JP6611110B1 - Film formation method - Google Patents

Film formation method Download PDF

Info

Publication number
JP6611110B1
JP6611110B1 JP2019530852A JP2019530852A JP6611110B1 JP 6611110 B1 JP6611110 B1 JP 6611110B1 JP 2019530852 A JP2019530852 A JP 2019530852A JP 2019530852 A JP2019530852 A JP 2019530852A JP 6611110 B1 JP6611110 B1 JP 6611110B1
Authority
JP
Japan
Prior art keywords
resin film
silica particles
film
electrodeposition
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019530852A
Other languages
Japanese (ja)
Other versions
JPWO2020148807A1 (en
Inventor
義則 山本
義則 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6611110B1 publication Critical patent/JP6611110B1/en
Publication of JPWO2020148807A1 publication Critical patent/JPWO2020148807A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish

Abstract

防食性と防汚性を両立できる膜形成方法及び膜を形成した金属部品、並びに空気調和機の室外機を提供する。電極及び電極に接続された金属基材を塗料に浸漬し、電圧を印加して金属基材に電着樹脂膜を形成する電着工程と、電着樹脂膜の表面に水又は水溶液を付着させ親水性を付与する親水性付与工程と、親水性を付与した電着樹脂膜にシリカ粒子を付着させるシリカ粒子付着工程と、シリカ粒子の少なくとも一部を電着樹脂膜の表層に埋め込み、埋め込まれたシリカ粒子と結合させ電着樹脂膜の表層外にシリカ粒子を露出させながら電着樹脂膜を硬化させて硬化樹脂膜を形成するとともに、硬化樹脂膜の表層にシリカ粒子層を形成するシリカ粒子層形成工程とを備えるものである。Provided are a film forming method capable of achieving both anticorrosion and antifouling properties, a metal part on which a film is formed, and an outdoor unit of an air conditioner. An electrode and a metal substrate connected to the electrode are immersed in the paint, and a voltage is applied to form an electrodeposition resin film on the metal substrate, and water or an aqueous solution is attached to the surface of the electrodeposition resin film. A hydrophilicity imparting step for imparting hydrophilicity, a silica particle adhesion step for adhering silica particles to the electrodeposited resin film imparted with hydrophilicity, and embedding and embedding at least a part of the silica particles in the surface layer of the electrodeposited resin film. The silica particles are bonded to the silica particles to form a cured resin film by curing the electrodeposited resin film while exposing the silica particles outside the surface of the electrodeposited resin film, and to form a silica particle layer on the surface of the cured resin film A layer forming step.

Description

本発明は金属部品の防食膜に防汚性を持たせるための膜形成方法に関するものである。   The present invention relates to a film forming method for imparting antifouling property to an anticorrosion film of metal parts.

金属部品に防食性を持たせるための膜形成方法の1つである電着塗装は、例えば水に分散又は溶解させた電着塗装用塗料(以下、塗料という)中に被塗物である金属部品の金属基材(以下、基材という)を浸漬させ、基材と電極との間に電圧を印加し電流を流すことによって基材上に樹脂膜を形成させる。電着塗装は、基材の細部まで塗装することができるため、複雑な形状を有する金属部品の防食処理として広く使用されている。
このように、電着塗装により金属部品に防食性を付与できる一方、焼付乾燥後の樹脂膜は疎水性を有するため、油分等の疎水性汚れが付着しやすい問題がある。
そこで、例えば電着塗装し焼付乾燥した基材に、シリカ粒子を含有する樹脂を塗布することによって樹脂膜表面に親水性を付与して、疎水性汚れを防止する技術(例えば、特許文献1参照)、樹脂の表面にシリカ粒子を埋め込んだハードコートフィルムを用いて、基材上にハードコート層を形成する技術(例えば、特許文献2参照)が検討されている。
Electrodeposition coating, which is one of the film forming methods for imparting anticorrosion properties to metal parts, is, for example, a metal that is an object to be coated in a coating for electrodeposition coating (hereinafter referred to as paint) dispersed or dissolved in water. A metal base material (hereinafter referred to as a base material) of a part is immersed, and a resin film is formed on the base material by applying a voltage between the base material and the electrode to cause a current to flow. Electrodeposition coating is widely used as an anticorrosion treatment for metal parts having complex shapes because it can coat the details of the substrate.
Thus, while corrosion resistance can be imparted to metal parts by electrodeposition coating, since the resin film after baking and drying has hydrophobicity, there is a problem that hydrophobic dirt such as oil tends to adhere.
Therefore, for example, a technique for imparting hydrophilicity to the surface of the resin film by applying a resin containing silica particles to a substrate that has been electrodeposited and baked and dried to prevent hydrophobic contamination (see, for example, Patent Document 1) ), A technique for forming a hard coat layer on a substrate using a hard coat film in which silica particles are embedded on the surface of a resin (for example, see Patent Document 2) has been studied.

特開2005−36287号公報JP-A-2005-36287 特開2010−241019号公報JP 2010-241919

しかしながら、特許文献1において、焼付乾燥した樹脂膜上のシリカ粒子により初期の親水性は得られるものの、付着しているのみのシリカ粒子は次第に剥離するため、長期に渡り親水性を持続させることが難しい。
また、特許文献2において、ハードコート層の樹脂にシリカ粒子が埋め込まれているため、十分な親水性は得られない。
However, in Patent Document 1, although the initial hydrophilicity can be obtained by the silica particles on the baked and dried resin film, only the adhering silica particles gradually peel off, so that the hydrophilicity can be maintained for a long time. difficult.
In Patent Document 2, since silica particles are embedded in the resin of the hard coat layer, sufficient hydrophilicity cannot be obtained.

本発明は、上述のような問題を解決するためになされたもので、防食性と防汚性を両立する膜形成方法を提供することを目的とする。また、防食性と防汚性とを有する金属部品を提供することを目的とする。さらには、長期に渡る防汚性を有し、空調性能を向上できる空気調和機の室外機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a film forming method that achieves both anticorrosion and antifouling properties. Moreover, it aims at providing the metal component which has anticorrosion property and antifouling property. Furthermore, it aims at providing the outdoor unit of the air conditioner which has antifouling property for a long term and can improve air-conditioning performance.

本発明にかかる膜形成方法は、電極及び前記電極に接続された金属基材を塗料に浸漬し、電圧を印加して前記金属基材に電着樹脂膜を形成する電着工程と、前記電着樹脂膜の表面に水又は水溶液を付着させ親水性を付与する親水性付与工程と、親水性を付与した前記電着樹脂膜にシリカ粒子を付着させるシリカ粒子付着工程と、前記シリカ粒子の少なくとも一部を前記電着樹脂膜の表層に埋め込み、埋め込まれた前記シリカ粒子と結合させ前記電着樹脂膜の表層外に前記シリカ粒子を露出させながら前記電着樹脂膜を硬化させて硬化樹脂膜を形成するとともに、前記硬化樹脂膜の表層にシリカ粒子層を形成するシリカ粒子層形成工程とを備えたものである。   The film forming method according to the present invention includes an electrodeposition step of immersing an electrode and a metal substrate connected to the electrode in a paint, and applying a voltage to form an electrodeposited resin film on the metal substrate; A hydrophilicity imparting step in which water or an aqueous solution is attached to the surface of the electrodeposited resin film to impart hydrophilicity; a silica particle adhering step in which silica particles are adhered to the electrodeposited resin film imparted with hydrophilicity; and at least the silica particles A portion of the electrodeposited resin film is embedded in the surface, bonded to the embedded silica particles, and the electrodeposited resin film is cured while exposing the silica particles to the outside of the surface of the electrodeposited resin film. And a silica particle layer forming step of forming a silica particle layer on the surface layer of the cured resin film.

また、本発明にかかる膜を形成した金属部品は、金属基材と、前記金属基材に形成された硬化樹脂膜と、前記硬化樹脂膜の表層にシリカ粒子の少なくとも一部が埋め込まれた埋込部と、前記埋込部と結合したシリカ粒子が前記硬化樹脂膜の表層外に露出した露出部とにより構成されたシリカ粒子層とを備えたものである。   In addition, a metal part formed with a film according to the present invention includes a metal substrate, a cured resin film formed on the metal substrate, and an embedded surface in which at least a part of silica particles is embedded in the surface layer of the cured resin film. A silica particle layer is provided that includes a recessed portion and an exposed portion in which silica particles bonded to the embedded portion are exposed outside the surface layer of the cured resin film.

また、本発明にかかる膜を形成した空気調和機の室外機は、筐体に設けられた取込口から取り込んだ気体の熱を交換し、フィン及び銅管の少なくともいずれかが本発明にかかる膜を形成した金属部品である熱交換器と、前記熱交換器により熱交換された気体を循環させるファンと、前記ファンを駆動するファンモータとを備えたものである。   Moreover, the outdoor unit of the air conditioner in which the film | membrane concerning this invention was formed exchanges the heat | fever of the gas taken in from the intake port provided in the housing | casing, and at least any one of a fin and a copper pipe applies to this invention A heat exchanger that is a metal part having a film formed thereon, a fan that circulates the gas heat-exchanged by the heat exchanger, and a fan motor that drives the fan.

本発明によれば、金属部品の基材において、硬化樹脂膜及びこの硬化樹脂膜の表層にシリカ粒子の少なくとも一部が埋め込まれた埋込部と、埋込部のシリカ粒子に結合させ、露出させた露出部とにより構成されるシリカ粒子層を形成することができるため、金属部品に防食性と、長期間安定した防汚性を持たせることができる。   According to the present invention, in the base material of the metal part, the cured resin film and the embedded portion in which at least a part of the silica particles are embedded in the surface layer of the cured resin film, and the silica particles in the embedded portion are bonded and exposed. Since the silica particle layer composed of the exposed portion thus formed can be formed, the metal parts can be provided with anticorrosion and long-term stable antifouling properties.

本発明の実施の形態1にかかる膜形成方法の工程図である。It is process drawing of the film | membrane formation method concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる電着工程における塗料槽の概略構成図である。It is a schematic block diagram of the coating tank in the electrodeposition process concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるシリカ粒子付着工程におけるシリカ粒子槽の概略構成図である。It is a schematic block diagram of the silica particle tank in the silica particle adhesion process concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるシリカ粒子層及び硬化樹脂膜の模式図である。It is a schematic diagram of the silica particle layer and cured resin film concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる空気調和機の室外機の概略構成図である。It is a schematic block diagram of the outdoor unit of the air conditioner concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる空気調和機の熱交換器の模式図である。It is a schematic diagram of the heat exchanger of the air conditioner concerning Embodiment 2 of this invention.

実施の形態1.
金属部品に防汚性を持たせるため、基材の表面を脱脂、化成処理し、電着塗装を行った後、焼付乾燥によって硬化樹脂膜を形成し、これに防汚性を有するシリカ粒子を付着させる方法では次第にシリカ粒子が剥離する。
そこで、発明者は、疎水性汚れを防止するためのシリカ粒子を硬化樹脂膜の表層に露出させるとともに、一部を硬化樹脂膜に埋め込むことが必要であると考えた。そして、鋭意検討の結果、次の方法により強固なシリカ粒子層を形成できることを見出した。以下、説明する。
Embodiment 1 FIG.
In order to impart antifouling properties to metal parts, the surface of the base material is degreased and chemically treated, and after electrodeposition coating, a cured resin film is formed by baking and drying. In the attaching method, the silica particles gradually peel off.
Therefore, the inventor considered that it is necessary to expose silica particles for preventing hydrophobic stains on the surface layer of the cured resin film and to embed a part thereof in the cured resin film. As a result of intensive studies, it was found that a strong silica particle layer can be formed by the following method. This will be described below.

図1は、本発明の実施の形態1にかかる膜形成方法の工程図であり、脱脂工程S1、化成工程S2、電着工程S3、親水性付与工程S4、シリカ粒子付着工程S5、及びシリカ粒子層形成工程S6を含む。
まず、金属部品の基材4表面の油分を除去する脱脂工程S1を行う。そして脱脂された基材4に、例えばリン酸塩皮膜を形成し塗装の下地とする化成工程S2を行う。これらの処理は基材4の潤滑性、防食性の向上、及び基材4と後述する電着工程S3における電着樹脂膜3との密着性を向上させるためである。
FIG. 1 is a process diagram of a film forming method according to Embodiment 1 of the present invention, in which a degreasing process S1, a chemical conversion process S2, an electrodeposition process S3, a hydrophilicity imparting process S4, a silica particle attaching process S5, and a silica particle A layer forming step S6 is included.
First, the degreasing process S1 which removes the oil component of the base material 4 surface of metal parts is performed. And the chemical conversion process S2 which forms a phosphate membrane | film | coat, for example on the degreased base material 4 and makes it the base of coating is performed. These treatments are for improving the lubricity and corrosion resistance of the base material 4 and improving the adhesion between the base material 4 and the electrodeposition resin film 3 in the electrodeposition step S3 described later.

脱脂工程S1では、脱脂剤、例えばムラタ社製アルミニウム用中性脱脂剤MGC13−Bに、2分以上8分以下、好ましくは1分以上10分以下浸漬する。中央化学社製BF500S、BF4400、ES3000、ディップソール社製NZ−77、P−0731、EZ−988等を用いてもよい。脱脂工程S1後に1分以上10分以下程度水洗を行うと好ましい。   In the degreasing step S1, it is immersed in a degreasing agent, for example, a neutral degreasing agent MGC13-B for aluminum manufactured by Murata, for 2 minutes to 8 minutes, preferably 1 minute to 10 minutes. Chuo Kagaku BF500S, BF4400, ES3000, Dipsol NZ-77, P-0731, EZ-988, etc. may be used. It is preferable to perform washing with water for about 1 minute to 10 minutes after the degreasing step S1.

化成工程S2では、化成処理剤、例えばムラタ社製MP−440に、1分以上5分以下浸漬する。ケミコート社製No.ZRシリーズ、No.425、No.502K、No.600CS、No.559、No.5700等を用いてもよい。化成工程S2後に1分以上10分以下程度水洗を行うと好ましい。   In chemical conversion process S2, it immerses in a chemical conversion treatment agent, for example, MP-440 by Murata, for 1 minute or more and 5 minutes or less. Chemicoat No. ZR series, No. 425, no. 502K, No. 600CS, No. 559, no. 5700 or the like may be used. It is preferable to perform water washing for about 1 to 10 minutes after the chemical conversion step S2.

次に、図2に示すように、塗料5のバインダー樹脂を例えばエポキシ樹脂、ウレタン樹脂等として電着工程S3により電着樹脂膜3を形成する。
塗料槽6の塗料5には、水、水中に溶解又は分散させたバインダー樹脂、中和酸、及び有機溶媒であるエタノール等を含有させる。バインダー樹脂として、例えばビスフェノール型エポキシ樹脂の基本骨格にアミノ基を付加したアミン変性エポキシ樹脂を用いる。アミン変性エポキシ樹脂を、例えば有機酸により中和し、基材4を陰極、金属板7を陽極として接続した状態で塗料5に浸漬し、電圧100Vで3分程度通電してカチオン型電着塗装を行い、電着樹脂膜3を形成する(電着工程S3)。
Next, as shown in FIG. 2, the electrodeposition resin film 3 is formed by an electrodeposition step S3 using, for example, an epoxy resin, a urethane resin or the like as the binder resin of the paint 5.
The paint 5 in the paint tank 6 contains water, a binder resin dissolved or dispersed in water, a neutralizing acid, ethanol as an organic solvent, and the like. As the binder resin, for example, an amine-modified epoxy resin in which an amino group is added to the basic skeleton of a bisphenol type epoxy resin is used. The amine-modified epoxy resin is neutralized with, for example, an organic acid, immersed in the paint 5 in a state where the base material 4 is connected as a cathode and the metal plate 7 is connected as an anode, and is energized for about 3 minutes at a voltage of 100 V for cationic electrodeposition coating. To form an electrodeposition resin film 3 (electrodeposition step S3).

次に、電着樹脂膜3を水槽に1分以上10分以下程度浸漬して電着樹脂膜3の表面にイオン交換水を付着させ、電着樹脂膜3の表面に親水性を付与する(親水性付与工程S4)。この工程において、電着樹脂膜3の未反応部に親水基32が付与され、電着樹脂膜3の表面に親水性が付与される。   Next, the electrodeposition resin film 3 is immersed in a water tank for about 1 minute or more and 10 minutes or less to attach ion exchange water to the surface of the electrodeposition resin film 3, thereby imparting hydrophilicity to the surface of the electrodeposition resin film 3 ( Hydrophilicity imparting step S4). In this step, the hydrophilic group 32 is imparted to the unreacted portion of the electrodeposition resin film 3, and hydrophilicity is imparted to the surface of the electrodeposition resin film 3.

次に、図3に示すように、シリカ粒子2、例えば日本アエロジル社製のAEROSIL(登録商標)OX50を固形のまま入れたシリカ粒子槽8を準備し、親水性を付与させた電着樹脂膜3をシリカ粒子槽8に沈め、シリカ粒子2を解砕機9等で解砕しながら基材4の表面に付着させる(シリカ粒子付着工程S5)。   Next, as shown in FIG. 3, a silica particle tank 8 containing silica particles 2, for example, AEROSIL (registered trademark) OX50 manufactured by Nippon Aerosil Co., Ltd. in a solid state is prepared, and an electrodeposition resin film provided with hydrophilicity. 3 is submerged in the silica particle tank 8, and the silica particles 2 are adhered to the surface of the substrate 4 while being pulverized by the crusher 9 or the like (silica particle adhesion step S5).

ここで、付着させるシリカ粒子2の一次粒子の平均粒径を10nm以上50nm以下とし、一次粒子が凝集した一次凝集体の平均粒径を80nm以上2.5μm以下とする。シリカ粒子2の一次凝集体の平均粒径が80nm未満では十分な親水性が得られず、2.5μmを超えると電着樹脂膜3表層の凹凸が大きくなるため、空気中の浮遊物がひっかかりやすくなったり、クラックが入り易くなったりするためである。   Here, the average particle diameter of the primary particles of the silica particles 2 to be adhered is 10 nm or more and 50 nm or less, and the average particle diameter of the primary aggregate in which the primary particles are aggregated is 80 nm or more and 2.5 μm or less. If the average particle size of the primary aggregate of the silica particles 2 is less than 80 nm, sufficient hydrophilicity cannot be obtained, and if it exceeds 2.5 μm, the surface irregularities of the electrodeposited resin film 3 become large, so that suspended matters in the air are caught. This is because it becomes easy and cracks easily occur.

次に、例えば90℃以上180℃以下程度で20分加熱し、電着樹脂膜3に付着していたシリカ粒子2の一部を電着樹脂膜3の表層内に埋め込み、埋め込まれたシリカ粒子2に分子間力によって結合させたシリカ粒子2を表層外に露出させながら、電着樹脂膜3を硬化させ硬化樹脂膜31とする(シリカ粒子層形成工程S6)。硬化樹脂膜31には、表層に埋め込まれたシリカ粒子2と、露出したシリカ粒子2により、シリカ粒子層1が形成される。   Next, for example, heating is performed at 90 ° C. or higher and about 180 ° C. or lower for 20 minutes, and a part of the silica particles 2 adhering to the electrodeposited resin film 3 is embedded in the surface layer of the electrodeposited resin film 3, and embedded silica particles While the silica particles 2 bonded to 2 by intermolecular force are exposed outside the surface layer, the electrodeposition resin film 3 is cured to form a cured resin film 31 (silica particle layer forming step S6). In the cured resin film 31, the silica particle layer 1 is formed by the silica particles 2 embedded in the surface layer and the exposed silica particles 2.

このように、陰極又は陽極の電極に接続された金属部品の基材4を塗料5に浸漬し、電圧を印加して基材4に電着樹脂膜3を形成し、この表面に水又は水溶液を付着させ親水性を付与し、親水性が付与された電着樹脂膜3の表面にシリカ粒子2を付着させる。これを硬化することにより、付着させたシリカ粒子2の一部は電着樹脂膜3の表層に埋め込まれ、埋め込まれたシリカ粒子2と結合するシリカ粒子2を表層外に露出させた硬化樹脂膜31を形成できる。   In this way, the base material 4 of the metal part connected to the cathode or anode electrode is immersed in the paint 5, and a voltage is applied to form the electrodeposited resin film 3 on the base material 4. Water or an aqueous solution is formed on this surface. The silica particles 2 are adhered to the surface of the electrodeposition resin film 3 imparted with hydrophilicity. By curing this, a part of the adhered silica particles 2 is embedded in the surface layer of the electrodeposited resin film 3, and the cured resin film in which the silica particles 2 bonded to the embedded silica particles 2 are exposed outside the surface layer. 31 can be formed.

すなわち、図4に示すように、硬化樹脂膜31には、表層にシリカ粒子2の一部が埋め込まれた埋込部10と、埋め込まれたシリカ粒子2と結合し表層外にシリカ粒子2が露出した露出部11とにより構成されるシリカ粒子層1が形成される。
このように形成された膜は、シリカ粒子層1の露出部11により親水性を有し、疎水性物質の付着を防止できる。そして、露出部11のシリカ粒子2は埋込部10のシリカ粒子2に強固に付着しているため剥離せず、金属部品に長期間安定した防汚性を持たせることができる。
That is, as shown in FIG. 4, the cured resin film 31 has embedded portions 10 in which part of the silica particles 2 are embedded in the surface layer, and silica particles 2 bonded to the embedded silica particles 2 and outside the surface layer. A silica particle layer 1 composed of the exposed exposed portion 11 is formed.
The film thus formed has hydrophilicity due to the exposed portion 11 of the silica particle layer 1 and can prevent adhesion of a hydrophobic substance. And since the silica particle 2 of the exposed part 11 has adhered firmly to the silica particle 2 of the embedding part 10, it does not exfoliate and it can give a metal part stable antifouling property for a long period of time.

ここで、硬化樹脂膜31の膜厚は、シリカ粒子層1の膜厚の50倍以上100倍以下とすることが好ましく、より好ましくは、55倍以上90倍以下とする。硬化樹脂膜31が薄いと十分な防食性を確保できず、厚いと基材4との密着性を得にくいためである。   Here, the thickness of the cured resin film 31 is preferably 50 times to 100 times, more preferably 55 times to 90 times the thickness of the silica particle layer 1. This is because if the cured resin film 31 is thin, sufficient corrosion resistance cannot be ensured, and if it is thick, adhesion to the substrate 4 is difficult to obtain.

さらに、シリカ粒子層1の膜厚と硬化樹脂膜31の膜厚の合計は、好ましくは1μm以上50μm以下とする。1μm未満では十分な防食性が得られず、50μmを超えると、基材4との密着性が十分に得られず、クラックが生じやすくなるからである。   Further, the total thickness of the silica particle layer 1 and the cured resin film 31 is preferably 1 μm or more and 50 μm or less. If the thickness is less than 1 μm, sufficient corrosion resistance cannot be obtained, and if it exceeds 50 μm, sufficient adhesion to the substrate 4 cannot be obtained, and cracks are likely to occur.

このように、長期に渡って使用してもシリカ粒子2が剥離しにくく、親水性を維持し、持続性のある防汚機能が付与された金属部品を得ることができる。   Thus, even if it uses for a long period of time, the silica particle 2 cannot peel easily, it can maintain the hydrophilicity and the metal component to which the durable antifouling function was provided can be obtained.

なお、本実施の形態では、水に溶解又は分散させたバインダー樹脂を塗料5として用いた例を示したが、粉体電着塗装としてもよい。
例えばエポキシ樹脂中のエポキシ基に有機アミノ化合物を付加反応させ、これに酸性化合物を添加した水希釈性カチオン樹脂の水溶液中に、合成樹脂粉体、例えばエポキシ樹脂、ポリエステル樹脂、アクリル樹脂粉体等を分散させて得られた粉体含有カチオン型電着塗料を用いて電着塗装を行えばよい。
In the present embodiment, an example in which a binder resin dissolved or dispersed in water is used as the paint 5 is shown, but powder electrodeposition coating may be used.
For example, in an aqueous solution of a water-dilutable cationic resin obtained by adding an organic amino compound to an epoxy group in an epoxy resin and adding an acidic compound thereto, a synthetic resin powder such as an epoxy resin, a polyester resin, an acrylic resin powder, etc. Electrodeposition coating may be performed using a powder-containing cation-type electrodeposition paint obtained by dispersing.

また、電着工程S3においてカチオン型電着塗装を用いる例を示したが、アニオン型電着塗装としてもよい。基材4を陽極の電極、金属板7を陰極の電極に接続し、例えば、カルボン酸を付加したバインダー樹脂及びこれを中和させるためのアミンを含む塗料5中に浸漬させ電着塗装すればよい。   Moreover, although the example using cation type electrodeposition coating was shown in electrodeposition process S3, it is good also as anion type electrodeposition coating. If the base material 4 is connected to the anode electrode and the metal plate 7 is connected to the cathode electrode, for example, it is immersed in a paint 5 containing a binder resin to which a carboxylic acid is added and an amine for neutralizing the binder resin, and electrodeposition is applied. Good.

また、使用されるシリカ粒子2として、日本アエロジル社製のAEROSIL(登録商標、以下同じ)OX50を用いた例を示したが、例えばAEROSIL50、AEROSIL90G、AEROSIL130、AEROSIL150、AEROSIL200、AEROSIL300、AEROSIL380を用いてもよい。   Moreover, although the example using AEROSIL (trademark, the same hereafter) OX50 by Nippon Aerosil Co., Ltd. was shown as the silica particle 2 used, for example, using AEROSIL50, AEROSIL90G, AEROSIL130, AEROSIL150, AEROSIL200, AEROSIL300, AEROSIL380 Also good.

また、次のようにサンプルを作製し、シリカ粒子2の一次凝集体の平均粒径を測定した。300mLディスポカップに純水100mLを量り取り、AEROSILOX50を3g投入し、超音波分散機(日本精機製作所製US−600T)を用いて出力200Wで2分分散を行った。レーザー光散乱法測定装置(堀場製作所製LA−920)を用いて平均粒径を測定した。   Moreover, the sample was produced as follows and the average particle diameter of the primary aggregate of the silica particle 2 was measured. 100 mL of pure water was weighed into a 300 mL disposable cup, 3 g of AEROSILOX 50 was added, and dispersion was performed for 2 minutes at an output of 200 W using an ultrasonic disperser (US-600T manufactured by Nippon Seiki Seisakusho). The average particle diameter was measured using a laser light scattering measurement apparatus (LA-920 manufactured by Horiba, Ltd.).

塗料5に含むバインダー樹脂として、ビスフェノール型エポキシ樹脂のエポキシ環をアミンで開環するアミン変性エポキシ樹脂を用いた例を示したが、スルホニウム変性エポキシ樹脂を用いてもよい。ビスフェノール型エポキシ樹脂としては、ビスフェノールA型の油化シェルエポキシ社製エピコート(登録商標、以下同じ)828、エピコート1001、エピコート1010等、ビスフェノールF型のエピコート807等を用いればよい。   Although the example using the amine-modified epoxy resin that opens the epoxy ring of the bisphenol-type epoxy resin with an amine is shown as the binder resin included in the paint 5, a sulfonium-modified epoxy resin may be used. As the bisphenol type epoxy resin, a bisphenol A type oil-coated shell epoxy Epicoat (registered trademark, the same shall apply hereinafter) 828, Epicoat 1001, Epicoat 1010 and the like, bisphenol F type Epicoat 807 and the like may be used.

また、バインダー樹脂にアミノ基を導入した例を示したが、アンモニウム塩基、スルホニウム塩基等の塩基性基を導入し、これらの塩基性基を酸で中和することによって水分散型としてもよい。   Moreover, although the example which introduce | transduced the amino group into binder resin was shown, it is good also as a water dispersion type | mold by introduce | transducing basic groups, such as an ammonium base and a sulfonium base, and neutralizing these basic groups with an acid.

また、塗料5に含む中和酸として有機酸を用いる例を示したが、塩酸、硝酸、リン酸、ギ酸、酢酸、乳酸等の無機酸を用いてもよい。   Moreover, although the example which uses an organic acid as a neutralizing acid contained in the coating material 5 was shown, you may use inorganic acids, such as hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, and lactic acid.

塗料5に含む水は、分散安定性のためにカルシウムイオン、マグネシウムイオン等のイオン性不純物が少ないほうが好ましい。2価以上のイオン性不純物が200ppm以下であることが好ましく、より好ましくは50ppm以下である。   The water contained in the paint 5 preferably has less ionic impurities such as calcium ions and magnesium ions for dispersion stability. It is preferable that the ionic impurity more than bivalence is 200 ppm or less, More preferably, it is 50 ppm or less.

塗料5に含む有機溶媒としてエタノールを用いた例を示したが、n−プロパノール、2−プロパノール、イソブチルアルコール、nーブチルアルコール、イソアミルアルコール、n−アミルアルコール、ヘキシルアルコール、2−エチルブチルアルコール、メチルアミルアルコール、シクロヘキサノール、2−エチルヘキシルアルコール、オクチルアルコール、ベンジルアルコール、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチルラクテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールブチルメチルエーテル、トリプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジブチルエーテル、トリエチレングリコールブチルメチルエーテル、ポリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ポリエチレングリコールモノメチルエーテル、N−メチルー2−ピロリドン等を用いてもよい。これらは単独又は2種以上を組み合わせて用いてもよい。   Although the example which used ethanol as an organic solvent contained in the coating material 5 was shown, n-propanol, 2-propanol, isobutyl alcohol, n-butyl alcohol, isoamyl alcohol, n-amyl alcohol, hexyl alcohol, 2-ethylbutyl alcohol, Methyl amyl alcohol, cyclohexanol, 2-ethylhexyl alcohol, octyl alcohol, benzyl alcohol, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monomethyl ether acetate, ethyl lactate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, dipropylene glycol dimethyl ether, Diethylene glycol ethyl methyl ether, diethylene glycol Isopropyl methyl ether, dipropylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, triethylene glycol dimethyl ether, diethylene glycol monobutyl ether, ethylene glycol monophenyl ether, triethylene glycol monomethyl ether, diethylene glycol Dibutyl ether, triethylene glycol butyl methyl ether, polyethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, polyethylene glycol monomethyl ether, N-methyl-2-pyrrolidone, or the like may be used. You may use these individually or in combination of 2 or more types.

また、塗料5には顔料を含有させてもよく、例えば、チタンホワイト、カーボンブラック、コバルト、ベンガラ等の着色顔料、カオリン、タルク、ケイ酸アルミニウム、炭酸カルシウム、マイカ、クレー等の体質顔料、リン酸亜鉛、リン酸鉄、リン酸アルミニウム、リン酸カルシウム、亜リン酸亜鉛、シアン化亜鉛、酸化亜鉛、トリポリリン酸アルミニウム、モリブデン酸亜鉛、モリブデン酸アルミニウム、モリブデン酸カルシウム、リンモリブデン酸アルミニウム、リンモリブデン酸アルミニウム亜鉛等の防錆顔料、ケイ酸亜鉛、ケイ酸カルシウム、シリカ等のケイ酸化合物を用いてもよい。
また、顔料を塗料の成分として使用する場合、顔料は粉体状であるため、顔料を予め高濃度で水性媒体に分散させてペースト状にした後、使用時の濃度に調整すればよい。
Further, the paint 5 may contain a pigment, for example, colored pigments such as titanium white, carbon black, cobalt, and bengara, extender pigments such as kaolin, talc, aluminum silicate, calcium carbonate, mica, and clay, phosphorus Zinc oxide, iron phosphate, aluminum phosphate, calcium phosphate, zinc phosphite, zinc cyanide, zinc oxide, aluminum tripolyphosphate, zinc molybdate, aluminum molybdate, calcium molybdate, aluminum phosphomolybdate, aluminum phosphomolybdate A rust preventive pigment such as zinc or a silicate compound such as zinc silicate, calcium silicate, or silica may be used.
Moreover, when using a pigment as a component of a paint, since the pigment is in a powder form, the pigment may be dispersed in an aqueous medium at a high concentration in advance to form a paste and then adjusted to the concentration at the time of use.

また、カチオン型電着塗装の場合、硬化樹脂膜31の防食性を向上させるために、塗料5に金属触媒を金属イオンとして含有させてもよい。金属イオンとしては、セリウムイオン、ビスマスイオン、銅イオン、亜鉛イオン等を用いればよい。   Further, in the case of cationic electrodeposition coating, in order to improve the corrosion resistance of the cured resin film 31, the paint 5 may contain a metal catalyst as metal ions. As the metal ion, cerium ion, bismuth ion, copper ion, zinc ion, or the like may be used.

親水性付与工程S4において、電着樹脂膜3を水槽に浸漬する例を示したが、電着樹脂膜3の表面にイオン交換水を噴霧してもよい。   In the hydrophilicity imparting step S4, the example in which the electrodeposited resin film 3 is immersed in the water tank has been shown, but ion-exchanged water may be sprayed on the surface of the electrodeposited resin film 3.

電着樹脂膜3の表面へシリカ粒子2を付着させる方法として、シリカ粒子槽8に電着樹脂膜3を沈める方法を示したが、表面に固形のシリカ粒子2を噴霧してもよい。   As a method of attaching the silica particles 2 to the surface of the electrodeposited resin film 3, the method of sinking the electrodeposited resin film 3 in the silica particle tank 8 has been shown, but solid silica particles 2 may be sprayed on the surface.

また、電着樹脂膜3の表面にシリカ粒子2をムラなく付着させるために、基材4にシリカ粒子2を付着させた後、気流を用いて余分なシリカ粒子2を除去することが好ましい。気流の代わりに基材4を回転させることによって余分なシリカ粒子2を除去してもよい。   Moreover, in order to adhere the silica particles 2 uniformly on the surface of the electrodeposited resin film 3, after attaching the silica particles 2 to the substrate 4, it is preferable to remove excess silica particles 2 using an air flow. Excess silica particles 2 may be removed by rotating the substrate 4 instead of the air flow.

電着工程S3において、電着樹脂膜3を硬化させるための架橋剤は、例えばトリレンジイソシアネート等のイソシアネートを使用することができる。   In the electrodeposition step S3, an isocyanate such as tolylene diisocyanate can be used as the crosslinking agent for curing the electrodeposition resin film 3, for example.

これらを用いることにより、同様に金属部品の防食性、防汚性を確保できる。   By using these, the corrosion resistance and antifouling property of the metal parts can be secured in the same manner.

実施の形態2.
図5は、本発明の実施の形態2にかかる空気調和機の室外機の概略構成図であり、図6は熱交換器の模式図である。
図5に示されるように、室外機100の外郭は筐体50により構成され、筐体50内には機械室20、送風機室23が設けられる。
Embodiment 2. FIG.
FIG. 5: is a schematic block diagram of the outdoor unit of the air conditioner concerning Embodiment 2 of this invention, and FIG. 6 is a schematic diagram of a heat exchanger.
As shown in FIG. 5, the outer unit of the outdoor unit 100 is configured by a casing 50, and a machine room 20 and a blower room 23 are provided in the casing 50.

機械室20には、圧縮機21及び電気品箱22が設けられる。電気品箱22の内部には、制御基板(図示せず)が設けられている。制御基板は、圧縮機21の回転数の制御、後述するヒータ30等の駆動のための部材である。   The machine room 20 is provided with a compressor 21 and an electrical component box 22. A control board (not shown) is provided inside the electrical component box 22. The control board is a member for controlling the rotation speed of the compressor 21 and driving a heater 30 and the like which will be described later.

送風機室23には、熱交換器24、ファン25、ファンモータ26、ファンモータ支持板27、上部板28、及び支持板接続部29が設けられる。
熱交換器24は、図6に示すようにフィン60及び銅管61を備え、筐体50の取込口(図示せず)から室外機100内部に取り込まれた外気(気体)の熱交換を行う機能を有する。フィン60及び銅管61の少なくともいずれかの表面には、本発明の膜形成方法により形成されたシリカ粒子層1及び硬化樹脂膜31が形成されている。
熱交換器24は、ファン25、ファンモータ26、ファンモータ支持板27、上部板28、及び支持板接続部29よりも室外機100の背面側に設けられるようになっており、例えば平面視してL字形状のものであり、前側面パネルの左側面側の面、及び背面パネルに沿うように設けられる。
The blower chamber 23 is provided with a heat exchanger 24, a fan 25, a fan motor 26, a fan motor support plate 27, an upper plate 28, and a support plate connection portion 29.
As shown in FIG. 6, the heat exchanger 24 includes fins 60 and copper tubes 61, and performs heat exchange of the outside air (gas) taken into the outdoor unit 100 from the intake port (not shown) of the housing 50. Has the function to perform. The silica particle layer 1 and the cured resin film 31 formed by the film forming method of the present invention are formed on at least one surface of the fin 60 and the copper tube 61.
The heat exchanger 24 is provided on the back side of the outdoor unit 100 with respect to the fan 25, the fan motor 26, the fan motor support plate 27, the upper plate 28, and the support plate connection portion 29. L-shaped and provided along the left side surface of the front side panel and the back panel.

ファン25は、例えばプロペラファンで構成される送風手段であり、筐体50の取込口から室外機100内部に外気を導入し、室外機100内部に導入された外気を室外機100の前面側に向かって排出する機能を有する。ファン25は、熱交換器24により熱交換された外気を循環させる。   The fan 25 is a blower unit composed of, for example, a propeller fan. The fan 25 introduces outside air into the outdoor unit 100 through the intake port of the housing 50, and the outside air introduced into the outdoor unit 100 is transferred to the front side of the outdoor unit 100. It has the function to discharge toward. The fan 25 circulates outside air heat-exchanged by the heat exchanger 24.

ファンモータ26は、ファン25を駆動する駆動手段であり、例えばネジ等の固定手段を用いてファンモータ支持板27に取り付けられる。
ファンモータ支持板27は、ファンモータ26を支持するためのものである。
上部板28は、例えば底面パネルと略水平に設けられる板状の部材である。上部板28は、ファンモータ26が大型化した場合を考慮して、ファンモータ支持板27の強度補強を図るための部材であり、ファンモータ支持板27に接続され、例えばファンモータ支持板27の最上端から前方に向かうようにして取り付けられる。
支持板接続部29は、例えばU字形状の部材であり、ファンモータ支持板27と一体に構成される。支持板接続部29は、その内面が熱交換器24の上面に接触するようにして設けられている。このように、支持板接続部29が熱交換器24に取り付けられることにより、ファンモータ支持板27は、熱交換器24に固定される。
The fan motor 26 is a driving unit that drives the fan 25 and is attached to the fan motor support plate 27 using a fixing unit such as a screw.
The fan motor support plate 27 is for supporting the fan motor 26.
The upper plate 28 is a plate-like member provided substantially horizontally with the bottom panel, for example. The upper plate 28 is a member for reinforcing the strength of the fan motor support plate 27 in consideration of the case where the fan motor 26 is enlarged, and is connected to the fan motor support plate 27. It is attached so as to be directed forward from the uppermost end.
The support plate connection portion 29 is a U-shaped member, for example, and is configured integrally with the fan motor support plate 27. The support plate connection portion 29 is provided such that the inner surface thereof is in contact with the upper surface of the heat exchanger 24. Thus, the fan motor support plate 27 is fixed to the heat exchanger 24 by attaching the support plate connection portion 29 to the heat exchanger 24.

このように、本発明の空気調和機の室外機は、フィン60及び銅管61の少なくともいずれかの表面には、硬化樹脂膜31及び埋込部10と露出部11とを有するシリカ粒子層1が形成された熱交換器24が設けられているため、筐体50に設けられた取込口から取り込んだ気体の熱を交換する際の空気流により油分等の疎水性汚れが付着しにくく、空調性能を向上させることができる。   Thus, in the outdoor unit of the air conditioner of the present invention, the silica particle layer 1 having the cured resin film 31 and the embedded portion 10 and the exposed portion 11 on the surface of at least one of the fin 60 and the copper pipe 61. Since the heat exchanger 24 formed with is provided, hydrophobic dirt such as oil is difficult to adhere due to the air flow when the heat of the gas taken in from the intake port provided in the housing 50 is exchanged, Air conditioning performance can be improved.

以下、100mm×30mm×1mmのアルミニウム製の基材4を用いた実施例1〜5により本発明の効果を確認した結果について説明する。   Hereinafter, the results of confirming the effects of the present invention by Examples 1 to 5 using the aluminum substrate 4 of 100 mm × 30 mm × 1 mm will be described.

実施例1.
脱脂工程S1において、ムラタ社製アルミニウム用中性脱脂剤MGC13−Bを用いて基材4を脱脂し、5分水洗した。化成工程S2においてムラタ社製塗装下地用化成処理剤MP−440を用いて5分化成処理を行い、5分水洗した。その後、電着工程S3において、塗料5として日本ペイント社製パワーニックスエクセル1200を用いて100Vで3分通電して電着樹脂膜3を形成し、日本アエロジル社製AEROSIL(登録商標、以下同じ)150を満たしたシリカ粒子槽8に沈め、引き上げた後、温度120℃で20分加熱し、コーティング膜を形成した。このとき用いたシリカ粒子2の一次凝集体の平均粒径は120nmであった。
Example 1.
In the degreasing step S1, the base material 4 was degreased using a neutral degreasing agent MGC13-B for aluminum manufactured by Murata and washed with water for 5 minutes. In the chemical conversion step S2, a 5-differential chemical conversion treatment was performed using a coating base chemical conversion agent MP-440 manufactured by Murata Co., Ltd., and washed with water for 5 minutes. Thereafter, in the electrodeposition step S3, the electrodeposition resin film 3 is formed by energization at 100V for 3 minutes using Nihon Paint Powernics Excel 1200 as the paint 5, and AEROSIL (registered trademark, the same applies hereinafter) manufactured by Nippon Aerosil Co., Ltd. After being submerged in the silica particle tank 8 filled with 150 and pulled up, it was heated at a temperature of 120 ° C. for 20 minutes to form a coating film. The average particle diameter of the primary aggregate of the silica particles 2 used at this time was 120 nm.

実施例2.
脱脂工程S1において、ムラタ社製アルミニウム用中性脱脂剤MGC13−Bを用いて基材4を脱脂し、5分水洗した。化成工程S2においてムラタ社製塗装下地用化成処理剤MP−440を用いて5分化成処理を行い、5分水洗した。その後、塗料5として日本ペイント社製パワーニックスエクセル1200を用いて100Vで3分通電して電着樹脂膜3を形成し、日本アエロジル社製AEROSIL150を満たしたシリカ粒子槽8に沈め、引き上げた後、温度85℃で20分加熱し、コーティング膜を形成した。このとき用いたシリカ粒子2の一次凝集体の平均粒径は120nmであった。
Example 2
In the degreasing step S1, the base material 4 was degreased using a neutral degreasing agent MGC13-B for aluminum manufactured by Murata and washed with water for 5 minutes. In the chemical conversion step S2, a 5-differential chemical conversion treatment was performed using a coating base chemical conversion agent MP-440 manufactured by Murata Co., Ltd., and washed with water for 5 minutes. After that, the electrodeposition resin film 3 is formed by energizing at 100 V for 3 minutes using Nihon Paint Co., Ltd. Powernics Excel 1200 as the paint 5, and after being submerged in the silica particle tank 8 filled with Nippon Aerosil Co., Ltd. And heated at 85 ° C. for 20 minutes to form a coating film. The average particle diameter of the primary aggregate of the silica particles 2 used at this time was 120 nm.

実施例3.
脱脂工程S1において、ムラタ社製アルミニウム用中性脱脂剤MGC13−Bを用いて基材4を脱脂し、5分水洗した。化成工程S2においてムラタ社製塗装下地用化成処理剤MP−440を用いて5分化成処理を行い、5分水洗した。その後、塗料5として日本ペイント社製パワーニックスエクセル1200を用いて100Vで3分通電して電着樹脂膜3を形成し、日本アエロジル社製AEROSIL150を満たしたシリカ粒子槽8に沈め、引き上げた後、195℃で20分加熱し、コーティング膜を形成した。このとき用いたシリカ粒子2の一次凝集体の平均粒径は120nmであった。
Example 3
In the degreasing step S1, the base material 4 was degreased using a neutral degreasing agent MGC13-B for aluminum manufactured by Murata and washed with water for 5 minutes. In the chemical conversion step S2, a 5-differential chemical conversion treatment was performed using a coating base chemical conversion agent MP-440 manufactured by Murata Co., Ltd., and washed with water for 5 minutes. After that, the electrodeposition resin film 3 is formed by energizing at 100 V for 3 minutes using Nihon Paint Co., Ltd. Powernics Excel 1200 as the paint 5, and after being submerged in the silica particle tank 8 filled with Nippon Aerosil Co., Ltd. The coating film was formed by heating at 195 ° C. for 20 minutes. The average particle diameter of the primary aggregate of the silica particles 2 used at this time was 120 nm.

実施例4.
脱脂工程S1において、ムラタ社製アルミニウム用中性脱脂剤MGC13−Bを用いて基材4を脱脂し、5分水洗した。化成工程S2においてムラタ社製塗装下地用化成処理剤MP−440を用いて5分化成処理を行い、5分水洗した。その後、塗料5として日本ペイント社製パワーニックスエクセル1200を用いて100Vで3分通電して電着樹脂膜3を形成し、日本アエロジル社製AEROSIL150を満たしたシリカ粒子槽8に沈め、引き上げた後、120℃において20分加熱し、コーティング膜を形成した。このとき用いたシリカ粒子2の一次凝集体の平均粒径は80nmであった。
Example 4
In the degreasing step S1, the base material 4 was degreased using a neutral degreasing agent MGC13-B for aluminum manufactured by Murata and washed with water for 5 minutes. In the chemical conversion step S2, a 5-differential chemical conversion treatment was performed using a coating base chemical conversion agent MP-440 manufactured by Murata Co., Ltd., and washed with water for 5 minutes. After that, the electrodeposition resin film 3 is formed by energizing at 100 V for 3 minutes using Nihon Paint Co., Ltd. Powernics Excel 1200 as the paint 5, and after being submerged in the silica particle tank 8 filled with Nippon Aerosil Co., Ltd. , And heated at 120 ° C. for 20 minutes to form a coating film. The average particle diameter of the primary aggregate of the silica particles 2 used at this time was 80 nm.

実施例5.
脱脂工程S1において、ムラタ社製アルミニウム用中性脱脂剤MGC13−Bを用いて基材4を脱脂し、5分水洗した。化成工程S2においてムラタ社製塗装下地用化成処理剤MP−440を用いて5分化成処理を行い、5分水洗した。その後、塗料5として日本ペイント社製パワーニックスエクセル1200を用いて100Vで3分通電して電着樹脂膜3を形成し、日本アエロジル社製AEROSIL150を満たしたシリカ粒子槽8に沈め、引き上げた後、120℃において20分加熱し、コーティング膜を形成した。このとき用いたシリカ粒子2の一次凝集体の平均粒径は2.2μmであった。
Example 5 FIG.
In the degreasing step S1, the base material 4 was degreased using a neutral degreasing agent MGC13-B for aluminum manufactured by Murata and washed with water for 5 minutes. In the chemical conversion step S2, a 5-differential chemical conversion treatment was performed using a coating base chemical conversion agent MP-440 manufactured by Murata Co., Ltd., and washed with water for 5 minutes. After that, the electrodeposition resin film 3 is formed by energizing at 100 V for 3 minutes using Nihon Paint Co., Ltd. Powernics Excel 1200 as the paint 5, and after being submerged in the silica particle tank 8 filled with Nippon Aerosil Co., Ltd. , And heated at 120 ° C. for 20 minutes to form a coating film. The average particle diameter of the primary aggregate of the silica particles 2 used at this time was 2.2 μm.

比較例1.
脱脂工程S1において、ムラタ社製アルミニウム用中性脱脂剤MGC13−Bを用いて基材4を脱脂し、5分水洗した。化成工程S2においてムラタ社製塗装下地用化成処理剤MP−440を用いて5分化成処理を行い、5分水洗した。その後、塗料5として日本ペイント社製パワーニックスエクセル1200を用い、これにコロイドシリカ粒子である日産化学社製スノーテックス(登録商標、以下同じ)OSを10重量%配合し、100Vで3分通電して電着樹脂膜3を形成し、温度120℃において20分加熱して、コーティング膜を形成した。すなわち、塗料5にシリカ粒子2ではなくコロイドシリカ粒子を混合させて電着工程S3を行った。
Comparative Example 1
In the degreasing step S1, the base material 4 was degreased using a neutral degreasing agent MGC13-B for aluminum manufactured by Murata and washed with water for 5 minutes. In the chemical conversion step S2, a 5-differential chemical conversion treatment was performed using a coating base chemical conversion agent MP-440 manufactured by Murata Co., Ltd., and washed with water for 5 minutes. After that, Nihon Paint Co., Ltd. Powernics Excel 1200 was used as the paint 5, and 10% by weight of a colloidal silica particle made by Nissan Chemical Co., Snowtex (registered trademark, hereinafter the same) OS was blended and energized at 100V for 3 minutes. The electrodeposited resin film 3 was formed and heated at 120 ° C. for 20 minutes to form a coating film. That is, the electrodeposition step S3 was performed by mixing the colloidal silica particles instead of the silica particles 2 in the paint 5.

比較例2.
脱脂工程S1において、ムラタ社製アルミニウム用中性脱脂剤MGC13−Bを用いて基材4を脱脂し、5分水洗した。化成工程S2においてムラタ社製塗装下地用化成処理剤MP−440を用いて5分化成処理を行い、5分水洗した。その後、塗料5として日本ペイント社製パワーニックスエクセル1200を用いて100Vで3分通電して電着樹脂膜3を形成し、日産化学社製スノーテックスOSの3重量%水溶液を満たしたシリカ溶液槽に浸漬させ引き上げた。シリカ溶液槽から引き上げた後、温度120℃において20分加熱し、コーティング膜を形成した。すなわち、固形ではなく溶液状のコロイドシリカを用いた。
Comparative Example 2
In the degreasing step S1, the base material 4 was degreased using a neutral degreasing agent MGC13-B for aluminum manufactured by Murata and washed with water for 5 minutes. In the chemical conversion step S2, a 5-differential chemical conversion treatment was performed using a coating base chemical conversion agent MP-440 manufactured by Murata Co., Ltd., and washed with water for 5 minutes. Thereafter, the electrodeposited resin film 3 is formed by applying current at 100 V for 3 minutes using Nihon Paint's Powernics Excel 1200 as the paint 5, and a silica solution tank filled with a 3% by weight aqueous solution of Snowtex OS manufactured by Nissan Chemical Co., Ltd. It was dipped in and pulled up. After pulling up from the silica solution tank, it was heated at 120 ° C. for 20 minutes to form a coating film. That is, colloidal silica in the form of solution instead of solid was used.

比較例3.
脱脂工程S1において、ムラタ社製アルミニウム用中性脱脂剤MGC13−Bを用いて基材4を脱脂し、5分水洗した。化成工程S2においてムラタ社製塗装下地用化成処理剤MP−440を用いて5分化成処理を行い、5分水洗した。その後、塗料5として日本ペイント社製パワーニックスエクセル1200を用いて100Vで3分通電して電着樹脂膜3を形成し、温度120℃において20分加熱し、コーティング膜を形成した。その後、コーティング膜が形成された基材4を日産化学社製スノーテックスOSの3重量%水溶液を満たしたシリカ溶液槽に浸漬させ、エアブロー乾燥した。
Comparative Example 3
In the degreasing step S1, the base material 4 was degreased using a neutral degreasing agent MGC13-B for aluminum manufactured by Murata and washed with water for 5 minutes. In the chemical conversion step S2, a 5-differential chemical conversion treatment was performed using a coating base chemical conversion agent MP-440 manufactured by Murata Co., Ltd., and washed with water for 5 minutes. Thereafter, the electrodeposition resin film 3 was formed by energizing at 100 V for 3 minutes using Nihon Paint Co., Ltd. Powernics Excel 1200 as the paint 5, and heated at 120 ° C. for 20 minutes to form a coating film. Thereafter, the substrate 4 on which the coating film was formed was immersed in a silica solution tank filled with a 3% by weight aqueous solution of Snowtex OS manufactured by Nissan Chemical Industries, and air blow dried.

比較例4.
脱脂工程S1において、ムラタ社製アルミニウム用中性脱脂剤MGC13−Bを用いて基材4を脱脂し、5分水洗した。化成工程S2においてムラタ社製塗装下地用化成処理剤MP−440を用いて5分化成処理を行い、5分水洗した。その後、塗料5として日本ペイント社製パワーニックスエクセル1200を用いて100Vで3分通電して電着樹脂膜3を形成し、温度120℃において20分加熱し、コーティング膜を形成した。すなわち、シリカ粒子及びコロイドシリカ粒子のいずれも使用しなかった。
Comparative Example 4
In the degreasing step S1, the base material 4 was degreased using a neutral degreasing agent MGC13-B for aluminum manufactured by Murata and washed with water for 5 minutes. In the chemical conversion step S2, a 5-differential chemical conversion treatment was performed using a coating base chemical conversion agent MP-440 manufactured by Murata Co., Ltd., and washed with water for 5 minutes. Thereafter, the electrodeposition resin film 3 was formed by energizing at 100 V for 3 minutes using Nihon Paint Co., Ltd. Powernics Excel 1200 as the paint 5, and heated at 120 ° C. for 20 minutes to form a coating film. That is, neither silica particles nor colloidal silica particles were used.

実施例1〜5及び比較例1〜4の膜形成方法により得られたコーティング膜(硬化樹脂膜31及びシリカ粒子層1、又は硬化樹脂膜31)について、イオン交換水を用いた初期接触角、耐水性、防食性、密着性試験を評価した。   For the coating films (cured resin film 31 and silica particle layer 1 or cured resin film 31) obtained by the film forming methods of Examples 1 to 5 and Comparative Examples 1 to 4, the initial contact angle using ion-exchanged water, Water resistance, corrosion resistance, and adhesion tests were evaluated.

初期接触角は、実施例1〜5及び比較例1〜4により得られたサンプルを室温(25℃)にて1時間放置し、接触角計(共和界面科学製CX−150型)を用いて測定し、表1中の基準に従って評価した。PTFE(ポリテトラフルオロエチレン)がコートされた内径0.1mmの針の先端から、約5μLの水滴をコーティング膜の表面に滴下し、その接触角が小さい程、コーティング膜の親水性が高い。この評価の結果を表1に示す。   For the initial contact angle, the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 were allowed to stand at room temperature (25 ° C.) for 1 hour, and a contact angle meter (CX-150, manufactured by Kyowa Interface Science) was used. Measured and evaluated according to the criteria in Table 1. From the tip of a needle having an inner diameter of 0.1 mm coated with PTFE (polytetrafluoroethylene), about 5 μL of water droplets are dropped onto the surface of the coating film, and the smaller the contact angle, the higher the hydrophilicity of the coating film. The results of this evaluation are shown in Table 1.

耐水性は、実施例1〜5及び比較例1〜4により得られたサンプルをイオン交換水中に浸漬させ、室温(25℃)にて200時間放置した後、取り出して1時間放置して接触角計(共和界面科学製CX−150型)を用いて測定し、表1中の基準に従って評価した。PTFE(ポリテトラフルオロエチレン)コートされた内径0.1mmの針の先端から約5μLの水滴をコーティング膜の表面に滴下し、その接触角が小さい程、コーティング膜の耐水性が高い。この評価の結果を表1に示す。   For water resistance, the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 were immersed in ion-exchanged water, left at room temperature (25 ° C.) for 200 hours, then taken out and left to stand for 1 hour. It measured using the meter (CX-150 type made from Kyowa Interface Science), and evaluated according to the reference | standard in Table 1. About 5 μL of water droplets are dropped on the surface of the coating film from the tip of a PTFE (polytetrafluoroethylene) -coated needle having an inner diameter of 0.1 mm. The smaller the contact angle, the higher the water resistance of the coating film. The results of this evaluation are shown in Table 1.

防食性は、塩害腐食を再現するとともに、評価期間を短縮する加速試験として人工海水複合サイクル試験を実施した。実施例1〜5及び比較例1〜4により得られたサンプルに対して乾湿サイクル、温度サイクル及び腐食液噴霧を組み合わせた腐食試験により人工海水複合サイクル試験を1920時間実施し、サンプルのコーティング膜の状態を顕微鏡観察して、表1中の基準によって評価した。コーティング膜の残留面積が大きい程、コーティング膜の防食性が高い。この評価の結果を表1に示す。   As for the anticorrosive property, an artificial seawater combined cycle test was conducted as an accelerated test to reproduce the salt damage corrosion and shorten the evaluation period. An artificial seawater combined cycle test was conducted for 1920 hours on the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4 by a corrosion test combining a wet and dry cycle, a temperature cycle, and a spray of a corrosive liquid. The state was observed with a microscope and evaluated according to the criteria in Table 1. The larger the residual area of the coating film, the higher the corrosion resistance of the coating film. The results of this evaluation are shown in Table 1.

密着性は、実施例1〜5及び比較例1〜4により得られたサンプルに対して、摩耗試験機クロックメータ(安田機械社製)を用いて表面を加重90gf/cmで20回往復させる摩耗試験を行い、表1中の基準によって評価した。摩耗試験後のコーティング膜の剥離状態は電子顕微鏡を用いて観察し、コーティング膜の残留状態を画像処理して残留面積を測定した。コーティング膜の残留面積が大きい程、基材4とコーティング膜との密着性が高い。この評価の結果を表1に示す。The adhesion is made to reciprocate 20 times with a load of 90 gf / cm 2 using a wear tester clock meter (manufactured by Yasuda Kikai Co., Ltd.) with respect to the samples obtained in Examples 1 to 5 and Comparative Examples 1 to 4. A wear test was performed and evaluated according to the criteria in Table 1. The peeled state of the coating film after the abrasion test was observed using an electron microscope, and the remaining state of the coating film was image-processed to measure the remaining area. The larger the residual area of the coating film, the higher the adhesion between the substrate 4 and the coating film. The results of this evaluation are shown in Table 1.

Figure 0006611110
Figure 0006611110

表1に示すように、実施例1〜5、特に実施例1の条件により形成されたコーティング膜は、硬化樹脂膜31及びシリカ粒子層1で形成され、初期接触角が良好であるとともに、防食性も高く、基材4との高い密着性を維持することができた。   As shown in Table 1, the coating films formed under the conditions of Examples 1 to 5, particularly Example 1, are formed of the cured resin film 31 and the silica particle layer 1 and have a good initial contact angle and anticorrosion. The adhesiveness was also high, and high adhesion with the substrate 4 could be maintained.

一方、比較例1においては、電着工程S3における塗料5には形成されたコーティング膜の表面にコロイドシリカ粒子が析出されない。比較例2においても、コロイドシリカ粒子がコーティング膜の内部に入り込むため、コーティング膜の表面に析出されない。そのため、いずれも初期接触角の効果を得にくい。
比較例3においては、表面にコロイドシリカ粒子を付着させているため、初期接触角は良いものの、次第にコーティング膜の表面から剥離するため耐水性が得られない。
比較例4のコーティング膜にはシリカ粒子2及びコロイドシリカ粒子のいずれも含有しないため、コーティング膜による基材4の防食性は得られるものの、初期接触角及び耐水性による防汚性の評価は好ましくなかった。
On the other hand, in Comparative Example 1, colloidal silica particles are not deposited on the surface of the coating film formed on the coating material 5 in the electrodeposition step S3. Also in Comparative Example 2, since the colloidal silica particles enter the inside of the coating film, they are not deposited on the surface of the coating film. Therefore, it is difficult to obtain the effect of the initial contact angle in any case.
In Comparative Example 3, since the colloidal silica particles are adhered to the surface, the initial contact angle is good, but since it gradually peels off from the surface of the coating film, water resistance cannot be obtained.
Since neither the silica particles 2 nor the colloidal silica particles are contained in the coating film of Comparative Example 4, the anticorrosion property of the substrate 4 by the coating film can be obtained, but the evaluation of the antifouling property by the initial contact angle and water resistance is preferable. There wasn't.

このように、実施例1〜5による本発明の硬化樹脂膜31及びシリカ粒子層1によるコーティング膜を形成したサンプルは、防食性及び防汚性に優れることがわかる。   Thus, it turns out that the sample which formed the coating film by the cured resin film 31 of this invention by Examples 1-5 and the silica particle layer 1 is excellent in corrosion resistance and antifouling property.

なお、本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。   Note that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be modified or omitted as appropriate.

1 シリカ粒子層、2 シリカ粒子、3 電着樹脂膜、4 基材、5 塗料、
6 塗料槽、7 金属板、8 シリカ粒子槽、9 解砕機、10 埋込部、
11 露出部、20 機械室、21 圧縮機、22 電気品箱、23 送風機室、
24 熱交換器、25 ファン、26 ファンモータ、27 ファンモータ支持板、
28 上部板、29 支持板接続部、31 硬化樹脂膜、32 親水基、50 筐体、
60 フィン、61 銅管、100 室外機。
1 silica particle layer, 2 silica particles, 3 electrodeposition resin film, 4 base material, 5 paint,
6 paint tank, 7 metal plate, 8 silica particle tank, 9 crusher, 10 embedding part,
DESCRIPTION OF SYMBOLS 11 Exposed part, 20 Machine room, 21 Compressor, 22 Electrical component box, 23 Blower room,
24 heat exchanger, 25 fan, 26 fan motor, 27 fan motor support plate,
28 upper plate, 29 support plate connection part, 31 cured resin film, 32 hydrophilic group, 50 housing,
60 fins, 61 copper pipes, 100 outdoor units.

Claims (2)

電極及び前記電極に接続された金属基材を塗料に浸漬し、電圧を印加して前記金属基材に電着樹脂膜を形成する電着工程と、
前記電着樹脂膜の表面に水又は水溶液を付着させ親水性を付与する親水性付与工程と、
親水性を付与した前記電着樹脂膜にシリカ粒子を付着させるシリカ粒子付着工程と、
前記シリカ粒子の少なくとも一部を前記電着樹脂膜の表層に埋め込み、埋め込まれた前記シリカ粒子と結合させ前記電着樹脂膜の表層外に前記シリカ粒子を露出させながら前記電着樹脂膜を硬化させて硬化樹脂膜を形成するとともに、前記硬化樹脂膜の表層にシリカ粒子層を形成するシリカ粒子層形成工程と、
を備えた膜形成方法。
An electrodeposition step of immersing an electrode and a metal substrate connected to the electrode in a paint, and applying a voltage to form an electrodeposition resin film on the metal substrate;
A hydrophilicity imparting step of attaching water or an aqueous solution to the surface of the electrodeposition resin film to impart hydrophilicity;
A silica particle attaching step of attaching silica particles to the electrodeposited resin film imparted with hydrophilicity;
At least a part of the silica particles is embedded in the surface layer of the electrodeposited resin film, and bonded to the embedded silica particles to cure the electrodeposited resin film while exposing the silica particles outside the surface layer of the electrodeposited resin film. Forming a cured resin film, and forming a silica particle layer on a surface layer of the cured resin film; and
A film forming method comprising:
シリカ粒子付着工程において用いるシリカ粒子の一次粒子が凝集した一次凝集体の平均粒径は、80nm以上2.5μm以下であることを特徴とする請求項1に記載の膜形成方法。   2. The film forming method according to claim 1, wherein an average particle size of primary aggregates obtained by aggregating primary particles of silica particles used in the silica particle adhesion step is 80 nm or more and 2.5 μm or less.
JP2019530852A 2019-01-15 2019-01-15 Film formation method Active JP6611110B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000939 WO2020148807A1 (en) 2019-01-15 2019-01-15 Film formation method, metallic component having film formed thereon, and compressor unit for air handling unit

Publications (2)

Publication Number Publication Date
JP6611110B1 true JP6611110B1 (en) 2019-11-27
JPWO2020148807A1 JPWO2020148807A1 (en) 2021-02-18

Family

ID=68692008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019530852A Active JP6611110B1 (en) 2019-01-15 2019-01-15 Film formation method

Country Status (2)

Country Link
JP (1) JP6611110B1 (en)
WO (1) WO2020148807A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115679400A (en) * 2022-10-09 2023-02-03 广东微容电子科技有限公司 Treatment method before electroplating of ultra-micro and high-capacity MLCC
WO2023195085A1 (en) * 2022-04-06 2023-10-12 三菱電機株式会社 Heat exchanger and air heating and cooling device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134437A (en) * 1994-11-15 1996-05-28 Sekisui Chem Co Ltd Water-repellent film
WO1997045502A1 (en) * 1996-05-31 1997-12-04 Toto Ltd. Antifouling member and antifouling coating composition
JP2005036287A (en) * 2003-07-16 2005-02-10 Shinto Paint Co Ltd Method for forming coating film having excellent durability, and metallic product with the coating film formed on the surface
JP2011202035A (en) * 2010-03-25 2011-10-13 Kuraray Co Ltd Deodorizing function layer, multilayer structural body, interior finishing material and method of manufacturing multilayer structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134437A (en) * 1994-11-15 1996-05-28 Sekisui Chem Co Ltd Water-repellent film
WO1997045502A1 (en) * 1996-05-31 1997-12-04 Toto Ltd. Antifouling member and antifouling coating composition
JP2005036287A (en) * 2003-07-16 2005-02-10 Shinto Paint Co Ltd Method for forming coating film having excellent durability, and metallic product with the coating film formed on the surface
JP2011202035A (en) * 2010-03-25 2011-10-13 Kuraray Co Ltd Deodorizing function layer, multilayer structural body, interior finishing material and method of manufacturing multilayer structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023195085A1 (en) * 2022-04-06 2023-10-12 三菱電機株式会社 Heat exchanger and air heating and cooling device
CN115679400A (en) * 2022-10-09 2023-02-03 广东微容电子科技有限公司 Treatment method before electroplating of ultra-micro and high-capacity MLCC
CN115679400B (en) * 2022-10-09 2023-11-07 广东微容电子科技有限公司 Processing method before plating of ultra-miniature and high-capacity MLCC

Also Published As

Publication number Publication date
WO2020148807A1 (en) 2020-07-23
JPWO2020148807A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
AU2009315778B2 (en) Method for coating surfaces with particles and use of the coatings produced by this method
ES2939587T3 (en) Procedure for coating metal surfaces of substrates and objects coated according to this procedure
JP6611110B1 (en) Film formation method
JP5160981B2 (en) Aluminum alloy material with excellent corrosion resistance and plate heat exchanger
BR112014019467B1 (en) PROCESS FOR COATING METALLIC SURFACES OF SUBSTRATES AND COATED OBJECTS ACCORDING TO THIS PROCESS
JP5172526B2 (en) Rust-proof metal parts and coat paint
CN105723014A (en) Method for coating metal surfaces of substrates, and objects coated according to said method
CN105838193B (en) A kind of water-base epoxy priming paint
JP2015533921A (en) Method for improving paint curability of articles coated with phosphate-contaminated electrodeposition paint composition and electrodeposition paint composition
JP6406842B2 (en) Electrodeposition coating composition and electrodeposition coating method
JP2009179859A (en) Method for forming multilayer coating film
JP5750013B2 (en) Electrodeposition coating composition and method for forming an electrocoating film on an object to be coated
JP5564691B2 (en) Electrically conductive water-based paint and method for cathodic protection of reinforced concrete structures using the paint
JPS6157349B2 (en)
JP4527944B2 (en) Lead-free cationic electrodeposition coating composition
CN109183131B (en) SiO (silicon dioxide)2Preparation method of base composite super-hydrophobic metal surface
JP5996338B2 (en) Electrodeposition coating composition
JP5806016B2 (en) Powder coating and powder coating method
JP2010042617A (en) Aluminum coating material excellent in water repellency and dust adhesion resistance
JPH0759679B2 (en) Cathode electrodeposition coating composition
WO2017061531A1 (en) Hydrophilization agent and hydrophilization method
JP2005023411A (en) Surface treated aluminum material, and aluminum formed body
JP2008214705A (en) Cation electrodeposition coating method
WO2024081323A1 (en) Waterborne top coatings for aluminum heat exchangers
JPH0337120B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190607

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190607

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6611110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250