JP6607367B2 - Polyarylene sulfide film and method for producing the same - Google Patents
Polyarylene sulfide film and method for producing the same Download PDFInfo
- Publication number
- JP6607367B2 JP6607367B2 JP2014243966A JP2014243966A JP6607367B2 JP 6607367 B2 JP6607367 B2 JP 6607367B2 JP 2014243966 A JP2014243966 A JP 2014243966A JP 2014243966 A JP2014243966 A JP 2014243966A JP 6607367 B2 JP6607367 B2 JP 6607367B2
- Authority
- JP
- Japan
- Prior art keywords
- polyarylene sulfide
- acid
- group
- film
- sulfide resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 0 CCNC(C)(*)* Chemical compound CCNC(C)(*)* 0.000 description 3
Images
Landscapes
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
本発明は、ポリアリーレンスルフィドフィルム及びその製造方法に関する。 The present invention relates to a polyarylene sulfide film and a method for producing the same.
近年、電気電子部品分野をはじめさまざまな分野で、環境に対する取り組みとして低ハロゲン化への動きが活発化している。 In recent years, in various fields including the electrical and electronic parts field, there has been an active movement toward low halogen as an environmental measure.
ポリフェニレンスルフィド樹脂(以下「PPS樹脂」と略すことがある。)に代表されるポリアリーレンスルフィド樹脂(以下「PAS樹脂」と略すことがある。)は、耐熱性、耐薬品性、電気絶縁性等に優れる。 A polyarylene sulfide resin (hereinafter sometimes abbreviated as “PAS resin”) represented by a polyphenylene sulfide resin (hereinafter sometimes abbreviated as “PPS resin”) has heat resistance, chemical resistance, electrical insulation, etc. Excellent.
上記のようなPAS樹脂の優れた特性に着目し、各種用途展開が試みられている。 Paying attention to the excellent characteristics of the PAS resin as described above, various application developments have been attempted.
従来、ポリフェニレンスルフィド樹脂は、例えば、p−ジクロロベンゼンと、硫化ナトリウム、又は水硫化ナトリウム及び水酸化ナトリウムとを原料として、有機極性溶媒中で重合反応させる溶液重合により製造されている(例えば、特許文献1、2参照。)。現在市販されているポリフェニレンスルフィド樹脂は、一般にこの方法により生産されている。
Conventionally, a polyphenylene sulfide resin is produced by solution polymerization in which, for example, p-dichlorobenzene and sodium sulfide, or sodium hydrosulfide and sodium hydroxide are used as raw materials in a polymerization reaction in an organic polar solvent (for example, patents).
しかし、この方法では高分子量体を得ることが難しい。フィルム等へ成形することを考えると、低分子量分が多く、加工性が充分でない場合がある。これを改善する方法として、一般的には、エラストマー成分等の添加又は併用が行われている。(例えば、特許文献3)。また、ポリフェニレンスルフィド樹脂は結晶化度の高いポリマーであるために、重合条件を調整して高分子量体を得た場合であっても、加工性向上のため可塑剤等の添加が求められる。 However, it is difficult to obtain a high molecular weight body by this method. Considering forming into a film or the like, there are cases where the amount of low molecular weight is large and the processability is not sufficient. As a method for improving this, generally, an elastomer component or the like is added or used in combination. (For example, patent document 3). In addition, since the polyphenylene sulfide resin is a polymer having a high degree of crystallinity, addition of a plasticizer or the like is required to improve processability even when the polymerization conditions are adjusted to obtain a high molecular weight product.
また、特許文献4には、成形加工性や歩留まりの改善を目的として、環状ポリフェニレンスルフィドを所定量添加する方法が開示されている。特許文献5には、耐熱性、成型性、金型汚れの発生を抑制した複合材料として、ポリアリーレンスルフィド樹脂と粒子のみからなる二軸配向ポリアリーレンスルフィドフィルムが開示されている。 Patent Document 4 discloses a method of adding a predetermined amount of cyclic polyphenylene sulfide for the purpose of improving moldability and yield. Patent Document 5 discloses a biaxially oriented polyarylene sulfide film composed only of a polyarylene sulfide resin and particles as a composite material that suppresses heat resistance, moldability, and mold contamination.
一方で電気電子部品業界において環境保護の観点から、ハロゲン規制の動きが急速に拡大し、材料中のハロゲンに対して規制(900ppm以下)が適用される状況になっている。これを改善する方法として、ハロゲンの含有量を低減させたPASを得る方法として、例えば、環状アリーレンスルフィドオリゴマーを開環重合触媒存在下、加熱開環重合する方法などが開示されている(例えば、特許文献6、7参照。)。 On the other hand, in the electric and electronic parts industry, from the viewpoint of environmental protection, the movement of halogen regulation is rapidly expanding, and the regulation (900 ppm or less) is applied to the halogen in the material. As a method for improving this, as a method for obtaining a PAS with a reduced halogen content, for example, a method in which a cyclic arylene sulfide oligomer is heated and subjected to ring-opening polymerization in the presence of a ring-opening polymerization catalyst is disclosed (for example, (See Patent Documents 6 and 7.)
しかしながら、上記のような方法では、耐熱性等のポリアリーレンスルフィド樹脂本来の特性を維持しつつ加工性もよいポリアリーレンスルフィドフィルムを製造することが困難な場合がある。
また、特許文献6に記載された方法では、環状アリーレンスルフィドオリゴマーの選択的合成が困難であるという問題があり、特許文献7に記載された方法では、幾分かハロゲンを低減させることは可能だが、主に樹脂が主成分となるフィルムでは、前記ハロゲン含有量の規制値(900ppm以下)を満たすことは困難であった。
However, in the above method, it may be difficult to produce a polyarylene sulfide film having good processability while maintaining the original characteristics of the polyarylene sulfide resin such as heat resistance.
Further, the method described in Patent Document 6 has a problem that it is difficult to selectively synthesize cyclic arylene sulfide oligomers, and the method described in Patent Document 7 can somewhat reduce halogen. In a film mainly composed of a resin, it is difficult to satisfy the halogen content regulation value (900 ppm or less).
そこで、本発明が解決しようとする主な課題は、ハロゲン量が少なく、ポリアリーレンスルフィド樹脂本来の特性を維持しつつ、容易に加工でき、製膜時のフィルム破れの発生を十分抑制して製造できるポリアリーレンスルフィド樹脂又はこれを含有する組成物からなるポリアリーレンスルフィドフィルム、及びその製造方法を提供することにある。 Therefore, the main problem to be solved by the present invention is that the amount of halogen is small, it can be easily processed while maintaining the original characteristics of the polyarylene sulfide resin, and the production of the film is sufficiently suppressed during film formation. Another object of the present invention is to provide a polyarylene sulfide resin comprising a polyarylene sulfide resin or a composition containing the same, and a method for producing the same.
本発明者らは種々の検討を行った結果、ポリ(アリーレンスルホニウム塩)と脂肪族アミド化合物とを反応させることで得られるポリアリーレンスルフィド樹脂又はこれを含む組成物からなるポリアリーレンスルフィドフィルムであり、該ポリアリーレンスルフィド樹脂の合成法を従来とは異なる反応経路から合成することにより、上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of various studies, the present inventors have found that a polyarylene sulfide film comprising a polyarylene sulfide resin obtained by reacting poly (arylenesulfonium salt) and an aliphatic amide compound or a composition containing the same is a polyarylene sulfide film. The inventors have found that the above-mentioned problems can be solved by synthesizing the polyarylene sulfide resin from a reaction route different from the conventional one, and have completed the present invention.
すなわち、本発明は、下記一般式(1)で表される構成単位を有するポリ(アリーレンスルホニウム塩)と、脂肪族アミド化合物とを反応させ、下記一般式(2)で表される構成単位を有するポリアリーレンスルフィド樹脂を得る工程を含む方法により得ることのできるものであり、かつ、FT−IR分光法で測定される赤外吸収スペクトルにおいて、2910cm−1〜2930cm−1の範囲に吸収ピークを有するものであることを特徴とする、ポリアリーレンスルフィドフィルムを提供する。 That is, the present invention comprises reacting a poly (arylenesulfonium salt) having a structural unit represented by the following general formula (1) with an aliphatic amide compound to obtain a structural unit represented by the following general formula (2). with are those which can be obtained by a process comprising the step of obtaining a polyarylene sulfide resin, and, in the infrared absorption spectrum measured by FT-IR spectroscopy, the absorption peak in the range of 2910cm -1 ~2930cm -1 A polyarylene sulfide film is provided.
(式中、R1は、直接結合、−Ar2−、−Ar2−S−又は−Ar2−O−を表し、Ar1及びAr2は、官能基を置換基として有してもよいアリーレン基を表し、R2は、炭素原子数1〜10のアルキル基又は炭素原子数1〜10のアルキル基を有していてもよいアリール基を表し、X−は、アニオンを表す。) (In the formula, R 1 represents a direct bond, -Ar 2 -, - Ar 2 -S- or -Ar 2 -O- to represent, Ar 1 and Ar 2 may have a functional group as a substituent Represents an arylene group, R 2 represents an aryl group which may have an alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms, and X − represents an anion.)
(式中、R1は、直接結合、−Ar2−、−Ar2−S−又は−Ar2−O−を表し、Ar1及びAr2は、官能基を置換基として有してもよいアリーレン基を表す。) (In the formula, R 1 represents a direct bond, -Ar 2 -, - Ar 2 -S- or -Ar 2 -O- to represent, Ar 1 and Ar 2 may have a functional group as a substituent Represents an arylene group.)
本発明によれば、ポリアリーレンスルフィド樹脂本来の特性を維持しつつ、容易に加工でき、製膜時のフィルム破れの発生を十分抑制して製造できるポリアリーレンスルフィド樹脂又はこれを含有する組成物からなるポリアリーレンスルフィドフィルム、及びその製造方法を提供することができる。
また、樹脂中のハロゲン量を顕著に抑制でき、近年の環境負荷低減の要請にも応えることができる。さらに、本願で用いられる樹脂は良好な加工性も兼備している。
また、従来の重合法では、加熱により発生するガスの量が比較的多い。特に、成形加工時には、ガスの発生の問題が顕著となる傾向がある。しかしながら、本発明に係るポリアリーレンスルフィド樹脂は、加熱時のガス発生量が低く抑制されるために、ガス発生に起因するフィルムの品質低下を充分に抑制することができる。
さらに、上記発生ガスの量だけでなく、質に関しても本発明は優れている。本発明によれば、ポリアリーレンスルフィドの主鎖の末端がMeで封鎖されているため、従来の重合法のように末端がSH等になることはない。このため、重合のメカニズム上、チオフェノールやクロロ化合物等が発生せず、作業環境の改善につながる。
さらに、ポリアリーレンスルフィドの主鎖の末端がMeであることにより、従来の重合法のようなSHである場合に比べて分極率が低いため、洗浄工程時にガス発生の要因となる成分が除去されやすい。このため、新たな設備導入などのコスト低減に寄与することができる。
According to the present invention, from the polyarylene sulfide resin that can be easily processed while maintaining the original characteristics of the polyarylene sulfide resin and can be produced with sufficiently suppressed occurrence of film breakage during film formation, or a composition containing the same. The polyarylene sulfide film and the manufacturing method thereof can be provided.
In addition, the amount of halogen in the resin can be remarkably suppressed, and it is possible to meet the recent demand for reducing the environmental load. Furthermore, the resin used in the present application also has good processability.
In the conventional polymerization method, the amount of gas generated by heating is relatively large. In particular, the problem of gas generation tends to become prominent during molding. However, since the polyarylene sulfide resin according to the present invention suppresses the amount of gas generated during heating to a low level, it can sufficiently suppress deterioration in film quality caused by gas generation.
Furthermore, the present invention is excellent not only in the amount of the generated gas but also in quality. According to the present invention, since the terminal of the main chain of polyarylene sulfide is blocked with Me, the terminal does not become SH or the like unlike the conventional polymerization method. For this reason, thiophenol, a chloro compound, etc. do not generate | occur | produce on the mechanism of superposition | polymerization, but it leads to the improvement of a working environment.
Furthermore, since the end of the main chain of the polyarylene sulfide is Me, the polarizability is lower than in the case of SH as in the conventional polymerization method, so that components that cause gas generation are removed during the washing process. Cheap. For this reason, it can contribute to cost reduction, such as introduction of new facilities.
以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
本実施形態に係るポリアリーレンスルフィドフィルムは、ポリアリーレンスルフィド樹脂又はこれを含む組成物からなるフィルムである。 The polyarylene sulfide film according to this embodiment is a film made of a polyarylene sulfide resin or a composition containing the same.
本実施形態に用いられるポリアリーレンスルフィド樹脂は、ポリ(アリーレンスルホニウム塩)と脂肪族アミド化合物とを反応させることを含む方法により得ることができる。このような方法によれば、フィリップス法をはじめとする従来法に比べ、比較的高分子量の重合体としてポリアリーレンスルフィド樹脂を得ることができる。 The polyarylene sulfide resin used in the present embodiment can be obtained by a method including reacting poly (arylenesulfonium salt) with an aliphatic amide compound. According to such a method, a polyarylene sulfide resin can be obtained as a polymer having a relatively high molecular weight as compared with conventional methods such as the Philips method.
本実施形態に用いられる脂肪族アミド化合物は、例えば、下記一般式(10)で表される化合物で表される。 The aliphatic amide compound used in the present embodiment is represented by a compound represented by the following general formula (10), for example.
一般式(10)中、R11、R12及びR13は、それぞれ独立に、水素原子又は炭素原子数1〜10のアルキル基を表し、R11とR13は結合して環状構造を形成していてもよい。炭素原子数1〜10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等が挙げられる。 In General Formula (10), R 11 , R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R 11 and R 13 are bonded to form a cyclic structure. It may be. Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and the like.
一般式(10)で表される化合物は、例えば、下記反応式で表されるようにして、いわゆる脱アルキル化剤又は脱アリール化剤として機能すると考えられる。すなわち、前記化合物は、スルホニウム塩の硫黄原子と結合するアルキル基又アリール基を脱アルキル化又は脱アリール化してスルフィド化するように機能し得る。 The compound represented by the general formula (10) is considered to function as a so-called dealkylating agent or dearylating agent, for example, as represented by the following reaction formula. That is, the compound can function to desulfide or dearylate an alkyl group or aryl group bonded to a sulfur atom of a sulfonium salt.
脂肪族アミド化合物は、芳香族アミド化合物に比べ水への混和性が高く、かつポリアリーレンスルフィド樹脂との相溶性が低いため、反応混合物の水洗によって容易に除去可能である。このため、ポリアリーレンスルフィド樹脂中の脱アルキル化剤又は脱アリール化剤の残存量を低減することができる。その結果、樹脂加工する際などのガス発生を抑制し、ポリアリーレンスルフィド樹脂成形品の品質向上や作業環境の改善、さらには金型のメンテナンス性を向上させることができる。また、脂肪族アミド化合物は、比較的低い分子量の有機化合物の溶解性にも優れることから、当該脂肪族アミド化合物の使用は、反応混合物からポリアリーレンスルフィドのオリゴマー成分を容易に除去することも可能にする。その結果、ガス発生の一因にもなり得る当該オリゴマー成分を当該脂肪族アミド化合物により除去することで、得られるポリアリーレンスルフィド樹脂の品質を相乗的に向上させ得ることができる。 The aliphatic amide compound is more miscible with water than the aromatic amide compound and has a low compatibility with the polyarylene sulfide resin, and therefore can be easily removed by washing the reaction mixture with water. For this reason, the residual amount of the dealkylating agent or dearylating agent in the polyarylene sulfide resin can be reduced. As a result, it is possible to suppress gas generation during resin processing, improve the quality of the polyarylene sulfide resin molded product, improve the work environment, and improve the maintainability of the mold. In addition, since aliphatic amide compounds are excellent in solubility of organic compounds having a relatively low molecular weight, the use of the aliphatic amide compounds can easily remove the oligomer component of polyarylene sulfide from the reaction mixture. To. As a result, it is possible to synergistically improve the quality of the polyarylene sulfide resin obtained by removing the oligomer component that may contribute to gas generation with the aliphatic amide compound.
このような脂肪族アミド化合物としては、例えば、ホルムアミド等の1級アミド化合物、β−ラクタム等の2級アミド化合物、N−メチル−2−ピロリドン、2−ピロリドン、ε−カプロラクタム、N−メチル−ε−カプロラクタム、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド等の3級アミド化合物等の前記一般式(10)で表される化合物のほか、テトラメチル尿素、1,3−ジメチル−2−イミダゾリジノン酸等の尿素系化合物を用いることができる。脂肪族アミド化合物は、ポリ(アリーレンスルホニウム塩)の溶解性及び水への溶解性の観点から、R12及びR13が脂肪族基である脂肪族3級アミド化合物を含むことが好ましく、中でもN−メチル−2−ピロリドンが特に好ましい。 Examples of such aliphatic amide compounds include primary amide compounds such as formamide, secondary amide compounds such as β-lactam, N-methyl-2-pyrrolidone, 2-pyrrolidone, ε-caprolactam, N-methyl- In addition to the compounds represented by the general formula (10) such as tertiary amide compounds such as ε-caprolactam, dimethylformamide, diethylformamide, dimethylacetamide, etc., tetramethylurea, 1,3-dimethyl-2-imidazolidinone acid Urea compounds such as these can be used. The aliphatic amide compound preferably includes an aliphatic tertiary amide compound in which R 12 and R 13 are aliphatic groups from the viewpoint of the solubility of poly (arylenesulfonium salt) and the solubility in water. -Methyl-2-pyrrolidone is particularly preferred.
脂肪族アミド化合物は、脱アルキル化剤又は脱アリール化剤として機能するほか、ポリ(アリーレンスルホニウム塩)に対する溶解性に優れることから反応溶媒として用いることもできる。よって、脂肪族アミド化合物の使用量は、特に制限されるものではないが、ポリ(アリーレンスルホニウム塩)の総量に対し、下限が1.00当量以上の範囲であることが好ましく、1.02当量以上の範囲であることがより好ましく、1.05当量以上の範囲であることがさらに好ましい。脂肪族アミド化合物の使用量が、1.00当量以上であれば、ポリ(アリーレンスルホニウム塩)の脱アルキル化又は脱アリール化を充分に行うことができる。一方、上限は100当量以下であることが好ましく、10当量以下であることがより好ましい。反応溶媒として脂肪族アミド化合物のみを用いてもよいし、これとトルエン等の他の溶媒を併用してもよい。 In addition to functioning as a dealkylating agent or dearylating agent, the aliphatic amide compound can also be used as a reaction solvent because of its excellent solubility in poly (arylenesulfonium salts). Therefore, the amount of the aliphatic amide compound used is not particularly limited, but the lower limit is preferably in the range of 1.00 equivalents or more with respect to the total amount of poly (arylenesulfonium salt), and 1.02 equivalents. The above range is more preferable, and the range of 1.05 equivalents or more is more preferable. If the amount of the aliphatic amide compound used is 1.00 equivalent or more, the poly (arylenesulfonium salt) can be sufficiently dealkylated or dearylated. On the other hand, the upper limit is preferably 100 equivalents or less, and more preferably 10 equivalents or less. Only an aliphatic amide compound may be used as the reaction solvent, or another solvent such as toluene may be used in combination.
本実施形態に用いられるポリ(アリーレンスルホニウム塩)は、下記一般式(1)で表される構成単位を有する。 The poly (arylenesulfonium salt) used in the present embodiment has a structural unit represented by the following general formula (1).
一般式(1)中、R1は、直接結合、−Ar2−、−Ar2−S−又は−Ar2−O−を表し、Ar1及びAr2は、官能基を置換基として有してもよいアリーレン基を表し、R2は、炭素原子数1〜10のアルキル基又は炭素原子数1〜10のアルキル基を置換基として有していてもよいアリール基を表し、X−は、アニオンを表す。 Formula (1), R 1 represents a direct bond, -Ar 2 -, - Ar 2 -S- or -Ar 2 -O- to represent, Ar 1 and Ar 2 has a functional group as a substituent R 2 represents an aryl group optionally having an alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms as a substituent, and X − is Represents an anion.
ここで、X−としては、例えば、スルホネート、カルボキシレート、ハロゲンイオン等のアニオンが挙げられる。Ar1及びAr2は、例えば、フェニレン、ナフチレン、ビフェニレン等のアリーレン基であってもよい。Ar1及びAr2は、同一であっても異なってもよいが、好ましくは、同一である。 Here, examples of X − include anions such as sulfonate, carboxylate, and halogen ions. Ar 1 and Ar 2 may be, for example, an arylene group such as phenylene, naphthylene, and biphenylene. Ar 1 and Ar 2 may be the same or different, but are preferably the same.
Ar1及びAr2の結合の態様は特に制限されるものではないが、アリーレン基中、遠い位置で結合するものであることが好ましい。例えば、Ar1及びAr2がフェニレン基である場合、パラ位で結合する単位及びメタ位で結合する単位であることが好ましく、パラ位で結合する単位がより好ましい。パラ位で結合する単位で構成されることにより、樹脂の耐熱性及び結晶性の面で好ましい。 Aspects of binding of Ar 1 and Ar 2 is not particularly limited, in the arylene group is preferably one that binds at positions remote. For example, when Ar 1 and Ar 2 are a phenylene group, a unit bonded at the para position and a unit bonded at the meta position are preferable, and a unit bonded at the para position is more preferable. It is preferable in terms of heat resistance and crystallinity of the resin that it is composed of units bonded at the para position.
Ar1又はAr2で表されるアリーレン基が官能基を置換基として有する場合、当該官能基は、ヒドロキシ基、アミノ基、メルカプト基、カルボキシ基又はスルホ基であることが好ましい。ただし、Ar1又はAr2が置換基を有するアリーレン基である一般式(1)の構成単位の割合は、ポリアリーレンスルフィド樹脂の結晶化度及び耐熱性の低下を抑制する観点から、ポリ(アリーレンスルホニウム塩)全体の10質量%以下の範囲であることが好ましく、5質量%以下であることがより好ましい。 When the arylene group represented by Ar 1 or Ar 2 has a functional group as a substituent, the functional group is preferably a hydroxy group, an amino group, a mercapto group, a carboxy group, or a sulfo group. However, the proportion of the structural unit of the general formula (1) in which Ar 1 or Ar 2 is an arylene group having a substituent is selected from the viewpoint of suppressing the decrease in crystallinity and heat resistance of the polyarylene sulfide resin. The sulfonium salt) is preferably in the range of 10% by mass or less, more preferably 5% by mass or less.
R2としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1〜10のアルキル基や、フェニル、ナフチル、ビフェニル等の構造を有するアリール基が挙げられ、さらに当該アリール基は、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等の炭素原子数1〜10のアルキル基を置換基として芳香環上に1〜4個の範囲で有していてもよい。 Examples of R 2 include alkyl groups having 1 to 10 carbon atoms such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, and decyl group, and phenyl. Aryl groups having a structure such as naphthyl, biphenyl and the like, and the aryl group includes methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group It may have an alkyl group having 1 to 10 carbon atoms such as 1 to 4 on the aromatic ring as a substituent.
一般式(1)で表される構成単位を有するポリ(アリーレンスルホニウム塩)は、例えば、芳香族スルホキシドを酸存在下で重合させる方法により得ることができる。 The poly (arylene sulfonium salt) having the structural unit represented by the general formula (1) can be obtained, for example, by a method of polymerizing aromatic sulfoxide in the presence of an acid.
芳香族スルホキシドは、例えば、下記一般式(20)で表される化合物を含む。2つの置換基の置換位置は特に限定されないが、好ましくは2つの置換位置が分子内でできる限り遠い位置にあることが望ましい。好ましい置換位置は、パラ位である。 The aromatic sulfoxide includes, for example, a compound represented by the following general formula (20). The substitution positions of the two substituents are not particularly limited, but it is preferable that the two substitution positions are located as far as possible in the molecule. A preferred substitution position is the para position.
一般式(20)中、R2及びAr1は、一般式(1)で定義したものと同様であり、R
3は、水素原子、Ar3−、Ar3−S−又はAr3−O−を表し、Ar3は、官能基を
置換基を有してもよいアリール基を表す。
In the general formula (20), R 2 and Ar 1 are the same as those defined in the general formula (1).
3 represents a hydrogen atom, Ar 3 —, Ar 3 —S— or Ar 3 —O—, and Ar 3 represents an aryl group which may have a functional group as a substituent.
ここで、Ar3としては、フェニル、ナフチル、ビフェニル等の構造を有するアリール基が挙げられ、当該アリール基は、ヒドロキシ基、アミノ基、メルカプト基、カルボキシ基及びスルホ基から選ばれる少なくとも1種の官能基を置換基として有していてもよい。 Here, examples of Ar 3 include an aryl group having a structure such as phenyl, naphthyl, and biphenyl, and the aryl group is at least one selected from a hydroxy group, an amino group, a mercapto group, a carboxy group, and a sulfo group. You may have a functional group as a substituent.
一般式(20)で表される化合物としては、例えば、メチルフェニルスルホキシド、メチル−4−(フェニルチオ)フェニルスルホキシド等を用いることができる。これらの化合物のうち、メチル−4−(フェニルチオ)フェニルスルホキシドが好ましい。芳香族スルホキシドは、1種を単独で、又は2種以上を組み合わせて使用してもよい。 Examples of the compound represented by the general formula (20) include methylphenyl sulfoxide, methyl-4- (phenylthio) phenyl sulfoxide, and the like. Of these compounds, methyl-4- (phenylthio) phenyl sulfoxide is preferred. Aromatic sulfoxides may be used alone or in combination of two or more.
ポリ(アリーレンスルホニウム塩)を合成する際に使用する酸は、有機酸、無機酸のいずれも使用することができる。酸としては、例えば、塩酸、臭化水素酸、青酸、テトラフルオロほう酸等の非酸素酸;硫酸、リン酸、過塩素酸、臭素鍛、硝酸、炭酸、ホウ酸、モリブデン酸、イソポリ酸、ヘテロポリ酸等の無機オキソ酸;硫酸水素ナトリウム、リン酸二水素ナトリウム、プロトン残留ヘテロポリ酸塩、モノメチル硫酸、トリフルオロメタン硫酸等の硫酸の部分塩もしくは部分エステル;蟻酸、酢酸、プロピオン酸、ブタン酸、コハク酸、安息香酸、フタル酸等の1価もしくは多価のカルボン酸;モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、モノフルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸等のハロゲン置換カルボン酸;メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンジスルホン酸等の1価もしくは多価のスルホン酸;ベンゼンジスルホン酸ナトリウム等の多価のスルホン酸の部分金属塩;五塩化アンチモン、塩化アルミニウム、臭化アルミニウム、四塩化チタン、四塩化スズ、塩化亜鉛、塩化銅、塩化鉄等のルイス酸などを挙げることができる。これらの酸のうち、反応性の観点から、トリフルオロメタンスルホン酸、メタンスルホン酸の使用が好ましい。これらの酸は、1種を単独で、又は2種以上を組み合わせて使用してもよい。 As the acid used for synthesizing the poly (arylenesulfonium salt), either an organic acid or an inorganic acid can be used. Examples of the acid include non-oxygen acids such as hydrochloric acid, hydrobromic acid, hydrocyanic acid, and tetrafluoroboric acid; sulfuric acid, phosphoric acid, perchloric acid, bromine forged, nitric acid, carbonic acid, boric acid, molybdic acid, isopolyacid, and heteropolyacid. Inorganic oxo acids such as acids; sodium hydrogen sulfate, sodium dihydrogen phosphate, proton residual heteropolyacid salts, partial salts or esters of sulfuric acid such as monomethyl sulfuric acid, trifluoromethane sulfuric acid; formic acid, acetic acid, propionic acid, butanoic acid, succinic acid Monovalent or polyvalent carboxylic acids such as acid, benzoic acid and phthalic acid; halogen-substituted carboxylic acids such as monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monofluoroacetic acid, difluoroacetic acid and trifluoroacetic acid; methanesulfonic acid and ethanesulfone Acid, propanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, trifluoromethyl Monovalent or polyvalent sulfonic acids such as sulfonic acid and benzenedisulfonic acid; partial metal salts of polyvalent sulfonic acid such as sodium benzenedisulfonate; antimony pentachloride, aluminum chloride, aluminum bromide, titanium tetrachloride, tetrachloride Examples include Lewis acids such as tin, zinc chloride, copper chloride, and iron chloride. Of these acids, trifluoromethanesulfonic acid and methanesulfonic acid are preferably used from the viewpoint of reactivity. These acids may be used alone or in combination of two or more.
また本反応は脱水反応のため、脱水剤を併用してもよい。脱水剤としては、例えば、酸化リン、五酸化二リン等のリン酸無水物;ベンゼンスルホン酸無水物、メタンスルホン酸無水物、トリフルオロメタンスルホン酸無水物、パラトルエンスルホン酸無水物等のスルホン酸無水物;無水酢酸、無水フルオロ酢酸、無水トリフルオロ酢酸等のカルボン酸無水物;無水硫酸マグネシウム、ゼオライト、シリカゲル、塩化カルシウムなどを挙げることができる。これらの脱水剤は、1種を単独で、又は2種以上を組み合わせて使用してもよい。 Since this reaction is a dehydration reaction, a dehydrating agent may be used in combination. Examples of the dehydrating agent include phosphoric anhydrides such as phosphorus oxide and diphosphorus pentoxide; sulfonic acids such as benzenesulfonic anhydride, methanesulfonic anhydride, trifluoromethanesulfonic anhydride, and paratoluenesulfonic anhydride. Anhydrides; carboxylic acid anhydrides such as acetic anhydride, fluoroacetic anhydride, and trifluoroacetic anhydride; anhydrous magnesium sulfate, zeolite, silica gel, calcium chloride, and the like. These dehydrating agents may be used alone or in combination of two or more.
ポリ(アリーレンスルホニウム塩)を合成する際には、適宜溶媒を使用することができる。溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール等のアルコール系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒、アセトニトリル等のニトリル系溶媒、塩化メチレン、クロロホルム等の含ハロゲン系溶媒、ノルマルヘキサン、シクロヘキサン、ノルマルヘプタン、シクロヘプタン等の飽和炭化水素系溶媒、ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶媒、スルホラン、DMSOなどの含硫黄系溶剤、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒などを挙げることができる。これらの溶媒は、1種を単独で、又は2種以上を組み合わせて使用してもよい。 When synthesizing poly (arylenesulfonium salt), a solvent can be appropriately used. Examples of the solvent include alcohol solvents such as methanol, ethanol, propanol and isopropyl alcohol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, nitrile solvents such as acetonitrile, and halogen-containing solvents such as methylene chloride and chloroform. Saturated hydrocarbon solvents such as normal hexane, cyclohexane, normal heptane, cycloheptane, amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone, sulfur-containing solvents such as sulfolane and DMSO, tetrahydrofuran, dioxane, etc. Examples include ether solvents. These solvents may be used alone or in combination of two or more.
本実施形態に係るポリ(アリーレンスルホニウム塩)と脂肪族アミド化合物とを反応させる際の条件は、脱アルキル化又は脱アリール化が適切に進行するように、適宜調整することができる。反応温度は、40〜250℃の範囲であることが好ましく、70〜220℃の範囲であることがより好ましい。 The conditions for reacting the poly (arylenesulfonium salt) and the aliphatic amide compound according to this embodiment can be appropriately adjusted so that dealkylation or dearylation proceeds appropriately. The reaction temperature is preferably in the range of 40 to 250 ° C, more preferably in the range of 70 to 220 ° C.
本実施形態の製造方法によれば、得られるポリアリーレンスルフィド樹脂中の脱アルキル化剤又は脱アリール化剤の残存量を低減することが可能である。樹脂中の脱アルキル化剤又は脱アリール化剤の残存量は、ポリアリーレンスルフィド樹脂と脱アルキル化剤又は脱アリール化剤等の他の成分とを含む樹脂の質量を基準として、1000ppm以下の範囲であることが好ましく、700ppm以下の範囲がより好ましく、100ppm以下の範囲であることが更に好ましい。1000ppm以下とすることにより、得られるポリアリーレンスルフィド樹脂の品質に対する実質的な影響を低減できる。本実施形態の製造方法により得られるポリアリーレンスルフィド樹脂は、混在する脱アルキル化剤又は脱アリール化剤等の成分の種類及び含有量に基づいて、他の方法により製造されたポリアリーレンスルフィド樹脂と区別され得る。 According to the production method of the present embodiment, it is possible to reduce the remaining amount of the dealkylating agent or dearylating agent in the obtained polyarylene sulfide resin. The residual amount of the dealkylating agent or dearylating agent in the resin is in the range of 1000 ppm or less based on the mass of the resin containing the polyarylene sulfide resin and other components such as the dealkylating agent or the dearylating agent. Preferably, the range is 700 ppm or less, and more preferably 100 ppm or less. By setting it as 1000 ppm or less, the substantial influence with respect to the quality of the polyarylene sulfide resin obtained can be reduced. The polyarylene sulfide resin obtained by the production method of the present embodiment includes a polyarylene sulfide resin produced by another method based on the type and content of components such as a mixed dealkylating agent or dearylating agent. A distinction can be made.
本実施形態に係るポリアリーレンスルフィド樹脂の製造方法は、ポリアリーレンスルフィド樹脂を水、水溶性溶媒又はこれらの混合溶媒で洗浄する工程を更に含んでもよい。このような洗浄工程を含むことにより、得られるポリアリーレンスルフィド樹脂に含まれる脱アルキル化剤又は脱アリール化剤等の残存量をより確実に低減することができる。 The method for producing a polyarylene sulfide resin according to this embodiment may further include a step of washing the polyarylene sulfide resin with water, a water-soluble solvent, or a mixed solvent thereof. By including such a washing step, the remaining amount of the dealkylating agent or dearylating agent contained in the obtained polyarylene sulfide resin can be more reliably reduced.
かかる洗浄工程において使用する溶媒は、特に制限されるものではないが、未反応物を溶解させるものであることが好ましい。溶媒としては、例えば、水、塩酸水溶液、酢酸水溶液、シュウ酸水溶液、硝酸水溶液等の酸性水溶液、トルエン、キシレン等の芳香族炭化水素系溶剤、メタノール、エタノール、プロパノール、イソプロピルアルコール等のアルコール系溶剤、ジメチルアセトアミド、N−メチル−2−ピロリドン等のアミド系溶媒、ノルマルヘキサン、シクロヘキサン、ノルマルヘプタン、シクロヘプタン等の飽和炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、ジクロロメタン、クロロホルム等の含ハロゲン溶剤などを挙げることができる。これらの溶媒は、1種を単独で、又は2種以上を組み合わせて使用してもよい。これらの溶媒のうち、反応試薬の除去及び樹脂のオリゴマー成分の除去の観点から、水、N−メチル−2−ピロリドンが好ましい。 The solvent used in the washing step is not particularly limited, but is preferably a solvent that dissolves unreacted substances. Examples of the solvent include water, hydrochloric acid aqueous solution, acetic acid aqueous solution, oxalic acid aqueous solution, nitric acid aqueous solution and other acidic aqueous solutions, toluene, xylene and other aromatic hydrocarbon solvents, methanol, ethanol, propanol, isopropyl alcohol and other alcohol solvents. Amide solvents such as dimethylacetamide and N-methyl-2-pyrrolidone, saturated hydrocarbon solvents such as normal hexane, cyclohexane, normal heptane and cycloheptane, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, dichloromethane, And halogen-containing solvents such as chloroform. These solvents may be used alone or in combination of two or more. Of these solvents, water and N-methyl-2-pyrrolidone are preferred from the viewpoint of removing the reaction reagent and the oligomer component of the resin.
本実施形態に係る製造方法によれば、下記一般式(2)で表される構成単位を含み、スルフィド基を有するポリアリーレンスルフィド樹脂が得られる。 According to the production method of the present embodiment, a polyarylene sulfide resin containing a structural unit represented by the following general formula (2) and having a sulfide group is obtained.
一般式(2)中、R1及びAr1は、一般式(1)で定義したものと同様である。 In General Formula (2), R 1 and Ar 1 are the same as those defined in General Formula (1).
本実施形態の製造方法により得られるポリアリーレンスルフィド樹脂のガラス転移温度は、70〜110℃の範囲であることが好ましく、80〜95℃の範囲であることがより好ましい。樹脂のガラス転移温度は、DSC装置により測定される値のことを示す。 The glass transition temperature of the polyarylene sulfide resin obtained by the production method of the present embodiment is preferably in the range of 70 to 110 ° C, more preferably in the range of 80 to 95 ° C. The glass transition temperature of the resin indicates a value measured by a DSC apparatus.
本実施形態の製造方法により得られるポリアリーレンスルフィド樹脂の融点は、260〜300℃の範囲であることが好ましく、270〜290℃の範囲であることがより好ましい。樹脂の融点は、DSC装置により測定される値のことを示す。 The melting point of the polyarylene sulfide resin obtained by the production method of the present embodiment is preferably in the range of 260 to 300 ° C, more preferably in the range of 270 to 290 ° C. The melting point of the resin indicates a value measured by a DSC apparatus.
本実施形態に係るポリアリーレンスルフィド樹脂のハロゲン含有量は、900ppm以下であることが好ましく、500ppm以下であることがより好ましい。 The halogen content of the polyarylene sulfide resin according to this embodiment is preferably 900 ppm or less, and more preferably 500 ppm or less.
本実施形態に係るポリアリーレンスルフィド樹脂のMtopは、5000〜100000であることが好ましく、10000以上80000以下の範囲であることがより好ましい。また、Mwも同様の範囲である。本明細書において、Mtopはゲル浸透クロマトグラフィーにより測定されるクロマトグラムの検出強度が最大となる点の平均分子量(ピーク分子量)を示し、Mwは重量平均分子量を示す。 The Mtop of the polyarylene sulfide resin according to this embodiment is preferably 5,000 to 100,000, and more preferably 10,000 to 80,000. Mw is also in the same range. In this specification, Mtop represents the average molecular weight (peak molecular weight) at the point where the detection intensity of the chromatogram measured by gel permeation chromatography is maximized, and Mw represents the weight average molecular weight.
本実施形態に係るポリアリーレンスルフィド樹脂のMw/Mtopは、0.5以上3.5以下の範囲であり、好ましくは0.7以上2.5以下の範囲である。Mw/Mtopをこのような範囲とすることで、ポリアリーレンスルフィド樹脂の加工性を向上させることができ、また得られるフィルムに適度な伸張性及び柔軟性を付与することができる。Mw/Mtopは、測定対象の分子量の分布を示し、通常、この値が1に近いと分子量の分布が狭いことを示し、この値が大きくなるにつれて、分子量の分布が広いことを示す。なお、ゲル浸透クロマトグラフィーの測定条件は、本明細書の実施例と同一の測定条件とする。ただし、Mw、Mw/Mtopの値に実質的な影響を及ぼさない範囲で、測定条件を変更することは可能である。 Mw / Mtop of the polyarylene sulfide resin according to this embodiment is in the range of 0.5 to 3.5, and preferably in the range of 0.7 to 2.5. By setting Mw / Mtop in such a range, the processability of the polyarylene sulfide resin can be improved, and appropriate stretchability and flexibility can be imparted to the resulting film. Mw / Mtop indicates the distribution of the molecular weight to be measured. Normally, when this value is close to 1, it indicates that the molecular weight distribution is narrow, and as this value increases, the molecular weight distribution is broad. The measurement conditions for gel permeation chromatography are the same as those in the examples of the present specification. However, it is possible to change the measurement conditions within a range that does not substantially affect the values of Mw and Mw / Mtop.
本実施形態に係るポリアリーレンスルフィド樹脂の非ニュートニアン指数は、0.5以上2.3以下の範囲であり、好ましくは0.9以上1.8以下の範囲である。非ニュートニアン指数をこのような範囲とすることで、ポリアリーレンスルフィド樹脂の加工性を向上させることができる。本明細書において、非ニュートニアン指数は温度300℃の条件下におけるせん断速度とせん断応力との下記関係式を満たす指数をいう。非ニュートニアン指数は、測定対象の分子量、又は直鎖、分岐、架橋といった分子構造に関する指標となりえ、通常、この値が1に近いと樹脂の分子構造が直鎖状であることを示し、この値が大きくなるにつれて、分岐や架橋構造が多く含まれることを示す。
D=α×Sn
(上記式中、Dはせん断速度を表し、Sはせん断応力を表し、αは定数を表し、nは非ニュートニアン指数を表す。)
The non-Newtonian index of the polyarylene sulfide resin according to the present embodiment is in the range of 0.5 to 2.3, and preferably in the range of 0.9 to 1.8. By setting the non-Newtonian index in such a range, the processability of the polyarylene sulfide resin can be improved. In the present specification, the non-Newtonian index means an index satisfying the following relational expression between the shear rate and the shear stress under the condition of a temperature of 300 ° C. The non-Newtonian index can be an index related to the molecular weight to be measured or the molecular structure such as linear, branched, or crosslinked. Usually, when this value is close to 1, it indicates that the resin molecular structure is linear. It shows that there are many branched and cross-linked structures as the value increases.
D = α × S n
(In the above formula, D represents shear rate, S represents shear stress, α represents a constant, and n represents a non-Newtonian index.)
本実施形態に係るポリアリーレンスルフィドは、FT−IR分光法で測定した場合のFT−IRスペクトル(赤外吸収スペクトル)において、2910cm−1〜2930cm−1の範囲に吸収ピークを有するものであり、これにより、低分子量体成分の溶剤に対する溶解性が良好である為、前述の洗浄プロセスで除かれやすく、発生ガス量が少ないポリマーとなる。
前記ピークは、メチルスルファニル基(−SMe)の伸縮振動に由来する(帰属する)ものである。
Polyarylene sulfide according to the present embodiment, the FT-IR spectrum as measured by FT-IR spectroscopy (IR spectrum), which has an absorption peak in the range of 2910cm -1 ~2930cm -1, Thereby, since the solubility with respect to the solvent of a low molecular weight component is favorable, it becomes a polymer which is easy to remove | eliminate by the above-mentioned washing | cleaning process, and has little generated gas amount.
The peak is derived from (belongs to) the stretching vibration of a methylsulfanyl group (-SMe).
本実施形態に係るポリアリーレンスルフィド樹脂の300℃における溶融粘度(V6)は、好ましくは1〜2000[Pa・s]の範囲、より好ましくは5〜1700[Pa・s]の範囲である。ここで、溶融粘度(V6)は、フローテスターを用いて、温度300℃、荷重1.96MPa、オリフィス長とオリフィス径との比(オリフィス長/オリフィス径)が10/1であるオリフィスを使用して6分間保持した後の溶融粘度を意味する。 The melt viscosity (V6) at 300 ° C. of the polyarylene sulfide resin according to this embodiment is preferably in the range of 1 to 2000 [Pa · s], more preferably in the range of 5 to 1700 [Pa · s]. Here, for the melt viscosity (V6), using a flow tester, an orifice having a temperature of 300 ° C., a load of 1.96 MPa, and a ratio of the orifice length to the orifice diameter (orifice length / orifice diameter) is 10/1. The melt viscosity after holding for 6 minutes.
本実施形態に係るポリアリーレンスルフィド樹脂の白色度(ホットプレスL値/L*値)は、70〜90の範囲であることが好ましく、より好ましくは75〜85の範囲である。L*値がこのような範囲とすることで、成形加工時の着色が十分に抑制されたフィルムとすることができる。L*値は、測定対象の白色度に関する指標であるが、酸化架橋の指標ともなり得る。ポリアリーレンスルフィド樹脂は熱酸化処理を受けると着色し、L*値が低下する傾向にある。 The whiteness (hot press L value / L * value) of the polyarylene sulfide resin according to this embodiment is preferably in the range of 70 to 90, and more preferably in the range of 75 to 85. By setting the L * value in such a range, it is possible to obtain a film in which coloring during molding is sufficiently suppressed. The L * value is an index related to the whiteness of the measurement target, but can also be an index of oxidative crosslinking. The polyarylene sulfide resin is colored when subjected to a thermal oxidation treatment, and the L * value tends to decrease.
本実施形態に係るポリアリーレンスルフィド樹脂の加熱時のガス発生量は、0.2質量%以下の範囲とすることができ、好ましくは0.15質量%以下の範囲とすることができる。加熱時のガス発生量を抑制することができることにより、製膜時のフィルム破れをより抑制することが可能であり、ガス発生に起因するフィルムの品質低下を充分に抑制することができる。 The amount of gas generated during heating of the polyarylene sulfide resin according to the present embodiment can be in the range of 0.2% by mass or less, and preferably in the range of 0.15% by mass or less. By being able to suppress the amount of gas generated during heating, it is possible to further suppress film breakage during film formation and sufficiently suppress deterioration in film quality due to gas generation.
ポリアリーレンスルフィド樹脂を含む組成物は、本発明の趣旨を逸脱しない範囲で、1種又は2種以上の無機質充填剤をさらに含有することができる。無機質充填剤が配合されることにより、高剛性、高耐熱安定性をフィルムに付与することができる。無機質充填剤としては、例えばカーボンブラック、炭酸カルシウム、シリカ及び酸化チタン等の粉末状充填剤、タルク及びマイカ等の板状充填剤、ガラスビーズ、シリカビーズ及びガラスバルーン等の粒状充填剤、ガラス繊維、炭素繊維及びウォラストナイト繊維等の繊維状充填剤、並びにガラスフレークなどが挙げられる。ポリアリーレンスルフィド樹脂組成物は、ガラス繊維、炭素繊維、カーボンブラック、及び炭酸カルシウムからなる群より選ばれる少なくとも1種の無機質充填剤を含有することが特に好ましい。 The composition containing the polyarylene sulfide resin can further contain one or more inorganic fillers without departing from the spirit of the present invention. By blending the inorganic filler, high rigidity and high heat stability can be imparted to the film. Examples of inorganic fillers include powder fillers such as carbon black, calcium carbonate, silica and titanium oxide, plate fillers such as talc and mica, granular fillers such as glass beads, silica beads and glass balloons, and glass fibers. And fibrous fillers such as carbon fiber and wollastonite fiber, and glass flakes. It is particularly preferable that the polyarylene sulfide resin composition contains at least one inorganic filler selected from the group consisting of glass fiber, carbon fiber, carbon black, and calcium carbonate.
無機質充填剤の含有量は、ポリアリーレンスルフィド樹脂100質量部に対して、好ましくは1〜300質量部の範囲、より好ましくは5〜200質量部の範囲、更に好ましくは15〜150質量部の範囲である。無機質充填剤の含有量がこれらの範囲にあることにより、フィルムとした際の引張強度等の引張特性の点でより優れた効果が得られる。 The content of the inorganic filler is preferably in the range of 1 to 300 parts by mass, more preferably in the range of 5 to 200 parts by mass, and still more preferably in the range of 15 to 150 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. It is. When the content of the inorganic filler is in these ranges, a more excellent effect can be obtained in terms of tensile properties such as tensile strength when formed into a film.
ポリアリーレンスルフィド樹脂組成物は、本発明の趣旨を逸脱しない範囲で、熱可塑性樹脂、エラストマー、及び架橋性樹脂から選ばれる、ポリアリーレンスルフィド樹脂以外の樹脂を含有することができる。これら樹脂は、無機質充填剤とともに樹脂組成物中に配合することもできる。 The polyarylene sulfide resin composition can contain a resin other than the polyarylene sulfide resin selected from thermoplastic resins, elastomers, and crosslinkable resins without departing from the spirit of the present invention. These resins can be blended in the resin composition together with the inorganic filler.
ポリアリーレンスルフィド樹脂組成物に配合される熱可塑性樹脂としては、例えば、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、シリコーン樹脂、及び液晶ポリマー(液晶ポリエステル等)が挙げられる。 Examples of the thermoplastic resin blended in the polyarylene sulfide resin composition include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, and polyethylene. , Polypropylene, polytetrafluoroethylene, polydifluoroethylene, polystyrene, ABS resin, silicone resin, and liquid crystal polymer (liquid crystal polyester, etc.).
ポリアミドは、アミド結合(−NHCO−)を有するポリマーである。ポリアミド樹脂としては、例えば、(i)ジアミンとジカルボン酸の重縮合から得られるポリマー、(ii)アミノカルボン酸の重縮合から得られるポリマー、及び(iii)ラクタムの開環重合から得られるポリマー等が挙げられる。ポリアミドは、単独で又は2種以上を組み合わせて使用することができる。 Polyamide is a polymer having an amide bond (—NHCO—). Examples of the polyamide resin include (i) a polymer obtained from polycondensation of diamine and dicarboxylic acid, (ii) a polymer obtained from polycondensation of aminocarboxylic acid, and (iii) a polymer obtained from ring-opening polymerization of lactam. Is mentioned. Polyamides can be used alone or in combination of two or more.
ポリアミドを得るためのジアミンの例としては、脂肪族系ジアミン、芳香族系ジアミン、及び脂環族系ジアミン類が挙げられる。脂肪族系ジアミンとしては、直鎖状又は側鎖を有する炭素数3〜18のジアミンが好ましい。好適な脂肪族系ジアミンの例としては、1,3−トリメチレンジアミン、1,4−テトラメチレンジアミン、1,5−ペンタメチレンジアミン、1,6−ヘキサメチレンジアミン、1,7−ヘプタメチレンジアミン、1,8−オクタメチレンジアミン、2−メチル−1,8−オクタンジアミン、1,9−ノナメチレンジアミン、1,10−デカメチレンジアミン、1,11−ウンデカンメチレンジアミン、1,12−ドデカメチレンジアミン、1,13−トリデカメチレンジアミン、1,14−テトラデカメチレンジアミン、1,15−ペンタデカメチレンジアミン、1,16−ヘキサデカメチレンジアミン、1,17−ヘプタデカメチレンジアミン、1,18−オクタデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、及び2,4,4−トリメチルヘキサメチレンジアミンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of diamines for obtaining polyamides include aliphatic diamines, aromatic diamines, and alicyclic diamines. As aliphatic diamine, C3-C18 diamine which has a linear or side chain is preferable. Examples of suitable aliphatic diamines include 1,3-trimethylene diamine, 1,4-tetramethylene diamine, 1,5-pentamethylene diamine, 1,6-hexamethylene diamine, 1,7-heptamethylene diamine. 1,8-octamethylenediamine, 2-methyl-1,8-octanediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecanmethylenediamine, 1,12-dodecamethylene Diamine, 1,13-tridecamethylenediamine, 1,14-tetradecamethylenediamine, 1,15-pentadecamethylenediamine, 1,16-hexadecamethylenediamine, 1,17-heptadecamethylenediamine, 1,18 -Octadecamethylenediamine, 2,2,4-trimethylhexamethylenediamine And 2,4,4-trimethyl hexamethylene diamine. These can be used alone or in combination of two or more.
芳香族系ジアミンとしては、フェニレン基を有する炭素数6〜27のジアミンが好ましい。好適な芳香族系ジアミンの例としては、o−フェニレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、m−キシリレンジアミン、p−キシリレンジアミン、3,4−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルエーテル、4,4'−ジアミノジフェニルメタン、3,3'−ジアミノジフェニルスルフォン、4,4'−ジアミノジフェニルスルフォン、4,4'−ジアミノジフェニルスルフィド、4,4'−ジ(m−アミノフェノキシ)ジフェニルスルフォン、4,4'−ジ(p−アミノフェノキシ)ジフェニルスルフォン、ベンジジン、3,3'−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン、2,2−ビス(4−アミノフェニル)プロパン、1,5−ジアミノナフタレン、1,8−ジアミノナフタレン、4,4'−ビス(4−アミノフェノキシ)ビフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、4,4'−ジアミノ−3,3'−ジエチル−5,5'−ジメチルジフェニルメタン、4,4'−ジアミノ−3,3',5,5'−テトラメチルジフェニルメタン、2,4−ジアミノトルエン、及び2,2'−ジメチルベンジジンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 As the aromatic diamine, a diamine having 6 to 27 carbon atoms having a phenylene group is preferable. Examples of suitable aromatic diamines include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, m-xylylenediamine, p-xylylenediamine, 3,4-diaminodiphenyl ether, 4,4′- Diaminodiphenyl ether, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl sulfide, 4,4′-di (m-aminophenoxy) Diphenylsulfone, 4,4′-di (p-aminophenoxy) diphenylsulfone, benzidine, 3,3′-diaminobenzophenone, 4,4′-diaminobenzophenone, 2,2-bis (4-aminophenyl) propane, 1 , 5-Diaminonaphthalene, 1,8-diaminonaphthalene 4,4′-bis (4-aminophenoxy) biphenyl, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, 1,4-bis (4-aminophenoxy) benzene, 1, 3-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 4,4′-diamino-3,3′-diethyl -5,5'-dimethyldiphenylmethane, 4,4'-diamino-3,3 ', 5,5'-tetramethyldiphenylmethane, 2,4-diaminotoluene, and 2,2'-dimethylbenzidine. These can be used alone or in combination of two or more.
脂環族系ジアミンとしては、シクロヘキシレン基を有する炭素原子数4〜15のジアミンが好ましい。好適な脂環族系ジアミンの例としては、4,4'−ジアミノ−ジシクロヘキシレンメタン、4,4'−ジアミノ−ジシクロヘキシレンプロパン、4,4'−ジアミノ−3,3'−ジメチル−ジシクロヘキシレンメタン、1,4−ジアミノシクロヘキサン、及びピペラジンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 As the alicyclic diamine, a diamine having 4 to 15 carbon atoms having a cyclohexylene group is preferable. Examples of suitable alicyclic diamines include 4,4'-diamino-dicyclohexylene methane, 4,4'-diamino-dicyclohexylene propane, 4,4'-diamino-3,3'-dimethyl- Examples include dicyclohexylenemethane, 1,4-diaminocyclohexane, and piperazine. These can be used alone or in combination of two or more.
ポリアミドを得るためのジカルボン酸としては、脂肪族系ジカルボン酸、芳香族系ジカルボン酸、及び脂環族系ジカルボン酸を挙げることができる。 Examples of the dicarboxylic acid for obtaining the polyamide include aliphatic dicarboxylic acid, aromatic dicarboxylic acid, and alicyclic dicarboxylic acid.
脂肪族系ジカルボン酸としては、炭素数2〜18の飽和又は不飽和のジカルボン酸が好ましい。好適な脂肪族系ジカルボン酸の例としては、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、プラシリン酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸、マレイン酸、及びフマル酸が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 As the aliphatic dicarboxylic acid, a saturated or unsaturated dicarboxylic acid having 2 to 18 carbon atoms is preferable. Examples of suitable aliphatic dicarboxylic acids include succinic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, placillic acid, tetradecane Examples include diacids, pentadecanedioic acid, octadecanedioic acid, maleic acid, and fumaric acid. These can be used alone or in combination of two or more.
芳香族系ジカルボン酸としては、フェニレン基を有する炭素原子数8〜15のジカルボン酸が好ましい。好適な芳香族系ジカルボン酸の例としては、イソフタル酸、テレフタル酸、メチルテレフタル酸、ビフェニル−2,2'−ジカルボン酸、ビフェニル−4,4'−ジカルボン酸、ジフェニルメタン−4,4'−ジカルボン酸、ジフェニルエーテル−4,4'−ジカルボン酸、ジフェニルスルフォン−4,4'−ジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸、及び1,4−ナフタレンジカルボン酸が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。更に、トリメリット酸、トリメシン酸、及びピロメリット酸等の多価カルボン酸を、溶融成形可能な範囲内で用いることもできる。 As the aromatic dicarboxylic acid, a dicarboxylic acid having 8 to 15 carbon atoms having a phenylene group is preferable. Examples of suitable aromatic dicarboxylic acids include isophthalic acid, terephthalic acid, methyl terephthalic acid, biphenyl-2,2′-dicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, diphenylmethane-4,4′-dicarboxylic acid. Examples include acids, diphenyl ether-4,4′-dicarboxylic acid, diphenylsulfone-4,4′-dicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and 1,4-naphthalenedicarboxylic acid. . These can be used alone or in combination of two or more. Furthermore, polycarboxylic acids such as trimellitic acid, trimesic acid, and pyromellitic acid can be used within a range that can be melt-molded.
アミノカルボン酸としては、炭素原子数4〜18のアミノカルボン酸が好ましい。好適なアミノカルボン酸の例としては、4−アミノ酪酸、6−アミノヘキサン酸、7−アミノヘプタン酸、8−アミノオクタン酸、9−アミノノナン酸、10−アミノデカン酸、11−アミノウンデカン酸、12−アミノドデカン酸、14−アミノテトラデカン酸、16−アミノヘキサデカン酸、及び18−アミノオクタデカン酸が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 As the aminocarboxylic acid, an aminocarboxylic acid having 4 to 18 carbon atoms is preferable. Examples of suitable aminocarboxylic acids include 4-aminobutyric acid, 6-aminohexanoic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 9-aminononanoic acid, 10-aminodecanoic acid, 11-aminoundecanoic acid, 12 -Aminododecanoic acid, 14-aminotetradecanoic acid, 16-aminohexadecanoic acid, and 18-aminooctadecanoic acid. These can be used alone or in combination of two or more.
ポリアミドを得るためのラクタムとしては、例えば、ε−カプロラクタム、ω−ラウロラクタム、ζ−エナントラクタム、及びη−カプリルラクタムが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the lactam for obtaining the polyamide include ε-caprolactam, ω-laurolactam, ζ-enantolactam, and η-capryllactam. These can be used alone or in combination of two or more.
好ましいポリアミドの原料の組み合わせとしては、ε−カプロラクタム(ナイロン6)、1,6−ヘキサメチレンジアミン/アジピン酸(ナイロン6,6)、1,4−テトラメチレンジアミン/アジピン酸(ナイロン4,6)、1,6−ヘキサメチレンジアミン/テレフタル酸、1,6−ヘキサメチレンジアミン/テレフタル酸/ε−カプロラクタム、1,6−ヘキサメチレンジアミン/テレフタル酸/アジピン酸、1,9−ノナメチレンジアミン/テレフタル酸、1,9−ノナメチレンジアミン/テレフタル酸/ε−カプロラクタム、1,9−ノナメチレンジアミン/1,6−ヘキサメチレンジアミン/テレフタル酸/アジピン酸、及びm−キシリレンジアミン/アジピン酸が挙げられる。これらの中でも、1,4−テトラメチレンジアミン/アジピン酸(ナイロン4,6)、1,6−ヘキサメチレンジアミン/テレフタル酸/ε−カプロラクタム、1,6−ヘキサメチレンジアミン/テレフタル酸/アジピン酸、1,9−ノナメチレンジアミン/テレフタル酸、1,9−ノナメチレンジアミン/テレフタル酸/ε−カプロラクタム、又は1,9−ノナメチレンジアミン/1,6−ヘキサメチレンジアミン/テレフタル酸/アジピン酸から得られるリアミド樹脂が更に好ましい。 Preferred combinations of polyamide raw materials include ε-caprolactam (nylon 6), 1,6-hexamethylenediamine / adipic acid (nylon 6,6), 1,4-tetramethylenediamine / adipic acid (nylon 4,6) 1,6-hexamethylenediamine / terephthalic acid, 1,6-hexamethylenediamine / terephthalic acid / ε-caprolactam, 1,6-hexamethylenediamine / terephthalic acid / adipic acid, 1,9-nonamethylenediamine / terephthalic acid Acids, 1,9-nonamethylenediamine / terephthalic acid / ε-caprolactam, 1,9-nonamethylenediamine / 1,6-hexamethylenediamine / terephthalic acid / adipic acid, and m-xylylenediamine / adipic acid It is done. Among these, 1,4-tetramethylenediamine / adipic acid (nylon 4,6), 1,6-hexamethylenediamine / terephthalic acid / ε-caprolactam, 1,6-hexamethylenediamine / terephthalic acid / adipic acid, Obtained from 1,9-nonamethylenediamine / terephthalic acid, 1,9-nonamethylenediamine / terephthalic acid / ε-caprolactam, or 1,9-nonamethylenediamine / 1,6-hexamethylenediamine / terephthalic acid / adipic acid More preferred are amide resins.
熱可塑性樹脂の含有量は、ポリアリーレンスルフィド樹脂100質量部に対して、好ましくは1〜300質量部の範囲、より好ましくは3〜100質量部の範囲、更に好ましくは5〜45質量部の範囲である。ポリアリーレンスルフィド樹脂以外の熱可塑性樹脂の含有量がこれらの範囲にあることにより、耐熱性、耐薬品性及び機械的物性の更なる向上という効果が得られる。 The content of the thermoplastic resin is preferably in the range of 1 to 300 parts by mass, more preferably in the range of 3 to 100 parts by mass, and still more preferably in the range of 5 to 45 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. It is. When the content of the thermoplastic resin other than the polyarylene sulfide resin is within these ranges, the effect of further improving the heat resistance, chemical resistance and mechanical properties can be obtained.
ポリアリーレンスルフィド樹脂組成物に配合されるエラストマーとしては、熱可塑性エラストマーが用いられることが多い。熱可塑性エラストマーとしては、例えば、ポリオレフィン系エラストマー、弗素系エラストマー及びシリコーン系エラストマーが挙げられる。なお、本明細書において、熱可塑性エラストマーは、前記熱可塑性樹脂ではなくエラストマーに分類される。 As the elastomer blended in the polyarylene sulfide resin composition, a thermoplastic elastomer is often used. Examples of the thermoplastic elastomer include polyolefin elastomers, fluorine elastomers, and silicone elastomers. In the present specification, the thermoplastic elastomer is classified not as the thermoplastic resin but as an elastomer.
エラストマー(特に熱可塑性エラストマー)は、官能基を有することが好ましい。これにより、接着性及び耐衝撃性等の点で特に優れた樹脂組成物を得ることができる。係る官能基としては、エポキシ基、アミノ基、水酸基、カルボキシ基、メルカプト基、イソシアネート基、オキサゾリン基、及び、式:R(CO)O(CO)−又はR(CO)O−(式中、Rは炭素原子数1〜8のアルキル基を表す。)で表される基が挙げられる。係る官能基を有する熱可塑性エラストマーは、例えば、α−オレフィンと前記官能基を有するビニル重合性化合物との共重合により得ることができる。α−オレフィンは、例えば、エチレン、プロピレン及びブテン−1等の炭素原子数2〜8のα−オレフィン類が挙げられる。前記官能基を有するビニル重合性化合物としては、例えば、(メタ)アクリル酸及び(メタ)アクリル酸エステル等のα、β−不飽和カルボン酸及びそのアルキルエステル、マレイン酸、フマル酸、イタコン酸及びその他の炭素原子数4〜10のα、β−不飽和ジカルボン酸及びその誘導体(モノ若しくはジエステル、及びその酸無水物等)、並びにグリシジル(メタ)アクリレート等が挙げられる。これらの中でも、エポキシ基、カルボキシ基、及び、式:R(CO)O(CO)−又はR(CO)O−(式中、Rは炭素原子数1〜8のアルキル基を表す。)で表される基からなる群から選ばれる少なくとも1種の官能基を有するエチレン−プロピレン共重合体及びエチレン−ブテン共重合体が、靭性及び耐衝撃性の向上の点から好ましい。 The elastomer (particularly thermoplastic elastomer) preferably has a functional group. Thereby, it is possible to obtain a resin composition that is particularly excellent in terms of adhesion and impact resistance. Such functional groups include epoxy groups, amino groups, hydroxyl groups, carboxy groups, mercapto groups, isocyanate groups, oxazoline groups, and the formula: R (CO) O (CO)-or R (CO) O- (wherein R represents an alkyl group having 1 to 8 carbon atoms.). The thermoplastic elastomer having such a functional group can be obtained, for example, by copolymerization of an α-olefin and a vinyl polymerizable compound having the functional group. Examples of the α-olefin include α-olefins having 2 to 8 carbon atoms such as ethylene, propylene, and butene-1. Examples of the vinyl polymerizable compound having a functional group include α, β-unsaturated carboxylic acids and alkyl esters thereof such as (meth) acrylic acid and (meth) acrylic acid esters, maleic acid, fumaric acid, itaconic acid, and the like. Other examples include α, β-unsaturated dicarboxylic acids having 4 to 10 carbon atoms and derivatives thereof (mono- or diesters and acid anhydrides thereof), glycidyl (meth) acrylates, and the like. Among these, an epoxy group, a carboxy group, and a formula: R (CO) O (CO)-or R (CO) O- (wherein R represents an alkyl group having 1 to 8 carbon atoms). An ethylene-propylene copolymer and an ethylene-butene copolymer having at least one functional group selected from the group consisting of the represented groups are preferred from the viewpoint of improving toughness and impact resistance.
エラストマーの含有量は、その種類、用途により異なるため一概に規定することはできないが、例えば、ポリアリーレンスルフィド樹脂100質量部に対して好ましくは1〜300質量部の範囲、より好ましくは3〜100質量部の範囲、さらに好ましくは5〜45質量部の範囲である。エラストマーの含有量がこれらの範囲にあることにより、フィルムの耐熱性、靭性の確保の点でより一層優れた効果が得られる。 Since the elastomer content varies depending on the type and application, it cannot be defined unconditionally. For example, it is preferably in the range of 1 to 300 parts by mass, more preferably 3 to 100 parts per 100 parts by mass of the polyarylene sulfide resin. It is the range of a mass part, More preferably, it is the range of 5-45 mass part. When the content of the elastomer is within these ranges, a more excellent effect can be obtained in terms of securing heat resistance and toughness of the film.
ポリアリーレンスルフィド樹脂組成物に配合される架橋性樹脂は、2以上の架橋性官能基を有する。架橋性官能基としては、エポキシ基、フェノール性水酸基、アミノ基、アミド基、カルボキシ基、酸無水物基、及びイソシアネート基などが挙げられる。架橋性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、及びウレタン樹脂が挙げられる。 The crosslinkable resin blended in the polyarylene sulfide resin composition has two or more crosslinkable functional groups. Examples of the crosslinkable functional group include an epoxy group, a phenolic hydroxyl group, an amino group, an amide group, a carboxy group, an acid anhydride group, and an isocyanate group. Examples of the crosslinkable resin include an epoxy resin, a phenol resin, and a urethane resin.
エポキシ樹脂としては、芳香族系エポキシ樹脂が好ましい。芳香族系エポキシ樹脂は、ハロゲン基又は水酸基等を有していてもよい。好適な芳香族系エポキシ樹脂の例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、及びビフェニルノボラック型エポキシ樹脂が挙げられる。これらの芳香族系エポキシ樹脂は、単独で又は2種以上を組み合わせて用いることができる。これら芳香族系エポキシ樹脂の中でも特に、他の樹脂成分との相溶性に優れる点から、ノボラック型エポキシ樹脂が好ましく、クレゾールノボラック型エポキシ樹脂がより好ましい。 As the epoxy resin, an aromatic epoxy resin is preferable. The aromatic epoxy resin may have a halogen group or a hydroxyl group. Examples of suitable aromatic epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, biphenyl type epoxy resins, tetramethylbiphenyl type epoxy resins, phenol novolac type epoxy resins, cresol novolacs. Type epoxy resin, bisphenol A novolak type epoxy resin, triphenylmethane type epoxy resin, tetraphenylethane type epoxy resin, dicyclopentadiene-phenol addition reaction type epoxy resin, phenol aralkyl type epoxy resin, naphthol novolak type epoxy resin, naphthol aralkyl Type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, aromatic hydrocarbon Le formaldehyde resin-modified phenol resin type epoxy resins, and biphenyl novolac-type epoxy resin. These aromatic epoxy resins can be used alone or in combination of two or more. Among these aromatic epoxy resins, a novolak type epoxy resin is preferable and a cresol novolak type epoxy resin is more preferable because it is excellent in compatibility with other resin components.
架橋性樹脂の含有量は、ポリアリーレンスルフィド樹脂100質量部に対して、好ましくは1〜300質量部の範囲、より好ましくは3〜100質量部の範囲、更に好ましくは5〜30質量部の範囲である。架橋性樹脂の含有量がこれら範囲にあることにより、フィルムの剛性及び耐熱性の向上という効果が特に顕著に得られる。 The content of the crosslinkable resin is preferably in the range of 1 to 300 parts by mass, more preferably in the range of 3 to 100 parts by mass, and still more preferably in the range of 5 to 30 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. It is. When the content of the crosslinkable resin is within these ranges, the effect of improving the rigidity and heat resistance of the film is obtained particularly remarkably.
ポリアリーレンスルフィド樹脂組成物は、官能基を有するシラン化合物を含有することができる。係るシラン化合物としては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4‐エポキシシクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン及びγ−グリシドキシプロピルメチルジメトキシシラン等のシランカップリング剤が挙げられる。 The polyarylene sulfide resin composition can contain a silane compound having a functional group. Examples of such silane compounds include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ-glycidoxypropylmethyl. Examples include silane coupling agents such as diethoxysilane and γ-glycidoxypropylmethyldimethoxysilane.
シラン化合物の含有量は、例えば、ポリアリーレンスルフィド樹脂100質量部に対して0.01〜10質量部の範囲であることが好ましく、さらに0.1〜5質量部の範囲であることがより好ましい。シラン化合物の含有量がこれらの範囲にあることにより、ポリアリーレンスルフィド樹脂と前記他の成分との相溶性向上という効果が得られる。 The content of the silane compound is, for example, preferably in the range of 0.01 to 10 parts by mass, more preferably in the range of 0.1 to 5 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. . When the content of the silane compound is within these ranges, an effect of improving the compatibility between the polyarylene sulfide resin and the other components can be obtained.
本実施形態に係るポリアリーレンスルフィド樹脂組成物は、本発明の趣旨を逸脱しない範囲で、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤及び滑剤等のその他の添加剤を含有してもよい。添加剤の含有量は、例えば、ポリアリーレンスルフィド樹脂100質量部に対して、1〜10質量部の範囲であることが好ましい。 The polyarylene sulfide resin composition according to this embodiment is a mold release agent, a colorant, a heat stabilizer, a UV stabilizer, a foaming agent, a rust inhibitor, a flame retardant, a lubricant, and the like without departing from the spirit of the present invention. Other additives may be included. For example, the content of the additive is preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin.
ポリアリーレンスルフィド樹脂は、ペレット状の形態で得ることができる。また、ポリアリーレンスルフィド樹脂を含む組成物は、ポリアリーレンスルフィド樹脂と、前記他の成分とを溶融混練する方法により、例えば、ペレット状のコンパウンド等の形態で得ることができる。溶融混錬の温度は、例えば、250〜350℃の範囲であることが好ましく、さらに290〜330℃の範囲であることがより好ましい。溶融混錬は、2軸押出機等を用いて行うことができる。 The polyarylene sulfide resin can be obtained in the form of pellets. In addition, the composition containing the polyarylene sulfide resin can be obtained in the form of, for example, a pellet-like compound by a method of melt-kneading the polyarylene sulfide resin and the other components. The melt kneading temperature is, for example, preferably in the range of 250 to 350 ° C, and more preferably in the range of 290 to 330 ° C. Melting and kneading can be performed using a twin screw extruder or the like.
本実施形態に係るポリアリーレンスルフィド樹脂からなるフィルムは、例えば、前記樹脂を溶融押出機を利用して製膜することにより得られる。 The film made of the polyarylene sulfide resin according to the present embodiment can be obtained, for example, by forming the resin using a melt extruder.
まず、上述の方法で得られたペレット状のポリアリーレンスルフィド樹脂を、溶融部の温度が250〜350℃の範囲、好ましくは270〜330℃の範囲に加熱された溶融押出機に投入し、溶融させたポリマーをフィルターでろ過、Tダイの口金からフィルム状に吐出する。このフィルム状物を、表面温度が20〜70℃の範囲となるように設定された冷却ドラム上に密着させて冷却固化させることで、実質的に無配向状態の未延伸フィルムを得ることができる。フィルター部分及び口金の設定温度は、溶融押出機の溶融部の温度より0〜20℃高い温度範囲にすることが好ましく、5〜15℃高い温度範囲に設定することがより好ましい。 First, the pellet-like polyarylene sulfide resin obtained by the above-described method is charged into a melt extruder heated at a temperature of the melting part in the range of 250 to 350 ° C, preferably in the range of 270 to 330 ° C, and melted. The polymer is filtered through a filter and discharged from the T die die into a film. By making this film-like material adhere to a cooling drum set so that the surface temperature is in the range of 20 to 70 ° C. and cooling and solidifying, an unstretched film in a substantially non-oriented state can be obtained. . The set temperature of the filter part and the die is preferably set to a temperature range that is 0 to 20 ° C. higher than the temperature of the melting part of the melt extruder, and more preferably set to a temperature range that is 5 to 15 ° C. higher.
前記未延伸フィルムは、さらに二軸延伸等を行うことにより、二軸配向させることができる。延伸方法としては、逐次二軸延伸法(フィルムの長手方向の延伸と幅方向の延伸を別々に行う延伸法)、同時二軸延伸法(フィルムの長手方向と幅方向の延伸を同時に行う方法)が挙げられる。これらの延伸法は適宜組み合わせて用いてもよい。 The unstretched film can be biaxially oriented by further performing biaxial stretching or the like. As the stretching method, sequential biaxial stretching method (stretching method in which stretching in the longitudinal direction of the film and stretching in the width direction are separately performed), simultaneous biaxial stretching method (method in which stretching in the longitudinal direction and width direction of the film are performed simultaneously) Is mentioned. These stretching methods may be used in appropriate combination.
逐次二軸延伸法においては、未延伸のポリアリーレンスルフィドフィルムを加熱ロール群で加熱し、前記ロールの回転速度の差を利用してフィルムを延伸する。延伸倍率はフィルムの熱成形性を向上させる観点から長手方向(MD方向)に2.0〜4.0倍の範囲とすることが好ましく、2.5〜3.5倍の範囲とすることがより好ましく、2.8〜3.2倍の範囲の範囲とすることがさらに好ましい。この延伸工程は、1段で行っても、2段以上に分けて行ってもよい。 In the sequential biaxial stretching method, an unstretched polyarylene sulfide film is heated by a heated roll group, and the film is stretched by utilizing the difference in rotational speed of the rolls. From the viewpoint of improving the thermoformability of the film, the draw ratio is preferably in the range of 2.0 to 4.0 times in the longitudinal direction (MD direction), and is preferably in the range of 2.5 to 3.5 times. More preferably, it is more preferably in the range of 2.8 to 3.2 times. This stretching step may be performed in one step or in two or more steps.
MD方向への延伸工程における温度は、ポリアリーレンスルフィド樹脂のガラス転移温度をTgとした際に、Tg〜(Tg+30)℃の範囲とすることが好ましく、(Tg+5)〜(Tg+20)℃の範囲とすることがより好ましい。 The temperature in the stretching process in the MD direction is preferably Tg to (Tg + 30) ° C., when the glass transition temperature of the polyarylene sulfide resin is Tg, and (Tg + 5) to (Tg + 20) ° C. More preferably.
MD方向への延伸後、幅方向(TD方向)の延伸方法としては、例えば、横延伸機(テンター)を用いる方法を挙げることができる。MD延伸後のフィルムの両端部をクリップで挟み、テンターに導き、TD向への延伸を行う。延伸倍率はフィルムの破断伸度を向上させる観点からTD方向に2.0〜4.0倍の範囲とすることが好ましく、2.5〜3.5倍の範囲とすることがより好ましい。 Examples of the stretching method in the width direction (TD direction) after stretching in the MD direction include a method using a transverse stretching machine (tenter). The both ends of the film after MD stretching are sandwiched between clips, guided to a tenter, and stretched in the TD direction. From the viewpoint of improving the elongation at break of the film, the draw ratio is preferably in the range of 2.0 to 4.0 times in the TD direction, and more preferably in the range of 2.5 to 3.5 times.
TD方向への延伸工程における温度は、Tg〜(Tg+30)℃の範囲とすることが好ましく、(Tg+5)〜(Tg+20)℃の範囲とすることがより好ましい。 The temperature in the stretching process in the TD direction is preferably in the range of Tg to (Tg + 30) ° C., and more preferably in the range of (Tg + 5) to (Tg + 20) ° C.
TD方向へフィルムを延伸した状態で、延伸フィルムを熱固定及び緩和処理する。熱固定及び緩和処理は250〜280℃の範囲の温度で行われることが好ましい。熱固定及び緩和処理の合計時間は、フィルムの厚みが50μm未満の場合、1〜15秒の範囲、好ましくは5〜10秒の範囲である。また、フィルムの厚みが50μmを超える場合、熱固定と緩和処理の合計時間は、10〜40秒の範囲、好ましくは20〜30秒の範囲である。熱固定及び緩和処理は1段階で行ってもよく、2段以上に分けて行ってもよい。 With the film stretched in the TD direction, the stretched film is heat-set and relaxed. The heat setting and relaxation treatment is preferably performed at a temperature in the range of 250 to 280 ° C. The total time for heat setting and relaxation treatment is in the range of 1 to 15 seconds, preferably in the range of 5 to 10 seconds, when the film thickness is less than 50 μm. When the thickness of the film exceeds 50 μm, the total time for heat setting and relaxation treatment is in the range of 10 to 40 seconds, preferably in the range of 20 to 30 seconds. The heat setting and relaxation treatment may be performed in one stage, or may be performed in two or more stages.
さらに、フィルムを室温まで、必要ならば、MD方向及びTD方向に弛緩処理を施しながら、冷やして巻取り、目的とする二軸配向ポリアリーレンスルフィドフィルムを得ることができる。 Furthermore, the film can be cooled and rolled up to room temperature, if necessary, in the MD direction and TD direction, if necessary, to obtain the desired biaxially oriented polyarylene sulfide film.
ポリアリーレンスルフィドフィルムの160℃におけるフィルムのMDあるいはTD方向のどちらか一方について50%破断伸度は、100%以上の範囲であることが好ましく、110%以上の範囲であることがより好ましく、120%以上の範囲であることがより好ましい。また、160℃におけるポリアリーレンスルフィドフィルムのMD方向について50%平均破断強度は、30〜80MPaの範囲であることが好ましく、40〜70MPaの範囲であることがより好ましく、50〜60MPaの範囲であることがより好ましい。 The 50% elongation at break of the polyarylene sulfide film at 160 ° C. in either the MD or TD direction is preferably 100% or more, more preferably 110% or more, and 120 % Or more is more preferable. The 50% average breaking strength in the MD direction of the polyarylene sulfide film at 160 ° C. is preferably in the range of 30 to 80 MPa, more preferably in the range of 40 to 70 MPa, and in the range of 50 to 60 MPa. It is more preferable.
ポリアリーレンスルフィドフィルムは、160℃におけるフィルムのMD方向又はTD方向のどちらか一方の破断伸度が100%以上であり、かつ、160℃におけるフィルムのMD方向又はTD方向のどちらか一方の破断応力が30〜80MPaの範囲であることが好ましい。破断伸度及び破断応力が上記関係を満たすことにより、製膜時のフィルム破れの発生をより抑制することが可能である。 The polyarylene sulfide film has a breaking elongation in either the MD direction or TD direction of the film at 160 ° C. of 100% or more, and the breaking stress in either the MD direction or TD direction of the film at 160 ° C. Is preferably in the range of 30 to 80 MPa. When the breaking elongation and breaking stress satisfy the above relationship, the occurrence of film breakage during film formation can be further suppressed.
破断伸度及び破断応力は、ASTM−D882に規定された方法に従い、インストロンタイプの引張試験機を用いて測定される値を示す。より具体的な方法は、測定方向を引張方向に切り出したサンプルを上下の引張試験機のチャック部分で挟んで引張試験を行い、フィルムサンプルが破断したときの伸度、応力をそれぞれ破断伸度、破断応力として測定する。試料サイズが幅10mm×長さ150mm、試長間100mmのフィルムに対して引張り速度を300mm/分として、160℃でインストロンタイプの引張試験機を用いて測定を行う。 The breaking elongation and breaking stress indicate values measured using an Instron type tensile tester according to the method defined in ASTM-D882. A more specific method is to perform a tensile test by sandwiching a sample cut out in the tensile direction with a chuck part of an upper and lower tensile tester, and when the film sample breaks, the stress is the elongation at break, Measured as the breaking stress. Measurement is performed at 160 ° C. using an Instron type tensile tester on a film having a sample size of 10 mm width × 150 mm length and 100 mm between test lengths at a tensile speed of 300 mm / min.
ポリアリーレンスルフィドフィルムの熱収縮率は、150℃、30分の条件下で熱処理した際に、MD方向に2.5%以下であることが好ましく、TD方向に4.0%以下であることが好ましい。 The heat shrinkage ratio of the polyarylene sulfide film is preferably 2.5% or less in the MD direction and 4.0% or less in the TD direction when heat-treated at 150 ° C. for 30 minutes. preferable.
ポリアリーレンスルフィドフィルムの厚さは特に限定されるものではないが、成形加工時の追従性の観点から、その下限が100μm以上であることが好ましく、150μm以上であることがより好ましい。一方、成膜性の観点から、その上限は1000μm以下の範囲であることが好ましく、さらに、500μm以下の範囲であることがより好ましい。なお、本発明において「フィルム」には、長さ、幅に特に制限はなく、平面状成形物であり、テープ類、リボン類を含むものとする。なお、平面状成形物は厚さにより、シートと称される場合もあり、例えば、高分子学会編集の高分子辞典(朝倉書店、1971年)によれば、200μm未満をフィルムとし、200μm以上をシートとする区別が記載されている。しかし、一般的には、フィルムとシートとを区別することは難しい。したがって、本発明では両者をあわせて「フィルム」と言うものとする。 The thickness of the polyarylene sulfide film is not particularly limited, but the lower limit is preferably 100 μm or more, and more preferably 150 μm or more, from the viewpoint of followability during molding. On the other hand, from the viewpoint of film formability, the upper limit is preferably in the range of 1000 μm or less, and more preferably in the range of 500 μm or less. In the present invention, the “film” is not particularly limited in length and width, and is a flat molded product and includes tapes and ribbons. The planar molded product may be referred to as a sheet depending on the thickness. For example, according to a polymer dictionary edited by the Society of Polymer Science (Asakura Shoten, 1971), a film having a thickness of less than 200 μm and a thickness of 200 μm or more is used. The distinction between sheets is described. However, in general, it is difficult to distinguish between a film and a sheet. Therefore, in the present invention, both are collectively referred to as “film”.
上記製膜方法については、上記ポリアリーレンスルフィド樹脂を含む組成物に対しても適用することができる。 About the said film forming method, it can apply also to the composition containing the said polyarylene sulfide resin.
本実施形態に係るポリアリーレンスルフィド樹脂組成物は、単独で又は他の材料と組み合わせて、射出成形、押出成形、圧縮成形及びブロー成形のような各種溶融加工法により、耐熱性、成形加工性、寸法安定性等に優れた成形品に加工することができる。本実施形態に係るポリアリーレンスルフィド樹脂組成物は、加熱されたときのガス発生量が少ないことから、高品質の成形品の容易な製造を可能にする。 The polyarylene sulfide resin composition according to the present embodiment can be used alone or in combination with other materials by various melt processing methods such as injection molding, extrusion molding, compression molding and blow molding, heat resistance, molding processability, It can be processed into a molded product having excellent dimensional stability. Since the polyarylene sulfide resin composition according to the present embodiment generates a small amount of gas when heated, it enables easy production of a high-quality molded product.
本実施形態に係るポリアリーレンスルフィドフィルムは、ポリアリーレンスルフィド樹脂が本来有する耐熱性、寸法安定性等の諸性能も具備しているので、例えば、コネクタ、プリント基板及び封止成形品等の電気・電子部品、ランプリフレクター及び各種電装品部品などの自動車部品、各種建築物、航空機及び自動車などの内装用材料、OA機器部品、カメラ部品及び時計部品などの精密部品等の分野で用いられるフィルムとして使用することができる。これらの用途に用いる際には、本実施形態に係るポリアリーレンスルフィドフィルムを単独で使用してもよく、その他のフィルムと適宜組み合わせて用いてもよい。 The polyarylene sulfide film according to this embodiment also has various performances such as heat resistance and dimensional stability inherent to the polyarylene sulfide resin. Used as a film used in the fields of automotive parts such as electronic parts, lamp reflectors and various electrical parts, interior materials for various buildings, aircraft and automobiles, precision parts such as OA equipment parts, camera parts and watch parts can do. When used in these applications, the polyarylene sulfide film according to this embodiment may be used alone, or may be used in appropriate combination with other films.
以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
以下に示す実施例では、下記の試薬を使用した。
メチルフェニルスルホキシド:東京化成工業(株)製、純度98%
チオアニソール:和光純薬工業(株)製、純度99%
メタンスルホン酸:和光純薬工業(株)製、和光特級
60%過塩素酸:和光純薬工業(株)製、和光一級
ピリジン:和光純薬工業(株)製、試薬特級
炭酸水素カリウム:和光純薬工業(株)製、試薬特級
臭素:和光純薬工業(株)製、試薬特級
トリフルオロメタンスルホン酸:和光純薬工業(株)製、和光特級
キノリン:和光純薬工業(株)製、試薬特級
N−メチルピロリドン:和光純薬工業(株)製、和光一級
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
In the examples shown below, the following reagents were used.
Methyl phenyl sulfoxide: Tokyo Chemical Industry Co., Ltd., purity 98%
Thioanisole: Wako Pure Chemical Industries, 99% purity
Methanesulfonic acid: Wako Pure Chemical Industries, Ltd., Wako Special Grade 60% Perchloric acid: Wako Pure Chemical Industries, Ltd., Wako First Grade Pyridine: Wako Pure Chemical Industries, Ltd. Kojun Pharmaceutical Co., Ltd., reagent grade bromine: manufactured by Wako Pure Chemical Industries, Ltd., reagent grade trifluoromethanesulfonic acid: manufactured by Wako Pure Chemical Industries, Ltd., Wako special grade quinoline: manufactured by Wako Pure Chemical Industries, Ltd., Reagent special grade N-methylpyrrolidone: Wako Pure Chemical Industries, Ltd., Wako first grade
1.評価法
1−1.同定方法(1H−NMR、13C−NMR)
BRUKER製DPX−400の装置にて、各種重溶剤に溶解させて測定した。
1. Evaluation method 1-1. Identification method ( 1 H-NMR, 13 C-NMR)
Measurement was conducted by dissolving in various heavy solvents using a DPX-400 apparatus manufactured by BRUKER.
1−2.残存ハロゲン量の分析
蛍光X線(理学電機工業株式会社製ZSX100e)にて、粉末を測定し、残存ハロゲン量を分析した。
1-2. Analysis of residual halogen content The powder was measured with fluorescent X-rays (ZSX100e manufactured by Rigaku Corporation), and the residual halogen content was analyzed.
2.モノマーの合成
(過塩素酸メチルフェニル[4−(メチルチオ)フェニル]スルホニウムの合成)
2. Monomer synthesis (Synthesis of methylphenyl perchlorate [4- (methylthio) phenyl] sulfonium)
3Lの3つ口フラスコに、メチルフェニルスルホキシド70.0[g]とチオアニソール62.0[g]を入れて、窒素雰囲気下、氷浴で5℃以下に冷却した。メタンスルホン酸1[L]を10℃以下に保って、反応溶液に加えた。その後氷浴を外して、室温に温度を上げ、20時間攪拌した。次に、攪拌後の反応溶液を、60%過塩素酸水溶液2[L]に投入し、1時間攪拌した。水1[L]及びジクロロメタン1[L]加えて、抽出/分液操作により、有機層を回収した。さらに水層にジクロロメタン500[mL]を加えて、有機層を回収する操作を2回行った。回収した有機層に無水硫酸マグネシウムを加えて脱水した。脱水後、ろ過によって硫酸マグネシウムをろ別し、ロータリーエバポレーターでろ液を濃縮し、溶媒を除去した。残った粘調性固体にエーテルを加えて結晶化させた。結晶物をろ過によってろ別し、得られた固体を20時間減圧乾燥させることで、過塩素酸メチルフェニル[4−(メチルチオ)フェニル]スルホニウム130.0[g](収率75%)を得た。1H−NMR測定により、目的物が合成されたことを確認した。
1H−NMR(溶媒CDCl3):2.49,3.63,7.40,7.65,7.78.7.85[ppm]
Methyl phenyl sulfoxide 70.0 [g] and thioanisole 62.0 [g] were placed in a 3 L three-necked flask and cooled to 5 ° C. or lower in an ice bath under a nitrogen atmosphere. Methanesulfonic acid 1 [L] was kept at 10 ° C. or lower and added to the reaction solution. Thereafter, the ice bath was removed, the temperature was raised to room temperature, and the mixture was stirred for 20 hours. Next, the stirred reaction solution was added to a 60% perchloric acid aqueous solution 2 [L] and stirred for 1 hour. Water 1 [L] and dichloromethane 1 [L] were added, and the organic layer was recovered by extraction / separation operation. Furthermore, dichloromethane [500 mL] was added to the aqueous layer, and the operation of recovering the organic layer was performed twice. The collected organic layer was dehydrated by adding anhydrous magnesium sulfate. After dehydration, magnesium sulfate was removed by filtration, and the filtrate was concentrated with a rotary evaporator to remove the solvent. The remaining viscous solid was crystallized by adding ether. The crystalline product was filtered off and the resulting solid was dried under reduced pressure for 20 hours to obtain methyl phenyl [4- (methylthio) phenyl] sulfonium perchlorate 130.0 [g] (yield 75%). It was. It was confirmed by 1 H-NMR measurement that the target product was synthesized.
1 H-NMR (solvent CDCl 3 ): 2.49, 3.63, 7.40, 7.65, 7.78.7.85 [ppm]
(メチル−4−(フェニルチオ)フェニルスルフィドの合成) (Synthesis of methyl-4- (phenylthio) phenyl sulfide)
2Lの3つ口フラスコに、過塩素酸メチルフェニル[4−(メチルチオ)フェニル]スルホニウム100.0[g]を入れて、窒素雰囲気下、ピリジン500[mL]を添加して30分攪拌した。その後、100[℃]に昇温し、30分攪拌した。反応溶液を3[L]の10%HCl溶液に投入して、10分攪拌し、ジクロロメタンで抽出/分液操作により有機層を回収した。回収した有機層に無水硫酸マグネシウムを加えて脱水した。ろ過によって硫酸マグネシウムをろ別し、ロータリーエバポレーターでろ液を濃縮し、溶媒を除去した。ヘキサン/クロロホルム=3/1(体積比)の展開溶媒を用いて、カラムクロマトグラフィーにより、目的成分を回収し、ロータリーエバポレーターで溶媒を除去した。
得られた液体を20時間減圧乾燥することで、メチル4−(フェニルチオ)フェニルスルフィド55.5[g](収率83%)を得た。1H−NMR測定により、目的物が合成されたことを確認した。
1H−NMR(溶媒CDCl3):2.48,7.18〜7.23、7.28〜7.31[ppm]
In a 2 L three-necked flask, 100.0 [g] of methylphenyl perchlorate [4- (methylthio) phenyl] sulfonium was added, and 500 [mL] of pyridine was added and stirred for 30 minutes in a nitrogen atmosphere. Then, it heated up at 100 [degreeC] and stirred for 30 minutes. The reaction solution was poured into 3 [L] of 10% HCl solution, stirred for 10 minutes, and the organic layer was recovered by extraction / separation operation with dichloromethane. The collected organic layer was dehydrated by adding anhydrous magnesium sulfate. Magnesium sulfate was removed by filtration, and the filtrate was concentrated with a rotary evaporator to remove the solvent. The target component was recovered by column chromatography using a developing solvent of hexane / chloroform = 3/1 (volume ratio), and the solvent was removed by a rotary evaporator.
The obtained liquid was dried under reduced pressure for 20 hours to obtain 55.5 [g] (yield 83%) of methyl 4- (phenylthio) phenyl sulfide. It was confirmed by 1 H-NMR measurement that the target product was synthesized.
1 H-NMR (solvent CDCl 3 ): 2.48, 7.18 to 7.23, 7.28 to 7.31 [ppm]
(メチル4−(フェニルチオ)フェニルスルホキシドの合成) (Synthesis of methyl 4- (phenylthio) phenyl sulfoxide)
5Lの3つ口フラスコに、メチル4−(フェニルチオ)フェニルスルフィド50.0[g]と炭酸水素カリウム43.0[g]、水390[mL]、ジクロロメタン500[mL]、を入れて30分攪拌した。ジクロロメタン500[mL]に臭素34.5[g]溶解させた溶液を反応容器内に5分間で滴下し、30分攪拌した。反応溶液に塩化カリウム(KCl)飽和溶液1[L]とジロロメタン1[L]を投入し、抽出/分液操作により有機層を回収した。残った水層にジクロロメタン500[mL]を加えて、有機層を回収する操作を2回行った。回収した有機層を水洗し、分液操作により有機層を回収、無水硫酸マグネシウムを加えて脱水した。脱水後、ろ過により硫酸マグネシウムをろ別し、ロータリーエバポレーターでろ液を濃縮し、溶媒を除去した。残った粘調性固体にエーテルを加えて結晶化させた。結晶物をろ過によってろ別し、得られた固体を20時間減圧乾燥させることで、メチル4−(フェニルチオ)フェニルスルホキシド30.5[g](収率57%)を得た。1H−NMR、13C−NMR測定により、目的物が合成されていることを確認した。また蛍光X線での分析より残存ハロゲン量が検出範囲外であることが確認できた。
1H−NMR(溶媒CDCl3):2.71,7.34,7.39,7.46,7.52[ppm]
13C−NMR(溶媒CDCl3):46.0,124.5,128.5,129.7,133.0,133.5,141.5,144.3[ppm]
In a 5 L three-necked flask, 50.0 [g] methyl 4- (phenylthio) phenyl sulfide, 43.0 [g] potassium hydrogen carbonate, 390 [mL] water, and 500 [mL] dichloromethane were added for 30 minutes. Stir. A solution prepared by dissolving 34.5 [g] of bromine in 500 [mL] of dichloromethane was dropped into the reaction vessel over 5 minutes and stirred for 30 minutes. Potassium chloride (KCl) saturated solution 1 [L] and dichloromethane 1 [L] were added to the reaction solution, and the organic layer was recovered by extraction / separation operation. Dichloromethane 500 [mL] was added to the remaining aqueous layer, and the operation of recovering the organic layer was performed twice. The collected organic layer was washed with water, and the organic layer was collected by a liquid separation operation, and dehydrated by adding anhydrous magnesium sulfate. After dehydration, magnesium sulfate was filtered off, and the filtrate was concentrated with a rotary evaporator to remove the solvent. The remaining viscous solid was crystallized by adding ether. The crystalline product was filtered off and the resulting solid was dried under reduced pressure for 20 hours to obtain 30.5 [g] (yield 57%) of methyl 4- (phenylthio) phenyl sulfoxide. It was confirmed by 1 H-NMR and 13 C-NMR measurements that the target product was synthesized. Further, it was confirmed from the analysis by fluorescent X-ray that the residual halogen amount was outside the detection range.
1 H-NMR (solvent CDCl 3 ): 2.71, 7.34, 7.39, 7.46, 7.52 [ppm]
13 C-NMR (solvent CDCl 3 ): 46.0, 124.5, 128.5, 129.7, 133.0, 133.5, 141.5, 144.3 [ppm]
3.ポリ(アリーレンスルホニウム塩)の合成 3. Synthesis of poly (arylenesulfonium salt)
500mLの3つ口フラスコに、メチル4−(フェニルチオ)フェニルスルホキシド2.0[g]を入れ、窒素雰囲気下、氷浴にて冷却した。その後、トリフルオロメタンスルホン酸10[mL]をゆっくり滴下した。室温まで昇温し、20時間攪拌した。攪拌後の反応溶液に水を入れて、10分攪拌した後、ろ過した。その後、水洗及びろ過し、固体を回収した。ロータリーエバポレーターで溶媒を除去し、減圧乾燥することで、目的物であるポリ[トリフルオロメタンスルホン酸メチル(4−フェニルチオフェニル)スルホニウム]2.8[g](収率91%)を得た。
分析用に得られた目的物から少量を分取し、過剰のメタンスルホン酸によってイオン交換後、重DMSOに溶解させたものについて1H−NMR測定を行うことにより、目的物が合成されていることを確認した。
1H−NMR(重DMSO):3.27,3.83,7.66,8.08[ppm]
Methyl 4- (phenylthio) phenyl sulfoxide 2.0 [g] was placed in a 500 mL three-necked flask and cooled in an ice bath under a nitrogen atmosphere. Thereafter, trifluoromethanesulfonic acid 10 [mL] was slowly added dropwise. The mixture was warmed to room temperature and stirred for 20 hours. Water was added to the reaction solution after stirring, and the mixture was stirred for 10 minutes and then filtered. Then, it washed with water and filtered and collect | recovered solids. The solvent was removed with a rotary evaporator and dried under reduced pressure to obtain 2.8 [g] (yield 91%) of poly (methyl trifluoromethanesulfonate (4-phenylthiophenyl) sulfonium) as the target product.
A small amount is collected from the target product obtained for analysis, and the target product is synthesized by performing 1 H-NMR measurement on a sample dissolved in heavy DMSO after ion exchange with excess methanesulfonic acid. It was confirmed.
1 H-NMR (deuterated DMSO): 3.27, 3.83, 7.66, 8.08 [ppm]
4.合成したポリアリーレンスルフィド樹脂の評価方法 4). Evaluation method of synthesized polyarylene sulfide resin
4−1.ガラス転移温度及び融点
パーキンエルマー製DSC装置 Pyris Diamondを用いて、50mL/minの窒素流下、20℃/minの昇温条件で40〜350℃まで測定を行い、ガラス転移温度及び融点を求めた。
4-1. Glass Transition Temperature and Melting Point Using a Perkin Elmer DSC device Pyris Diamond, measurement was performed from 40 to 350 ° C. under a nitrogen flow rate of 50 mL / min and a temperature rising condition of 20 ° C./min to obtain a glass transition temperature and a melting point.
4−2.赤外吸収スペクトル
得られたPPS樹脂を350℃でプレスしたのち、急冷することによって非晶性を示すフィルムを作成し、フーリエ変換赤外分光装置(以下「FT−IR装置」と略記する日本分光製FTIR―6100を用いた。)で測定した。赤外吸収スペクトルのうち、2920cm−1の吸収の有無を測定した。
4-2. Infrared absorption spectrum After the obtained PPS resin is pressed at 350 ° C., a film showing an amorphous property is prepared by quenching, and a Fourier transform infrared spectrometer (hereinafter referred to as “FT-IR apparatus”) is used. FTIR-6100 manufactured by KK was used.) In the infrared absorption spectrum, the presence or absence of absorption at 2920 cm −1 was measured.
4−3.ポリアリーレンスルフィド樹脂の溶融粘度
ポリアリーレンスルフィド樹脂を島津製作所製フローテスター、CFT−500Cを用い、300℃、荷重:1.96×106Pa、L/D=10/1にて、6分間保持した後に溶融粘度を測定した。
4-3. Melt viscosity of polyarylene sulfide resin The polyarylene sulfide resin is held for 6 minutes at 300 ° C. under a load of 1.96 × 10 6 Pa and L / D = 10/1 using a flow tester CFT-500C manufactured by Shimadzu Corporation. After that, the melt viscosity was measured.
4−4.Mw及びMtop(分子量分布)
ポリアリーレンスルフィド樹脂の重量平均分子量及びピーク分子量を、ゲル浸透クロマトグラフィーを用いて、下記の測定条件により測定した。得られたMw及びMtopからMw/Mtopを算出した。6種類の単分散ポリスチレンを校正に用いた。
装置:超高温ポリマー分子量分布測定装置(株式会社センシュー科学製「SSC−7000」)
カラム:UT−805L(昭和電工株式会社製)
カラム温度:210℃
溶媒:1−クロロナフタレン
測定方法:UV検出器(360nm)
4-4. Mw and Mtop (Molecular weight distribution)
The weight average molecular weight and peak molecular weight of the polyarylene sulfide resin were measured under the following measurement conditions using gel permeation chromatography. Mw / Mtop was calculated from the obtained Mw and Mtop. Six types of monodisperse polystyrene were used for calibration.
Apparatus: Ultra-high temperature polymer molecular weight distribution measuring apparatus (“SSC-7000” manufactured by Senshu Scientific Co., Ltd.)
Column: UT-805L (made by Showa Denko KK)
Column temperature: 210 ° C
Solvent: 1-chloronaphthalene Measurement method: UV detector (360 nm)
4−5.ハロゲン量
ポリマー中の塩素含有量は、ダイアンインスツルメンツ燃焼ガス吸収装置でポリマーを燃焼させ発生したガスを純水に吸収させ、吸収液中の塩素イオンをダイオネクスイオンクロマトグラフで定量した。
4-5. Halogen content The chlorine content in the polymer was determined by absorbing the gas generated by burning the polymer with a Diane Instruments combustion gas absorption device into pure water, and quantifying the chlorine ion in the absorption solution with a Dionex ion chromatograph.
4−6.色調L*値
白色度(ホットプレスL*値)は、ポリアリーレンスルフィド樹脂を320℃で1.5分間予熱後、320℃で1.5分間、続けて130℃で1.5分間、30kg/cm2の圧力でホットプレスにより加圧成形して円盤状プレートを作製した。これについて、色彩色差計(東京電色株式会社製、Color Ace)を用いて測定した。
4-6. Color tone L * value Whiteness (hot press L * value) was determined by preheating the polyarylene sulfide resin at 320 ° C. for 1.5 minutes, then at 320 ° C. for 1.5 minutes, then at 130 ° C. for 1.5 minutes, 30 kg / A disk-shaped plate was produced by pressure molding with a hot press at a pressure of cm 2 . About this, it measured using the color difference meter (The Tokyo Denshoku Co., Ltd. make, Color Ace).
4−7.非ニュートニアン指数
ポリアリーレンスルフィド樹脂をキャピラリーレオメーターにて、温度300℃の条件下、直径1mm、長さ40mmのダイスを用いて100〜1000(sec−1)の剪断速度に対する剪断応力を測定し、これらの対数プロットした傾きから計算した値である。
4-7. Non-Newtonian index A polyarylene sulfide resin was measured with a capillary rheometer at a temperature of 300 ° C. using a die with a diameter of 1 mm and a length of 40 mm for a shear rate of 100 to 1000 (sec −1 ). These are values calculated from the slopes of these logarithmic plots.
4−8.発生ガス量
ガスクロマトグラフ質量分析装置を用いて、ポリアリーレンスルフィド樹脂又は樹脂組成物の所定量のサンプルを325℃で15分間加熱し、そのときの発生ガス量を質量%として定量した。
4-8. Generated Gas Amount Using a gas chromatograph mass spectrometer, a predetermined amount of a sample of polyarylene sulfide resin or resin composition was heated at 325 ° C. for 15 minutes, and the amount of generated gas at that time was determined as mass%.
5.ポリアリーレンスルフィド樹脂の合成(ポリ(アリーレンスルホニウム塩)の脱アルキル化又は脱アリール化)
(実施例1)
5. Synthesis of polyarylene sulfide resin (dealkylation or dearylation of poly (arylenesulfonium salt))
Example 1
合成例1で得られたポリ[トリフルオロメタンスルホン酸メチル(4−フェニルチオフェニル)スルホニウム]2.0[g]を100mLナスフラスコに入れ、脱アルキル化剤又は脱アリール化剤として、N−メチル−2−ピロリドン5.5[mL](10当量)を加えて、室温で30分攪拌した後に、100℃に昇温し48時間攪拌した。攪拌後の反応溶液を室温まで冷却した後に、水に投入し、析出物をろ過にてろ別し、水80[mL]で3回洗浄した。得られた固体を熱風乾燥機を用いて120℃で一晩乾燥して、ポリフェニレンスルフィド0.83[g](収率73%)を得た。
得られた固体について熱分析を行った結果、ガラス転移温度(Tg)92℃、融点278℃であったことから、ポリフェニレンスルフィド樹脂(PPS樹脂)が生成していることを確認した。
また、赤外吸収スペクトルを測定したところ、図1のように、2917[cm-1]のピークの存在が認められた。
また、このポリマーの溶融粘度は370Pa・s、Mtopは52000、Mwは49000であった。
また、ハロゲン量は50ppm以下と大幅な低減が認められた。
また、L値は75、非ニュートン指数は1.1であった。
発生ガス量は0.1[wt%]と少なかった。
Poly [methyl trifluoromethanesulfonate (4-phenylthiophenyl) sulfonium] 2.0 [g] obtained in Synthesis Example 1 was placed in a 100 mL eggplant flask, and N-methyl was used as a dealkylating agent or dearylating agent. 2-Pyrrolidone 5.5 [mL] (10 equivalents) was added and stirred at room temperature for 30 minutes, then heated to 100 ° C. and stirred for 48 hours. The reaction solution after stirring was cooled to room temperature, and then poured into water, and the precipitate was filtered off and washed three times with 80 [mL] of water. The obtained solid was dried overnight at 120 ° C. using a hot air dryer to obtain 0.83 [g] (yield 73%) of polyphenylene sulfide.
As a result of conducting a thermal analysis on the obtained solid, it was confirmed that a polyphenylene sulfide resin (PPS resin) was produced because it had a glass transition temperature (Tg) of 92 ° C. and a melting point of 278 ° C.
Further, when the infrared absorption spectrum was measured, the presence of a peak at 2917 [cm −1 ] was recognized as shown in FIG.
Further, this polymer had a melt viscosity of 370 Pa · s, Mtop of 52000, and Mw of 49000.
In addition, the halogen content was found to be significantly reduced to 50 ppm or less.
The L value was 75, and the non-Newton index was 1.1.
The amount of generated gas was as small as 0.1 [wt%].
(比較例1)
圧力計、温度計、コンデンサ−、デカンタ−を連結した撹拌翼付きジルコニウムライニングの1リットルオートクレーブにp−ジクロロベンゼン(以下、「p−DCB」と略記する。)220.5g(1.5モル)、NMP29.7g(0.3モル)、47.43質量%NaSH水溶液177.29g(1.5モル)、及び48.71質量%NaOH水溶液123.18g(1.5モル)を仕込み、撹拌しながら窒素雰囲気下で173℃まで2時間掛けて昇温して、水177.98gを留出させた後、釜を密閉した。その際、共沸により留出したp−DCBはデカンタ−で分離して、随時釜内に戻した。脱水終了後、内温を160℃に冷却し、NMP267.65g(2.7モル)を仕込み、230℃まで昇温し、230℃で5時間撹拌した後、250℃まで40分で昇温し、250℃で1時間撹拌した。冷却後、得られたスラリーを3リットルの水に注いで80℃で1時間撹拌した後、濾過した。このケーキを再び3リットルの温水で1時間撹拌し、洗浄した後、濾過した。この操作を4回繰り返し、濾過後、熱風乾燥機を用いて120℃で一晩乾燥して白色の粉末状のPPS 154gを得た。
得られた固体について熱分析を行った結果、ガラス転移温度(Tg)92℃、融点277℃であったことから、ポリフェニレンスルフィド樹脂(PPS樹脂)が生成していることを確認した。
また、赤外吸収スペクトルを測定したところ、図2のように、2910cm−1〜2930cm−1の範囲に吸収ピークの存在は認めらなかった。
また、このポリマーの溶融粘度は220Pa・s、Mtopは45000、Mwは44000であった。
また、ハロゲン量は1700ppmであった。
また、L値は77、非ニュートン指数は1.1であった。
また、発生ガス量は0.5[wt%]だった。
(Comparative Example 1)
220.5 g (1.5 mol) of p-dichlorobenzene (hereinafter abbreviated as “p-DCB”) in a 1-liter autoclave of zirconium lining with stirring blades connected with a pressure gauge, a thermometer, a condenser, and a decanter. , 29.7 g (0.3 mol) of NMP, 177.29 g (1.5 mol) of 47.43 wt% aqueous NaOH solution, and 123.18 g (1.5 mol) of 48.71 wt% aqueous NaOH solution were stirred and stirred. Then, the temperature was raised to 173 ° C. over 2 hours under a nitrogen atmosphere to distill 177.98 g of water, and the kettle was sealed. At that time, p-DCB distilled by azeotropic distillation was separated by a decanter and returned to the inside of the kettle as needed. After completion of dehydration, the internal temperature was cooled to 160 ° C., 267.65 g (2.7 mol) of NMP was charged, the temperature was raised to 230 ° C., stirred at 230 ° C. for 5 hours, and then heated to 250 ° C. in 40 minutes. , And stirred at 250 ° C. for 1 hour. After cooling, the resulting slurry was poured into 3 liters of water, stirred at 80 ° C. for 1 hour, and then filtered. The cake was again stirred with 3 liters of warm water for 1 hour, washed and filtered. This operation was repeated 4 times, and after filtration, it was dried overnight at 120 ° C. using a hot air dryer to obtain 154 g of white powdery PPS.
As a result of conducting a thermal analysis on the obtained solid, it was confirmed that a polyphenylene sulfide resin (PPS resin) was produced because it had a glass transition temperature (Tg) of 92 ° C. and a melting point of 277 ° C.
The measured infrared absorption spectrum, as shown in FIG. 2, the presence of absorption peak in the range of 2910cm -1 ~2930cm -1 did et al observed.
Further, this polymer had a melt viscosity of 220 Pa · s, Mtop of 45000, and Mw of 44,000.
The halogen content was 1700 ppm.
The L value was 77 and the non-Newton index was 1.1.
The amount of generated gas was 0.5 [wt%].
6.ポリアリーレンスルフィドフィルムの製造と評価
実施例1及び比較例1で得られた白色粉末状のポリマー(PPS樹脂)30000質量部をタンブラーを用いて均一に混合した後、2軸混練押出機(TEM−35B、東芝機械)を用いて300℃で溶融混練して、ペレット状のポリマーを得た。得られたペレットを溶融部が320℃に加熱された押出機に供給した。押出機で溶融したポリマーを温度330℃に設定したフィルターでろ過した後、温度310℃に設定した口金から溶融押出して表面温度25℃のキャストドラムに正電荷を印加させながら密着させ冷却固化することで、未延伸フィルムを作製した。
この未延伸フィルムを、加熱された複数のロール群からなる縦延伸機を用い、加熱後、ロールの巻取速度の差を利用して、101℃のフィルム温度でフィルムの縦方向に3.2倍の延伸倍率で延伸した。その後、このフィルムの両端部をクリップで把持して、横延伸機(テンター)に導き、延伸温度101℃、延伸倍率3.3倍でフィルムの幅方向に延伸を行い、引き続いて温度200℃で4秒間熱処理(1段目熱処理)を行い、続いて260℃で4秒間熱処理(2段目熱処理)を行った。引き続き、260℃の弛緩処理ゾーンで4秒間横方向に5%弛緩処理を行った後、室温まで冷却した後、フィルムエッジを除去し、厚さ100μmの二軸配向ポリアリーレンスルフィドフィルムを作製した。
6). Production and Evaluation of Polyarylene Sulfide Film After mixing 30000 parts by weight of the white powdery polymer (PPS resin) obtained in Example 1 and Comparative Example 1 using a tumbler, a twin-screw kneading extruder (TEM-) 35B, Toshiba Machine) and melt-kneaded at 300 ° C. to obtain a pellet-shaped polymer. The obtained pellets were supplied to an extruder whose melting part was heated to 320 ° C. The polymer melted by the extruder is filtered through a filter set at a temperature of 330 ° C., then melt-extruded from a die set at a temperature of 310 ° C., and brought into close contact with a cast drum having a surface temperature of 25 ° C., and solidified by cooling. Thus, an unstretched film was produced.
This unstretched film was heated in a longitudinal stretching machine composed of a plurality of roll groups, and after heating, the difference in the winding speed of the roll was utilized to make a film temperature of 101 ° C. in the film longitudinal direction at a film temperature of 101 ° C. The film was stretched at a double stretch ratio. Thereafter, both ends of the film are gripped with clips and guided to a transverse stretching machine (tenter), stretched in the width direction of the film at a stretching temperature of 101 ° C. and a stretching ratio of 3.3 times, and subsequently at a temperature of 200 ° C. Heat treatment was performed for 4 seconds (first-stage heat treatment), followed by heat treatment at 260 ° C. for 4 seconds (second-stage heat treatment). Subsequently, after 5% relaxation treatment in the transverse direction for 4 seconds in a relaxation treatment zone at 260 ° C., the film edge was removed after cooling to room temperature, and a biaxially oriented polyarylene sulfide film having a thickness of 100 μm was produced.
6−1.引張特性(160℃・50%平均破断応力、160℃・50%平均破断伸度)
ASTM−D882に規定された方法に従って、インストロンタイプの引張試験機を用いて測定した。測定は下記の条件で行い、試料数10にて、フィルム長手方向、および幅方向のそれぞれについて平均値をとり、下記式にて50%平均破断応力、50%平均破断伸度を算出した。
50%平均破断応力=(フィルム長手方向における応力の平均値+フィルム幅方向における応力の平均値)/2
50%平均破断伸度=(フィルム長手方向における伸度の平均値+フィルム幅方向における伸度の平均値)/2
測定装置:オリエンテック(株)製フィルム強伸度自動測定装置“テンシロンAMF/RTA−100”
試料サイズ:幅10mm××長さ150mm、試長間100mm
引張り速度:300mm/分
6-1. Tensile properties (160 ° C, 50% average breaking stress, 160 ° C, 50% average breaking elongation)
According to the method prescribed | regulated to ASTM-D882, it measured using the Instron type tensile tester. The measurement was performed under the following conditions, and with 10 samples, an average value was taken for each of the film longitudinal direction and the width direction, and the 50% average breaking stress and 50% average breaking elongation were calculated by the following formulas.
50% average breaking stress = (average value of stress in the film longitudinal direction + average value of stress in the film width direction) / 2
50% average breaking elongation = (average elongation in the film longitudinal direction + average elongation in the film width direction) / 2
Measuring device: Orientec Co., Ltd. film strong elongation automatic measuring device “Tensilon AMF / RTA-100”
Sample size: width 10 mm ×× length 150 mm, sample length 100 mm
Pulling speed: 300mm / min
6−2.熱収縮率
JIS C−2318に規定された方法にしたがって測定した。試料幅10mm、試料長200mmのサンプルをギアオーブンにより150℃、30分間の条件下で熱処理し、試料長の変化から、下記式により熱収縮率を算出した。
熱収縮率(%)=[(熱処理前の長さ−熱処理後の長さ)/熱処理前の長さ]×100
6-2. Thermal contraction rate It measured according to the method prescribed | regulated to JISC-2318. A sample having a sample width of 10 mm and a sample length of 200 mm was heat-treated in a gear oven at 150 ° C. for 30 minutes, and the heat shrinkage rate was calculated from the change in the sample length by the following formula.
Thermal shrinkage rate (%) = [(length before heat treatment−length after heat treatment) / length before heat treatment] × 100
6−3.加工特性
160℃におけるフィルムの長手方向あるいは幅方向のどちらか一方の破断伸度が100%以上であり、かつ、160℃におけるフィルムの長手方向あるいは幅方向のどちらか一方の破断応力が30〜80MPaの範囲である場合に限り、加工特性を「○」とし、それ以外の場合を加工特性「×」とした。
6-3. Processing characteristics The elongation at break in either the longitudinal direction or the width direction of the film at 160 ° C. is 100% or more, and the breaking stress in either the longitudinal direction or the width direction of the film at 160 ° C. is 30 to 80 MPa. Only when it was in the range, the processing characteristics were “◯”, and the other cases were processing characteristics “x”.
6−4.製膜時のフィルム破れ
製膜時のフィルム破れは、合計時間24時間にわたり連続製膜を行った際、フィルム破れが5回以上起きた場合を「×」、フィルム破れが1回以上5回未満の範囲で起きた場合を「△」、フィルム破れが1回も発生しなかった場合を「○」とした。
6-4. Film breakage during film formation Film breakage during film formation is “x” when film breakage occurs 5 times or more when continuous film formation is performed for a total time of 24 hours, and film breakage is 1 time or more and less than 5 times The case where it occurred in the range of “Δ” was designated as “Δ”, and the case where no film breakage occurred was designated as “◯”.
得られた二軸配向ポリアリーレンスルフィドフィルムについて引張特性、熱収縮率、加工特性等の評価を行った。評価結果を表1に示す。 The obtained biaxially oriented polyarylene sulfide film was evaluated for tensile properties, thermal shrinkage, processing properties, and the like. The evaluation results are shown in Table 1.
表1に示される結果から明らかなように、実施例1では、高い引張特性と、充分に小さい熱収縮率といったポリアリーレンスルフィド樹脂本来の特性を有しつつ、製膜時のフィルム破れが抑制された。また、実施例1では、前述の通り、ポリアリーレンスルフィド樹脂の発生ガス量が低く抑制されていることが確認された。これにより、製膜時のフィルム破れなどが抑制された優れたフィルムが得られたことがわかる。 As is apparent from the results shown in Table 1, in Example 1, the film tearing at the time of film formation was suppressed while having the original characteristics of polyarylene sulfide resin such as high tensile properties and a sufficiently small heat shrinkage rate. It was. Moreover, in Example 1, as above-mentioned, it was confirmed that the generated gas amount of polyarylene sulfide resin is suppressed low. Thereby, it turns out that the outstanding film by which the film tear at the time of film forming etc. was suppressed was obtained.
Claims (4)
前記ポリアリーレンスルフィド樹脂が、下記一般式(1)で表される構成単位を有するポリ(アリーレンスルホニウム塩)と、
脂肪族アミド化合物とを反応させ、下記一般式(2)で表される構成単位を有するポリアリーレンスルフィド樹脂を得る工程を含む方法により得ることのできるものであり、
前記ポリアリーレンスルフィド樹脂が、−S−R2を有するものである、
ポリアリーレンスルフィドフィルムの製造方法。
(式中、R1は、直接結合、−Ar2−、−Ar2−S−又は−Ar2−O−を表し、Ar1及びAr2は、官能基を置換基として有してもよいアリーレン基を表し、R2は、炭素原子数1〜10のアルキル基又は炭素原子数1〜10のアルキル基を有していてもよいアリール基を表し、X−は、アニオンを表す。)
(式中、R1は、直接結合、−Ar2−、−Ar2−S−又は−Ar2−O−を表し、Ar1及びAr2は、官能基を置換基として有してもよいアリーレン基を表す。) Having a step of forming a polyarylene sulfide resin or a composition containing the same,
The polyarylene sulfide resin is a poly (arylenesulfonium salt) having a structural unit represented by the following general formula (1):
It can be obtained by a method comprising a step of reacting an aliphatic amide compound to obtain a polyarylene sulfide resin having a structural unit represented by the following general formula (2),
The polyarylene sulfide resin has -S-R 2 ;
A method for producing a polyarylene sulfide film.
(In the formula, R 1 represents a direct bond, -Ar 2 -, - Ar 2 -S- or -Ar 2 -O- to represent, Ar 1 and Ar 2 may have a functional group as a substituent Represents an arylene group, R 2 represents an aryl group which may have an alkyl group having 1 to 10 carbon atoms or an alkyl group having 1 to 10 carbon atoms, and X − represents an anion.)
(In the formula, R 1 represents a direct bond, -Ar 2 -, - Ar 2 -S- or -Ar 2 -O- to represent, Ar 1 and Ar 2 may have a functional group as a substituent Represents an arylene group.)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014243966A JP6607367B2 (en) | 2014-12-02 | 2014-12-02 | Polyarylene sulfide film and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014243966A JP6607367B2 (en) | 2014-12-02 | 2014-12-02 | Polyarylene sulfide film and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016108357A JP2016108357A (en) | 2016-06-20 |
JP6607367B2 true JP6607367B2 (en) | 2019-11-20 |
Family
ID=56121768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014243966A Active JP6607367B2 (en) | 2014-12-02 | 2014-12-02 | Polyarylene sulfide film and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6607367B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6614427B2 (en) * | 2015-02-12 | 2019-12-04 | Dic株式会社 | Polyarylene sulfide resin composition and molded article thereof |
JP6614428B2 (en) * | 2015-02-12 | 2019-12-04 | Dic株式会社 | Resin composition for water parts and piping for fluid |
JP6614426B2 (en) * | 2015-02-12 | 2019-12-04 | Dic株式会社 | Polyarylene sulfide resin composition and molded article thereof |
JP6590181B2 (en) * | 2015-02-12 | 2019-10-16 | Dic株式会社 | Resin composition for water parts and piping for fluid |
US10829447B2 (en) * | 2017-04-27 | 2020-11-10 | Sumitomo Chemical Company, Limited | Methionine production method and production equipment |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3123724B2 (en) * | 1992-02-29 | 2001-01-15 | 財団法人生産開発科学研究所 | Poly (alkyl-P-thiophenoxyphenylsulfonium salt) compound |
JP2988827B2 (en) * | 1994-05-11 | 1999-12-13 | オルガノ株式会社 | Method for producing sulfonated polyarylene sulfide compound |
JPH0948854A (en) * | 1995-08-08 | 1997-02-18 | Res Dev Corp Of Japan | Production of poly(aryl-p-arylene sulfonium salt) compound and aromatic high molecular compound containing the same and sulfonium group |
JP3145324B2 (en) * | 1996-12-27 | 2001-03-12 | 科学技術振興事業団 | Method for producing poly (thioarylene) compound |
JP4734930B2 (en) * | 2005-01-18 | 2011-07-27 | 東レ株式会社 | Polyarylene sulfide film |
JP2010070630A (en) * | 2008-09-18 | 2010-04-02 | Toray Ind Inc | Biaxially oriented polyarylene sulfide film and adhesive material using the same |
JP6327616B2 (en) * | 2013-09-03 | 2018-05-23 | Dic株式会社 | Resin composition containing polyarylene sulfide resin, method for producing the same, and molded article |
JP6489459B2 (en) * | 2013-09-03 | 2019-03-27 | Dic株式会社 | Method for producing polyarylene sulfide, method for producing poly (arylenesulfonium salt), and sulfoxide |
-
2014
- 2014-12-02 JP JP2014243966A patent/JP6607367B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2016108357A (en) | 2016-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10982049B2 (en) | Polyarylene sulfide resin and manufacturing method therefor, poly(arylene sulfonium salt) and manufacturing method therefor, and sulfoxide | |
JP6327616B2 (en) | Resin composition containing polyarylene sulfide resin, method for producing the same, and molded article | |
JP6607367B2 (en) | Polyarylene sulfide film and method for producing the same | |
JP6614426B2 (en) | Polyarylene sulfide resin composition and molded article thereof | |
JP6107959B2 (en) | Polyarylene sulfide film and method for producing the same | |
JP6634682B2 (en) | Polyarylene sulfide resin composition, molded article thereof, and electric vehicle part | |
JP6634681B2 (en) | Polyarylene sulfide resin composition, molded article thereof, and electric vehicle part | |
JP6617905B2 (en) | Polyarylene sulfide film and method for producing the same | |
JP6372700B2 (en) | Polyarylene sulfide fiber and method for producing the same | |
JP6614427B2 (en) | Polyarylene sulfide resin composition and molded article thereof | |
JP6809048B2 (en) | Polyarylene sulfide resin composition, its molded product and method for producing them | |
KR20200122406A (en) | Molded article of polyarylene sulfide resin composition and manufacturing method of same | |
JP6816408B2 (en) | Polyarylene sulfide resin composition and its molded product | |
JP6394961B2 (en) | Polyarylene sulfide fiber and method for producing the same | |
JP2019048995A (en) | Polyarylene sulfide resin and poly(arylene sulfonium salt) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171020 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20180220 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20181026 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20181101 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20181220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190227 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20190528 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20190624 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190807 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20190819 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191009 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6607367 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |