JP6614307B1 - Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof - Google Patents
Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof Download PDFInfo
- Publication number
- JP6614307B1 JP6614307B1 JP2018186641A JP2018186641A JP6614307B1 JP 6614307 B1 JP6614307 B1 JP 6614307B1 JP 2018186641 A JP2018186641 A JP 2018186641A JP 2018186641 A JP2018186641 A JP 2018186641A JP 6614307 B1 JP6614307 B1 JP 6614307B1
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- cold rolling
- final
- aluminum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000000465 moulding Methods 0.000 title claims abstract description 10
- 238000005097 cold rolling Methods 0.000 claims abstract description 88
- 230000009467 reduction Effects 0.000 claims abstract description 70
- 239000000203 mixture Substances 0.000 claims abstract description 27
- 239000013078 crystal Substances 0.000 claims abstract description 24
- 239000012535 impurity Substances 0.000 claims abstract description 19
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 13
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 230000001105 regulatory effect Effects 0.000 claims abstract description 6
- 238000000137 annealing Methods 0.000 claims description 60
- 238000005266 casting Methods 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 25
- 238000000265 homogenisation Methods 0.000 claims description 18
- 238000005098 hot rolling Methods 0.000 claims description 17
- 238000009749 continuous casting Methods 0.000 claims description 6
- 230000017525 heat dissipation Effects 0.000 abstract description 29
- 238000011156 evaluation Methods 0.000 description 67
- 239000000463 material Substances 0.000 description 48
- 238000005096 rolling process Methods 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 23
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 18
- 229910001416 lithium ion Inorganic materials 0.000 description 18
- 230000008569 process Effects 0.000 description 18
- 238000005259 measurement Methods 0.000 description 15
- 238000005482 strain hardening Methods 0.000 description 15
- 239000006104 solid solution Substances 0.000 description 14
- 229910000765 intermetallic Inorganic materials 0.000 description 13
- 238000012545 processing Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- 239000011159 matrix material Substances 0.000 description 9
- 238000007872 degassing Methods 0.000 description 8
- 238000007599 discharging Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000009864 tensile test Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 206010039897 Sedation Diseases 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 230000036280 sedation Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000010309 melting process Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000004848 polyfunctional curative Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- -1 Al— (Fe · Mn) —Si Chemical class 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 101000993059 Homo sapiens Hereditary hemochromatosis protein Proteins 0.000 description 1
- 229910010038 TiAl Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000005501 phase interface Effects 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Gas Exhaust Devices For Batteries (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Abstract
【課題】放熱性、成形性、加工軟化性に優れた電池蓋用アルミニウム合金板であって、作動圧バラツキが少なく、耐繰り返し疲労特性に優れた一体型防爆弁を成形することが可能な電池蓋用アルミニウム合金板およびその製造方法を提供する。【解決手段】Fe:1.05〜1.50質量%、Mn:0.15〜0.70質量%、Ti:0.002〜0.10質量%、及びB:0.05質量%未満を含有し、残部がAlおよび不純物からなり、Fe/Mn比が1.8〜7.0に規制され、不純物としてのSiが0.40質量%未満、Cuが0.03質量%未満、Mgが0.05質量%未満、Vが0.03質量%未満に規制された成分組成を有し、導電率53.0%IACS以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率90%で冷間圧延を施した後の引張り強度をTS90と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS90)の値が−4MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上であることを特徴とする、一体型防爆弁成形用の電池蓋用アルミニウム合金板。さらに再結晶組織の再結晶粒の平均結晶粒径が15〜30μmであることが好ましい。【選択図】なしA battery cover aluminum alloy plate excellent in heat dissipation, moldability, and work softening, and capable of forming an integrated explosion-proof valve with less operating pressure variation and excellent repeated fatigue resistance. An aluminum alloy plate for a lid and a method for producing the same are provided. SOLUTION: Fe: 1.05-1.50 mass%, Mn: 0.15-0.70 mass%, Ti: 0.002-0.10 mass%, and B: less than 0.05 mass% And the balance is made of Al and impurities, the Fe / Mn ratio is regulated to 1.8 to 7.0, Si as impurities is less than 0.40 mass%, Cu is less than 0.03 mass%, Mg is The component composition is regulated to less than 0.05% by mass, V is less than 0.03% by mass, the conductivity is 53.0% IACS or more, the elongation value is 40% or more, and the recrystallized structure is And the tensile strength after cold rolling at a reduction rate of 90% is defined as TS90, and the tensile strength after cold rolling at a reduction rate of 95% is defined as TS95 (TS95-TS90). ) Is less than −4 MPa, and cold rolling is performed at a reduction rate of 90%. Wherein the value of elongation is 5.0% or more, integrated explosion-proof valve aluminum alloy plate for a battery lid for molding. Furthermore, the average crystal grain size of the recrystallized grains in the recrystallized structure is preferably 15 to 30 μm. [Selection figure] None
Description
本発明は、角形、円筒形等のリチウムイオン電池に用いられる、作動圧バラツキの少ない、一体型防爆弁成形用の電池蓋用アルミニウム合金板に関するものである。 The present invention relates to an aluminum alloy plate for a battery lid for forming an integral explosion-proof valve, which is used for a lithium ion battery of a square shape, a cylindrical shape or the like and has a small operating pressure variation.
近年、各国で自動車の排ガス規制が厳しくなり、環境対応車としての電気自動車の生産が急速に伸びている。電気自動車に使用される二次電池は、現在リチウムイオン電池が主流となっている。リチウムイオン電池のケースとしては、角型、円筒型、ラミネート型等様々なタイプのものがあるが、角型、円筒型の場合、軽量化を達成できるアルミニウム合金板を絞り加工やしごき加工(DI加工ともいう。)したものが使用されている。 In recent years, exhaust gas regulations for automobiles have become stricter in various countries, and the production of electric cars as environmentally friendly cars has been growing rapidly. Currently, lithium ion batteries are the mainstream of secondary batteries used in electric vehicles. There are various types of lithium-ion battery cases such as square, cylindrical, and laminate types. In the case of square and cylindrical types, aluminum alloy sheets that can achieve weight reduction are drawn and ironed (DI It is also called processing.)
このように、電池ケース用の材料として、加工性に優れDI加工が容易で、しかも高強度なアルミニウム合金板が要求されている。特許文献1には、Mn0.8〜2.0%(mass%、以下同じ)を含有し、かつ不純物としてのFe量が0.6%以下、Si量が0.3%以下に規制され、残部が実質的にAlよりなり、しかもMn固溶量が0.75%以上でかつMn添加量に対するMn固溶量の比が0.6以上であり、さらに耐力値が185〜260N/mm2 の範囲内にあることを特徴とする、耐高温フクレ性に優れたケース用アルミニウム合金板が提案されている。これによると、特に70〜90℃程度の高温に温度上昇して内圧が増大した時、すなわち高温内圧負荷時においても、フクレによる変形が発生しにくい耐高温フクレ性に優れたケース用アルミニウム合金板が提供されるとのことである。 As described above, a high-strength aluminum alloy plate is required as a material for a battery case, which has excellent workability and is easy to perform DI processing. Patent Document 1 contains Mn 0.8 to 2.0% (mass%, the same shall apply hereinafter), and the amount of Fe as impurities is restricted to 0.6% or less, and the amount of Si is restricted to 0.3% or less. The balance is substantially made of Al, the Mn solid solution amount is 0.75% or more, the ratio of the Mn solid solution amount to the Mn addition amount is 0.6 or more, and the proof stress is 185 to 260 N / mm 2. There has been proposed an aluminum alloy plate for cases excellent in high-temperature blistering resistance, characterized in that it falls within the above range. According to this, especially when the temperature rises to a high temperature of about 70 to 90 ° C. and the internal pressure increases, that is, even when a high-temperature internal pressure load is applied, the aluminum alloy plate for a case is excellent in resistance to high-temperature blistering and is not easily deformed by blisters. Will be provided.
また、特許文献2には、アルミニウム合金板の組成として、Si:0.10〜0.60wt%、Fe:0.20〜0.60wt%、Cu:0.10〜0.70wt%、Mn:0.60〜1.50wt%、Mg:0.20〜1.20wt%、Zr:0.12を超え0.20wt%未満、Ti:0.05〜0.25wt%、B:0.0010〜0.02wt%を含有し、残部Alと不可避的不純物とからなり、円筒容器深絞り成形法で圧延方向に対する45°耳率が4〜7%であることを特徴とする矩形断面電池容器用アルミニウム合金板が提案されている。これによると、製品歩留が高く、薄板の矩形DI成形性が良好で、しかもパルスレーザの溶接性に優れたアルミニウム合金板を提供されるとのことである。 In Patent Document 2, as the composition of the aluminum alloy plate, Si: 0.10 to 0.60 wt%, Fe: 0.20 to 0.60 wt%, Cu: 0.10 to 0.70 wt%, Mn: 0.60 to 1.50 wt%, Mg: 0.20 to 1.20 wt%, Zr: more than 0.12 and less than 0.20 wt%, Ti: 0.05 to 0.25 wt%, B: 0.0010 Aluminum for rectangular cross-section battery containers, containing 0.02 wt%, consisting of the balance Al and inevitable impurities, and having a 45 ° ear ratio in the rolling direction of 4 to 7% in the cylindrical container deep drawing method Alloy plates have been proposed. According to this, an aluminum alloy plate having a high product yield, a good rectangular DI formability of a thin plate, and an excellent pulse laser weldability is provided.
さらに特許文献3には、Fe:0.3〜1.5質量%、Mn:0.3〜1.0質量%、Ti:0.002〜0.20質量%を含有し、Mn/Feの質量比が0.2〜1.0であり、残部Alおよび不純物からなり、不純物としてのSiが0.30質量%未満、Cuが0.20質量%未満、Mgが0.20質量%未満である成分組成と、円相当径5μm以上の第2相粒子数が500個/mm2未満である金属組織を有し、5%以上の伸びの値、且つ90MPa以上の引張り強度を呈する冷延まま材であることを特徴とする成形性、溶接性に優れた電池ケース用アルミニウム合金板が提案されている。これによると、高い強度を有するとともに成形性にも優れ、しかも優れたレーザー溶接性を備えているので、密閉性能に優れるとともに膨れの抑制が可能な二次電池用容器を低コストで製造可能であるとのことである。 Further, Patent Document 3 contains Fe: 0.3 to 1.5 mass%, Mn: 0.3 to 1.0 mass%, Ti: 0.002 to 0.20 mass%, and Mn / Fe The mass ratio is 0.2 to 1.0, and the balance is Al and impurities. Si as an impurity is less than 0.30 mass%, Cu is less than 0.20 mass%, and Mg is less than 0.20 mass%. As a cold-rolled material having a component composition and a metal structure in which the number of second phase particles having an equivalent circle diameter of 5 μm or more is less than 500 particles / mm 2 and exhibiting an elongation value of 5% or more and a tensile strength of 90 MPa or more An aluminum alloy plate for a battery case that is excellent in formability and weldability, characterized by being a material, has been proposed. According to this, since it has high strength, excellent moldability, and excellent laser weldability, it is possible to manufacture a secondary battery container that has excellent sealing performance and can suppress swelling, at low cost. There is.
自動車用リチウムイオン電池は、急速な充放電を伴うものであるため、その安全性について充分に考慮した設計がなされている。しかし、不測の事態で破壊事故が起こり、電池容器内の内圧が急速に高まった際には、内圧を解放する必要性があるため、電池容器又は電池蓋には防爆弁が付いている。この防爆弁は、容器の内圧が所定圧を超えた場合に、弁が自動的に破断するなどして、確実に作動する必要がある。 Since lithium ion batteries for automobiles are accompanied by rapid charge and discharge, they are designed with sufficient consideration for their safety. However, when a destruction accident occurs due to an unexpected situation and the internal pressure in the battery container rapidly increases, the battery container or the battery lid is provided with an explosion-proof valve because it is necessary to release the internal pressure. This explosion-proof valve needs to operate reliably, for example, when the internal pressure of the container exceeds a predetermined pressure, the valve automatically breaks.
例えば、特許文献4には、電池容器に電池蓋が溶接またはかしめ等の方法により密閉されている密閉電池の電池蓋または電池容器に少なくとも1個の貫通孔Aを設け、該貫通孔Aを金属薄板で閉塞して電池内圧で破断する安全機構を持たせた密閉電池において、大きさが該金属薄板より大きくなく、少なくとも1個の貫通孔Bを有する金属板を該金属薄板上に重ねて、電池蓋または電池容器にシーム溶接したことを特徴とする密閉電池が提案されている。 For example, in Patent Document 4, at least one through-hole A is provided in a battery lid or battery container of a sealed battery in which the battery lid is hermetically sealed by a method such as welding or caulking, and the through-hole A is made of metal. In a sealed battery having a safety mechanism that is closed by a thin plate and is broken by the internal pressure of the battery, the size is not larger than that of the metal thin plate, and a metal plate having at least one through-hole B is stacked on the metal thin plate, A sealed battery characterized by seam welding to a battery lid or battery container has been proposed.
この防爆弁を電池蓋に設ける場合、電池蓋に防爆弁を一体的に成形した、いわゆる一体型防爆弁付の蓋とすることにより、電池蓋の製造コストを削減することができる。特許文献5には、Fe:1.15〜1.35質量%,Mn:0.40〜0.60質量%,残部Alと不純物とからなり、不純物としてのSiが0.15質量%以下,Cuが0.05質量%以下,Mgが0.05質量%以下に規制された組成と、圧延面において、圧延方向に直角な方向における結晶粒の最大幅が100μm以下,結晶粒の幅の平均が25μm以下の組織を有することを特徴とする電池蓋用アルミニウム合金板が記載されている。これによると、成分組成が規定されているとともに、連続焼鈍炉を用いることによって最終焼鈍を急速加熱、急速冷却で行うため、粗大結晶粒がなく、微細な結晶粒で構成されているために、所望の耐圧強度を呈するとともに、耐圧強度のバラツキが小さくなるとのことである。 When this explosion-proof valve is provided on the battery lid, the manufacturing cost of the battery lid can be reduced by forming a lid with a so-called integrated explosion-proof valve in which the explosion-proof valve is integrally formed on the battery lid. Patent Document 5 includes Fe: 1.15 to 1.35% by mass, Mn: 0.40 to 0.60% by mass, balance Al and impurities, and Si as an impurity is 0.15% by mass or less, The composition in which Cu is controlled to 0.05% by mass or less and Mg is controlled to 0.05% by mass or less, and the maximum width of crystal grains in the direction perpendicular to the rolling direction is 100 μm or less on the rolling surface, and the average of the crystal grain widths Describes an aluminum alloy plate for battery lids characterized by having a structure of 25 μm or less. According to this, since the component composition is defined and the final annealing is performed by rapid heating and rapid cooling by using a continuous annealing furnace, there are no coarse crystal grains, and it is composed of fine crystal grains. In addition to exhibiting the desired pressure strength, the variation in pressure strength is reduced.
また、特許文献6には、質量%で、Mn0.8%以上1.5%以下、Si0.6%以下、Fe0.7%以下、Cu0.20%以下、Zn0.20%以下を含有し、残部Alおよび不可避不純物からなる組成を有し、元板の厚みをT0、プレス加工後の厚みをT1とし、冷間加工度R(%)=[(T0−T1)/T0]×100としたとき、Rが80%の時の引張強さTS80(MPa)とRが96%の時の引張強さTS96(MPa)を比較した場合、(TS96−TS80)が15MPa未満であり、TS80が200MPa以上であることを特徴とするリチウムイオン電池封口材用アルミニウム合金板材が記載されている。これによると、加工硬化性が低減されて、プレス加工後の熱処理が不要となるとともに、防爆弁の作動圧が高くなるのを抑制できるとのことである。 Patent Document 6 contains, in mass%, Mn 0.8% to 1.5%, Si 0.6% or less, Fe 0.7% or less, Cu 0.20% or less, Zn 0.20% or less, It has a composition composed of the balance Al and inevitable impurities, the thickness of the base plate is T0, the thickness after press working is T1, and the cold working degree R (%) = [(T0−T1) / T0] × 100. When the tensile strength TS80 (MPa) when R is 80% and the tensile strength TS96 (MPa) when R is 96% are compared, (TS96-TS80) is less than 15 MPa, and TS80 is 200 MPa. An aluminum alloy sheet for a lithium ion battery sealing material is described above. According to this, work hardenability is reduced, heat treatment after press working becomes unnecessary, and an increase in the operating pressure of the explosion-proof valve can be suppressed.
確かに3000系のアルミニウム合金板は、成形性に優れており、強度が高くリチウムイオン電池容器用の材料としての特性を備えている。しかしながら、Mn,Feを必須元素として含み、Fe含有量よりもMn含有量の高いアルミニウム合金板では、マトリックスにおけるMn固溶量が高く、このため冷間加工による加工硬化が著しくなるため、プレス加工によって薄肉部を成形する一体型防爆弁付電池蓋用の材料としては適していない。 Certainly, the 3000 series aluminum alloy plate is excellent in formability, has high strength and has characteristics as a material for a lithium ion battery container. However, an aluminum alloy plate containing Mn and Fe as essential elements and having a higher Mn content than the Fe content has a high Mn solid solution amount in the matrix, so that the work hardening by cold working becomes significant, so press working Therefore, it is not suitable as a material for a battery lid with an integral explosion-proof valve that forms a thin-walled portion.
一体型防爆弁付電池蓋は、防爆弁の薄肉部を成形する際に90%〜95%程度の加工率で冷間プレス成形されるため、当然のことながら一体型防爆弁付電池蓋用の素材として、適度な強度を有し、成形性に優れるとともに、高加工率において加工硬化の抑制されたアルミニウム合金板が要求されている。特に車載用リチウムイオン電池は、充放電の際に内部での発熱量が大きいため、充放電の度に一体型防爆弁の薄肉部に掛かる内圧が繰り返し変化する。したがって、用いる材料として、放熱性に優れたものが必要であり、さらには、成形された一体型防爆弁の薄肉部は、作動圧のバラツキが少なく、繰り返し疲労特性に優れたものが求められる。 The battery cover with an integral explosion-proof valve is cold press-molded at a processing rate of about 90% to 95% when the thin part of the explosion-proof valve is molded. As a material, there is a demand for an aluminum alloy plate having an appropriate strength, excellent formability, and suppressed work hardening at a high processing rate. In particular, an in-vehicle lithium ion battery generates a large amount of heat internally during charging and discharging, and therefore, the internal pressure applied to the thin portion of the integrated explosion-proof valve repeatedly changes every time charging and discharging are performed. Accordingly, a material having excellent heat dissipation is required as a material to be used, and further, the thin-walled portion of the molded integral explosion-proof valve is required to have less variation in operating pressure and excellent repeated fatigue characteristics.
ところで、リチウムイオン電池のケースとしては、角型、円筒型、ラミネート型等様々なタイプのものがあるが、円筒型は円形断面を呈するため、製造コストが低く、充放電の際に内部の温度分布を均一とすることが容易である。最近では、特に車載用リチウムイオン電池として、18650に代表される円筒型のリチウムイオン電池が注目を浴びている。しかしながら、円筒型のリチウムイオン電池を所定の車載用電池パック内に複数本並べると、隙間が生じてしまい、フル充電した際に車載用電池パック内での見掛けのエネルギー密度が低下してしまうという欠点がある。角型のリチウムイオン電池は、製造コストはやや高くなるものの、所定の車載用電池パック内に複数個を密に並べることが可能であり、フル充電した際に見掛けの車載用電池パック内でのエネルギー密度を高くできるという利点がある。 By the way, there are various types of lithium ion battery cases such as a square type, a cylindrical type, and a laminated type. Since the cylindrical type has a circular cross section, the manufacturing cost is low and the internal temperature during charging and discharging is low. It is easy to make the distribution uniform. Recently, cylindrical lithium ion batteries represented by 18650 have been attracting attention as lithium ion batteries for vehicles. However, when a plurality of cylindrical lithium ion batteries are arranged in a predetermined vehicle battery pack, a gap is created, and the apparent energy density in the vehicle battery pack is reduced when fully charged. There are drawbacks. Although rectangular lithium-ion batteries are slightly more expensive to manufacture, it is possible to arrange a plurality of batteries closely in a given vehicle battery pack. There is an advantage that the energy density can be increased.
特許文献5に記載された電池蓋用アルミニウム合金板では、Mn,Feを必須元素として含み、Mn含有量よりもFe含有量が高いものの、矩形の電池蓋及び矩形の防爆弁が示されているのみで、円形の防爆弁は示されていない。また、特許文献6に記載されたリチウムイオン電池封口材用アルミニウム合金板材では、加工硬化性が低減されて、プレス加工後の熱処理が不要となるとともに、防爆弁の作動圧が高くなるのを抑制できるとのことであるが、防爆弁の作動圧バラツキについては特に言及されていない。 The aluminum alloy plate for a battery lid described in Patent Document 5 contains Mn and Fe as essential elements and has a Fe content higher than the Mn content, but shows a rectangular battery lid and a rectangular explosion-proof valve. Only a round explosion-proof valve is not shown. Moreover, in the aluminum alloy plate material for a lithium ion battery sealing material described in Patent Document 6, work hardenability is reduced, heat treatment after press working is unnecessary, and an increase in operating pressure of the explosion-proof valve is suppressed. Although it can be done, there is no particular mention of variations in the operating pressure of the explosion-proof valve.
本願発明は、以上のような従来技術に鑑みて成されたものであり、放熱性、成形性、加工軟化性に優れた電池蓋用アルミニウム合金板であって、作動圧バラツキが少なく、耐繰り返し疲労特性に優れた一体型防爆弁を成形することが可能な電池蓋用アルミニウム合金板およびその製造方法を提供することを目的とする。本願の電池蓋用アルミニウム合金板は、リチウムイオン電池の蓋として使用されるが、電池容器の形状を問わず、電池蓋として適用可能である。つまり、電池蓋の平面視形状は、例えば、円形、楕円形、矩形、六角形等どのような形状であってもよいし、グラウンド状のように円弧と直線の組み合わせの形状であってもよい。本願の電池蓋用アルミニウム合金板は、リチウムイオン電池の蓋として使用されるが、電池蓋の形状を問わず、電池蓋には防爆弁が一体的に成形される。つまり、一体型防爆弁の平面視形状は、例えば、円形、楕円形、矩形、六角形等どのような形状であってもよいし、グラウンド状のように円弧と直線の組み合わせの形状であってもよい。 The present invention has been made in view of the prior art as described above, and is an aluminum alloy plate for battery lids having excellent heat dissipation, formability, and work softening properties, with less variation in operating pressure, and resistance to repetition. An object of the present invention is to provide an aluminum alloy plate for a battery lid capable of forming an integral explosion-proof valve having excellent fatigue characteristics and a method for producing the same. The aluminum alloy plate for a battery lid of the present application is used as a lid of a lithium ion battery, but can be applied as a battery lid regardless of the shape of the battery container. That is, the shape of the battery cover in plan view may be any shape such as a circle, an ellipse, a rectangle, a hexagon, or a combination of an arc and a straight line such as a ground shape. . The aluminum alloy plate for a battery lid of the present application is used as a lid of a lithium ion battery, but an explosion-proof valve is integrally formed on the battery lid regardless of the shape of the battery lid. In other words, the shape of the integrated explosion-proof valve in plan view may be any shape such as a circle, an ellipse, a rectangle, a hexagon, or a combination of an arc and a straight line like a ground shape. Also good.
本発明の一体型防爆弁成形用の電池蓋用アルミニウム合金板は、その目的を達成するために、Fe:1.05〜1.50質量%、Mn:0.15〜0.70質量%、Ti:0.002〜0.10質量%、及びB:0.05質量%未満を含有し、残部がAlおよび不純物からなり、Fe/Mn比が1.8〜7.0に規制され、不純物としてのSiが0.40質量%未満、Cuが0.03質量%未満、Mgが0.05質量%未満、Vが0.03質量%未満に規制された成分組成を有し、導電率が53.0%IACS以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率90%で冷間圧延を施した後の引張り強度をTS90と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS90)の値が−4MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上であることを特徴とする。さらに再結晶組織の再結晶粒の平均結晶粒径が15〜30μmであることが好ましい。 In order to achieve the object, the aluminum alloy plate for battery lids for forming an integral explosion-proof valve of the present invention has an Fe: 1.05-1.50 mass%, Mn: 0.15-0.70 mass%, Ti: 0.002 to 0.10% by mass, and B: less than 0.05% by mass, the balance is made of Al and impurities, Fe / Mn ratio is regulated to 1.8 to 7.0, impurities As a component composition, Si is less than 0.40% by mass, Cu is less than 0.03% by mass, Mg is less than 0.05% by mass, and V is less than 0.03% by mass. 53.0% IACS or more, elongation value is 40% or more, has a recrystallized structure, and the tensile strength after cold rolling at a reduction rate of 90% is defined as TS90. % When the tensile strength after cold rolling is defined as TS95 (TS The value of 5-TS90) is less than -4MPa, the value of elongation after being subjected to cold rolling at a reduction rate of 90%, characterized in that 5.0% or more. Furthermore, the average crystal grain size of the recrystallized grains in the recrystallized structure is preferably 15 to 30 μm.
また、本発明の一体型防爆弁成形用の電池蓋用アルミニウム合金板の製造方法は、その目的を達成するために、上記記載の成分組成を有するアルミニウム合金溶湯を半連続鋳造法によって鋳塊に鋳造するスラブ鋳造工程と、鋳塊に520〜620℃の保持温度、1時間以上の保持時間で均質化処理を施す均質化処理工程と、上記均質化処理工程後、開始温度420〜520℃未満に設定して、鋳塊に熱間圧延を施して熱間圧延板を得る熱間圧延工程と、上記熱間圧延板に冷間圧延を施して冷間圧延板を得る冷間圧延工程と、上記冷間圧延板にバッチ炉にて最終焼鈍を施す最終焼鈍工程と、を含むことを特徴とする。さらに上記冷間圧延工程において、最終冷延率50%〜95%の範囲である最終冷間圧延を施し、上記最終焼鈍工程において、保持温度300〜450℃で1時間以上の最終焼鈍を行うことが好ましい。 Moreover, the manufacturing method of the aluminum alloy plate for battery lids for integral explosion-proof valve forming of the present invention, in order to achieve the purpose, the molten aluminum alloy having the above-described composition is formed into an ingot by a semi-continuous casting method. Casting slab casting process, homogenization process in which the ingot is subjected to a homogenization process at a holding temperature of 520 to 620 ° C. and a holding time of 1 hour or more, and after the homogenization process process, a start temperature of less than 420 to 520 ° C. A hot rolling step for hot rolling the ingot to obtain a hot rolled plate, and a cold rolling step for cold rolling the hot rolled plate to obtain a cold rolled plate, And a final annealing step of subjecting the cold-rolled sheet to final annealing in a batch furnace. Furthermore, in the said cold rolling process, the final cold rolling which is the range of 50%-95% of the final cold rolling rates is given, and in the said final annealing process, final annealing for 1 hour or more is performed at the holding temperature of 300-450 degreeC. Is preferred.
本発明の一体型防爆弁成形用の電池蓋用アルミニウム合金板は、導電率が53.0%IACS以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率90%で冷間圧延を施した後の引張り強度をTS90と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS90)の値が−4MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上であるため、放熱性、成形性、加工軟化性に優れており、さらに一体的に成形される防爆弁は、作動圧のバラツキが少なく、耐繰り返し疲労特性に優れている。 The battery cover aluminum alloy plate for forming an integral explosion-proof valve of the present invention has a conductivity of 53.0% IACS or more, an elongation value of 40% or more, a recrystallized structure, and a reduction ratio of 90. When the tensile strength after cold rolling is defined as TS90 and the tensile strength after cold rolling at 95% reduction is defined as TS95, the value of (TS95-TS90) is −4 MPa. Since the elongation value after cold rolling at a rolling reduction of 90% is 5.0% or more, it is excellent in heat dissipation, formability, and work softening properties, and is molded integrally. The explosion-proof valve has little variation in operating pressure and has excellent repeated fatigue resistance.
所定の成分組成のアルミニウム合金溶湯をDC鋳造機によって、半連続的に鋳造して鋳塊とし、両面面削した後、均質化処理及び熱間圧延を施し、熱間圧延板をロールに巻き取る。均質化処理の温度は、520〜620℃とする。熱間圧延の開始温度を520℃未満に設定することで、固溶しているMn、SiをAl−(Fe・Mn)−Si等のFe系化合物に吸収させるか、Al6Mn等のMn系析出物を析出させることにより、マトリックスにおけるMn固溶量、Si固溶量を低減させる。熱間圧延板は、所定の厚さまで冷間圧延され、必要に応じてバッチ炉にて300〜400℃の中間焼鈍を施して軟化させ、最終冷延率50%〜95%の冷間圧延を施した後、バッチ炉にて300〜450℃の最終焼鈍を施して焼鈍材(O材)とする。さらに冷間圧延を施して冷延材(H材)としてもよい。 A molten aluminum alloy having a predetermined composition is cast semi-continuously by a DC casting machine to form an ingot, both sides are subjected to homogenization and hot rolling, and the hot rolled sheet is wound on a roll. . The temperature of the homogenization treatment is 520 to 620 ° C. By setting the hot rolling start temperature to less than 520 ° C., solid solution of Mn and Si is absorbed by Fe-based compounds such as Al— (Fe · Mn) —Si, or Mn such as Al 6 Mn. By precipitating the system precipitate, the amount of Mn solid solution and the amount of Si solid solution in the matrix are reduced. The hot-rolled sheet is cold-rolled to a predetermined thickness, and is softened by subjecting it to intermediate annealing at 300 to 400 ° C. in a batch furnace as necessary, and cold rolling with a final cold rolling ratio of 50% to 95% is performed. After applying, final annealing at 300 to 450 ° C. is performed in a batch furnace to obtain an annealed material (O material). Further, cold rolling may be performed to obtain a cold rolled material (H material).
本発明により製造される、一体型防爆弁成形用の電池蓋用アルミニウム合金板は、導電率が53.0%IACS以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率90%で冷間圧延を施した後の引張り強度をTS90と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS90)の値が−4MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上であるため、放熱性、成形性、加工軟化性に優れており、さらに一体的に成形される防爆弁は、作動圧のバラツキが少なく、耐繰り返し疲労特性に優れたものとなる。 The aluminum alloy plate for battery lid for forming an integral explosion-proof valve manufactured according to the present invention has a conductivity of 53.0% IACS or more, an elongation value of 40% or more, and a recrystallized structure. The tensile strength after cold rolling at a rolling reduction of 90% is defined as TS90, and the tensile strength after cold rolling at a rolling reduction of 95% is defined as TS95 (TS95-TS90). The value is less than −4 MPa, the elongation value after cold rolling at a rolling reduction of 90% is 5.0% or more, and thus has excellent heat dissipation, formability and work softening properties, and further The explosion-proof valve that is molded in a conventional manner has little variation in the operating pressure and has excellent repeated fatigue resistance.
従来の電池蓋用アルミニウム合金板は、高強度であっても、電池蓋としての一体型防爆弁の成形加工では、微小割れなどの不良が発生するケースも多く見られる。これは、最終板におけるMn固溶量が高いためであると考えられる。このため、鋳塊の均質化処理温度や熱間圧延の開始温度を適切に制御して、Mn固溶量を充分に調整しておく必要がある。しかも、一体型防爆弁成形用の電池蓋用アルミニウム合金板は、一体型防爆弁の成形加工において、加工率90%〜95%程度の冷間加工を施して薄肉部を形成する必要があり、成形性の優れたものであることを要する。 Even if the conventional aluminum alloy plate for battery lids has high strength, there are many cases where defects such as microcracks occur in the molding process of an integral explosion-proof valve as a battery lid. This is considered to be because the Mn solid solution amount in the final plate is high. For this reason, it is necessary to appropriately control the ingot homogenization temperature and the hot rolling start temperature to sufficiently adjust the Mn solid solution amount. Moreover, the battery cover aluminum alloy plate for forming the integral explosion-proof valve needs to be subjected to cold working with a processing rate of about 90% to 95% to form a thin portion in the molding process of the integral explosion-proof valve, It must be excellent in moldability.
特に車載用リチウムイオン電池は、充放電の際に内部での発熱量が大きいため、充放電の度に一体型防爆弁の薄肉部に掛かる内圧が繰り返し変化する。したがって、用いる材料として、放熱性に優れたものが必要であり、さらには、成形された一体型防爆弁は、作動圧のバラツキが少なく、繰り返し疲労特性に優れたものが求められる。 In particular, an in-vehicle lithium ion battery generates a large amount of heat internally during charging and discharging, and therefore, the internal pressure applied to the thin portion of the integrated explosion-proof valve repeatedly changes every time charging and discharging are performed. Therefore, a material having excellent heat dissipation is required as a material to be used. Further, a molded integrated explosion-proof valve is required to have a small variation in operating pressure and excellent repeated fatigue characteristics.
前述のように、一体型防爆弁の成形加工において、加工率90%〜95%程度の冷間加工を施して薄肉部を形成する。したがって、この薄肉部の繰り返し疲労特性に優れたものとするためには、所定の成分組成を有し、再結晶組織を有するとともに、高加工率の冷間加工における加工軟化性に優れ、所定の圧下率で冷間圧延を施した後の伸びの値が高い、電池蓋用アルミニウム合金板とする必要がある。
以下にその内容を説明する。
As described above, in the molding process of the integral explosion-proof valve, the thin part is formed by performing cold working with a working rate of 90% to 95%. Therefore, in order to make this thin portion excellent in repeated fatigue characteristics, it has a predetermined component composition, has a recrystallized structure, is excellent in work softening property in cold working at a high working rate, and has a predetermined composition. It is necessary to provide an aluminum alloy plate for battery lids that has a high elongation value after cold rolling at a rolling reduction.
The contents will be described below.
まず、本発明の一体型防爆弁成形用の電池蓋用アルミニウム合金板に含まれる各元素の作用、適切な含有量等について説明する。 First, the action of each element contained in the aluminum alloy plate for battery lid for forming an integral explosion-proof valve of the present invention, the appropriate content, etc. will be described.
〔Fe:1.05〜1.50質量%〕
Feは、本発明の範囲内の組成において、鋳造の際に鋳塊にAl−(Fe・Mn)−Si等のFe系金属間化合物を析出させ、均質化処理の際にこれらFe系金属間化合物がマトリックスに固溶されたMnを吸収する。このためFeは必須の元素である。
Fe含有量が1.05質量%未満であると、鋳塊におけるFe系金属間化合物のサイズと数が減少することにより、均質化処理の際に鋳塊のMn固溶量を充分に低下させることができなくなる。このため、最終板について高加工率における加工硬化が顕著になる虞がある。Fe含有量が1.50質量%を超えると、Fe系金属間化合物のサイズと数が増加することにより、最終板について成形性が低下するとともに、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、Fe含有量は、1.05〜1.50質量%の範囲とする。好ましいFe含有量は、1.05〜1.45質量%の範囲である。さらに好ましいFe含有量は、1.10〜1.45質量%の範囲である。
[Fe: 1.05-1.50 mass%]
Fe is a composition within the scope of the present invention, and Fe-based intermetallic compounds such as Al— (Fe · Mn) —Si are precipitated in the ingot during casting, and between these Fe-based metals during homogenization treatment. The compound absorbs Mn dissolved in the matrix. For this reason, Fe is an essential element.
When the Fe content is less than 1.05% by mass, the size and number of Fe-based intermetallic compounds in the ingot are reduced, thereby sufficiently reducing the Mn solid solution amount in the ingot during the homogenization treatment. I can't do that. For this reason, there is a possibility that work hardening at a high processing rate becomes remarkable for the final plate. When the Fe content exceeds 1.50% by mass, the size and number of Fe-based intermetallic compounds increase, so that the formability of the final sheet decreases and cold rolling is performed at a reduction rate of 90%. There is a possibility that the value of the elongation of less than 5.0%.
Therefore, the Fe content is in the range of 1.05-1.50 mass%. The preferable Fe content is in the range of 1.05 to 1.45% by mass. A more preferable Fe content is in the range of 1.10 to 1.45% by mass.
〔Mn:0.15〜0.70質量%〕
Mnは、アルミニウム合金板の耐力を増加させる元素であり、一部はマトリックス中に固溶して固溶体強化を促進するため、必須元素である。
Mn含有量が0.15質量%未満であると、Fe/Mn比が7.0を超える虞があり、鋳塊におけるFe系金属間化合物の形状が針状となり、最終板について圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。Mn含有量が0.70質量%を超えると、鋳塊におけるMn固溶量が高くなりすぎて、最終板について放熱性が低下するとともに、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、Mn含有量は、0.15〜0.70質量%の範囲とする。好ましいMn含有量は、0.15〜0.65質量%の範囲である。さらに好ましいMn含有量は、0.20〜0.65質量%の範囲である。
[Mn: 0.15 to 0.70% by mass]
Mn is an element that increases the proof stress of the aluminum alloy plate, and a part of the element is an essential element because it promotes solid solution strengthening by solid solution in the matrix.
If the Mn content is less than 0.15% by mass, the Fe / Mn ratio may exceed 7.0, the shape of the Fe-based intermetallic compound in the ingot becomes needle-like, and the reduction ratio of the final plate is 90%. The elongation value after cold rolling may be less than 5.0%. When the Mn content exceeds 0.70% by mass, the Mn solid solution amount in the ingot becomes too high, and the heat dissipation of the final plate decreases, and the elongation after cold rolling at a reduction rate of 90%. May be less than 5.0%.
Therefore, the Mn content is in the range of 0.15 to 0.70 mass%. A preferable Mn content is in a range of 0.15 to 0.65 mass%. A more preferable Mn content is in the range of 0.20 to 0.65% by mass.
〔Fe/Mn比:1.8〜7.0〕
Mnは、鋳造の際に鋳塊にAl−(Fe・Mn)−Si等のFe系金属間化合物を析出させる元素でもあるが、Fe系金属間化合物の形状を球状化する効果がある。
Fe/Mn比が1.8未満であると、均質化処理の際にFe系金属間化合物がマトリックスに固溶しているMnを吸収する効果が小さくなり、最終板について放熱性が低下するとともに、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。Fe/Mn比が7.0を超えると、Fe系金属間化合物の形状を球状化する効果が小さくなり、最終板について圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、Fe/Mn比は1.8〜7.0に規制する。
[Fe / Mn ratio: 1.8 to 7.0]
Mn is an element that precipitates an Fe-based intermetallic compound such as Al- (Fe.Mn) -Si on the ingot during casting, but has the effect of making the shape of the Fe-based intermetallic compound spherical.
When the Fe / Mn ratio is less than 1.8, the effect of absorbing the Mn solid-dissolved in the matrix by the Fe-based intermetallic compound during the homogenization treatment is reduced, and the heat dissipation of the final plate is reduced. The elongation value after cold rolling at a rolling reduction of 90% may be less than 5.0%. When the Fe / Mn ratio exceeds 7.0, the effect of spheroidizing the shape of the Fe-based intermetallic compound becomes small, and the elongation value after the cold rolling of the final sheet at a rolling reduction of 90% is 5. There is a risk of being less than 0%.
Therefore, the Fe / Mn ratio is restricted to 1.8 to 7.0.
〔Ti:0.002〜0.10質量%〕
Tiは鋳塊鋳造時に結晶粒微細化剤として作用し、鋳造割れを防止することができるので、必須の元素である。勿論、Tiは単独で添加してもよいが、Bと共存することによりさらに強力な結晶粒の微細化効果を期待できるので、Al−5%Ti−1%Bなどのロッドハードナーでの添加であってもよい。
Ti含有量が、0.002質量%未満であると、鋳塊鋳造時の微細化効果が不十分なため、鋳造割れを招く虞がある。Ti含有量が、0.10質量%を超えると、最終板について放熱性が低下するとともに、鋳塊鋳造時にTiAl3等の粗大な金属間化合物が晶出して、最終板について圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、Ti含有量は、0.002〜0.10質量%の範囲とする。好ましいTi含有量は、0.002〜0.07質量%の範囲である。さらに好ましいTi含有量は、0.005〜0.05質量%の範囲である。
なお、Ti含有量については、さらに好ましい範囲を、好ましい範囲に対して下限値及び上限値のいずれも減縮することで規定しているが、さらに好ましい範囲は、下限値及び上限値のそれぞれについて単独で適用でき、双方同時にのみ適用する必要はない。
[Ti: 0.002 to 0.10% by mass]
Ti is an essential element because it acts as a grain refiner during ingot casting and can prevent casting cracks. Of course, Ti may be added alone, but by coexisting with B, a more powerful grain refinement effect can be expected, so addition with a rod hardener such as Al-5% Ti-1% B There may be.
If the Ti content is less than 0.002% by mass, the effect of refining at the time of ingot casting is insufficient, which may cause casting cracks. When the Ti content exceeds 0.10% by mass, the heat dissipation of the final plate decreases, and a coarse intermetallic compound such as TiAl 3 crystallizes during ingot casting, and the final plate has a reduction rate of 90%. There exists a possibility that the value of elongation after performing cold rolling may be less than 5.0%.
Accordingly, the Ti content is in the range of 0.002 to 0.10% by mass. The preferable Ti content is in the range of 0.002 to 0.07 mass%. A more preferable Ti content is in the range of 0.005 to 0.05 mass%.
In addition, about Ti content, although the more preferable range is prescribed | regulated by reducing both a lower limit and an upper limit with respect to a preferable range, the more preferable range is independent about each of a lower limit and an upper limit. It is not necessary to apply both at the same time.
〔B:0.05質量%未満〕
Bは、Tiと共存することにより、さらに強力な結晶粒の微細化効果を期待できるので、必須の元素である。Tiと同様に、Al−5%Ti−1%Bなどのロッドハードナーでの添加であってもよい。
B含有量が0.05質量%以上であると、Ti含有量にもよるが、Ti−B化合物が安定化してTiB2となり易く、結晶粒微細化効果が減衰するとともに、TiB2が炉内で沈降して炉底に堆積する虞がある。
したがって、B含有量は、0.05質量%未満の範囲とする。好ましいB含有量は、0.02質量%未満の範囲である。さらに好ましいB含有量は、0.01質量%未満の範囲である。
[B: less than 0.05% by mass]
B is an essential element because coexistence with Ti can be expected to produce a more powerful grain refinement effect. Similar to Ti, addition with a rod hardener such as Al-5% Ti-1% B may also be used.
When the B content is 0.05% by mass or more, although depending on the Ti content, the Ti-B compound is easily stabilized to become TiB 2 , and the grain refinement effect is attenuated, and TiB 2 is contained in the furnace. There is a risk of sedimentation and accumulation on the furnace bottom.
Therefore, the B content is set to a range of less than 0.05% by mass. A preferable B content is in a range of less than 0.02% by mass. A more preferable B content is in a range of less than 0.01% by mass.
〔V:0.03質量%未満〕
本願発明において、Vは不純物である。V含有量が0.03質量%以上であると、鋳造時に比較的大きいサイズのFe系金属間化合物を析出させ、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、V含有量は、0.03質量%未満の範囲とする。好ましいV含有量は、0.02質量%未満の範囲である。
[V: less than 0.03 mass%]
In the present invention, V is an impurity. When the V content is 0.03% by mass or more, a relatively large size Fe-based intermetallic compound is precipitated during casting, and the elongation value after cold rolling at a rolling reduction of 90% is 5.0. There is a risk of being less than%.
Therefore, the V content is set to a range of less than 0.03% by mass. A preferable V content is in a range of less than 0.02% by mass.
〔Si:0.40質量%未満〕
本願発明において、Siは不純物である。Siは、鋳造時にAl−(Fe・Mn)−Si等のFe系金属間化合物を析出させ、一部はマトリックス内に固溶し、アルミニウム合金板の強度を高める。
Si含有量が、0.40質量%以上であると、最終板についてSi固溶量が高くなり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、Si含有量は、0.40質量%未満の範囲とする。好ましいSi含有量は、0.35質量%未満の範囲である。さらに好ましいSi含有量は、0.30質量%未満の範囲である。
[Si: less than 0.40 mass%]
In the present invention, Si is an impurity. Si precipitates an Fe-based intermetallic compound such as Al— (Fe · Mn) —Si at the time of casting, and a part thereof is dissolved in the matrix to increase the strength of the aluminum alloy plate.
When the Si content is 0.40% by mass or more, the Si solid solution amount of the final plate becomes high, and the elongation value after cold rolling at a reduction rate of 90% is less than 5.0%. There is a fear.
Therefore, the Si content is set to a range of less than 0.40% by mass. A preferable Si content is in a range of less than 0.35% by mass. A more preferable Si content is in the range of less than 0.30% by mass.
〔Cu:0.03質量%未満〕
本願発明において、Cuは不純物である。本発明において、Cu含有量が0.03質量%以上であると、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。したがって、Cuの含有量は、0.03質量%未満の範囲とする。好ましいCu含有量は、0.02質量%未満の範囲である。さらに好ましいCu含有量は、0.01質量%未満の範囲である。
[Cu: less than 0.03 mass%]
In the present invention, Cu is an impurity. In the present invention, if the Cu content is 0.03% by mass or more, the elongation value after cold rolling at a rolling reduction of 90% may be less than 5.0%. Therefore, the Cu content is set to a range of less than 0.03% by mass. A preferable Cu content is in a range of less than 0.02% by mass. A more preferable Cu content is in the range of less than 0.01% by mass.
〔Mg:0.05質量%未満〕
本願発明において、Mgは不純物である。本発明において、Mg含有量が0.05質量%以上であると、最終板について成形性、放熱性が低下するとともに、高加工率における加工硬化が著しくなり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。したがって、Mgの含有量は、0.05質量%未満の範囲とする。好ましいMg含有量は、0.03質量%未満の範囲である。さらに好ましいMg含有量は、0.02質量%未満の範囲である。
[Mg: less than 0.05% by mass]
In the present invention, Mg is an impurity. In the present invention, if the Mg content is 0.05% by mass or more, the formability and heat dissipation of the final plate are reduced, and work hardening at a high processing rate becomes remarkable, and cold rolling is performed at a reduction rate of 90%. There is a possibility that the elongation value after application is less than 5.0%. Accordingly, the Mg content is set to a range of less than 0.05% by mass. The preferred Mg content is in the range of less than 0.03% by mass. A more preferable Mg content is in the range of less than 0.02% by mass.
〔その他の不可避的不純物〕
不可避的不純物は原料地金、返り材等から不可避的に混入する管理外元素であって、それらの許容できる含有量は、例えば、Crの0.20質量%未満、Znの0.20質量%未満、Niの0.10質量%未満、Gaの0.05質量%未満、Pb、Bi、Sn、Na、Ca、Srについては、それぞれ0.02質量%未満、その他(例えば、Co、Nb、Mo、W)各0.05質量%未満であって、この範囲で管理外元素を含有しても本発明の効果を妨げるものではない。
[Other inevitable impurities]
Inevitable impurities are uncontrolled elements that are inevitably mixed in from raw metal, return material, etc., and their allowable contents are, for example, less than 0.20 mass% of Cr and 0.20 mass% of Zn Less than, less than 0.10 mass% of Ni, less than 0.05 mass% of Ga, Pb, Bi, Sn, Na, Ca, Sr, less than 0.02 mass%, respectively (for example, Co, Nb, Mo, W) each less than 0.05% by mass, and inclusion of an element outside the control within this range does not hinder the effect of the present invention.
〔導電率:53.0%IACS以上〕
前述のように、車載用リチウムイオン電池は、充放電の際に内部での発熱量が大きいため、用いる材料として、放熱性に優れたものが必要である。したがって、放熱性を評価する指標として、最終板の導電率(IACS%)を採用し、導電率を53.0%IACS以上に規定した。
[Conductivity: 53.0% IACS or higher]
As described above, the in-vehicle lithium ion battery has a large amount of heat generated inside during charging and discharging, and therefore, a material having excellent heat dissipation is required as a material to be used. Therefore, the conductivity (IACS%) of the final plate was adopted as an index for evaluating heat dissipation, and the conductivity was specified to be 53.0% IACS or more.
〔(TS95−TS90)の値:−4MPa未満〕
前述のように、一体型防爆弁成形用の電池蓋用アルミニウム合金板は、一体型防爆弁の成形加工において加工率90%〜95%程度の冷間加工を施して薄肉部を形成するため、高加工率において加工軟化性の優れたものである必要がある。したがって、加工軟化性を評価する指標として、圧下率90%で冷間圧延を施した後の引張り強度をTS90と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS90)の値(MPa)を採用し、(TS95−TS90)の値を−4MPa未満に規定した。
[(TS95-TS90) value: less than -4 MPa]
As described above, the aluminum alloy plate for battery lid for forming an integral explosion-proof valve is subjected to cold working at a processing rate of about 90% to 95% in forming the integral explosion-proof valve to form a thin part. It must be excellent in work softening property at a high working rate. Therefore, as an index for evaluating work softening property, the tensile strength after cold rolling at a reduction rate of 90% is defined as TS90, and the tensile strength after cold rolling at a reduction rate of 95% is defined as TS95. The value (MPa) of (TS95-TS90) when defined was adopted, and the value of (TS95-TS90) was defined to be less than -4 MPa.
〔伸びの値:40%以上〕
前述のように、一体型防爆弁成形用の電池蓋用アルミニウム合金板は、一体型防爆弁の成形加工において、加工率90%〜95%程度の冷間加工を施して薄肉部を形成するため、成形性の優れたものである必要がある。したがって、成形性を評価する指標として、最終板について引張り試験を行った際の伸びの値を採用し、伸びの値を40%以上に規定した。
[Elongation value: 40% or more]
As described above, the battery cover aluminum alloy plate for forming an integral explosion-proof valve is subjected to cold working at a processing rate of about 90% to 95% in forming the integral explosion-proof valve to form a thin portion. It must be excellent in moldability. Therefore, as an index for evaluating formability, the value of elongation when a tensile test was performed on the final plate was adopted, and the value of elongation was defined as 40% or more.
〔再結晶組織を有すること〕
一体型防爆弁の薄肉部を繰り返し疲労特性に優れたものとするためには、所定の成分組成を有し、再結晶組織を有する最終板とする必要がある。最終板の金属組織が未再結晶組織である場合には、焼鈍処理による軟化が不十分であり、伸びの値が低く成形性が著しく低下する。また、一体型防爆弁が仮に成形できたとしても薄肉部の金属組織の異方性によって、作動圧のバラツキの要因となる虞がある。
最終板の金属組織が再結晶組織である場合に、再結晶粒の平均結晶粒径が30μmを超えると、防爆弁の作動圧のバラツキが大きくなる虞があるため、好ましくない。再結晶粒の平均結晶粒径が15μm未満であると、放熱性が低下する虞があるため、好ましくない。したがって、好ましい再結晶組織の再結晶粒の平均結晶粒径は、15〜30μmの範囲である。より好ましい再結晶組織の再結晶粒の平均結晶粒径は、15〜25μmの範囲である。
[Having a recrystallized structure]
In order to make the thin-walled portion of the integral explosion-proof valve excellent in repeated fatigue characteristics, it is necessary to provide a final plate having a predetermined component composition and having a recrystallized structure. When the metal structure of the final plate is an unrecrystallized structure, softening due to the annealing treatment is insufficient, the elongation value is low, and the formability is remarkably lowered. Further, even if the integrated explosion-proof valve can be formed, there is a risk that the operating pressure varies due to the anisotropy of the metal structure of the thin portion.
When the metal structure of the final plate is a recrystallized structure, if the average crystal grain size of the recrystallized grains exceeds 30 μm, there is a possibility that the operating pressure of the explosion-proof valve may vary, which is not preferable. If the average crystal grain size of the recrystallized grains is less than 15 μm, the heat dissipation may be lowered, which is not preferable. Therefore, the average crystal grain size of the recrystallized grains having a preferable recrystallized structure is in the range of 15 to 30 μm. The average crystal grain size of the recrystallized grains having a more preferable recrystallized structure is in the range of 15 to 25 μm.
〔圧下率90%で冷間圧延を施した後の伸びの値:5.0%以上〕
前述のように、車載用リチウムイオン電池は、充放電の際に内部での発熱量が大きいため、充放電の度に一体型防爆弁の薄肉部に掛かる内圧が繰り返し変化する。このため、一体型防爆弁の成形加工後の薄肉部において、伸びが高く、繰り返し疲労特性に優れたものが求められる。したがって、防爆弁の作動安定性を評価する指標として、最終板について圧下率90%で冷間圧延を施した後の伸びの値を採用し、この伸びの値を5.0%以上に規定した。
[Elongation value after cold rolling at a rolling reduction of 90%: 5.0% or more]
As described above, since the in-vehicle lithium ion battery generates a large amount of heat internally during charging and discharging, the internal pressure applied to the thin portion of the integrated explosion-proof valve repeatedly changes every time charging and discharging are performed. For this reason, in the thin-walled part of the integrated explosion-proof valve after molding, a material having high elongation and excellent repeated fatigue characteristics is required. Therefore, as an index for evaluating the operation stability of the explosion-proof valve, the elongation value after cold rolling at a reduction ratio of 90% was adopted for the final plate, and the elongation value was defined as 5.0% or more. .
次に、上記のような一体型防爆弁成形用の電池蓋用アルミニウム合金板を製造する方法の一例について簡単に紹介する。
〔溶解・溶製工程〕
溶解炉に原料を投入し、所定の溶解温度に到達したら、フラックスを適宜投入して攪拌を行い、さらに必要に応じてランス等を使用して炉内脱ガスを行った後、鎮静保持して溶湯の表面から滓を分離する。
この溶解・溶製では、所定の合金成分とするため、母合金等再度の原料投入も重要ではあるが、上記フラックス及び滓がアルミニウム合金溶湯中から湯面に浮上分離するまで、鎮静時間を十分に取ることが極めて重要である。鎮静時間は、通常30分以上取ることが望ましい。
Next, an example of a method for producing an aluminum alloy plate for a battery lid for forming an integral explosion-proof valve as described above will be briefly introduced.
[Dissolution / melting process]
When the raw material is charged into the melting furnace and the predetermined melting temperature is reached, the flux is appropriately charged and stirred, and after degassing in the furnace using a lance, etc., if necessary, hold it quietly. Separate the cocoon from the surface of the melt.
In this melting / melting process, it is important to add raw materials such as a master alloy again because it is a predetermined alloy component. However, a sufficient sedation time is required until the flux and soot float and separate from the molten aluminum alloy to the molten metal surface. It is extremely important to take The sedation time is usually preferably 30 minutes or longer.
溶解炉で溶製されたアルミニウム合金溶湯は、場合によって保持炉に一端移湯後、鋳造を行なうこともあるが、直接溶解炉から出湯し、鋳造する場合もある。より望ましい鎮静時間は45分以上である。
必要に応じて、インライン脱ガス、フィルターを通してもよい。
インライン脱ガスは、回転ローターからアルミニウム溶湯中に不活性ガス等を吹き込み、溶湯中の水素ガスを不活性ガスの泡中に拡散させ除去するタイプのものが主流である。不活性ガスとして窒素ガスを使用する場合には、露点を例えば−60℃以下に管理することが重要である。鋳塊の水素ガス量は、0.20cc/100g以下に低減することが好ましい。
In some cases, the molten aluminum alloy melted in the melting furnace may be cast after it is once transferred to the holding furnace, but may be cast directly from the melting furnace. A more desirable sedation time is 45 minutes or more.
If necessary, in-line degassing or filtering may be performed.
In-line degassing is mainly of a type in which an inert gas or the like is blown into a molten aluminum from a rotating rotor, and hydrogen gas in the molten metal is diffused and removed in bubbles of the inert gas. When nitrogen gas is used as the inert gas, it is important to control the dew point to, for example, −60 ° C. or lower. The amount of hydrogen gas in the ingot is preferably reduced to 0.20 cc / 100 g or less.
鋳塊の水素ガス量が多い場合には、鋳塊の最終凝固部にポロシティが発生するおそれがあるため、熱圧延工程における1パス当たりの圧下率を例えば7%以上に規制してポロシティを潰しておくことが好ましい。また、鋳塊に過飽和に固溶している水素ガスは、冷延コイルの熱処理条件にもよるが、最終板の防爆弁のプレス成形後であっても、例えば電池蓋と電池容器とのレーザー溶接時に析出して、ビードに多数のブローホールを発生させる場合もある。このため、より好ましい鋳塊の水素ガス量は、0.15cc/100g以下である。 If there is a large amount of hydrogen gas in the ingot, porosity may occur in the final solidified part of the ingot. Therefore, the reduction rate per pass in the hot rolling process is restricted to, for example, 7% or more to crush the porosity. It is preferable to keep it. Also, the hydrogen gas that is supersaturated in the ingot is dependent on the heat treatment conditions of the cold-rolled coil, but even after press molding of the explosion-proof valve of the final plate, for example, a laser between the battery lid and the battery container In some cases, it may precipitate during welding and generate a large number of blow holes in the bead. For this reason, the more preferable amount of hydrogen gas in the ingot is 0.15 cc / 100 g or less.
〔スラブ鋳造工程〕
鋳塊は、半連続鋳造(DC鋳造)によって製造する。通常の半連続鋳造の場合は、鋳塊の厚みが一般的には400〜600mm程度であるため、鋳塊中央部における凝固冷却速度が1℃/sec程度である。このため、特にFe、Mnの含有量が高いアルミニウム合金溶湯を半連続鋳造する場合には、鋳塊中央部にはAl6(Fe・Mn)、α-Al−(Fe・Mn)−Siなどの比較的粗い金属間化合物がアルミニウム合金溶湯から晶出する傾向がある。
[Slab casting process]
The ingot is manufactured by semi-continuous casting (DC casting). In the case of normal semi-continuous casting, since the thickness of the ingot is generally about 400 to 600 mm, the solidification cooling rate at the center portion of the ingot is about 1 ° C./sec. For this reason, particularly when an aluminum alloy melt having a high Fe and Mn content is semi-continuously cast, Al 6 (Fe · Mn), α-Al- (Fe · Mn) -Si, etc. The relatively coarse intermetallic compound tends to crystallize from the molten aluminum alloy.
半連続鋳造における鋳造速度は鋳塊の幅、厚みにもよるが、通常は生産性も考慮して、50〜70mm/minである。しかしながら、インライン脱ガスを行なう場合、脱ガス処理槽内における実質的な溶湯の滞留時間を考慮すると、不活性ガスの流量等脱ガス条件にもよるが、アルミニウム溶湯の流量(単位時間当たりの溶湯供給量)が小さいほど槽内での脱ガス効率が向上し、鋳塊の水素ガス量を低減することが可能である。鋳造の注ぎ本数等にもよるが、鋳塊の水素ガス量を低減するために、鋳造速度を30〜50mm/minと規制することが望ましい。さらに望ましい鋳造速度は、30〜40mm/minである。勿論、鋳造速度が30mm/min未満であると、生産性が低下するため望ましくない。なお、鋳造速度の遅い方が、鋳塊におけるサンプ(固相/液相の界面)の傾斜が緩やかになり、鋳造割れを防止できることは言うまでもない。 The casting speed in the semi-continuous casting depends on the width and thickness of the ingot, but is usually 50 to 70 mm / min in consideration of productivity. However, when performing in-line degassing, considering the substantial molten metal residence time in the degassing treatment tank, the flow rate of molten aluminum (melt per unit time) depends on the degassing conditions such as the flow rate of the inert gas. The smaller the (supply amount), the better the degassing efficiency in the tank, and it is possible to reduce the amount of hydrogen gas in the ingot. Although depending on the number of castings and the like, it is desirable to limit the casting speed to 30 to 50 mm / min in order to reduce the amount of hydrogen gas in the ingot. A more desirable casting speed is 30 to 40 mm / min. Of course, when the casting speed is less than 30 mm / min, productivity is lowered, which is not desirable. Needless to say, when the casting speed is slower, the slope of the sump (solid phase / liquid phase interface) in the ingot becomes gentler, and casting cracks can be prevented.
〔均質化処理工程〕
半連続鋳造法により鋳造して得た鋳塊に均質化処理を施す。
均質化処理は、圧延を容易にするために鋳塊を高温に保持して、鋳造偏析、鋳塊内部の残留応力の解消を行なう処理である。本発明において、保持温度520〜620℃で1時間以上保持することが必要である。この場合、鋳造時に晶析出した金属間化合物を構成する遷移元素等をマトリックスにある程度固溶させるための処理でもある。この保持温度が低すぎ、或いは保持温度が短い場合には、上記固溶が進まず、成形後の外観肌が綺麗に仕上がらない虞がある。また、保持温度が高すぎると、鋳塊のミクロ的な最終凝固部である共晶部分が溶融する、いわゆるバーニングを起こすおそれがある。より好ましい均質化処理温度は、520〜610℃である。
[Homogenization process]
The ingot obtained by casting by the semi-continuous casting method is homogenized.
The homogenization process is a process in which the ingot is kept at a high temperature to facilitate rolling, and casting segregation and elimination of residual stress inside the ingot are performed. In the present invention, it is necessary to hold at a holding temperature of 520 to 620 ° C. for 1 hour or longer. In this case, it is also a process for dissolving the transition elements constituting the intermetallic compound crystallized during casting to some extent in the matrix. When the holding temperature is too low or the holding temperature is short, the solid solution does not progress, and the appearance skin after molding may not be finished cleanly. On the other hand, if the holding temperature is too high, the eutectic portion which is the micro final solidified portion of the ingot may be melted, so-called burning may occur. A more preferable homogenization treatment temperature is 520 to 610 ° C.
〔熱間圧延工程〕
このように、鋳塊の均質化処理を520〜620℃の保持温度、1時間以上の保持時間で行うとともに、熱間圧延の開始温度を520℃未満に設定することで、マトリックスに固溶しているMn、Siを低減させることが可能となる。熱間圧延の開始温度が520℃以上であると、マトリックスに固溶しているMn、Siを低減させることが困難となる。熱間圧延の開始温度が420℃未満であると、熱間圧延時の塑性変形に必要なロール圧力が高くなり、1パス当たりの圧下率が低くなりすぎて生産性が低下する。したがって、熱間圧延の開始温度は、420〜520℃未満の範囲である。ソーキング炉内から取り出された鋳塊は、そのままクレーンで吊るされて、熱間圧延機に持ち来たされ、熱間圧延機の機種にもよるが、通常何回かの圧延パスによって熱間圧延されて所定の厚み、例えば4〜8mm程度の熱延板としてコイルに巻き取る。
[Hot rolling process]
In this way, the ingot homogenization is performed at a holding temperature of 520 to 620 ° C. with a holding time of 1 hour or more, and by setting the starting temperature of hot rolling to less than 520 ° C., the ingot is dissolved in the matrix. Mn and Si can be reduced. When the hot rolling start temperature is 520 ° C. or higher, it is difficult to reduce Mn and Si dissolved in the matrix. When the hot rolling start temperature is less than 420 ° C., the roll pressure necessary for plastic deformation during hot rolling becomes high, and the reduction rate per pass becomes too low, resulting in a reduction in productivity. Therefore, the start temperature of hot rolling is in the range of 420 to less than 520 ° C. The ingot taken out of the soaking furnace is suspended by a crane and brought to a hot rolling mill. Depending on the type of hot rolling mill, it is usually hot rolled by several rolling passes. Then, it is wound around the coil as a hot rolled plate having a predetermined thickness, for example, about 4 to 8 mm.
〔冷間圧延工程〕
熱間圧延板を巻き取ったコイルは、冷延機に通され、通常何パスかの冷間圧延が施される。この際、冷間圧延によって導入される塑性歪により加工硬化が起こるため、必要に応じて、中間焼鈍処理が行なわれる。通常中間焼鈍は軟化処理でもあるので、材料にもよるがバッチ炉に冷延コイルを挿入し、300〜400℃の温度で、1時間以上の保持を行なってもよい。保持温度が300℃よりも低いと、軟化が促進されず、保持温度が400℃を超えると、生産性が低下する可能性があるため、好ましくない。
[Cold rolling process]
The coil on which the hot rolled sheet is wound is passed through a cold rolling machine and usually subjected to several passes of cold rolling. At this time, since work hardening occurs due to plastic strain introduced by cold rolling, an intermediate annealing treatment is performed as necessary. Usually, since the intermediate annealing is also a softening treatment, although depending on the material, a cold-rolled coil may be inserted into a batch furnace and held at a temperature of 300 to 400 ° C. for 1 hour or longer. When the holding temperature is lower than 300 ° C., softening is not promoted, and when the holding temperature exceeds 400 ° C., productivity may be lowered, which is not preferable.
〔最終焼鈍工程〕
本発明において、最終冷間圧延の後に行なわれる最終焼鈍工程は、例えば焼鈍炉によって温度300〜450℃で1時間以上保持するバッチ処理が好ましい。このような条件で最終焼鈍を行うことにより、焼鈍板(最終板)は、再結晶粒の平均結晶粒径が15〜30μmである再結晶組織を有する。より好ましい最終焼鈍工程は、焼鈍炉によって温度300〜400℃で1時間以上保持するバッチ処理である。さらに好ましい最終焼鈍工程は、焼鈍炉によって温度300〜380℃で1時間以上保持するバッチ処理である。焼鈍炉における保持温度が高いほど再結晶粒の成長速度が速くなるため、再結晶粒の平均結晶粒径は大きくなる。いずれにしても、本発明において最終焼鈍は必須であり、プレス成形による一体型防爆弁の薄肉部の冷間加工率90%〜95%程度を考慮すると、最終板を軟化させておく必要がある。なお、最終焼鈍工程を連続焼鈍で行う場合には、焼鈍板(最終板)の放熱性、一体型防爆弁の作動安定性が低下する虞があるため、好ましくない。
[Final annealing process]
In the present invention, the final annealing step performed after the final cold rolling is preferably a batch treatment in which, for example, an annealing furnace holds the temperature at 300 to 450 ° C. for 1 hour or longer. By performing the final annealing under such conditions, the annealed plate (final plate) has a recrystallized structure in which the average crystal grain size of the recrystallized grains is 15 to 30 μm. A more preferable final annealing step is a batch treatment in which an annealing furnace holds the temperature at 300 to 400 ° C. for 1 hour or more. A more preferable final annealing step is a batch treatment in which an annealing furnace holds the temperature at 300 to 380 ° C. for 1 hour or longer. The higher the holding temperature in the annealing furnace, the higher the growth rate of the recrystallized grains, so that the average crystal grain size of the recrystallized grains increases. In any case, final annealing is essential in the present invention, and it is necessary to soften the final plate in consideration of the cold working rate of about 90% to 95% of the thin wall portion of the integral explosion-proof valve by press molding. . In addition, when performing the last annealing process by continuous annealing, since there exists a possibility that the heat dissipation of an annealing board (final board) and the operation stability of an integral explosion-proof valve may fall, it is unpreferable.
最終焼鈍を施す場合の最終冷延率は、50%〜95%の範囲であることが好ましい。より好ましい最終冷延率は、70%〜95%の範囲である。最終冷延率がこの範囲であれば、300〜450℃の温度で、1時間以上の保持を行なう最終焼鈍を施すことで、平均結晶粒径が15〜30μmである再結晶組織となる。なお、再結晶粒の平均結晶粒径は、焼鈍炉における保持温度のみならず、最終冷延率によっても変化するものである。
以上のような通常の工程を経ることにより、一体型防爆弁成形用の電池蓋用アルミニウム合金板を得ることができる。
When the final annealing is performed, the final cold rolling rate is preferably in the range of 50% to 95%. A more preferable final cold rolling rate is in the range of 70% to 95%. When the final cold rolling rate is within this range, a recrystallized structure having an average crystal grain size of 15 to 30 μm is obtained by performing final annealing at a temperature of 300 to 450 ° C. for 1 hour or more. Note that the average crystal grain size of the recrystallized grains varies depending not only on the holding temperature in the annealing furnace but also on the final cold rolling rate.
By going through the normal steps as described above, an aluminum alloy plate for a battery lid for forming an integral explosion-proof valve can be obtained.
<ラボ試験材による実施例>
〔供試材の作成〕
16水準(実施例1〜6、比較例1〜10)の成分組成のインゴット5kgをそれぞれ#20坩堝内に挿入し、この坩堝を小型電気炉で加熱してインゴットを溶解した。次いで、溶湯中にランスを挿入して、N2ガスを流量1.0L/minで5分間吹き込んで脱ガス処理を行なった。その後30分間の鎮静を行なって溶湯表面に浮上した滓を攪拌棒にて除去した。次に坩堝を小型電気炉から取り出して、溶湯を内寸法250×200×30mmの金型に流し込み、鋳塊を作製し、各坩堝中の溶湯から実施例1〜6、比較例1〜10の各供試材を得た。これら供試材のディスクサンプルは、発光分光分析によって組成分析を行なった。その結果を表1に示す。
<Examples using laboratory test materials>
[Creation of sample materials]
Ingots of 16 levels (Examples 1 to 6, Comparative Examples 1 to 10) of ingots of 5 kg were inserted into # 20 crucibles, respectively, and the crucibles were heated in a small electric furnace to dissolve the ingots. Next, a lance was inserted into the molten metal, and N 2 gas was blown in at a flow rate of 1.0 L / min for 5 minutes for degassing treatment. Thereafter, sedation for 30 minutes was performed, and the soot that floated on the surface of the molten metal was removed with a stirring rod. Next, the crucible was taken out from the small electric furnace, the molten metal was poured into a mold having an inner size of 250 × 200 × 30 mm, an ingot was produced, and Examples 1 to 6 and Comparative Examples 1 to 10 were made from the molten metal in each crucible. Each specimen was obtained. The disk samples of these test materials were subjected to composition analysis by emission spectroscopic analysis. The results are shown in Table 1.
これら鋳塊の両面を5mmずつ面削加工して、厚さ20mmとした後、590℃×1時間、480℃×1時間の均質化処理を連続して行い、熱間圧延を施して、厚さ6.0mmの熱間圧延板とした。その後、この熱間圧延板に冷間圧延を施して板厚1.0mmの冷延板とした。冷間圧延工程の間に中間焼鈍処理は行っていない。この場合の最終冷延率は83%であった。
次に、これらの冷延板(実施例1〜6、比較例1〜7,9,10)について、バッチ焼鈍を模擬して、アニーラーに挿入し340℃×1時間の焼鈍処理を施して最終板(O材)とした。他の冷延板(比較例8)については、425℃×10秒間の連続焼鈍を模擬して、425℃×15秒間ソルトバスで加熱した後に水冷して最終板(O材)とした。
After chamfering both sides of these ingots by 5 mm to a thickness of 20 mm, homogenization treatment at 590 ° C. × 1 hour, 480 ° C. × 1 hour is continuously performed, hot rolling is performed, A 6.0 mm hot rolled sheet was used. Thereafter, the hot-rolled sheet was cold-rolled to obtain a cold-rolled sheet having a thickness of 1.0 mm. No intermediate annealing is performed during the cold rolling process. The final cold rolling rate in this case was 83%.
Next, these cold-rolled plates (Examples 1 to 6, Comparative Examples 1 to 7, 9, and 10) were simulated by batch annealing, inserted into an annealer, and subjected to annealing treatment at 340 ° C. for 1 hour. A plate (O material) was used. For other cold rolled plates (Comparative Example 8), 425 ° C. × 10 seconds of continuous annealing was simulated, heated in a salt bath at 425 ° C. × 15 seconds, and then water-cooled to obtain the final plate (O material).
さらに、これらの最終板に対して、一体型防爆弁の成形を模擬して、加工硬化特性等を調査する目的で、0.1mm、0.05mmまで冷間圧延して、それぞれの圧下率:90,95%における冷延材を採取した。 Further, these final plates are cold-rolled to 0.1 mm and 0.05 mm for the purpose of simulating the formation of an integral explosion-proof valve and investigating work hardening characteristics, etc., and the respective reduction ratios: Cold rolled material at 90,95% was collected.
次に、このようにして得られた各供試材(最終板:16水準、冷延材:16水準×各2水準)について、諸特性の測定、評価を行った。
〔引張り試験による特性の測定〕
得られた各最終板の成形性の評価は、最終板(O材)の伸びの値(%)によって行った。各最終板の加工軟化性の評価は、最終板(O材)に圧下率95%の冷間圧延を施した後の引張り強度TS95(MPa)から最終板(O材)に圧下率90%の冷間圧延を施した後の引張り強度TS90(MPa)を引いた値である(TS95−TS90)(MPa)によって行った。一体型防爆弁の作動安定性の評価は、最終板(O材)に圧下率90%の冷間圧延を施した後の伸びの値(%)によって行った。具体的には、得られた供試材より、引張り方向が圧延方向に対して平行方向になるようにJIS5号試験片を採取し、JISZ2241に準じて引張り試験を行って、引張り強度、0.2%耐力、伸び(破断伸び)を求めた。なお、これら引張り試験は、各供試材につき3回(n=3)行い、その平均値で算出した。各最終板の伸び(破断伸び)の測定結果、各最終板に圧下率90%の冷間圧延を施した後の引張り強度、伸び(破断伸び)の測定結果および各最終板に圧下率95%の冷間圧延を施した後の引張り強度の測定結果を表2に示す。
Next, various properties were measured and evaluated for each of the test materials thus obtained (final plate: 16 levels, cold rolled material: 16 levels × 2 levels each).
[Measurement of properties by tensile test]
Evaluation of the moldability of each final board obtained was performed by the elongation value (%) of the final board (O material). The evaluation of the work softening property of each final plate is that the final plate (O material) has a reduction rate of 90% from the tensile strength TS95 (MPa) after cold rolling with a reduction rate of 95%. (TS95-TS90) (MPa), which is a value obtained by subtracting the tensile strength TS90 (MPa) after cold rolling. The operation stability of the integrated explosion-proof valve was evaluated by the elongation value (%) after cold rolling with a reduction ratio of 90% on the final plate (O material). Specifically, a JIS No. 5 test piece was sampled from the obtained specimen so that the tensile direction was parallel to the rolling direction, and a tensile test was performed according to JISZ2241, and the tensile strength, 0. 2% yield strength and elongation (elongation at break) were determined. These tensile tests were performed three times for each specimen (n = 3), and the average value was calculated. Measurement results of elongation (breaking elongation) of each final plate, tensile strength after subjecting each final plate to cold rolling with a reduction rate of 90%, measurement results of elongation (breaking elongation), and reduction rate of 95% for each final plate Table 2 shows the measurement results of the tensile strength after the cold rolling.
〔導電率計による導電率の測定〕
得られた各最終板の熱伝導性の評価は、最終板(O材)の導電率(IACS%)によって行った。具体的には、得られた各最終板について、導電率計(AUTOSIGMA 2000 日本ホッキング株式会社製)にて、導電率(IACS%)の測定を実施した。各最終板の導電率の測定結果を表2に示す。
[Measurement of conductivity with conductivity meter]
Evaluation of the thermal conductivity of each obtained final board was performed by the electrical conductivity (IACS%) of the last board (O material). Specifically, the conductivity (IACS%) was measured for each obtained final plate with a conductivity meter (AUTOSIGMA 2000, manufactured by Nippon Hocking Co., Ltd.). Table 2 shows the measurement results of the conductivity of each final plate.
最終板の導電率が50.0%IACS以上であったものを放熱性評価良好(〇)とし、最終板の導電率が50.0%IACS未満であったものを放熱性評価不良(×)とした。
最終板の伸びの値が35.0%以上であったものを成形性評価良好(〇)とし、最終板の伸びの値が35.0%未満であったものを成形性評価不良(×)とした。
(TS95−TS90)の値が3MPa未満であったものを加工軟化性評価良好(〇)とし、(TS95−TS90)の値が3MPa以上であったものを加工軟化性評価不良(×)とした。
最終板について圧下率90%の冷間圧延を施した後の伸びの値が4.0%以上であったものを作動安定性評価良好(〇)とし、最終板について圧下率90%の冷間圧延を施した後の伸びの値が4.0%未満であったものを作動安定性評価不良(×)とした。これらの評価結果を表2に示す。
When the final plate conductivity is 50.0% IACS or higher, the heat dissipation evaluation is good (◯), and when the final plate conductivity is less than 50.0% IACS, the heat dissipation evaluation is poor (×). It was.
When the elongation value of the final plate is 35.0% or more, the moldability evaluation is good (◯), and when the elongation value of the final plate is less than 35.0%, the moldability evaluation is poor (×). It was.
The value of (TS95-TS90) was less than 3 MPa, and the softening property evaluation was good (◯), and the value of (TS95-TS90) was 3 MPa or more, the processing softness evaluation was poor (x). .
The final plate has an elongation value of 4.0% or more after cold rolling with a rolling reduction of 90% is regarded as good (作 動), and the final plate is cold with a rolling reduction of 90%. The elongation value after rolling was less than 4.0% was regarded as poor operation stability evaluation (x). These evaluation results are shown in Table 2.
供試材の特性評価結果を示す表2における実施例1〜6は、本発明の組成範囲内であるとともに、最終焼鈍はバッチ焼鈍であり、最終板の導電率、最終板の伸びの値、(TS95−TS90)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしていた。具体的には、実施例1〜6は、最終板の導電率が50.0%IACS以上であり、最終板の伸びの値が35.0%以上であり、(TS95−TS90)の値が3MPa未満であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が4.0%以上であった。したがって、実施例1〜6は、放熱性評価良好(〇)、成形性評価良好(〇)、加工軟化性評価良好(〇)、作動安定性評価良好(〇)であった。 Examples 1 to 6 in Table 2 showing the property evaluation results of the test materials are within the composition range of the present invention, and the final annealing is batch annealing, the conductivity of the final plate, the value of elongation of the final plate, Both the value of (TS95-TS90) and the value of elongation after cold rolling with a rolling reduction of 90% on the final plate satisfied the standard value. Specifically, in Examples 1 to 6, the conductivity of the final plate is 50.0% IACS or more, the elongation value of the final plate is 35.0% or more, and the value of (TS95-TS90) is It was less than 3 MPa, and the elongation value after subjecting the final plate to cold rolling at a reduction rate of 90% was 4.0% or more. Therefore, in Examples 1 to 6, the heat dissipation evaluation was good (◯), the moldability evaluation was good (◯), the work softening evaluation was good (◯), and the operational stability evaluation was good (◯).
表2における比較例1〜7,9,10は、最終焼鈍はバッチ焼鈍であるものの、本発明の組成範囲外であり、最終板の導電率、最終板の伸びの値、(TS95−TS90)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のうち少なくとも一つが基準値を満たしていなかった。 In Comparative Examples 1 to 7, 9, and 10 in Table 2, although the final annealing is batch annealing, it is out of the composition range of the present invention, the conductivity of the final plate, the value of the elongation of the final plate, (TS95-TS90) And at least one of the elongation values after subjecting the final sheet to cold rolling with a rolling reduction of 90% did not satisfy the standard value.
比較例1は、Fe含有量1.58質量%と高すぎたため、最終板の伸びの値、(TS95−TS90)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしておらず、成形性評価不良(×)、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。
比較例2は、Fe含有量0.97質量%と低すぎたため、(TS95−TS90)の値が基準値を満たしておらず、加工軟化性評価不良(×)であった。
In Comparative Example 1, since the Fe content was too high at 1.58% by mass, the elongation value of the final plate, the value of (TS95-TS90), the elongation after cold rolling of the final plate with a reduction rate of 90% None of these values satisfied the standard value, and were a formability evaluation failure (x), a work softening evaluation failure (x), and an operational stability evaluation failure (x).
Since the comparative example 2 was too low with Fe content 0.97 mass%, the value of (TS95-TS90) did not satisfy the standard value, and the work softness evaluation evaluation was poor (x).
比較例3は、Cu含有量0.04質量%と高すぎたため、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしておらず、作動安定性評価不良(×)であった。
比較例4は、Mn含有量0.80質量%と高すぎたため、最終板の導電率、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしておらず、放熱性評価不良(×)、作動安定性評価不良(×)であった。
Since the comparative example 3 was too high with Cu content 0.04 mass%, the elongation value after performing the cold rolling of the reduction ratio 90% about the final plate did not satisfy the standard value, and the operation stability was evaluated. It was bad (x).
In Comparative Example 4, since the Mn content was too high, 0.80% by mass, the conductivity of the final plate and the elongation value after the cold rolling of the final plate with a reduction of 90% did not satisfy the standard value. The heat dissipation evaluation was poor (x) and the operation stability was poor (x).
比較例5は、Mg含有量が0.21質量%と高すぎたため、最終板の導電率、最終板の伸びの値、(TS95−TS90)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしておらず、放熱性評価不良(×)、成形性評価不良(×)、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。
比較例6は、V含有量が0.04質量%と高すぎたため、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしておらず、作動安定性評価不良(×)であった。
比較例7は、V含有量が0.11質量%と高すぎたため、最終板の導電率、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしておらず、放熱性評価不良(×)、作動安定性評価不良(×)であった。
比較例8は、本発明の組成範囲内であるものの、最終焼鈍は連続焼鈍を模擬したソルトバス焼鈍+水焼き入れ処理であったため、最終板の導電率、(TS95−TS90)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしておらず、放熱性評価不良(×)、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。
In Comparative Example 5, since the Mg content was too high at 0.21% by mass, the conductivity of the final plate, the value of elongation of the final plate, the value of (TS95-TS90), the cold of the reduction rate of 90% for the final plate None of the elongation values after rolling did not satisfy the standard value, and the heat dissipation evaluation failure (x), the formability evaluation failure (x), the work softening evaluation failure (x), and the operational stability evaluation It was bad (x).
In Comparative Example 6, since the V content was too high at 0.04 mass%, the elongation value after cold rolling with a reduction rate of 90% on the final plate did not satisfy the standard value, and the operational stability It was poor evaluation (x).
In Comparative Example 7, since the V content was too high at 0.11% by mass, the conductivity of the final plate, and the elongation value after performing cold rolling with a reduction rate of 90% on the final plate satisfied the standard value. The heat dissipation evaluation was poor (x) and the operation stability was poor (x).
Although Comparative Example 8 is within the composition range of the present invention, since the final annealing was a salt bath annealing + water quenching process simulating continuous annealing, the conductivity of the final plate, the value of (TS95-TS90), the final None of the elongation values after cold rolling with a rolling reduction of 90% on the plate satisfy the standard values, and the heat dissipation evaluation failure (x), the work softening evaluation failure (x), and the operational stability It was poor evaluation (x).
比較例9は、AA1050合金組成であり、Fe含有量、Mn含有量がそれぞれ0.19質量%、0.02質量%と低すぎたため、(TS95−TS90)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしておらず、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。
比較例10は、AA3003合金組成であり、Fe含有量が0.20質量%と低すぎ、Cu含有量、Mn含有量がそれぞれ0.14質量%、1.29質量%と高すぎたため、最終板の導電率、(TS95−TS90)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしておらず、放熱性評価不良(×)、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。
Comparative Example 9 is an AA1050 alloy composition, and the Fe content and Mn content were too low, 0.19% by mass and 0.02% by mass, respectively, so the value of (TS95-TS90), the reduction ratio of the final plate was 90 None of the elongation values after the cold rolling of 1% did not satisfy the standard values, and the work softness evaluation failure (x) and the operational stability evaluation failure (x).
Comparative Example 10 was an AA3003 alloy composition, Fe content was too low as 0.20 mass%, Cu content and Mn content were too high as 0.14 mass% and 1.29 mass%, respectively. None of the electrical conductivity of the plate, the value of (TS95-TS90), and the value of elongation after cold rolling with a rolling reduction of 90% on the final plate did not satisfy the standard value, resulting in poor heat dissipation evaluation (× ), Poor processing softening evaluation (×), poor operation stability evaluation (×).
<実機材による実施例>
〔供試材の作成〕
表3に示す組成の溶湯を溶解炉にて溶製し、DC鋳造機にて、幅1200mm×厚さ560mm×丈3800mmの鋳塊を鋳造した。この鋳塊の両面を面削して、ソーキング炉に挿入して加熱し、590℃×1時間、480℃×1時間の均質化処理を連続して行い、続いて熱間圧延を施して、厚さ7.0mmの熱間圧延板としてコイルに巻き取った。その後、この熱間圧延板に冷間圧延を施して板厚1.0mmの冷延板としてコイルに巻き取った。この冷延板から、適切な寸法の切り板を採取した。
<Example using actual equipment>
[Creation of sample materials]
A molten metal having the composition shown in Table 3 was melted in a melting furnace, and an ingot having a width of 1200 mm, a thickness of 560 mm, and a length of 3800 mm was cast with a DC casting machine. Both sides of the ingot are chamfered, inserted into a soaking furnace, heated, and subjected to 590 ° C. × 1 hour, 480 ° C. × 1 hour of homogenization continuously, followed by hot rolling, The coil was wound as a hot rolled plate having a thickness of 7.0 mm. Thereafter, the hot-rolled sheet was cold-rolled and wound around a coil as a cold-rolled sheet having a thickness of 1.0 mm. From this cold-rolled plate, a cut plate having an appropriate size was collected.
次に、この切り板から採取した冷延板について、バッチ焼鈍を模擬して、アニーラーに挿入し240℃,340℃,440℃×各1時間の焼鈍処理を施して最終板(O材)とした。他の冷延板については、425℃×10秒間の連続焼鈍を模擬して、425℃×15秒間ソルトバスで加熱した後に水冷して最終板(O材)とした。
さらに、これらの最終板に対して、一体型防爆弁の成形を模擬して、加工硬化特性等を調査する目的で、0.1mm、0.05mmまで冷間圧延して、圧下率:90%、95%における冷延材を採取した。
Next, with respect to the cold-rolled sheet taken from this cut sheet, it simulated batch annealing, inserted into an annealer, and subjected to annealing treatment at 240 ° C., 340 ° C., 440 ° C. × 1 hour for the final plate (O material) and did. The other cold-rolled plates were simulated as continuous annealing at 425 ° C. × 10 seconds, heated in a salt bath at 425 ° C. × 15 seconds, and then water-cooled to obtain a final plate (O material).
Further, these final plates were cold-rolled to 0.1 mm and 0.05 mm for the purpose of simulating the formation of an integral explosion-proof valve and investigating work hardening characteristics, etc., and the reduction ratio: 90% The cold rolled material at 95% was collected.
次に、このようにして得られた各供試材(最終板:4水準、冷延材:4水準×各2水準)について、諸特性の測定、評価を行った。 Next, various characteristics were measured and evaluated for each of the test materials thus obtained (final plate: 4 levels, cold rolled material: 4 levels × 2 levels each).
〔引張り試験による特性の測定〕
得られた各最終板の成形性の評価は、最終板(O材)の伸びの値(%)によって行った。また、各最終板の加工軟化性の評価は、最終板(O材)に圧下率95%の冷間圧延を施した後の引張り強度TS95(MPa)から最終板(O材)に圧下率90%の冷間圧延を施した後の引張り強度TS90(MPa)を引いた値(TS95−TS90)(MPa)によって行った。一体型防爆弁の作動安定性の評価は、最終板(O材)に圧下率90%の冷間圧延を施した後の引張り試験の伸びの値(%)によって行った。具体的には、得られた供試材より、引張り方向が圧延方向に対して平行方向になるようにJIS5号試験片を採取し、JISZ2241に準じて引張り試験を行って、引張り強度、0.2%耐力、伸び(破断伸び)を求めた。なお、これら引張り試験は、各供試材につき3回(n=3)行い、その平均値で算出した。各最終板の伸び(破断伸び)の測定結果、各最終板に圧下率90%の冷間圧延を施した後の引張り強度、伸び(破断伸び)の測定結果および各最終板に圧下率95%の冷間圧延を施した後の引張り強度の測定結果を表4に示す。
[Measurement of properties by tensile test]
Evaluation of the moldability of each final board obtained was performed by the elongation value (%) of the final board (O material). In addition, the evaluation of the work softening property of each final plate was performed by measuring the rolling strength of the final plate (O material) from the tensile strength TS95 (MPa) after cold rolling with a reduction rate of 95% on the final plate (O material). % Was obtained by subtracting the tensile strength TS90 (MPa) after the cold rolling (TS95-TS90) (MPa). The operation stability of the integrated explosion-proof valve was evaluated by the elongation value (%) of the tensile test after cold rolling with a reduction ratio of 90% on the final plate (O material). Specifically, a JIS No. 5 test piece was sampled from the obtained specimen so that the tensile direction was parallel to the rolling direction, and a tensile test was performed according to JISZ2241, and the tensile strength, 0. 2% yield strength and elongation (elongation at break) were determined. These tensile tests were performed three times for each specimen (n = 3), and the average value was calculated. Measurement results of the elongation (breaking elongation) of each final plate, tensile strength after subjecting each final plate to cold rolling with a reduction rate of 90%, measurement results of elongation (breaking elongation), and reduction rate of 95% for each final plate Table 4 shows the measurement results of the tensile strength after the cold rolling.
〔導電率計による導電率の測定〕
得られた各最終板の熱伝導性の評価は、最終板(O材)の導電率(IACS%)によって行った。具体的には、得られた各最終板について、導電率計(AUTOSIGMA 2000 日本ホッキング株式会社製)にて、導電率(IACS%)の測定を実施した。各最終板の導電率の測定結果を表4に示す。
[Measurement of conductivity with conductivity meter]
Evaluation of the thermal conductivity of each obtained final board was performed by the electrical conductivity (IACS%) of the last board (O material). Specifically, the conductivity (IACS%) was measured for each obtained final plate with a conductivity meter (AUTOSIGMA 2000, manufactured by Nippon Hocking Co., Ltd.). Table 4 shows the measurement results of the conductivity of each final plate.
〔再結晶粒の平均結晶粒径の測定〕
得られた最終板を切り出して、板の圧延表面(L-LT面)が研磨できるよう熱可塑性樹脂に埋め込んで鏡面研磨し、ホウフッ化水素酸水溶液中で陽極酸化処理を施して、偏光顕微鏡(倍率50倍)による金属組織の観察を行った。得られた各最終板の再結晶粒の平均結晶粒径の測定は、切片法(切断法)によって行った。偏光顕微鏡の視野の目盛りを順次ずらしながら、視野の中で長さ12.1mmの仮想線を引いた際に、仮想線が横切る結晶粒界の数(n)を測定し、(1)式によって平均結晶粒径(μm)を算出した。
{12.1×103/(n−1)}・・・(1)
この測定を各最終板について2回行って、その2回の測定値の平均値を採用した。各最終板の再結晶粒の平均結晶粒径の測定結果を、表4に示す。
[Measurement of average crystal grain size of recrystallized grains]
The obtained final plate is cut out, embedded in a thermoplastic resin so that the rolled surface (L-LT surface) of the plate can be polished, mirror-polished, anodized in a borohydrofluoric acid aqueous solution, and subjected to a polarizing microscope ( The metal structure was observed with a magnification of 50). The average crystal grain size of the recrystallized grains of each final plate obtained was measured by a section method (cutting method). Measure the number of crystal grain boundaries (n) that the imaginary line crosses when drawing the imaginary line with a length of 12.1 mm in the field of view while sequentially shifting the scale of the field of view of the polarizing microscope. The average crystal grain size (μm) was calculated.
{12.1 × 10 3 / (n−1)} (1)
This measurement was performed twice for each final plate, and an average value of the two measured values was adopted. Table 4 shows the measurement results of the average crystal grain size of the recrystallized grains of each final plate.
最終板の導電率が53.0%IACS以上であったものを放熱性評価良好(〇)とし、最終板の導電率が53.0%IACS未満であったものを放熱性評価不良(×)とした。
最終板の伸びの値が40.0%以上であったものを成形性評価良好(〇)とし、最終板の伸びの値が40.0%未満であったものを成形性評価不良(×)とした。
(TS95−TS90)の値が−4MPa未満であったものを加工軟化性評価良好(〇)とし、(TS95−TS90)の値が−4MPa以上であったものを加工軟化性評価不良(×)とした。
最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%以上であったものを作動安定性評価良好(〇)とし、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%未満であったものを作動安定性評価不良(×)とした。これらの評価結果を表4に示す。
When the final plate conductivity is 53.0% IACS or higher, the heat dissipation evaluation is good (◯), and when the final plate conductivity is less than 53.0% IACS, the heat dissipation evaluation is poor (×). It was.
When the elongation value of the final plate is 40.0% or more, the moldability evaluation is good (◯), and when the elongation value of the final plate is less than 40.0%, the moldability evaluation is poor (×). It was.
When the value of (TS95-TS90) is less than −4 MPa, the work softening evaluation is good (◯), and when the value of (TS95-TS90) is −4 MPa or more, the work softening evaluation is poor (×) It was.
The final plate has an elongation value of 5.0% or more after cold rolling with a rolling reduction of 90% is regarded as good (評 価), and the final plate is cold with a rolling reduction of 90%. The elongation value after rolling was less than 5.0% was regarded as poor operation stability evaluation (x). These evaluation results are shown in Table 4.
供試材の特性評価結果を示す表4における実施例51は、本発明の組成範囲内であるとともに、最終焼鈍は保持温度340℃で1時間保持のバッチ焼鈍を模擬したアニーラー焼鈍であり、最終板の導電率、最終板の伸びの値、(TS95−TS90)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしていた。具体的には、実施例51は、最終板の導電率が53.0%IACS以上であり、最終板の伸びの値が40.0%以上であり、(TS95−TS90)の値が−4MPa未満であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%以上であった。したがって、実施例51は、放熱性評価良好(〇)、成形性評価良好(〇)、加工軟化性評価良好(〇)、作動安定性評価良好(〇)であった。また、実施例51の最終板は、再結晶組織を呈しており、再結晶粒の平均結晶粒径は16.0μmであった。 Example 51 in Table 4 showing the property evaluation results of the test materials is within the composition range of the present invention, and the final annealing is annealing annealing simulating batch annealing held at a holding temperature of 340 ° C. for 1 hour. All of the electrical conductivity of the plate, the value of the elongation of the final plate, the value of (TS95-TS90), and the value of the elongation after cold rolling with a rolling reduction of 90% were satisfied for the final plate. Specifically, in Example 51, the conductivity of the final plate is 53.0% IACS or more, the elongation value of the final plate is 40.0% or more, and the value of (TS95-TS90) is −4 MPa. The elongation value after subjecting the final plate to cold rolling with a rolling reduction of 90% was 5.0% or more. Therefore, in Example 51, the heat dissipation evaluation was good (◯), the moldability evaluation was good (◯), the work softening evaluation was good (◯), and the operational stability evaluation was good (◯). The final plate of Example 51 exhibited a recrystallized structure, and the average crystal grain size of the recrystallized grains was 16.0 μm.
供試材の特性評価結果を示す表4における実施例52は、本発明の組成範囲内であるとともに、最終焼鈍は保持温度440℃で1時間保持のバッチ焼鈍を模擬したアニーラー焼鈍であり、最終板の導電率、最終板の伸びの値、(TS95−TS90)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしていた。具体的には、実施例52は、最終板の導電率が53.0%IACS以上であり、最終板の伸びの値が40.0%以上であり、(TS95−TS90)の値が−4MPa未満であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%以上であった。したがって、実施例52は、放熱性評価良好(〇)、成形性評価良好(〇)、加工軟化性評価良好(〇)、作動安定性評価良好(〇)であった。また、実施例52の最終板は、再結晶組織を呈しており、再結晶粒の平均結晶粒径は29.1μmであった。 Example 52 in Table 4 showing the property evaluation results of the test materials is within the composition range of the present invention, and the final annealing is annealing annealing simulating batch annealing held at a holding temperature of 440 ° C. for 1 hour. All of the electrical conductivity of the plate, the value of the elongation of the final plate, the value of (TS95-TS90), and the value of the elongation after cold rolling with a rolling reduction of 90% were satisfied for the final plate. Specifically, in Example 52, the conductivity of the final plate is 53.0% IACS or more, the elongation value of the final plate is 40.0% or more, and the value of (TS95-TS90) is −4 MPa. The elongation value after subjecting the final plate to cold rolling with a rolling reduction of 90% was 5.0% or more. Therefore, in Example 52, the heat dissipation evaluation was good (◯), the moldability evaluation was good (◯), the work softening evaluation was good (◯), and the operational stability evaluation was good (◯). The final plate of Example 52 exhibited a recrystallized structure, and the average crystal grain size of the recrystallized grains was 29.1 μm.
供試材の特性評価結果を示す表4における比較例53は、本発明の組成範囲内であるとともに、最終焼鈍は保持温度240℃で1時間保持のバッチ焼鈍を模擬したアニーラー焼鈍であり、最終板の導電率、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしていたものの、最終板の伸びの値、(TS95−TS90)の値が基準値を満たしていなかった。具体的には、比較例53は、最終板の導電率が53.0%IACS以上であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%以上であったものの、最終板の伸びの値が40.0%未満であり、(TS95−TS90)の値が−4MPa以上であった。したがって、比較例53は、放熱性評価良好(〇)、成形性評価不良(×)、加工軟化性評価不良(×)、作動安定性評価良好(〇)であった。また、比較例53の最終板は、未結晶組織を呈しており、再結晶粒が存在せず、その平均結晶粒径を測定することはできなかった。 Comparative Example 53 in Table 4 showing the property evaluation results of the test materials is within the composition range of the present invention, and the final annealing is annealing annealing simulating batch annealing held at a holding temperature of 240 ° C. for 1 hour. Although the electrical conductivity of the plate and the elongation value after the cold rolling of the final plate with a rolling reduction of 90% satisfied the standard value, the elongation value of the final plate, the value of (TS95-TS90) is the standard value Did not meet. Specifically, in Comparative Example 53, the conductivity of the final plate is 53.0% IACS or more, and the elongation value after the cold rolling of the final plate with a reduction rate of 90% is 5.0% or more. However, the elongation value of the final plate was less than 40.0%, and the value of (TS95-TS90) was -4 MPa or more. Therefore, Comparative Example 53 had good heat dissipation evaluation (◯), poor moldability evaluation (×), poor work softening evaluation (×), and good operation stability evaluation (◯). Further, the final plate of Comparative Example 53 had an uncrystallized structure, no recrystallized grains were present, and the average crystal grain size could not be measured.
供試材の特性評価結果を示す表4における比較例54は、本発明の組成範囲内であるとともに、最終焼鈍は保持温度425℃で10秒間保持の連続焼鈍を模擬したソルトバス焼鈍であり、最終板の伸びの値が基準値を満たしていたものの、最終板の導電率、(TS95−TS90)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしていなかった。具体的には、比較例54は、最終板の伸びの値が40.0%以上であったものの、最終板の導電率が53.0%IACS未満であり、(TS95−TS90)の値が−4MPa以上であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%未満であった。したがって、比較例54は、放熱性評価不良(×)、成形性評価良好(〇)、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。また、比較例54の最終板は、再結晶組織を呈しており、再結晶粒の平均結晶粒径は13.6μmであった。 Comparative Example 54 in Table 4 showing the property evaluation results of the test materials is within the composition range of the present invention, and the final annealing is a salt bath annealing simulating continuous annealing held at a holding temperature of 425 ° C. for 10 seconds, Although the elongation value of the final plate satisfied the standard value, the electrical conductivity of the final plate, the value of (TS95-TS90), and the elongation value after cold rolling with a reduction ratio of 90% on the final plate are the standards. The value was not met. Specifically, in Comparative Example 54, although the elongation value of the final plate was 40.0% or more, the conductivity of the final plate was less than 53.0% IACS, and the value of (TS95-TS90) was -4 MPa or more, and the elongation value after subjecting the final plate to cold rolling at a reduction rate of 90% was less than 5.0%. Therefore, the comparative example 54 was heat dissipation evaluation defect (x), moldability evaluation favorable ((circle)), work softening evaluation defect (x), and operation stability evaluation defect (x). The final plate of Comparative Example 54 exhibited a recrystallized structure, and the average crystal grain size of the recrystallized grains was 13.6 μm.
以上のことから、上記特定の成分組成を有し、且つ導電率が53.0%IACS以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率90%で冷間圧延を施した後の引張り強度をTS90と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS90)の値が−4MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上である値を呈するものが、放熱性、成形性、加工軟化性に優れ、作動圧バラツキの少ない一体型防爆弁を成形可能な電池蓋用アルミニウム合金板であることが判る。 From the above, having the above specific component composition, conductivity of 53.0% IACS or more, elongation value of 40% or more, recrystallized structure, and cooling at a reduction rate of 90%. The value of (TS95-TS90) when the tensile strength after cold rolling is defined as TS90 and the tensile strength after cold rolling at a reduction rate of 95% is defined as TS95 is less than -4 MPa. The one that exhibits a value of 5.0% or more after cold rolling at a rolling reduction of 90% is excellent in heat dissipation, moldability, and work softening properties, and has little variation in operating pressure. It can be seen that this is an aluminum alloy plate for a battery lid capable of forming an explosion-proof valve.
Claims (3)
請求項1に記載の成分組成を有するアルミニウム合金溶湯を半連続鋳造法によって鋳塊に鋳造するスラブ鋳造工程と、
鋳塊に520〜620℃の保持温度、1時間以上の保持時間で均質化処理を施す均質化処理工程と、
前記均質化処理工程後、開始温度420〜520℃未満に設定して、鋳塊に熱間圧延を施して熱間圧延板を得る熱間圧延工程と、
前記熱間圧延板に冷間圧延を施して冷間圧延板を得る冷間圧延工程と、
前記冷間圧延板にバッチ炉にて最終焼鈍を施す最終焼鈍工程と、を含み、
前記冷間圧延工程において、最終冷延率50%〜95%の範囲である最終冷間圧延を施し、
前記最終焼鈍工程において、保持温度300〜450℃で1時間以上の最終焼鈍を行うことを特徴とする、一体型防爆弁成形用の電池蓋用アルミニウム合金板の製造方法。 A method for producing an aluminum alloy plate for a battery lid for forming an integral explosion-proof valve according to claim 1 or 2,
A slab casting step of casting a molten aluminum alloy having the component composition according to claim 1 into an ingot by a semi-continuous casting method;
A homogenization treatment step of subjecting the ingot to a homogenization treatment at a holding temperature of 520 to 620 ° C. and a holding time of 1 hour or more;
After the homogenization treatment step, set a starting temperature of less than 420 to 520 ° C., hot rolling the ingot to obtain a hot rolled plate,
A cold rolling step of cold rolling the hot rolled plate to obtain a cold rolled plate;
See containing and a final annealing step of performing the final annealing in a batch furnace in the cold-rolled sheet,
In the cold rolling step, the final cold rolling ratio is in the range of 50% to 95%, and the final cold rolling is performed.
In the final annealing step, the final annealing for 1 hour or more is performed at a holding temperature of 300 to 450 ° C., and the method for producing an aluminum alloy plate for battery lid for integral explosion-proof valve forming.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018186641A JP6614307B1 (en) | 2018-10-01 | 2018-10-01 | Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof |
CN201980004360.XA CN111263826A (en) | 2018-10-01 | 2019-07-12 | Aluminum alloy plate for battery cover for forming integrated explosion-proof valve and manufacturing method thereof |
EP19853261.6A EP3862449A4 (en) | 2018-10-01 | 2019-07-12 | Aluminum alloy plate for battery lid for use in molding of integral explosion-proof valve, and method for producing same |
KR1020207006015A KR20200038953A (en) | 2018-10-01 | 2019-07-12 | Aluminum alloy plate for battery cover for integral explosion-proof valve molding and its manufacturing method |
PCT/JP2019/027785 WO2020070944A1 (en) | 2018-10-01 | 2019-07-12 | Aluminum alloy plate for battery lid for use in molding of integral explosion-proof valve, and method for producing same |
US16/644,880 US20210238714A1 (en) | 2018-10-01 | 2019-07-12 | Aluminum alloy sheet for battery lid use for forming integrated explosion-proof valve and method of production of same |
TW108124941A TWI696706B (en) | 2018-10-01 | 2019-07-15 | Aluminum alloy plate for battery cover used for forming integrated explosion-proof valve and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018186641A JP6614307B1 (en) | 2018-10-01 | 2018-10-01 | Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6614307B1 true JP6614307B1 (en) | 2019-12-04 |
JP2020056063A JP2020056063A (en) | 2020-04-09 |
Family
ID=68763392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018186641A Active JP6614307B1 (en) | 2018-10-01 | 2018-10-01 | Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6614307B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113710031A (en) * | 2021-08-30 | 2021-11-26 | 无锡格林沃科技有限公司 | Mainboard control box outer body device and preparation method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2023188906A1 (en) * | 2022-03-31 | 2023-10-05 |
-
2018
- 2018-10-01 JP JP2018186641A patent/JP6614307B1/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113710031A (en) * | 2021-08-30 | 2021-11-26 | 无锡格林沃科技有限公司 | Mainboard control box outer body device and preparation method thereof |
CN113710031B (en) * | 2021-08-30 | 2023-08-11 | 无锡格林沃科技有限公司 | Main board control box outer body device and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2020056063A (en) | 2020-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6780686B2 (en) | Aluminum alloy plate for battery lid for molding of integrated circular explosion-proof valve and its manufacturing method | |
JP6614305B1 (en) | Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof | |
JP6780679B2 (en) | Aluminum alloy plate for battery lid for integrated explosion-proof valve molding and its manufacturing method | |
JP6780680B2 (en) | Aluminum alloy plate for battery lid for integrated explosion-proof valve molding and its manufacturing method | |
JP6614293B1 (en) | Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof | |
JP6614292B1 (en) | Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof | |
WO2019111422A1 (en) | Aluminum alloy plate for battery cover for forming integrated round explosion-proof valve and method for manufacturing same | |
JP6614307B1 (en) | Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof | |
WO2020070944A1 (en) | Aluminum alloy plate for battery lid for use in molding of integral explosion-proof valve, and method for producing same | |
JP6780685B2 (en) | Aluminum alloy plate for battery lid for integrated explosion-proof valve molding and its manufacturing method | |
JP6614306B1 (en) | Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190807 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190814 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191008 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191021 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6614307 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |