JP6615431B2 - Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP6615431B2
JP6615431B2 JP2014092062A JP2014092062A JP6615431B2 JP 6615431 B2 JP6615431 B2 JP 6615431B2 JP 2014092062 A JP2014092062 A JP 2014092062A JP 2014092062 A JP2014092062 A JP 2014092062A JP 6615431 B2 JP6615431 B2 JP 6615431B2
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
lithium ion
ion secondary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014092062A
Other languages
Japanese (ja)
Other versions
JP2015210959A (en
Inventor
将之 神頭
直也 小松
由恵 大崎
克知 大関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54613004&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6615431(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014092062A priority Critical patent/JP6615431B2/en
Publication of JP2015210959A publication Critical patent/JP2015210959A/en
Application granted granted Critical
Publication of JP6615431B2 publication Critical patent/JP6615431B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

現在、リチウムイオン二次電池の負極材料には主に黒鉛が用いられているが、黒鉛は放電容量に372mAh/gという理論的な容量限界があることが知られている。近年、携帯電話、ノートパソコン、タブレット端末等のモバイル機器の高性能化に伴い、リチウムイオン二次電池の高容量化の要求が強くなっており、リチウムイオン二次電池の更なる高容量化を達成可能な負極材料が求められている。
そこで、理論容量が高く、リチウムイオンを吸蔵及び放出可能な元素(以下、「特定元素」ともいう。また、特定元素を含んでなるものを、「特定元素体」ともいう)を用いた負極材料の開発が活発化している。
At present, graphite is mainly used as a negative electrode material for lithium ion secondary batteries, and it is known that graphite has a theoretical capacity limit of 372 mAh / g in discharge capacity. In recent years, with the improvement in performance of mobile devices such as mobile phones, notebook computers and tablet terminals, the demand for higher capacity of lithium ion secondary batteries has become stronger, and the further increase in capacity of lithium ion secondary batteries has increased. There is a need for achievable negative electrode materials.
Therefore, a negative electrode material using an element having a high theoretical capacity and capable of occluding and releasing lithium ions (hereinafter also referred to as “specific element”. Also, a material containing the specific element is also referred to as “specific element body”). Development is active.

上記特定元素としては、ケイ素、錫、鉛、アルミニウム等がよく知られている。その中でも特定元素体の一つであるケイ素酸化物は、他の特定元素からなる負極材料よりも容量が高く、安価、加工性が良好である等の利点があり、これを用いた負極材料の研究が特に盛んである。   As the specific element, silicon, tin, lead, aluminum and the like are well known. Among them, silicon oxide, which is one of the specific element bodies, has advantages such as higher capacity, lower cost and better workability than negative electrode materials made of other specific elements. Research is particularly active.

一方、これら特定元素体は、充電によって合金化した際に、大きく体積膨張することが知られている。このような体積膨張は、特定元素体自身を微細化し、更にこれらを用いた負極材料もその構造が破壊されて導電性が切断される。そのため、サイクル経過によってリチウムイオン二次電池の容量が著しく低下することが課題となっている。   On the other hand, these specific element bodies are known to undergo large volume expansion when alloyed by charging. Such volume expansion makes the specific element bodies themselves finer, and further, the structure of the negative electrode material using these elements is broken and the conductivity is cut. Therefore, it has been a problem that the capacity of the lithium ion secondary battery is remarkably reduced as the cycle progresses.

この課題に対し、例えば、特許文献1では、X線回折において、Si(111)に帰属される回折ピークが観察され、その回折線の半値幅をもとにシェーラー法により求めたケイ素の結晶の大きさが1〜500nmである、ケイ素の微結晶がケイ素系化合物に分散した構造を有する粒子の表面を炭素でコーティングしてなることを特徴とする非水電解質二次電池負極材用導電性ケイ素複合体が開示されている。
特許文献1の技術によれば、ケイ素微結晶又は微粒子を不活性で強固な物質、例えば、二酸化ケイ素に分散し、更に、この表面の少なくとも一部に導電性を賦与するための炭素を融着させることによって、表面の導電性はもちろん、リチウムの吸蔵及び放出に伴う体積変化に対して安定な構造となり、結果として、長期安定性及び初期効率が改善されるとされている。
For example, in Patent Document 1, a diffraction peak attributed to Si (111) is observed in X-ray diffraction, and the silicon crystal obtained by the Scherrer method based on the half-value width of the diffraction line is observed in Patent Document 1. Conductive silicon for negative electrode material of non-aqueous electrolyte secondary battery, having a size of 1 to 500 nm, wherein the surface of particles having a structure in which silicon microcrystals are dispersed in a silicon compound is coated with carbon A composite is disclosed.
According to the technique of Patent Document 1, silicon microcrystals or fine particles are dispersed in an inert and strong substance, for example, silicon dioxide, and carbon for imparting conductivity to at least a part of the surface is fused. By doing so, it is said that the structure is stable with respect to the volume change caused by insertion and extraction of lithium as well as the surface conductivity, and as a result, the long-term stability and the initial efficiency are improved.

また、特許文献2では、リチウムイオンを吸蔵及び放出し得る材料の表面を黒鉛皮膜で被覆した導電性粉末であり、黒鉛被覆量が3〜40重量%、BET比表面積が2〜30m/gであって、該黒鉛皮膜が、ラマン分光スペクトルより、ラマンシフトが1330cm−1と1580cm−1付近にグラファイト構造特有のスペクトルを有することを特徴とする非水電解質二次電池用負極材が開示されている。
特許文献2の技術によれば、リチウムイオンを吸蔵及び放出し得る材料の表面に被覆する黒鉛皮膜の物性を特定範囲に制御することで、市場の要求する特性レベルに到達し得るリチウムイオン二次電池の負極が得られるとされている。
Moreover, in patent document 2, it is the electroconductive powder which coat | covered the surface of the material which can occlude and discharge | release lithium ion with a graphite film | membrane, a graphite coating amount is 3 to 40 weight%, and a BET specific surface area is 2 to 30 m < 2 > / g. a is, graphite coating, according to the Raman spectrum, the Raman shift is the negative electrode material for a nonaqueous electrolyte secondary battery characterized by having a spectrum of graphite structure-specific are disclosed in the vicinity of 1330 cm -1 and 1580 cm -1 ing.
According to the technology of Patent Document 2, by controlling the physical properties of a graphite film covering the surface of a material capable of occluding and releasing lithium ions within a specific range, a lithium ion secondary that can reach a characteristic level required by the market. It is said that the negative electrode of a battery is obtained.

また、特許文献3では、非水電解質を用いる二次電池用の負極に用いられる負極材料であって、該負極材料は、一般式SiOで表される酸化ケイ素粒子の表面上に炭素皮膜が被覆されたものであり、かつ前記炭素皮膜は熱プラズマ処理されたものであることを特徴とする非水電解質二次電池用負極材料が開示されている。
特許文献3の技術によれば、酸化ケイ素を用いた場合の欠点である電極の膨張と、ガス発生による電池の膨張とを解決し、サイクル特性に優れた非水電解質二次電池負極用として有効な負極材料が得られるとされている。
In Patent Document 3, a negative electrode material used in the negative electrode for a secondary battery with a nonaqueous electrolyte, negative electrode material, the carbon film on the surface of the silicon oxide particles represented by the general formula SiO x There is disclosed a negative electrode material for a non-aqueous electrolyte secondary battery, characterized in that it is coated and the carbon film is subjected to a thermal plasma treatment.
According to the technology of Patent Document 3, it solves the electrode expansion and the battery expansion caused by gas generation, which are disadvantages when using silicon oxide, and is effective as a negative electrode for non-aqueous electrolyte secondary batteries with excellent cycle characteristics. Negative electrode material is obtained.

特許第3952180号公報Japanese Patent No. 3952180 特許第4171897号公報Japanese Patent No. 4171897 特開2011−90869号公報JP 2011-90869 A

しかしながら、特定元素体の一つであるケイ素酸化物を負極材料として使用した場合、初期の充放電効率が低く、実際の電池に適用した際に正極の電池容量を過剰に必要とするため、従来の技術においても、高容量というケイ素酸化物の特徴を実際のリチウムイオン二次電池へ充分には活かしきれなかった。また、今後、モバイル機器等の高性能化に適したリチウムイオン二次電池へ適用するための負極材料としては、単に多くのリチウムイオンを貯蔵できる(充電容量が高い)だけではなく、貯蔵したリチウムイオンをより多く放出し、且つ繰り返し充放電を行っても性能が低下しにくいことが必要となる。従って、リチウムイオン二次電池の更なる性能向上に貢献する負極材料としては、初期の放電容量、初期の充放電効率及びサイクル特性の向上が重要となる。
本発明は、上記要求に鑑みなされたものであり、初期の放電容量、初期の充放電効率及びサイクル特性に優れるリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを課題とする。
However, when silicon oxide, which is one of the specific element bodies, is used as the negative electrode material, the initial charge / discharge efficiency is low, and the battery capacity of the positive electrode is excessive when applied to an actual battery. Even in this technology, the feature of silicon oxide having a high capacity could not be fully utilized in an actual lithium ion secondary battery. In addition, as a negative electrode material to be applied to lithium ion secondary batteries suitable for higher performance of mobile devices and the like in the future, not only can a large amount of lithium ions be stored (high charge capacity), but also stored lithium It is necessary that the performance is not easily lowered even when more ions are released and repeated charge and discharge are performed. Therefore, as a negative electrode material that contributes to further improving the performance of the lithium ion secondary battery, it is important to improve the initial discharge capacity, the initial charge / discharge efficiency, and the cycle characteristics.
The present invention has been made in view of the above requirements, and has a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery that are excellent in initial discharge capacity, initial charge / discharge efficiency, and cycle characteristics. It is an object to provide a battery.

前記課題を解決するための具体的手段は以下の通りである。   Specific means for solving the above problems are as follows.

<1> ケイ素酸化物粒子の表面の一部又は全部に炭素を有してなり、前記炭素が0.5質量%〜10質量%で含まれ、CuKα線を線源とするX線回折スペクトルにおいてSi(111)に帰属される回折ピークを有し、前記回折ピークから算出されるケイ素の結晶子の大きさが2.0nm〜8.0nmであるリチウムイオン二次電池用負極材料。 <1> In an X-ray diffraction spectrum in which part or all of the surface of silicon oxide particles has carbon, the carbon is contained in an amount of 0.5% by mass to 10% by mass, and CuKα rays are used as a radiation source. A negative electrode material for a lithium ion secondary battery having a diffraction peak attributed to Si (111) and having a silicon crystallite size of 2.0 nm to 8.0 nm calculated from the diffraction peak.

<2> 前記炭素が、低結晶性炭素である前記<1>に記載のリチウムイオン二次電池用負極材料。 <2> The negative electrode material for a lithium ion secondary battery according to <1>, wherein the carbon is low crystalline carbon.

<3> 集電体と
前記集電体上に設けられる、前記<1>又は<2>に記載のリチウムイオン二次電池用負極材料を含む負極材層と、
を有するリチウムイオン二次電池用負極。
<3> a current collector and a negative electrode material layer comprising the negative electrode material for lithium ion secondary batteries according to <1> or <2>, provided on the current collector,
A negative electrode for a lithium ion secondary battery.

<4> 正極と、前記<3>に記載のリチウムイオン二次電池用負極と、電解質と、を備えるリチウムイオン二次電池。 A lithium ion secondary battery provided with a <4> positive electrode, the negative electrode for lithium ion secondary batteries as described in said <3>, and an electrolyte.

本発明によれば、初期の放電容量、初期の充放電効率及びサイクル特性に優れるリチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode material for lithium ion secondary batteries, the negative electrode for lithium ion secondary batteries, and a lithium ion secondary battery which are excellent in initial stage discharge capacity, initial stage charge / discharge efficiency, and cycling characteristics can be provided.

本発明の負極材料の構成の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a structure of the negative electrode material of this invention. 本発明の負極材料の構成の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a structure of the negative electrode material of this invention. 本発明の負極材料の構成の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a structure of the negative electrode material of this invention. 本発明の負極材料の構成の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a structure of the negative electrode material of this invention. 本発明の負極材料の構成の他の一例を示す概略断面図である。It is a schematic sectional drawing which shows another example of a structure of the negative electrode material of this invention. 図1〜図3の負極材料の一部を拡大した断面図である。(A)では負極材料における炭素10の状態の一態様を説明し、(B)では負極材料における炭素10の状態の他の態様を説明する。It is sectional drawing to which some negative electrode materials of FIGS. 1-3 were expanded. (A) illustrates one aspect of the state of carbon 10 in the negative electrode material, and (B) describes another aspect of the state of carbon 10 in the negative electrode material.

本明細書において「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
更に、本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In the present specification, a numerical range indicated using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
Further, in the present specification, the amount of each component in the composition is the amount of each of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. It means the total amount.

<リチウムイオン二次電池用負極材料>
本発明のリチウムイオン二次電池用負極材料(以下「負極材料」と略称する場合がある)は、ケイ素酸化物粒子の表面の一部又は全部に炭素を有してなり、前記炭素が0.5質量%〜10質量%で含まれ、CuKα線を線源とするX線回折スペクトルにおいてSi(111)に帰属される回折ピークを有し、前記回折ピークから算出されるケイ素の結晶子の大きさが2.0nm〜8.0nmである。このような構成とすることにより、リチウムイオンの吸蔵及び放出に伴う膨張及び収縮を緩和することができるとともに、単位質量あたりの容量低下を抑えることができるため、初期の放電容量、初期の充放電効率及びサイクル特性に優れる。
<Anode material for lithium ion secondary battery>
The negative electrode material for a lithium ion secondary battery of the present invention (hereinafter may be abbreviated as “negative electrode material”) has carbon in part or all of the surface of the silicon oxide particles, and the carbon has a value of 0.00. 5% to 10% by mass, having a diffraction peak attributed to Si (111) in an X-ray diffraction spectrum using CuKα rays as a radiation source, and the size of silicon crystallites calculated from the diffraction peak Is 2.0 nm to 8.0 nm. By adopting such a configuration, expansion and contraction associated with insertion and extraction of lithium ions can be mitigated and capacity decrease per unit mass can be suppressed, so that the initial discharge capacity and initial charge / discharge can be suppressed. Excellent efficiency and cycle characteristics.

(ケイ素酸化物粒子)
本発明に係るケイ素酸化物粒子の材質としては、ケイ素原子を含む酸化物であればよく、例えば、一酸化ケイ素(酸化ケイ素ともいう)、二酸化ケイ素及び亜酸化ケイ素が挙げられる。これらは単一種で使用してもよく、複数種を組み合わせて使用してもよい。酸化ケイ素及び二酸化ケイ素は、一般的には、それぞれ一酸化ケイ素(SiO)及び二酸化ケイ素(SiO)として表されるが、表面状態(例えば、酸化皮膜の存在)及び化合物の生成状況によって、含まれる元素の実測値(又は換算値)として組成式SiOx(xは0<x≦2)で表される場合があり、この場合も本発明に係るケイ素酸化物とする。なお、xの値は、例えば、不活性ガス融解−非分散型赤外線吸収法にてケイ素酸化物中に含まれる酸素を定量することにより算出することができる。また、本発明の負極材料の製造工程中に、ケイ素酸化物の不均化反応(2SiO→Si+SiO)を伴う場合は、化学反応上、ケイ素及び二酸化ケイ素(場合によって酸化ケイ素)を含む状態で表される場合があり、この場合も本発明に係るケイ素酸化物とする。
なお、酸化ケイ素は、例えば、二酸化ケイ素と金属ケイ素との混合物を加熱して生成した一酸化ケイ素の気体を冷却及び析出させる公知の昇華法にて得ることができる。また、酸化ケイ素、一酸化ケイ素、Silicon Monoxide等として市場から入手することができる。
(Silicon oxide particles)
The material for the silicon oxide particles according to the present invention may be any oxide containing silicon atoms, and examples thereof include silicon monoxide (also referred to as silicon oxide), silicon dioxide, and silicon suboxide. These may be used alone or in combination of two or more. Silicon oxide and silicon dioxide are generally represented as silicon monoxide (SiO) and silicon dioxide (SiO 2 ), respectively, depending on the surface state (eg, the presence of an oxide film) and the state of compound formation. As a measured value (or converted value) of an element to be obtained, there is a case where it is represented by a composition formula SiOx (x is 0 <x ≦ 2). Note that the value of x can be calculated, for example, by quantifying oxygen contained in silicon oxide by an inert gas melting-non-dispersive infrared absorption method. In addition, when a disproportionation reaction of silicon oxide (2SiO → Si + SiO 2 ) is involved in the production process of the negative electrode material of the present invention, the chemical reaction includes silicon and silicon dioxide (in some cases, silicon oxide). In this case, the silicon oxide according to the present invention is used.
Silicon oxide can be obtained, for example, by a known sublimation method in which a gas of silicon monoxide generated by heating a mixture of silicon dioxide and metal silicon is cooled and precipitated. Moreover, it can obtain from a market as silicon oxide, silicon monoxide, Silicon Monooxide, etc.

ケイ素酸化物粒子は、ケイ素酸化物中にケイ素の結晶子が分散した構造を有する。ケイ素酸化物中にケイ素の結晶子が分散した構造となる場合、CuKα線を線源とするX線回折スペクトルにおいてSi(111)に帰属される回折ピークを示すことになる。   The silicon oxide particles have a structure in which silicon crystallites are dispersed in silicon oxide. When silicon crystallites are dispersed in silicon oxide, a diffraction peak attributed to Si (111) is shown in an X-ray diffraction spectrum using CuKα rays as a radiation source.

ケイ素酸化物に含まれるケイ素の結晶子の大きさは2.0nm〜8.0nmである。ケイ素の結晶子の大きさが2.0nm未満では、リチウムイオンとケイ素酸化物とが反応しやすく、初回の充電容量が高くなるため、充放電効率が低い傾向になる。また、ケイ素の結晶子の大きさが8.0nmを超えると、ケイ素酸化物中でケイ素の結晶子が局在化しやすくなり、ケイ素酸化物内でリチウムイオンが拡散しにくくなると考えられ、充放電特性が低下する傾向がある。ケイ素の結晶子の大きさは3.0nm以上であることが好ましく、4.0nm以上であることがより好ましい。また、放電容量の観点から、6.0nm以下であることが好ましく、5.0nm以下であることがより好ましい。   The size of silicon crystallites contained in the silicon oxide is 2.0 nm to 8.0 nm. If the crystallite size of silicon is less than 2.0 nm, lithium ions and silicon oxide are likely to react with each other, and the initial charge capacity is increased, so that the charge / discharge efficiency tends to be low. In addition, if the size of the silicon crystallites exceeds 8.0 nm, the silicon crystallites are likely to be localized in the silicon oxide, and lithium ions are less likely to diffuse in the silicon oxide. There is a tendency for characteristics to deteriorate. The size of the silicon crystallite is preferably 3.0 nm or more, and more preferably 4.0 nm or more. Further, from the viewpoint of discharge capacity, it is preferably 6.0 nm or less, and more preferably 5.0 nm or less.

ケイ素の結晶子の大きさはケイ素酸化物に含まれるケイ素単結晶の大きさであり、X線回折(XRD)スペクトルにおけるSi(111)に帰属される回折ピークから算出される。具体的には、波長0.154056nmのCuKα線を線源とするX線回折スペクトルにおいてSi(111)に帰属される2θ=28.4°付近の回折ピークの半値幅から、Scherrerの式に基づいて算出される。   The size of the silicon crystallite is the size of the silicon single crystal contained in the silicon oxide, and is calculated from the diffraction peak attributed to Si (111) in the X-ray diffraction (XRD) spectrum. Specifically, based on the Scherrer equation from the half-value width of the diffraction peak near 2θ = 28.4 ° attributed to Si (111) in the X-ray diffraction spectrum using CuKα rays with a wavelength of 0.154056 nm as the radiation source. Is calculated.

また、ケイ素の結晶子がケイ素酸化物中に分散した状態は、X線回折スペクトルにおけるSi(111)に帰属される回折ピークの存在によって確認できる他、例えば、透過型電子顕微鏡を用いてケイ素酸化物粒子を観察した場合に、無定形のケイ素酸化物中にケイ素の結晶の存在が観察されることから確認することができる。   In addition, the state in which the silicon crystallites are dispersed in the silicon oxide can be confirmed by the presence of a diffraction peak attributed to Si (111) in the X-ray diffraction spectrum. For example, the silicon oxide can be oxidized using a transmission electron microscope. When physical particles are observed, the presence of silicon crystals in the amorphous silicon oxide can be confirmed.

ケイ素酸化物中にケイ素の結晶子が分散した構造は、例えば、ケイ素酸化物を不活性雰囲気下で700℃〜1300℃の温度域で熱処理して不均化することにより作製することができる。また、後述の炭素をケイ素酸化物粒子に付与するための熱処理における加熱温度及び熱処理時間を調整することにより作製することができる。   A structure in which silicon crystallites are dispersed in silicon oxide can be produced, for example, by heat-treating silicon oxide in a temperature range of 700 ° C. to 1300 ° C. in an inert atmosphere to disproportionate. Moreover, it can produce by adjusting the heating temperature and heat processing time in the heat processing for providing the below-mentioned carbon to a silicon oxide particle.

ケイ素の結晶子が分散されたケイ素酸化物の製造方法は特に限定されない。例えば、ケイ素酸化物を不活性雰囲気下で700℃〜1300℃の温度域、好ましくは800℃〜1200℃の温度域で熱処理して不均化することで、ケイ素酸化物中にケイ素の結晶子が分散されたケイ素酸化物を製造することができる。ケイ素の結晶子を所望の大きさで生成させる観点から、熱処理温度は850℃を超えることが好ましく、900℃以上であることがより好ましい。また、熱処理温度は1150℃未満であることが好ましく、1100℃以下であることがより好ましい。   The method for producing silicon oxide in which silicon crystallites are dispersed is not particularly limited. For example, silicon oxide is crystallized in silicon oxide by heat treatment in a temperature range of 700 ° C. to 1300 ° C., preferably in a temperature range of 800 ° C. to 1200 ° C., under an inert atmosphere. Can be produced. From the viewpoint of generating silicon crystallites in a desired size, the heat treatment temperature is preferably higher than 850 ° C., more preferably 900 ° C. or higher. The heat treatment temperature is preferably less than 1150 ° C, and more preferably 1100 ° C or less.

不活性雰囲気としては、例えば、窒素雰囲気及びアルゴン雰囲気を挙げることができる。また、熱処理時間は熱処理温度等に応じて適宜選択できる。例えば、1時間〜10時間であることが好ましく、2時間〜7時間であることがより好ましい。
なお、熱処理時の加熱温度が高くなるほど、また、加熱時間が長くなるほど、ケイ素の結晶子の大きさが大きくなる傾向がある。従って、ケイ素の結晶子の大きさが所望の範囲となるように、熱処理温度及び熱処理時間を選択することが好ましい。例えば、熱処理時間を2時間〜7時間とした場合、熱処理温度は、850℃を超え、1150℃未満であることが好ましく、900℃以上1100℃以下であることがより好ましい。
Examples of the inert atmosphere include a nitrogen atmosphere and an argon atmosphere. The heat treatment time can be appropriately selected according to the heat treatment temperature and the like. For example, it is preferably 1 hour to 10 hours, and more preferably 2 hours to 7 hours.
In addition, there exists a tendency for the magnitude | size of the silicon crystallite to become large, so that the heating temperature at the time of heat processing becomes high, and heating time becomes long. Therefore, it is preferable to select the heat treatment temperature and the heat treatment time so that the silicon crystallite size is in a desired range. For example, when the heat treatment time is 2 hours to 7 hours, the heat treatment temperature is preferably higher than 850 ° C. and lower than 1150 ° C., more preferably 900 ° C. or higher and 1100 ° C. or lower.

上記の熱処理に供するケイ素酸化物は、数cm角程度の大きさの塊状を準備した場合には、粉砕し、分級しておくことが好ましい。詳しくは、まず、微粉砕機に投入できる大きさまで粉砕する一次粉砕及び分級を行い、これを微粉砕機により二次粉砕することが好ましい。   The silicon oxide to be subjected to the heat treatment is preferably pulverized and classified when a lump of about several cm square is prepared. Specifically, it is preferable to firstly perform primary pulverization and classification to a size that can be charged into a fine pulverizer, and then secondary pulverize this with a fine pulverizer.

ケイ素酸化物粒子の平均粒子径は特に制限されない。例えば、ケイ素酸化物粒子の平均粒子径は、最終的な所望の負極材料の大きさに合わせて、初期の放電容量とサイクル特性の観点から、0.1μm〜20μmであることが好ましく、0.5μm〜10μmであることがより好ましい。前記平均粒子径は、粒度分布の体積累積50%粒径(D50%)である。以下、平均粒子径の表記において同様である。平均粒子径の測定には、レーザー回折粒度分布計等の既知の方法を採用することができる。   The average particle diameter of the silicon oxide particles is not particularly limited. For example, the average particle diameter of the silicon oxide particles is preferably 0.1 μm to 20 μm from the viewpoint of the initial discharge capacity and cycle characteristics in accordance with the final desired negative electrode material size. More preferably, it is 5 μm to 10 μm. The average particle diameter is a volume cumulative 50% particle diameter (D50%) of the particle size distribution. Hereinafter, the same applies to the description of the average particle diameter. For measuring the average particle diameter, a known method such as a laser diffraction particle size distribution analyzer can be employed.

更に、本発明の負極材料は、ケイ素酸化物粒子の表面の一部又は全部に炭素を有し、前記炭素は負極材料全体中に0.5質量%〜10質量%で含まれる。このような構成とすることにより、初期の放電容量、初期の充放電効率及びサイクル特性が向上する。負極材料全体中、炭素は、1.0質量%〜9.0質量%で含まれることが好ましく、2.0質量%〜8.0質量%で含まれることがより好ましく、3.0質量%〜7.0質量%で含まれることが更に好ましい。   Furthermore, the negative electrode material of the present invention has carbon in part or all of the surface of the silicon oxide particles, and the carbon is included in the entire negative electrode material in an amount of 0.5 mass% to 10 mass%. With such a configuration, initial discharge capacity, initial charge / discharge efficiency, and cycle characteristics are improved. In the whole negative electrode material, carbon is preferably contained at 1.0% by mass to 9.0% by mass, more preferably 2.0% by mass to 8.0% by mass, and 3.0% by mass. More preferably, it is contained at ˜7.0% by mass.

負極材料全体中での炭素の含有率(質量基準)は、高周波焼成−赤外分析法によって求めることができる。高周波焼成−赤外分析法においては、例えば、炭素硫黄同時分析装置(LECOジャパン合同会社、CSLS600)を適用することができる。   The carbon content (mass basis) in the whole negative electrode material can be determined by high-frequency firing-infrared analysis. In the high-frequency firing-infrared analysis method, for example, a carbon-sulfur simultaneous analyzer (LECO Japan GK, CSLS600) can be applied.

本発明の負極材料は、ケイ素酸化物粒子の表面の一部又は全部において炭素を有している。図1〜図4は、本発明の負極材料の構成の例を示す概略断面図である。図1では、炭素10がケイ素酸化物20の表面全体を被覆している。図2では、炭素10がケイ素酸化物20の表面全体を被覆しているが、厚みにばらつきがある。また、図3では、炭素10がケイ素酸化物20の表面に部分的に存在し、一部でケイ素酸化物20の表面が露出している。図4では、ケイ素酸化物20の表面に、ケイ素酸化物20よりも小さい粒径を有する炭素10の粒子が存在している。図5では、図4の変形例であり、炭素10の粒子形状が鱗片状となっている。なお、図1〜図5では、ケイ素酸化物20の形状は、模式的に球状(断面形状としては円)で表されているが、球状、ブロック状、鱗片状、断面形状が多角形の形状(角のある形状)等のいずれであってもよい。   The negative electrode material of the present invention has carbon in part or all of the surface of the silicon oxide particles. 1 to 4 are schematic cross-sectional views showing examples of the configuration of the negative electrode material of the present invention. In FIG. 1, carbon 10 covers the entire surface of silicon oxide 20. In FIG. 2, the carbon 10 covers the entire surface of the silicon oxide 20, but the thickness varies. Moreover, in FIG. 3, carbon 10 exists partially on the surface of the silicon oxide 20, and the surface of the silicon oxide 20 is partially exposed. In FIG. 4, carbon 10 particles having a particle diameter smaller than that of the silicon oxide 20 are present on the surface of the silicon oxide 20. In FIG. 5, it is a modification of FIG. 4, and the particle shape of the carbon 10 is scaly. 1 to 5, the shape of the silicon oxide 20 is schematically represented in a spherical shape (a circle as a cross-sectional shape), but a spherical shape, a block shape, a scale shape, or a polygonal cross-sectional shape. (A shape with corners) or the like may be used.

図6は、図1〜図3の負極材料の一部を拡大した断面図であり、図6(A)では負極材料における炭素10の形状の一態様を説明し、図6(B)では負極材料における炭素10の形状の他の態様を説明する。図1〜図3の場合、図6(A)に示すように炭素10が全体的に炭素で構成されていても、図6(B)で示すように炭素10が炭素の微粒子12で構成されていてもよい。なお、図6(B)では炭素10において炭素の微粒子12の輪郭形状が残った状態で示しているが、炭素の微粒子12同士が結合していてもよい。炭素の微粒子12同士が結合した場合には、炭素10が全体的に炭素で構成されることがあるが、炭素10の一部において空隙が内包される場合がある。このように炭素10の一部に空隙が内包されていてもよい。
また、炭素10が粒子の場合、図4に示すように炭素10の粒子はケイ素酸化物20の表面に部分的に存在し、一部でケイ素酸化物20の表面が覆われていなくてもよいし、図6(B)に示すように炭素10の粒子がケイ素酸化物20の表面全体に存在していてもよい。
FIG. 6 is an enlarged cross-sectional view of a part of the negative electrode material of FIGS. 1 to 3. FIG. 6A illustrates one embodiment of the shape of carbon 10 in the negative electrode material, and FIG. Another aspect of the shape of the carbon 10 in the material will be described. In the case of FIGS. 1 to 3, even if the carbon 10 is entirely composed of carbon as shown in FIG. 6 (A), the carbon 10 is composed of carbon fine particles 12 as shown in FIG. 6 (B). It may be. Although FIG. 6B shows the carbon 10 with the contour shape of the carbon fine particles 12 remaining, the carbon fine particles 12 may be bonded to each other. When the carbon fine particles 12 are bonded to each other, the carbon 10 may be entirely composed of carbon, but voids may be included in a part of the carbon 10. In this way, voids may be included in part of the carbon 10.
When carbon 10 is a particle, as shown in FIG. 4, the carbon 10 particle is partially present on the surface of silicon oxide 20, and the surface of silicon oxide 20 may not be partially covered. However, as shown in FIG. 6B, carbon 10 particles may be present on the entire surface of the silicon oxide 20.

ケイ素酸化物粒子の表面に有する炭素は、低結晶性であることが好ましい。炭素が低結晶性であるとは、下記R値において、0.5以上であることを意味する。
炭素は、励起波長532nmのレーザーラマン分光測定により求めたプロファイルの中で、1360cm−1付近に現れるピークの強度をId、1580cm−1付近に現れるピークの強度をIgとし、その両ピークの強度比Id/Ig(D/Gとも表記する)をR値とした際、そのR値が0.5〜1.5であることが好ましく、0.7〜1.3であることがより好ましく、0.8〜1.2であることがより好ましい。
R値が0.5〜1.5であると、炭素結晶子が乱配向した低結晶性炭素で粒子表面が被覆されるため、電解液との反応性が低減でき、サイクル特性が改善する傾向がある。
The carbon on the surface of the silicon oxide particles is preferably low crystalline. That carbon is low crystalline means that it is 0.5 or more in the following R value.
Carbon, in a profile obtained by laser Raman spectroscopy of the excitation wavelength 532 nm, the intensity of the peak appearing the intensity of the peak appearing in the vicinity of 1360 cm -1 Id, around 1580 cm -1 and Ig, the intensity ratio of the two peaks When Id / Ig (also expressed as D / G) is an R value, the R value is preferably 0.5 to 1.5, more preferably 0.7 to 1.3, 0 More preferably, it is 8 to 1.2.
When the R value is 0.5 to 1.5, the particle surface is coated with low crystalline carbon in which carbon crystallites are randomly oriented, so that the reactivity with the electrolytic solution can be reduced, and the cycle characteristics tend to be improved. There is.

ここで、1360cm−1付近に現れるピークとは、通常、炭素の非晶質構造に対応すると同定されるピークであり、例えば、1300cm−1〜1400cm−1に観測されるピークを意味する。また、1580cm−1付近に現れるピークとは、通常、黒鉛結晶構造に対応すると同定されるピークであり、例えば、1530cm−1〜1630cm−1に観測されるピークを意味する。
なお、R値はラマンスペクトル測定装置(例えば、NSR−1000型、日本分光株式会社)を用い、測定範囲(830cm−1〜1940cm−1)に対して1050cm−1〜1750cm−1をベースラインとして求めることができる。
Here, the peak appearing in the vicinity of 1360 cm −1 is a peak that is usually identified as corresponding to the amorphous structure of carbon, for example, a peak observed at 1300 cm −1 to 1400 cm −1 . Also, the peak appearing near 1580 cm -1, generally a peak identified as corresponding to the graphite crystal structure, for example, refers to peaks observed at 1530cm -1 ~1630cm -1.
Incidentally, R value Raman spectrum measuring apparatus (e.g., NSR-1000 type, manufactured by JASCO Corporation) was used, the 1050cm -1 ~1750cm -1 as a baseline for the measurement range (830cm -1 ~1940cm -1) Can be sought.

ケイ素酸化物粒子の表面に炭素を付与する方法としては、特に制限はないが、湿式混合法、乾式混合法、化学蒸着法等の方法が挙げられる。均一かつ反応系の制御が容易で、負極材料の形状の維持の観点から、湿式混合法又は乾式混合法が好ましい。
湿式混合法の場合は、例えば、ケイ素酸化物粒子と、炭素源を溶媒に溶解させた溶液と、を混合し、炭素源を含む溶液をケイ素酸化物粒子の表面に付着させ、必要に応じて溶媒を除去し、その後、不活性雰囲気下で熱処理することにより炭素源を炭素化させて、ケイ素酸化物粒子の表面に炭素を付与することができる。なお、炭素源が溶媒に溶解しない等の場合は、炭素源を分散媒中に分散させた分散液とすることもできる。
乾式混合法の場合は、例えば、ケイ素酸化物粒子と炭素源とを固体の状態で混合して混合物とし、この混合物を不活性雰囲気下で熱処理することにより炭素源を炭素化させて、ケイ素酸化物粒子の表面に炭素を付与することができる。なお、ケイ素酸化物粒子と炭素源とを混合する際、力学的エネルギーを加える処理(例えば、メカノケミカル処理)を施してもよい。
化学蒸着法の場合は、公知の方法が適用でき、例えば、炭素源を気化させたガスを含む雰囲気中でケイ素酸化物粒子を熱処理することで、ケイ素酸化物粒子の表面に炭素を付与することができる。
Although there is no restriction | limiting in particular as a method to provide carbon on the surface of a silicon oxide particle, Methods, such as a wet mixing method, a dry-type mixing method, a chemical vapor deposition method, are mentioned. From the viewpoint of uniform and easy control of the reaction system and maintaining the shape of the negative electrode material, a wet mixing method or a dry mixing method is preferable.
In the case of the wet mixing method, for example, silicon oxide particles and a solution in which a carbon source is dissolved in a solvent are mixed, and a solution containing the carbon source is attached to the surface of the silicon oxide particles, as necessary. The carbon source can be carbonized by removing the solvent and then heat-treating under an inert atmosphere, and carbon can be imparted to the surface of the silicon oxide particles. In addition, when a carbon source does not melt | dissolve in a solvent, it can also be set as the dispersion liquid which disperse | distributed the carbon source in the dispersion medium.
In the case of the dry mixing method, for example, silicon oxide particles and a carbon source are mixed in a solid state to form a mixture, and the carbon source is carbonized by heat-treating the mixture in an inert atmosphere, thereby oxidizing silicon. Carbon can be imparted to the surface of the product particles. In addition, when mixing a silicon oxide particle and a carbon source, you may perform the process (for example, mechanochemical process) which adds mechanical energy.
In the case of chemical vapor deposition, a known method can be applied. For example, by applying heat treatment to silicon oxide particles in an atmosphere containing a gas obtained by vaporizing a carbon source, carbon is imparted to the surface of the silicon oxide particles. Can do.

前記方法にて、ケイ素酸化物粒子の表面に炭素を付与する場合、炭素源としては特に制限はなく、熱処理により炭素を残し得る化合物であればよい。具体的に炭素源としては、フェノール樹脂、スチレン樹脂、ポリビニルアルコール、ポリ塩化ビニル、ポリ酢酸ビニル、ポリブチラール等の高分子化合物;エチレンヘビーエンドピッチ、石炭ピッチ、石油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して生成するPVCピッチ、ナフタレン等を超強酸存在下で重合させて作製されるナフタレンピッチ等のピッチ類;デンプン、セルロース等の多糖類;などが挙げられる。これら炭素源は、1種単独で又は2種類以上を組み合わせて使用してもよい。   When carbon is imparted to the surface of the silicon oxide particles by the above method, the carbon source is not particularly limited as long as it is a compound that can leave carbon by heat treatment. Specific examples of carbon sources include polymer compounds such as phenol resin, styrene resin, polyvinyl alcohol, polyvinyl chloride, polyvinyl acetate, and polybutyral; ethylene heavy end pitch, coal pitch, petroleum pitch, coal tar pitch, asphalt decomposition And pitches such as naphthalene pitch produced by polymerizing PVC pitch, naphthalene, etc. in the presence of a super strong acid; polysaccharides such as starch, cellulose; and the like. These carbon sources may be used alone or in combination of two or more.

化学蒸着法によってケイ素酸化物粒子の表面に炭素を付与する場合、炭素源としては、脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素等のうち、気体状又は容易に気化可能な化合物を用いることが好ましい。具体的には、メタン、エタン、プロパン、トルエン、ベンゼン、キシレン、スチレン、ナフタレン、クレゾール、アントラセン、これらの誘導体等が挙げられる。これら炭素源は、1種単独で又は2種類以上を組み合わせて使用してもよい。   When carbon is applied to the surface of silicon oxide particles by a chemical vapor deposition method, the carbon source is a gaseous or easily vaporizable compound among aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, etc. Is preferably used. Specific examples include methane, ethane, propane, toluene, benzene, xylene, styrene, naphthalene, cresol, anthracene, and derivatives thereof. These carbon sources may be used alone or in combination of two or more.

炭素源を炭素化するための熱処理温度は、炭素源が炭素化する温度であれば特に制限されず、700℃以上であることが好ましく、800℃以上であることがより好ましく、900℃以上であることが更に好ましい。また、炭素を低結晶性とする観点からは、熱処理温度は1300℃以下であることが好ましく、1200℃以下であることがより好ましく、1150℃以下であることが更に好ましく、1100℃以下であることが特に好ましい。   The heat treatment temperature for carbonizing the carbon source is not particularly limited as long as the carbon source is carbonized, and is preferably 700 ° C. or higher, more preferably 800 ° C. or higher, and 900 ° C. or higher. More preferably it is. Further, from the viewpoint of making carbon low crystalline, the heat treatment temperature is preferably 1300 ° C. or less, more preferably 1200 ° C. or less, further preferably 1150 ° C. or less, and more preferably 1100 ° C. or less. It is particularly preferred.

熱処理時間は、用いる炭素源の種類やその付与量によって適宜選択され、例えば、1時間〜10時間が好ましく、2時間〜7時間がより好ましい。   The heat treatment time is appropriately selected depending on the type of carbon source used and the amount of the carbon source used, and is preferably 1 hour to 10 hours, for example, and more preferably 2 hours to 7 hours.

なお、熱処理は、窒素、アルゴン等の不活性雰囲気下で行うことが好ましい。熱処理装置は、加熱機構を有する反応装置を用いれば特に限定されず、連続法、回分法等での処理が可能な加熱装置などが挙げられる。具体的には、流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉等をその目的に応じ適宜選択することができる。   Note that the heat treatment is preferably performed in an inert atmosphere such as nitrogen or argon. The heat treatment apparatus is not particularly limited as long as a reaction apparatus having a heating mechanism is used, and examples thereof include a heating apparatus capable of processing by a continuous method, a batch method, or the like. Specifically, a fluidized bed reaction furnace, a rotary furnace, a vertical moving bed reaction furnace, a tunnel furnace, a batch furnace or the like can be appropriately selected according to the purpose.

前記炭素を炭素源の熱処理によって形成する場合、炭素源の熱処理は、ケイ素酸化物の不均化処理を兼ねていてもよい。この場合の熱処理条件としては、所望のケイ素の結晶子の大きさを有する負極材料を得る観点から、850℃を超えて1150℃未満で1時間〜10時間とすることが好ましく、900℃〜1100℃で2時間〜7時間とすることがより好ましい。   When the carbon is formed by heat treatment of a carbon source, the heat treatment of the carbon source may also serve as a disproportionation treatment of silicon oxide. As heat treatment conditions in this case, from the viewpoint of obtaining a negative electrode material having a desired silicon crystallite size, it is preferable that the temperature is higher than 850 ° C. and lower than 1150 ° C. for 1 hour to 10 hours, and 900 ° C. to 1100 More preferably, it is 2 to 7 hours at ° C.

熱処理により得られた熱処理物は個々の粒子が凝集している場合があるため、解砕処理することが好ましい。また、所望の平均粒子径への調整が必要な場合は更に粉砕処理を行ってもよい。   The heat-treated product obtained by the heat treatment is preferably crushed because individual particles may be aggregated. Moreover, when adjustment to a desired average particle diameter is required, you may further grind | pulverize.

また、ケイ素酸化物粒子の表面に炭素を付与する別の方法としては、例えば、ケイ素酸化物粒子の表面に付与する炭素源として、ソフトカーボン、ハードカーボン等の非晶質炭素;黒鉛;などの炭素質物質を用いる方法が挙げられる。この方法によれば、図4及び図5に示す、炭素10が粒子としてケイ素酸化物粒子20の表面に存在する形状の負極材料を作製することもできる。前記炭素質物質を用いる方法としては、前記湿式混合法又は前記乾式混合法を応用することができる。   Further, as another method for imparting carbon to the surface of silicon oxide particles, for example, as a carbon source to be imparted to the surface of silicon oxide particles, amorphous carbon such as soft carbon and hard carbon; graphite; Examples include a method using a carbonaceous material. According to this method, a negative electrode material having a shape in which carbon 10 is present on the surface of the silicon oxide particle 20 as a particle as shown in FIGS. 4 and 5 can also be produced. As the method using the carbonaceous material, the wet mixing method or the dry mixing method can be applied.

湿式混合法を応用する場合は、炭素質物質の微粒子と、結着剤となる有機化合物(熱処理により炭素を残し得る化合物)とを混合して混合物とし、この混合物とケイ素酸化物粒子とを更に混合することにより、ケイ素酸化物粒子の表面に混合物を付着させ、それを熱処理することで作製される。前記有機化合物としては、熱処理により炭素を残し得る化合物であれば特に制限はない。また、湿式混合法を応用する場合の熱処理条件は、炭素源を炭素化するための熱処理条件を適用することができる。   When applying the wet mixing method, fine particles of the carbonaceous material and an organic compound (compound capable of leaving carbon by heat treatment) as a binder are mixed to form a mixture, and the mixture and the silicon oxide particles are further mixed. By mixing, the mixture is made to adhere to the surface of the silicon oxide particles and heat-treated. The organic compound is not particularly limited as long as it is a compound that can leave carbon by heat treatment. The heat treatment conditions for applying the wet mixing method can be the heat treatment conditions for carbonizing the carbon source.

乾式混合法を応用する場合は、炭素質物質の微粒子と、ケイ素酸化物粒子とを固体の状態で混合して混合物とし、この混合物に力学的エネルギーを加える処理(例えば、メカノケミカル処理)を行うことで作製される。なお、乾式混合法を応用する場合においても、ケイ素酸化物中にケイ素の結晶子を生成させるために、熱処理を行うことが好ましい。乾式混合法を応用する場合の熱処理条件は、炭素源を炭素化するための熱処理条件を適用することができる。   When applying the dry mixing method, carbonaceous fine particles and silicon oxide particles are mixed in a solid state to form a mixture, and mechanical energy is applied to the mixture (for example, mechanochemical treatment). It is produced by. Even when the dry mixing method is applied, it is preferable to perform a heat treatment in order to generate silicon crystallites in the silicon oxide. The heat treatment conditions for applying the dry mixing method can be the heat treatment conditions for carbonizing the carbon source.

負極材料の体積基準の平均粒子径(D50%)は、0.1μm〜20μmであることが好ましく、0.5μm〜10μmであることがより好ましい。平均粒子径が20μm以下の場合、負極内での負極材料の分布が均一化し、更には、充放電時の膨張及び収縮が均一化することでサイクル特性の低下が抑えられる傾向にある。また、平均粒子径が0.1μm以上の場合には、負極密度が大きくなりやすく、高容量化しやすい傾向にある。   The volume-based average particle diameter (D50%) of the negative electrode material is preferably 0.1 μm to 20 μm, and more preferably 0.5 μm to 10 μm. When the average particle size is 20 μm or less, the distribution of the negative electrode material in the negative electrode is made uniform, and further, the expansion and contraction during charge / discharge are made uniform, and the deterioration of cycle characteristics tends to be suppressed. Further, when the average particle diameter is 0.1 μm or more, the negative electrode density tends to increase and the capacity tends to be increased.

負極材料の比表面積は、0.1m/g〜15m/gであることが好ましく、0.5m/g〜10m/gであることがより好ましく、1.0m/g〜7m/gであることが更に好ましい。比表面積が15m/g以下の場合、得られるリチウムイオン二次電池の初回の不可逆容量の増加が抑えられる傾向にある。更には、負極を作製する際に結着剤の使用量の増加が抑えられる。比表面積が0.1m/g以上の場合では、電解液との接触面積が増加し、充放電効率が増大する傾向にある。比表面積の測定には、BET法(窒素ガス吸着法)等の既知の方法を採用することができる。 The specific surface area of the negative electrode material is preferably 0.1m 2 / g~15m 2 / g, more preferably 0.5m 2 / g~10m 2 / g, 1.0m 2 / g~7m More preferably, it is 2 / g. When the specific surface area is 15 m 2 / g or less, an increase in the first irreversible capacity of the obtained lithium ion secondary battery tends to be suppressed. Furthermore, an increase in the amount of binder used can be suppressed when producing the negative electrode. When the specific surface area is 0.1 m 2 / g or more, the contact area with the electrolytic solution increases, and the charge / discharge efficiency tends to increase. For the measurement of the specific surface area, a known method such as the BET method (nitrogen gas adsorption method) can be employed.

また、負極材料は、炭素が0.5質量%〜10質量%で含有され、且つケイ素の結晶子の大きさが2.0nm〜8.0nmであることが好ましく、炭素が1.0質量%〜9.0質量%で含有され、且つケイ素の結晶子の大きさが3.0nm〜6.0nmであることがより好ましい。   The negative electrode material preferably contains carbon in an amount of 0.5 mass% to 10 mass%, and the silicon crystallite size is preferably 2.0 nm to 8.0 nm, and the carbon is 1.0 mass%. More preferably, it is contained at ˜9.0% by mass, and the crystallite size of silicon is from 3.0 nm to 6.0 nm.

本発明の負極材料は、必要に応じて、リチウムイオン二次電池の負極の活物質として従来知られている炭素負極材料と併用してもよい。併用する炭素負極材料の種類に応じて、充放電効率の向上、サイクル特性の向上、電極の膨張抑制効果等が得られる。
従来知られている炭素負極材料としては、鱗片状天然黒鉛、鱗片状天然黒鉛を球形化した球状天然黒鉛等の天然黒鉛類、人造黒鉛、非晶質炭素などが挙げられる。また、これらの炭素負極材料は、その表面の一部又は全部に更に炭素を有していてもよい。これら炭素負極材料の単独種又は複数種を、上記本発明の負極材料に混合して使用してもよい。
The negative electrode material of the present invention may be used in combination with a carbon negative electrode material conventionally known as an active material for a negative electrode of a lithium ion secondary battery, if necessary. Depending on the type of carbon negative electrode material used in combination, an improvement in charge / discharge efficiency, an improvement in cycle characteristics, an effect of suppressing the expansion of the electrode, and the like are obtained.
Conventionally known carbon anode materials include natural graphite such as flaky natural graphite, spherical natural graphite obtained by spheroidizing flaky natural graphite, artificial graphite, and amorphous carbon. Moreover, these carbon negative electrode materials may further have carbon in part or all of the surface thereof. These carbon negative electrode materials may be used alone or in combination with the negative electrode material of the present invention.

本発明の負極材料を、炭素負極材料と併用する場合、本発明の上記負極材料(SiO−Cと表記する)と炭素負極材料(Cと表記する)との比率(SiO−C:C)は、目的に応じて適宜調整することが可能であり、例えば、電極の膨張抑制効果の観点からは、質量基準で、0.1:99.9〜20:80であることが好ましく、0.5:99.5〜15:85であることがより好ましく、1:99〜10:90であることが更に好ましい。   When the negative electrode material of the present invention is used in combination with a carbon negative electrode material, the ratio (SiO-C: C) of the negative electrode material of the present invention (denoted as SiO-C) and the carbon negative electrode material (denoted as C) is For example, from the viewpoint of the effect of suppressing the expansion of the electrode, it is preferably 0.1: 99.9 to 20:80 on the mass basis, Is more preferably 99.5 to 15:85, and still more preferably 1:99 to 10:90.

<リチウムイオン二次電池用負極>
本発明のリチウムイオン二次電池用負極(以下「負極」と略称する場合がある)は、集電体と、前記集電体上に設けられる前記リチウムイオン二次電池用負極材料を含む負極材層と、を有する。例えば、本発明のリチウムイオン二次電池用負極は、前記リチウムイオン二次電池用負極材料、有機結着剤、溶剤、水等の溶媒、及び必要により増粘剤、導電助剤、従来知られている炭素負極材料等を混合した塗布液を調製し、この塗布液を集電体に塗布した後、前記溶剤又は水を除去し、加圧成形して負極材層を形成することにより得られる。前記リチウムイオン二次電池用負極材料、有機結着剤、溶媒等を混練して得るシート状物、ペレット状物等の混練物を集電体上に重ね、ロール、プレス等により一体化してリチウムイオン二次電池用負極を作製してもよい。
<Anode for lithium ion secondary battery>
The negative electrode for a lithium ion secondary battery of the present invention (hereinafter sometimes abbreviated as “negative electrode”) is a negative electrode material comprising a current collector and the negative electrode material for a lithium ion secondary battery provided on the current collector. And a layer. For example, the negative electrode for a lithium ion secondary battery of the present invention is conventionally known as the negative electrode material for a lithium ion secondary battery, an organic binder, a solvent, a solvent such as water, and, if necessary, a thickener, a conductive aid. It is obtained by preparing a coating liquid in which the carbon negative electrode material and the like are mixed, applying the coating liquid to a current collector, removing the solvent or water, and performing pressure molding to form a negative electrode material layer. . A sheet material obtained by kneading the negative electrode material for lithium ion secondary battery, an organic binder, a solvent, etc., a kneaded material such as a pellet, and the like are stacked on a current collector and integrated by a roll, a press, etc. You may produce the negative electrode for ion secondary batteries.

有機結着剤としては特に限定されず、例えば、スチレン−ブタジエン共重合体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステルと、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸と、を共重合して得られる(メタ)アクリル共重合体;ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロルヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド等の高分子化合物;などが挙げられる。なお、「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」を意味する。「(メタ)アクリル共重合体」等の他の類似の表現においても同様である。   The organic binder is not particularly limited. For example, styrene-butadiene copolymer; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate, and the like. A (meth) acrylic copolymer obtained by copolymerizing an ethylenically unsaturated carboxylic acid ester of the above and an ethylenically unsaturated carboxylic acid such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid; And polymer compounds such as vinylidene chloride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polyimide, and polyamideimide. “(Meth) acrylate” means “acrylate” and “methacrylate” corresponding thereto. The same applies to other similar expressions such as “(meth) acrylic copolymer”.

これらの有機結着剤は、それぞれの物性によって、水に分散、若しくは溶解したもの、又は、N−メチル−2−ピロリドン(NMP)等の有機溶剤に溶解したものがある。これらの中でも、密着性に優れることから、主骨格がポリアクリロニトリル、ポリイミド又はポリアミドイミドである有機結着剤が好ましく、後述するように負極作製時の熱処理温度が低く、電極の柔軟性が優れることから、主骨格がポリアクリロニトリルである有機結着剤がより好ましい。ポリアクリロニトリルを主骨格とする有機結着剤としては、例えば、ポリアクリロニトリル骨格に、接着性を付与するアクリル酸及び柔軟性を付与する直鎖エーテル基を付加した製品(LSR7(商品名)、日立化成株式会社等)が使用できる。   These organic binders include those dispersed or dissolved in water or those dissolved in an organic solvent such as N-methyl-2-pyrrolidone (NMP) depending on the respective physical properties. Among these, an organic binder whose main skeleton is polyacrylonitrile, polyimide or polyamideimide is preferable because of its excellent adhesion, and as described later, the heat treatment temperature during the preparation of the negative electrode is low, and the flexibility of the electrode is excellent. Therefore, an organic binder whose main skeleton is polyacrylonitrile is more preferable. Examples of the organic binder having polyacrylonitrile as a main skeleton include, for example, a product obtained by adding acrylic acid for imparting adhesiveness and a linear ether group for imparting flexibility to a polyacrylonitrile skeleton (LSR7 (trade name), Hitachi Kasei Co., Ltd.) can be used.

リチウムイオン二次電池負極の負極材層中の有機結着剤の含有比率は、0.1質量%〜20質量%であることが好ましく、0.2質量%〜20質量%であることがより好ましく、0.3質量%〜15質量%であることが更に好ましい。
有機結着剤の含有比率が0.1質量%以上であることで密着性が良好で、充放電時の膨張及び収縮によって負極が破壊されることが抑制される傾向がある。一方、20質量%以下であることで、電極抵抗が大きくなることを抑制できる傾向がある。
The content ratio of the organic binder in the negative electrode material layer of the lithium ion secondary battery negative electrode is preferably 0.1% by mass to 20% by mass, and more preferably 0.2% by mass to 20% by mass. Preferably, it is 0.3 mass%-15 mass%.
Adhesiveness is good when the content ratio of the organic binder is 0.1% by mass or more, and the negative electrode tends to be prevented from being destroyed by expansion and contraction during charge and discharge. On the other hand, when it is 20% by mass or less, the electrode resistance tends to be suppressed from increasing.

更に、粘度を調整するための増粘剤として、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸又はその塩、酸化スターチ、リン酸化スターチ、カゼイン等を、前述した有機結着剤と共に使用してもよい。
有機結着剤の混合に使用する溶剤としては、特に制限はなく、N−メチル−2−ピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ−ブチロラクトン等が用いられる。
Further, as a thickener for adjusting the viscosity, carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid or a salt thereof, oxidized starch, phosphorylated starch, casein, etc., the organic binder described above May be used together.
The solvent used for mixing the organic binder is not particularly limited, and N-methyl-2-pyrrolidone, dimethylacetamide, dimethylformamide, γ-butyrolactone and the like are used.

なお、前記塗布液には導電助剤を添加してもよい。導電助剤としては、例えば、カーボンブラック、アセチレンブラック、導電性を示す酸化物及び導電性を示す窒化物が挙げられる。これらの導電助剤は1種単独で又は2種類以上を組み合わせて使用してもよい。導電助剤の含有率は、負極材層(100質量%)中、0.1質量%〜20質量%であることが好ましい。   In addition, you may add a conductive support agent to the said coating liquid. Examples of the conductive assistant include carbon black, acetylene black, oxides showing conductivity, and nitrides showing conductivity. These conductive assistants may be used alone or in combination of two or more. It is preferable that the content rate of a conductive support agent is 0.1 mass%-20 mass% in a negative electrode material layer (100 mass%).

また、集電体の材質は、特に限定されず、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼、ポーラスメタル(発泡メタル)及びカーボンペーパーが挙げられる。前記集電体の形状としては、特に限定されず、例えば、箔状、穴開け箔状及びメッシュ状が挙げられる。   The material of the current collector is not particularly limited, and examples thereof include aluminum, copper, nickel, titanium, stainless steel, porous metal (foamed metal), and carbon paper. The shape of the current collector is not particularly limited, and examples thereof include a foil shape, a perforated foil shape, and a mesh shape.

上記塗布液を集電体に付与する方法としては、特に限定されず、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法及びスクリーン印刷法が挙げられる。付与後は、必要に応じて平板プレス、カレンダーロール等による加圧処理を行うことが好ましい。
また、負極材層を構成するための成分を含み、シート状、ペレット状等の形状に成形された混練物と集電体との一体化は、例えば、ロールによる一体化、プレスによる一体化及びこれらの組み合わせによる一体化により行うことができる。
The method for applying the coating solution to the current collector is not particularly limited. For example, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method. And a screen printing method. After the application, it is preferable to perform a pressure treatment with a flat plate press, a calendar roll, or the like as necessary.
Further, the integration of the kneaded material and the current collector, which includes a component for constituting the negative electrode material layer and is formed into a sheet shape, a pellet shape, or the like, for example, integration by a roll, integration by a press, and It can carry out by integration by these combinations.

集電体上に形成された負極材層又は集電体と一体化した負極材層は、用いる有機結着剤の種類に応じて熱処理することが好ましい。例えば、ポリアクリロニトリルを主骨格とした有機結着剤を用いる場合は、100℃〜180℃で熱処理することが好ましく、ポリイミド又はポリアミドイミドを主骨格とした有機結着剤を用いる場合には、150℃〜450℃で熱処理することが好ましい。
この熱処理により溶媒の除去、有機結着剤の硬化による高強度化が進み、負極材料間の密着性及び負極材料と集電体との間の密着性が向上できる。なお、これらの熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気又は真空雰囲気で行うことが好ましい。
The negative electrode material layer formed on the current collector or the negative electrode material layer integrated with the current collector is preferably heat-treated according to the type of organic binder used. For example, when using an organic binder having polyacrylonitrile as the main skeleton, heat treatment is preferably performed at 100 ° C. to 180 ° C., and when using an organic binder having polyimide or polyamideimide as the main skeleton, 150 is used. It is preferable to heat-treat at a temperature of from 450C to 450C.
This heat treatment increases the strength by removing the solvent and curing the organic binder, thereby improving the adhesion between the negative electrode material and the adhesion between the negative electrode material and the current collector. Note that these heat treatments are preferably performed in an inert atmosphere such as helium, argon, nitrogen, or a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.

また、熱処理する前に、負極はプレス(加圧処理)しておくことが好ましい。加圧処理することで電極密度を調整することができる。本発明のリチウムイオン二次電池用負極では、電極密度が1.40g/cm〜1.90g/cmであることが好ましく、1.50g/cm〜1.85g/cmであることがより好ましく、1.60g/cm〜1.80g/cmであることが更に好ましい。電極密度については、その値が高いほど負極の体積容量が向上する傾向があり、また、負極材料間の密着性及び負極材料と集電体との間の密着性が向上する傾向がある。 In addition, the negative electrode is preferably pressed (pressurized) before the heat treatment. The electrode density can be adjusted by applying pressure treatment. It The negative electrode for a lithium ion secondary battery of the present invention, it is preferable that the electrode density of 1.40g / cm 3 ~1.90g / cm 3 , a 1.50g / cm 3 ~1.85g / cm 3 it is more preferable, and further preferably from 1.60g / cm 3 ~1.80g / cm 3 . As the electrode density is higher, the volume capacity of the negative electrode tends to be improved, and the adhesion between the negative electrode material and the adhesion between the negative electrode material and the current collector tend to be improved.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、正極と、前記負極と、電解質と、を備える。前記リチウムイオン二次電池は必要に応じてセパレータを更に備えていてもよい。
前記負極は、例えば、セパレータを介して正極を対向して配置し、電解質を含む電解液を注入することにより、リチウムイオン二次電池とすることができる。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention includes a positive electrode, the negative electrode, and an electrolyte. The lithium ion secondary battery may further include a separator as necessary.
For example, the negative electrode can be a lithium ion secondary battery by disposing a positive electrode opposite to each other with a separator interposed therebetween and injecting an electrolytic solution containing an electrolyte.

正極は、前記負極と同様にして、集電体表面上に正極層を形成することで得ることができる。正極における集電体には、前記負極で説明した集電体と同様のものを用いることができる。   The positive electrode can be obtained by forming a positive electrode layer on the current collector surface in the same manner as the negative electrode. As the current collector for the positive electrode, the same current collector as described for the negative electrode can be used.

本発明のリチウムイオン二次電池の正極に用いられる材料(正極材料ともいう)については、リチウムイオンをドーピング又はインターカレーション可能な化合物であればよく、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)マンガン酸リチウム(LiMnO)等が挙げられる。 The material used for the positive electrode of the lithium ion secondary battery of the present invention (also referred to as positive electrode material) may be any compound that can be doped or intercalated with lithium ions, such as lithium cobaltate (LiCoO 2 ), lithium nickelate. (LiNiO 2) lithium manganate (LiMnO 2), and the like.

正極は、上記の正極材料と、ポリフッ化ビニリデン等の有機結着剤と、N−メチル−2−ピロリドン、γ−ブチロラクトン等の溶媒とを混合して正極塗布液を調製し、この正極塗布液をアルミニウム箔等の集電体の少なくとも一方の面に塗布し、次いで溶媒を除去し、必要に応じて加圧処理して作製することができる。
なお、正極塗布液には導電助剤を添加してもよい。導電助剤としては、例えば、カーボンブラック、アセチレンブラック、導電性を示す酸化物及び導電性を示す窒化物が挙げられる。これらの導電助剤は1種単独で又は2種類以上を組み合わせて使用してもよい。
The positive electrode is prepared by mixing the positive electrode material described above, an organic binder such as polyvinylidene fluoride, and a solvent such as N-methyl-2-pyrrolidone or γ-butyrolactone, and this positive electrode coating solution Is applied to at least one surface of a current collector such as an aluminum foil, then the solvent is removed, and pressure treatment is performed as necessary.
In addition, you may add a conductive support agent to a positive electrode coating liquid. Examples of the conductive assistant include carbon black, acetylene black, oxides showing conductivity, and nitrides showing conductivity. These conductive assistants may be used alone or in combination of two or more.

本発明のリチウムイオン二次電池に用いられる電解液は、特に制限されず、公知のものを用いることができる。例えば、電解液として、有機溶剤に電解質を溶解させた溶液を用いることにより、非水系リチウムイオン二次電池を製造することができる。   The electrolyte solution used for the lithium ion secondary battery of the present invention is not particularly limited, and a known one can be used. For example, a non-aqueous lithium ion secondary battery can be manufactured by using a solution obtained by dissolving an electrolyte in an organic solvent as the electrolytic solution.

電解質としては、例えば、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiN(CFSO、LiN(CSO及びLiC(CFSO、LiCl、LiIが挙げられる。 As the electrolyte, for example, LiPF 6, LiClO 4, LiBF 4, LiClF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2 and Examples include LiC (CF 3 SO 2 ) 3 , LiCl, and LiI.

有機溶剤としては、電解質を溶解できればよく、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、エチルメチルカーボネート、ビニルカーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン及び2−メチルテトラヒドロフランが挙げられる。   The organic solvent only needs to dissolve the electrolyte, and examples thereof include propylene carbonate, ethylene carbonate, diethyl carbonate, ethyl methyl carbonate, vinyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, and 2-methyltetrahydrofuran.

セパレータは、公知の各種セパレータを用いることができる。セパレータの具体例としては、紙製セパレータ、ポリプロピレン製セパレータ、ポリエチレン製セパレータ、ガラス繊維製セパレータ等が挙げられる。   Various known separators can be used as the separator. Specific examples of the separator include a paper separator, a polypropylene separator, a polyethylene separator, a glass fiber separator, and the like.

リチウムイオン二次電池の製造方法としては、例えば、まず正極と負極の2つの電極を、セパレータを介して捲回する。得られたスパイラル状の捲回群を電池缶に挿入し、予め負極の集電体に溶接しておいたタブ端子を電池缶底に溶接する。得られた電池缶に電解液を注入し、更に予め正極の集電体に溶接しておいたタブ端子を電池の蓋に溶接し、蓋を絶縁性のガスケットを介して電池缶の上部に配置し、蓋と電池缶とが接した部分をかしめて密閉することによって電池を得る。   As a method for manufacturing a lithium ion secondary battery, for example, first, two electrodes of a positive electrode and a negative electrode are wound through a separator. The obtained spiral wound group is inserted into a battery can, and a tab terminal previously welded to a negative electrode current collector is welded to the bottom of the battery can. Inject the electrolyte into the obtained battery can, weld the tab terminal that was previously welded to the positive electrode current collector to the battery lid, and place the lid on the top of the battery can via an insulating gasket A battery is obtained by caulking and sealing the part where the lid and the battery can are in contact.

本発明のリチウムイオン二次電池の形態は、特に限定されない。具体的には、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等のリチウムイオン二次電池が挙げられる。   The form of the lithium ion secondary battery of the present invention is not particularly limited. Specifically, a lithium ion secondary battery such as a paper type battery, a button type battery, a coin type battery, a stacked type battery, a cylindrical type battery, and a square type battery can be given.

上述した本発明のリチウムイオン二次電池用負極材料は、リチウムイオン二次電池用と記載したが、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般に適用することが可能である。   The above-described negative electrode material for a lithium ion secondary battery according to the present invention has been described as being used for a lithium ion secondary battery. However, it can be applied to any electrochemical device that uses a charge / discharge mechanism to insert and desorb lithium ions. It is.

以下、合成例、実施例及び比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に制限するものではない。なお、特に断りのない限り、「部」及び「%」は質量基準である。   EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are given and this invention is demonstrated more concretely, this invention is not restrict | limited to the following Example. Unless otherwise specified, “part” and “%” are based on mass.

[実施例1]
(負極材料の作製)
塊状の酸化ケイ素(株式会社高純度化学研究所、規格10mm〜30mm角)を乳鉢により粗粉砕しケイ素酸化物粒子を得た。このケイ素酸化物粒子を振動ミル(小型振動ミルNB−0、日陶科学株式会社)によって更に粉砕した後、300M(300メッシュ)の試験篩で整粒し、平均粒子径が5μmの微粒子を得た。
[Example 1]
(Preparation of negative electrode material)
Bulk silicon oxide (High Purity Chemical Laboratory Co., Ltd., standard 10 mm to 30 mm square) was coarsely pulverized with a mortar to obtain silicon oxide particles. The silicon oxide particles are further pulverized by a vibration mill (small vibration mill NB-0, Nichito Kagaku Co., Ltd.) and then sized with a 300M (300 mesh) test sieve to obtain fine particles having an average particle diameter of 5 μm. It was.

得られたケイ素酸化物の微粒子995gと、石炭系ピッチ(固定炭素50%)10gを混合装置(ロッキングミキサーRM−10G、愛知電機株式会社)に投入し、5分間混合した後、アルミナ製の熱処理容器に充填した。熱処理容器に充填した後、これを雰囲気焼成炉において、窒素雰囲気下で、1000℃、5時間熱処理し、熱処理物を得た。   995 g of the obtained silicon oxide fine particles and 10 g of coal-based pitch (fixed carbon 50%) are put into a mixing device (Rocking Mixer RM-10G, Aichi Electric Co., Ltd.) and mixed for 5 minutes, and then heat treatment made of alumina. The container was filled. After filling the heat treatment container, this was heat treated in an atmosphere firing furnace under a nitrogen atmosphere at 1000 ° C. for 5 hours to obtain a heat treated product.

得られた熱処理物を、乳鉢により解砕し、300M(300メッシュ)の試験篩により篩い分けして、平均粒子径が5.0μmの負極材料を得た。   The obtained heat-treated product was crushed with a mortar and sieved with a 300M (300 mesh) test sieve to obtain a negative electrode material having an average particle diameter of 5.0 μm.

<平均粒子径の測定>
測定試料(5mg)を界面活性剤(エソミンT/15、ライオン株式会社)0.01%水溶液中に入れ、振動攪拌機で分散した。得られた分散液をレーザー回折式粒度分布測定装置(SALD3000J、株式会社島津製作所)の試料水槽に入れ、超音波をかけながらポンプで循環させ、レーザー回折式で測定した。測定条件は下記の通りとした。得られた粒度分布の体積累積50%粒径(D50%)を平均粒子径とした。以下、実施例において、平均粒子径の測定は同様にして行った。
・光源:赤色半導体レーザー(690nm)
・吸光度:0.10〜0.15
・屈折率:2.00−0.20i
<Measurement of average particle diameter>
A measurement sample (5 mg) was placed in a 0.01% aqueous solution of a surfactant (Esomine T / 15, Lion Corporation) and dispersed with a vibration stirrer. The obtained dispersion was put into a sample water tank of a laser diffraction particle size distribution analyzer (SALD3000J, Shimadzu Corporation), circulated with a pump while applying ultrasonic waves, and measured by a laser diffraction method. The measurement conditions were as follows. The volume cumulative 50% particle size (D50%) of the obtained particle size distribution was defined as the average particle size. Hereinafter, in the examples, the average particle size was measured in the same manner.
・ Light source: Red semiconductor laser (690nm)
Absorbance: 0.10 to 0.15
-Refractive index: 2.00-0.20i

<炭素含有率の測定方法>
負極材料の炭素含有率を高周波焼成−赤外分析法にて測定した。高周波焼成−赤外分析法は、高周波炉にて酸素気流で試料を加熱燃焼させ、試料中の炭素及び硫黄をそれぞれCO及びSOに変換し、赤外線吸収法によって定量する分析方法である。測定装置及び測定条件等は下記の通りである。
・装置:炭素硫黄同時分析装置(CSLS600、LECOジャパン合同会社)
・周波数:18MHz
・高周波出力:1600W
・試料質量:約0.05g
・分析時間:装置の設定モードで自動モードを使用
・助燃材:Fe+W/Sn
・標準試料:Leco501−024(C:3.03%±0.04%、S:0.055%±0.002%)
・測定回数:2回(表2中の炭素含有率の値は2回の測定値の平均値である)
<Method for measuring carbon content>
The carbon content of the negative electrode material was measured by high-frequency firing-infrared analysis. The high-frequency firing-infrared analysis method is an analysis method in which a sample is heated and burned with an oxygen stream in a high-frequency furnace, carbon and sulfur in the sample are converted into CO 2 and SO 2 , respectively, and quantified by an infrared absorption method. The measuring apparatus and measurement conditions are as follows.
・ Device: Simultaneous carbon sulfur analyzer (CSLS600, LECO Japan GK)
・ Frequency: 18MHz
・ High frequency output: 1600W
Sample weight: about 0.05g
・ Analysis time: Automatic mode is used in the instrument setting mode.
Standard sample: Leco 501-224 (C: 3.03% ± 0.04%, S: 0.055% ± 0.002%)
-Number of measurements: 2 times (the value of carbon content in Table 2 is the average value of the two measurements)

<R値の測定>
ラマンスペクトル測定装置(NSR−1000型、日本分光株式会社)を用い、得られたスペクトルは下記範囲をベースラインとし、負極材料の分析を行った。測定条件は、下記の通りとした。
・レーザー波長:532nm
・照射強度:1.5mW(レーザーパワーモニターでの測定値)
・照射時間:60秒
・照射面積:4μm
・測定範囲:830cm−1〜1940cm−1
・ベースライン:1050cm−1〜1750cm−1
<Measurement of R value>
Using the Raman spectrum measuring apparatus (NSR-1000 type, JASCO Corporation), the obtained spectrum was analyzed for the anode material with the following range as the baseline. The measurement conditions were as follows.
・ Laser wavelength: 532 nm
・ Irradiation intensity: 1.5mW (measured value with laser power monitor)
・ Irradiation time: 60 seconds ・ Irradiation area: 4 μm 2
Measurement range: 830 cm −1 to 1940 cm −1
Baseline: 1050 cm −1 to 1750 cm −1

なお、得られたスペクトルの波数は、基準物質インデン(和光一級、和光純薬工業株式会社)を前記と同一条件で測定して得られる各ピークの波数と、インデンの各ピークの波数理論値との差から求めた検量線を用いて補正した。
補正後に得られたプロファイルの中で、1360cm−1付近に現れるピークの強度をId、1580cm−1付近に現れるピークの強度をIgとし、その両ピークの強度比Id/Ig(D/G)をR値として求めた。
The wave number of the obtained spectrum is the wave number of each peak obtained by measuring the reference substance inden (Wako Class 1, Wako Pure Chemical Industries, Ltd.) under the same conditions as described above, and the theoretical wave number of each peak of indene. Correction was performed using a calibration curve obtained from the difference between the two.
Among the profile obtained after the correction, 1360 cm -1 to the intensity of the peak appearing in the vicinity of Id, and Ig the intensity of a peak appearing near 1580 cm -1, at both peak intensity ratio Id / Ig of (D / G) It calculated | required as R value.

<BET比表面積の測定>
高速比表面積/細孔分布測定装置(ASAP2020、マイクロメリティックスジャパン合同会社)を用い、液体窒素温度(77K)での窒素吸着を5点法で測定し、BET法(相対圧範囲:0.05〜0.2)より算出した。
<Measurement of BET specific surface area>
Using a high-speed specific surface area / pore distribution measuring device (ASAP2020, Micromeritics Japan LLC), nitrogen adsorption at a liquid nitrogen temperature (77K) was measured by a five-point method, and the BET method (relative pressure range: 0.00). 05 to 0.2).

<ケイ素の結晶子の大きさの測定>
粉末X線回折測定装置(MultiFlex(2kW)、株式会社リガク)を用いて負極材料の分析を行った。ケイ素の結晶子の大きさは、2θ=28.4°付近に存在するSi(111)の結晶面に帰属されるピークの半値幅から、Scherrerの式を用いて算出した。測定条件は下記の通りとした。
・線源:CuKα線(波長:0.154056nm)
・測定範囲:2θ=10°〜40°
・サンプリングステップ幅:0.02°
・スキャンスピード:1°/分
・管電流:40mA
・管電圧:40kV
・発散スリット:1°
・散乱スリット:1°
・受光スリット:0.3mm
<Measurement of crystallite size of silicon>
The negative electrode material was analyzed using a powder X-ray diffractometer (MultiFlex (2 kW), Rigaku Corporation). The size of the silicon crystallite was calculated from the half width of the peak attributed to the crystal plane of Si (111) existing in the vicinity of 2θ = 28.4 °, using the Scherrer equation. The measurement conditions were as follows.
-Radiation source: CuKα ray (wavelength: 0.154056 nm)
Measurement range: 2θ = 10 ° to 40 °
・ Sampling step width: 0.02 °
・ Scanning speed: 1 ° / min ・ Tube current: 40 mA
・ Tube voltage: 40kV
・ Divergent slit: 1 °
・ Scatter slit: 1 °
・ Reception slit: 0.3mm

なお、得られたプロファイルは、上記装置に付属の構造解析ソフト(JADE6、株式会社リガク)を用いて下記の設定で、バックグラウンド(BG)除去及びピーク分離した。   The obtained profile was subjected to background (BG) removal and peak separation using the structure analysis software (JADE6, Rigaku Corporation) attached to the above apparatus with the following settings.

[Kα2ピーク除去及びバックグラウンド除去]
・Kα1/Kα2強度比:2.0
・BG点からのBGカーブ上下(σ):0.0
[Kα2 peak removal and background removal]
・ Kα1 / Kα2 intensity ratio: 2.0
BG curve up and down (σ) from BG point: 0.0

[ピークの指定]
・Si(111)に帰属するピーク:28.4°±0.3°
・SiOに帰属するピーク:21°±0.3°
[Specify peak]
-Peak attributed to Si (111): 28.4 ° ± 0.3 °
・ Peak attributed to SiO 2 : 21 ° ± 0.3 °

[ピーク分離]
・プロファイル形状関数:Pseudo−Voigt
・バックグラウンド固定
[Peak separation]
Profile shape function: Pseudo-Voigt
・ Background fixed

上記設定により構造解析ソフトから導き出されたSi(111)に帰属するピークの半値幅を読み取り、下記Scherrerの式よりケイ素の結晶子の大きさDを算出した。
D=Kλ/B cosθ
B=(Bobs −b1/2
D:結晶子の大きさ(nm)
K:Scherrer定数(0.94)
λ:線源波長(0.154056nm)
θ:測定半値幅ピーク角度
obs:半値幅(構造解析ソフトから得られた測定値)
b:標準ケイ素(Si)の測定半値幅
The half width of the peak attributed to Si (111) derived from the structure analysis software with the above settings was read, and the silicon crystallite size D was calculated from the following Scherrer equation.
D = Kλ / B cos θ
B = ( Bobs 2 −b 2 ) 1/2
D: Size of crystallite (nm)
K: Scherrer constant (0.94)
λ: Source wavelength (0.154056 nm)
θ: Measurement half-width peak angle B obs : Half-width (measured value obtained from structural analysis software)
b: Measurement half width of standard silicon (Si)

(負極の作製方法)
上記手法で作製した負極材料の粉末3.75質量%、炭素負極材料として人造黒鉛(日立化成株式会社)71.25質量%(作製した負極材料:人造黒鉛=5:95(質量比))に、導電助剤としてアセチレンブラック(電気化学工業株式会社)の粉末15質量%、バインダとしてポリアクリロニトリルを主骨格とする有機結着剤(LSR−7、日立化成株式会社)を添加し、その後混練し均一なスラリーを作製した。なお、バインダの添加量は、スラリーの総質量に対して10質量%となるように調整した。このスラリーを、電解銅箔の光沢面に塗布量が10mg/cmとなるように塗布し、90℃で2時間の予備乾燥させた後、ロールプレスで密度1.65g/cmになるように調整した。その後、真空雰囲気下で、120℃で4時間乾燥させることによって硬化処理を行い、負極を得た。
(Production method of negative electrode)
3.75% by mass of negative electrode material powder prepared by the above method, 71.25% by mass of artificial graphite (Hitachi Chemical Co., Ltd.) as a carbon negative electrode material (produced negative electrode material: artificial graphite = 5: 95 (mass ratio)) , 15% by mass of acetylene black (Electrochemical Co., Ltd.) powder as a conductive additive, and an organic binder (LSR-7, Hitachi Chemical Co., Ltd.) having polyacrylonitrile as the main skeleton as a binder, then kneaded A uniform slurry was produced. In addition, the addition amount of the binder was adjusted so that it might become 10 mass% with respect to the total mass of a slurry. This slurry is applied to the glossy surface of the electrolytic copper foil so that the coating amount is 10 mg / cm 2, and after preliminary drying at 90 ° C. for 2 hours, the density is 1.65 g / cm 3 with a roll press. Adjusted. Thereafter, a curing treatment was performed by drying at 120 ° C. for 4 hours in a vacuum atmosphere to obtain a negative electrode.

(リチウムイオン二次電池の作製)
上記で得られた電極を負極とし、対極として金属リチウム、電解液として1MのLiPFを含むエチレンカーボネート/エチルメチルカーボネート(3:7体積比)とビニルカーボネート(VC)(1.0質量%)の混合液、セパレータとして厚さ25μmのポリエチレン製微孔膜、及びスペーサーとして厚さ250μmの銅板を用いて2016型コインセルを作製した。
(Production of lithium ion secondary battery)
The electrode obtained above was used as a negative electrode, lithium metal as a counter electrode, and ethylene carbonate / ethyl methyl carbonate (3: 7 volume ratio) and vinyl carbonate (VC) (1.0% by mass) containing 1M LiPF 6 as an electrolyte. A 2016 type coin cell was prepared using a mixed liquid of the above, a polyethylene microporous film having a thickness of 25 μm as a separator, and a copper plate having a thickness of 250 μm as a spacer.

(電池評価)
<初回充電容量、初回放電容量、及び初期の充放電効率>
上記で得られた電池を、25℃に保持した恒温槽に入れ、0.43mA(0.32mA/cm)で0Vになるまで定電流充電を行った後、0Vの定電圧で電流が0.043mAに相当する値に減衰するまで更に充電し、初回充電容量を測定した。充電後、30分間の休止を入れたのちに放電を行った。放電は0.43mA(0.32mA/cm)で1.5Vになるまで行い、初回放電容量を測定した。このとき、容量は用いた負極材料の質量(作製した負極材料と人造黒鉛とを混合した総質量)当たりに換算した。初回放電容量を初回充電容量で割った値を初期の充放電効率(%)として算出した。
(Battery evaluation)
<Initial charge capacity, initial discharge capacity, and initial charge / discharge efficiency>
The battery obtained above was placed in a thermostatic chamber maintained at 25 ° C., charged at a constant current of 0.43 mA (0.32 mA / cm 2 ) until it reached 0 V, and then the current was 0 at a constant voltage of 0 V. The battery was further charged until it decayed to a value corresponding to 0.043 mA, and the initial charge capacity was measured. After charging, the battery was discharged after a 30-minute pause. Discharge was performed at 0.43 mA (0.32 mA / cm 2 ) until it reached 1.5 V, and the initial discharge capacity was measured. At this time, the capacity was converted per mass of the used negative electrode material (total mass of the produced negative electrode material and artificial graphite mixed). A value obtained by dividing the initial discharge capacity by the initial charge capacity was calculated as the initial charge / discharge efficiency (%).

<サイクル特性>
上記で得られた各電池を、25℃に保持した恒温槽に入れ、0.45mA/cmで0Vになるまで定電流充電を行った後、0Vの定電圧で電流が0.09mA/cmに相当する値に減衰するまで更に充電した。充電後、30分間の休止を入れた後放電を行った。放電は0.45mA/cmで1.5Vになるまで行った。この充電―放電を1サイクルとし、10回サイクル試験を行うことでサイクル特性の評価を行った。
サイクル特性=10サイクル目の放電容量/1サイクル目の放電容量
<Cycle characteristics>
Each battery obtained above was placed in a thermostat kept at 25 ° C., charged at 0.45 mA / cm 2 until it became 0 V, and then at a constant voltage of 0 V, the current was 0.09 mA / cm. The battery was further charged until it decayed to a value corresponding to 2 . After charging, the battery was discharged after a 30-minute pause. Discharging was performed at 0.45 mA / cm 2 until 1.5V was reached. This charge-discharge was set as one cycle, and the cycle characteristics were evaluated by performing a cycle test 10 times.
Cycle characteristics = discharge capacity at 10th cycle / discharge capacity at 1st cycle

[実施例2〜11、比較例2]
実施例1の負極材料の作製において、ケイ素酸化物粒子と石炭ピッチとの混合割合を、下記表1のように変更した以外は、実施例1と同様にして負極材料を作製し、同様の評価を行った。
[Examples 2 to 11, Comparative Example 2]
In the production of the negative electrode material of Example 1, a negative electrode material was produced in the same manner as in Example 1 except that the mixing ratio of silicon oxide particles and coal pitch was changed as shown in Table 1 below, and the same evaluation was performed. Went.

[比較例1]
実施例1の負極材料の作製において、石炭ピッチを混合せず、ケイ素酸化物粒子のみを熱処理するように変更した以外は、実施例1と同様にして負極材料を作製し、同様の評価を行った。以上の実施例及び比較例の評価結果を下記表2に示す。
[Comparative Example 1]
In the production of the negative electrode material of Example 1, the negative electrode material was produced in the same manner as in Example 1 except that the coal pitch was not mixed and only the silicon oxide particles were heat-treated, and the same evaluation was performed. It was. The evaluation results of the above examples and comparative examples are shown in Table 2 below.


表2の結果から、実施例1〜11で示したリチウムイオン二次電池用負極材料は、炭素被覆をしない比較例1及び炭素被覆量が10質量%を超える比較例2と比べて、初回における放電容量が高く、初期の充放電効率に優れ、サイクル特性に優れた材料であることが分かる。   From the results of Table 2, the negative electrode materials for lithium ion secondary batteries shown in Examples 1 to 11 were compared with Comparative Example 1 in which carbon coating was not performed and in Comparative Example 2 in which the carbon coating amount exceeded 10% by mass. It can be seen that the material has a high discharge capacity, excellent initial charge / discharge efficiency, and excellent cycle characteristics.

[実施例12〜15]
実施例7の負極材料の作製において、熱処理温度を900℃(実施例12)、950℃(実施例13)、1050℃(実施例14)、1100℃(実施例15)にそれぞれ変更した以外は、実施例7と同様にしてそれぞれ負極材料を作製し、同様の評価を行った。
[Examples 12 to 15]
In the production of the negative electrode material of Example 7, the heat treatment temperature was changed to 900 ° C. (Example 12), 950 ° C. (Example 13), 1050 ° C. (Example 14), and 1100 ° C. (Example 15), respectively. In the same manner as in Example 7, negative electrode materials were produced and evaluated in the same manner.

[比較例3]
実施例7の負極材料の作製において、熱処理温度を850℃に変更した以外は、実施例7と同様にして負極材料を作製し、同様の評価を行った。
なお、比較例1で作製した負極材料では、Si(111)に帰属される回折ピークは観測されなかったため、表3中では「ND」と記載した。
[Comparative Example 3]
In the production of the negative electrode material of Example 7, a negative electrode material was produced in the same manner as in Example 7 except that the heat treatment temperature was changed to 850 ° C., and the same evaluation was performed.
In the negative electrode material produced in Comparative Example 1, a diffraction peak attributed to Si (111) was not observed, so “ND” is described in Table 3.

[比較例4]
実施例7の負極材料の作製において、熱処理温度を1150℃に変更した以外は、実施例7と同様にして負極材料を作製し、同様の評価を行った。
[Comparative Example 4]
A negative electrode material was produced in the same manner as in Example 7 except that the heat treatment temperature was changed to 1150 ° C. in the production of the negative electrode material of Example 7, and the same evaluation was performed.


表3の結果から、実施例12〜15で示したリチウムイオン二次電池用負極材料は、ケイ素の結晶子が観測されない比較例3及びケイ素の結晶子の大きさが11.0nmである比較例4の負極材料と比べて、初回の放電容量が大きく、初期の充放電効率に優れ、サイクル特性に優れた負極材料であることが分かる。   From the results of Table 3, the negative electrode materials for lithium ion secondary batteries shown in Examples 12 to 15 are Comparative Example 3 in which silicon crystallites are not observed and Comparative Example in which the size of silicon crystallites is 11.0 nm. It can be seen that it is a negative electrode material having a large initial discharge capacity, excellent initial charge / discharge efficiency, and excellent cycle characteristics as compared with the negative electrode material No. 4.

10 炭素
12 炭素の微粒子
20 ケイ素酸化物粒子
10 carbon 12 carbon fine particles 20 silicon oxide particles

Claims (3)

ケイ素酸化物粒子の表面の一部又は全部に炭素を有してなり、前記炭素が5質量%〜10質量%で含まれ、CuKα線を線源とするX線回折スペクトルにおいてSi(111)に帰属される回折ピークを有し、前記回折ピークから算出されるケイ素の結晶子の大きさが2.0nm〜8.0nmであり、
前記炭素は、R値が0.5以上であり
但し、リチウム、マグネシウム又はカルシウムがドープされたものを除くリチウムイオン二次電池用負極材料。
A part or all of the surface of the silicon oxide particles has carbon, and the carbon is contained in an amount of 5% by mass to 10% by mass. In the X-ray diffraction spectrum using CuKα rays as a radiation source, Si (111) The crystallite size of silicon calculated from the diffraction peak is 2.0 nm to 8.0 nm.
The carbon has an R value of 0.5 or more ,
However, negative electrode materials for lithium ion secondary batteries excluding those doped with lithium, magnesium or calcium.
集電体と
前記集電体上に設けられる、請求項1に記載のリチウムイオン二次電池用負極材料を含む負極材層と、
を有するリチウムイオン二次電池用負極。
A negative electrode material layer comprising a current collector and a negative electrode material for a lithium ion secondary battery according to claim 1 provided on the current collector,
A negative electrode for a lithium ion secondary battery.
正極と、請求項2に記載のリチウムイオン二次電池用負極と、電解質と、を備えるリチウムイオン二次電池。   A lithium ion secondary battery comprising: a positive electrode; a negative electrode for a lithium ion secondary battery according to claim 2; and an electrolyte.
JP2014092062A 2014-04-25 2014-04-25 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Active JP6615431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014092062A JP6615431B2 (en) 2014-04-25 2014-04-25 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014092062A JP6615431B2 (en) 2014-04-25 2014-04-25 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015210959A JP2015210959A (en) 2015-11-24
JP6615431B2 true JP6615431B2 (en) 2019-12-04

Family

ID=54613004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014092062A Active JP6615431B2 (en) 2014-04-25 2014-04-25 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6615431B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016221782A1 (en) * 2016-11-07 2018-05-09 Wacker Chemie Ag Carbon coated silicon particles for lithium ion batteries
KR20200110756A (en) 2018-01-31 2020-09-25 히타치가세이가부시끼가이샤 Anode active material for lithium ion secondary batteries, anodes for lithium ion secondary batteries, and lithium ion secondary batteries
US11063255B2 (en) 2018-01-31 2021-07-13 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20200110755A (en) * 2018-01-31 2020-09-25 히타치가세이가부시끼가이샤 Anode active material for lithium ion secondary batteries, anodes for lithium ion secondary batteries, and lithium ion secondary batteries
JP7159838B2 (en) * 2018-12-13 2022-10-25 昭和電工マテリアルズ株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7159839B2 (en) * 2018-12-13 2022-10-25 昭和電工マテリアルズ株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7159840B2 (en) * 2018-12-13 2022-10-25 昭和電工マテリアルズ株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JPWO2021005689A1 (en) * 2019-07-08 2021-01-14

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5390336B2 (en) * 2009-10-22 2014-01-15 信越化学工業株式会社 Negative electrode material for nonaqueous electrolyte secondary battery, method for producing negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP5411780B2 (en) * 2010-04-05 2014-02-12 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing anode material for non-aqueous electrolyte secondary battery, and lithium ion secondary battery
JP5406799B2 (en) * 2010-07-29 2014-02-05 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
US8481212B2 (en) * 2010-09-14 2013-07-09 Hitachi Maxell, Ltd. Non-aqueous secondary battery
TWI594485B (en) * 2012-10-26 2017-08-01 日立化成股份有限公司 Anode material for lithium ion secondary battery, anode for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2015210959A (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP6683213B2 (en) Anode material for lithium-ion secondary battery, anode for lithium-ion secondary battery, and lithium-ion secondary battery
US11251421B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6615431B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2018179813A1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6749068B2 (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6451915B1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6451916B1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6451914B1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018195586A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019133920A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6409319B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6724968B2 (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2019133919A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019133918A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180717

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180727

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191106

R150 Certificate of patent or registration of utility model

Ref document number: 6615431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350