01-06

Similar Documents

Publication Publication Date Title
JP6616551B2 (ja) ランダムアクセスチャンネルを送受信する方法及びそのための装置
KR102057867B1 (ko) 임의 접속 채널을 송수신하는 방법 및 이를 위한 장치
KR102320898B1 (ko) Rach 프리앰블을 전송하는 방법과 장치, 및 rach 프리앰블을 수신하는 방법 및 장치
US10587447B2 (en) Method and user equipment for transmitting random access preamble, and method and base station for receiving random access preamble

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191107

R150 Certificate of patent or registration of utility model

Ref document number: 6616551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250