JP6607150B2 - Rotating electrical machine rotor - Google Patents

Rotating electrical machine rotor Download PDF

Info

Publication number
JP6607150B2
JP6607150B2 JP2016132440A JP2016132440A JP6607150B2 JP 6607150 B2 JP6607150 B2 JP 6607150B2 JP 2016132440 A JP2016132440 A JP 2016132440A JP 2016132440 A JP2016132440 A JP 2016132440A JP 6607150 B2 JP6607150 B2 JP 6607150B2
Authority
JP
Japan
Prior art keywords
magnetic
magnet insertion
magnetic pole
rotor
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132440A
Other languages
Japanese (ja)
Other versions
JP2018007438A (en
Inventor
宏之 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016132440A priority Critical patent/JP6607150B2/en
Publication of JP2018007438A publication Critical patent/JP2018007438A/en
Application granted granted Critical
Publication of JP6607150B2 publication Critical patent/JP6607150B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本開示は、回転電機のロータに係り、特に、埋込磁石型の回転電機のロータに関する。   The present disclosure relates to a rotor of a rotating electrical machine, and more particularly, to a rotor of an embedded magnet type rotating electrical machine.

埋込磁石型(Interior Permanent Magnet)回転電機のロータコアは、永久磁石を配置するための磁石挿入孔が設けられた磁性体薄板を複数枚積層した積層体を形成し、各磁石挿入孔に永久磁石を挿入して埋め込むことで製造される。矩形断面の永久磁石の場合、磁石挿入孔は、永久磁石より大きめの矩形孔とされるが、矩形孔の両端部を延ばして隣接する磁石挿入孔の間の磁気通路を狭くしてブリッジ部を形成し、隣接する永久磁石間での磁束の漏れを抑制することが行われる。   The rotor core of an interior permanent magnet rotating electric machine forms a laminated body in which a plurality of magnetic thin plates each having a magnet insertion hole for arranging a permanent magnet are laminated, and each magnet insertion hole has a permanent magnet. It is manufactured by inserting and embedding. In the case of a permanent magnet with a rectangular cross section, the magnet insertion hole is a larger rectangular hole than the permanent magnet, but the both ends of the rectangular hole are extended to narrow the magnetic path between adjacent magnet insertion holes, and the bridge portion is Forming and suppressing leakage of magnetic flux between adjacent permanent magnets is performed.

特許文献1では、ロータコアにおいてV字状に配置された1対の永久磁石で各磁極を形成し、各磁極のV字状配置の1対の磁石挿入孔において、永久磁石の周方向の位置決めをする突起部を設けることが開示されている。ここでは、各磁石挿入孔において、中央ブリッジ部側の外周側側面と、反中央ブリッジ部側の内周側側面にそれぞれ突起部が設けられている。   In Patent Document 1, each magnetic pole is formed by a pair of permanent magnets arranged in a V shape in the rotor core, and the positioning of the permanent magnets in the circumferential direction is performed in a pair of magnet insertion holes arranged in a V shape in each magnetic pole. It is disclosed that a protruding portion is provided. Here, in each magnet insertion hole, protrusions are provided on the outer peripheral side surface on the central bridge portion side and on the inner peripheral side surface on the anti-center bridge portion side, respectively.

特許文献2では、磁石挿入孔における永久磁石の位置決めのために、磁石挿入孔の縁部に永久磁石に向かって位置決め部を突出形成すると、位置決め部によって隣接する磁石挿入孔の間の磁気通路の面積が大きくなり、磁束の漏れが多くなることを指摘する。   In Patent Document 2, if a positioning part is formed to project toward the permanent magnet at the edge of the magnet insertion hole for positioning the permanent magnet in the magnet insertion hole, the magnetic path between the adjacent magnet insertion holes is formed by the positioning part. Point out that the area increases and the leakage of magnetic flux increases.

そこで、1枚の磁性体薄板における複数の磁極の内、1つの磁極に対応する磁石挿入孔にのみ位置決め部を設け、他の磁極に対応する磁石挿入孔には位置決め部を設けず、積層の際に1磁極分ずらす転積を行い、全ての永久磁石の位置決めを可能にしている。   Therefore, among the plurality of magnetic poles in one magnetic thin plate, a positioning portion is provided only in the magnet insertion hole corresponding to one magnetic pole, and a positioning portion is not provided in the magnet insertion hole corresponding to the other magnetic pole. At this time, the product is shifted by one magnetic pole to enable positioning of all permanent magnets.

特開2014−60835号公報JP 2014-60835 A 特開2014−07925号公報JP 2014-07925 A

永久磁石の位置決めと、隣接する永久磁石の間の磁束の漏れの抑制とを両立させるために、位置決めのある磁石挿入孔と位置決めのない磁石挿入孔とを設けると、ロータとしての電磁力にアンバランスが生じ、ベアリング荷重や騒音特性の低下を招く。そこで、ロータとしての電磁力のアンバランスを防ぎながら、永久磁石の位置決めと、隣接する永久磁石の間の磁束の漏れの抑制とを図る回転電機のロータが要望される。   In order to achieve both the positioning of the permanent magnet and the suppression of the leakage of magnetic flux between adjacent permanent magnets, if a magnet insertion hole with positioning and a magnet insertion hole without positioning are provided, the electromagnetic force as a rotor will be reduced. Balance occurs, causing a reduction in bearing load and noise characteristics. Therefore, there is a demand for a rotor of a rotating electrical machine that achieves positioning of a permanent magnet and suppression of leakage of magnetic flux between adjacent permanent magnets while preventing imbalance of electromagnetic force as a rotor.

本開示に係る回転電機のロータは、磁極を形成する永久磁石の配置用の磁石挿入孔が周方向に沿って配置された複数の磁性体薄板について、互いに1磁極分ずつずらす転積が行われた状態で積層された積層体において、磁石挿入孔のそれぞれに永久磁石が挿入された状態で形成された回転電機のロータであって、磁性体薄板は、1磁極分として、磁極の中心線に対し線対称に配置され、ロータの外周側に向かって互いの間隔距離が拡がり内周側で互いに近接したブリッジ部を形成するV字状に配置された一対の磁石挿入孔を有し、一対の磁石挿入孔の外周側短辺のそれぞれに永久磁石の位置決めをする外周側突起部を有し、内周側短辺のそれぞれには位置決め用の突起部を有さない第一磁極部分と、一対の磁石挿入孔の内周側短辺のそれぞれに永久磁石の位置決めをする内周側突起部を有し、外周側短辺のそれぞれには位置決め用の突起部を有さない第二磁極部分と、が交互に周方向に配置されている。   In the rotor of the rotating electrical machine according to the present disclosure, a plurality of magnetic thin plates in which the magnet insertion holes for arranging the permanent magnets forming the magnetic poles are arranged along the circumferential direction are shifted by one magnetic pole. A rotor of a rotating electrical machine formed with a permanent magnet inserted in each of the magnet insertion holes, and the magnetic thin plate is provided as one magnetic pole at the center line of the magnetic pole. A pair of magnet insertion holes arranged in a V shape that are arranged symmetrically with respect to each other, have a distance between each other toward the outer peripheral side of the rotor, and form bridge portions that are close to each other on the inner peripheral side. A first magnetic pole portion having an outer peripheral projection for positioning the permanent magnet on each of the outer peripheral short sides of the magnet insertion hole, and a pair of first magnetic pole portions not having a positioning projection on each of the inner peripheral short sides; Each of the inner peripheral short side of the magnet insertion hole It has an inner peripheral side protrusion for positioning of the permanent magnets, each of the outer peripheral side short side and the second pole portion having no protrusion for positioning, but are arranged alternately in the circumferential direction.

本開示に係る回転電機のロータによれば、ロータとしての電磁力のアンバランスを防ぎながら、永久磁石の位置決めと、隣接する永久磁石の間の磁束の漏れの抑制とを図れる。   According to the rotor of the rotating electrical machine according to the present disclosure, it is possible to achieve positioning of the permanent magnet and suppression of leakage of magnetic flux between adjacent permanent magnets while preventing imbalance of electromagnetic force as the rotor.

本実施の形態に係る回転電機のロータの斜視図である。It is a perspective view of the rotor of the rotary electric machine which concerns on this Embodiment. 図1の上面図である。FIG. 2 is a top view of FIG. 1. 図1の回転電機のロータの積層体の内、連続して積層された4枚の磁性体薄板を分離して示す図である。図3(a)は、4枚の磁性体薄板の斜視図であり、(b)と(c)は、(a)において斜線を付した永久磁石の位置決めを示す図である。It is a figure which isolate | separates and shows four magnetic body thin plates laminated | stacked continuously among the laminated bodies of the rotor of the rotary electric machine of FIG. FIG. 3A is a perspective view of four magnetic thin plates, and FIGS. 3B and 3C are views showing the positioning of the permanent magnets hatched in FIG.

以下に図面を用いて本実施の形態につき詳細に説明する。以下に述べる形状、材質、孔部の個数、磁極数等は、説明のための例示であって、回転電機のロータの仕様等により、適宜変更が可能である。また、以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。   Hereinafter, the present embodiment will be described in detail with reference to the drawings. The shape, material, number of holes, number of magnetic poles, and the like described below are examples for explanation, and can be appropriately changed depending on the specifications of the rotor of the rotating electrical machine. In the following description, the same elements are denoted by the same reference symbols in all the drawings, and redundant description is omitted.

図1は、車両に搭載される回転電機に用いられる回転電機のロータ10の斜視図である。以下では、特に断らない限り、回転電機のロータ10を、ロータ10と呼ぶ。ロータ10が用いられる回転電機は、車両が力行するときは電動機として機能し、車両が制動時にあるときは発電機として機能するモータ・ジェネレータで、三相同期型回転電機である。回転電機は、ロータ10と、ロータ10の外周側に所定の間隔を隔てて配置され、巻線コイルが巻回される円環状のステータとを含む。   FIG. 1 is a perspective view of a rotor 10 of a rotating electrical machine used for a rotating electrical machine mounted on a vehicle. Hereinafter, unless otherwise specified, the rotor 10 of the rotating electrical machine is referred to as a rotor 10. The rotating electrical machine using the rotor 10 is a three-phase synchronous rotating electrical machine that functions as an electric motor when the vehicle is powered and functions as a generator when the vehicle is braking. The rotating electrical machine includes a rotor 10 and an annular stator that is disposed on the outer peripheral side of the rotor 10 at a predetermined interval and around which a winding coil is wound.

ロータ10は、ロータコア12と中心穴14とを含む。ロータコア12の中心穴14には、回転電機の出力軸であるロータ軸が固定される。ロータ10は、磁極数が8で、1磁極当り2つの永久磁石を含む。磁極数、1磁極当りの永久磁石の数は例示であり、ロータ10の仕様によって変更可能である。各永久磁石はロータコア12に設けられた貫通穴である磁石挿入孔30に配置される。したがって、ロータ10は、16個の磁石挿入孔30と、16個の永久磁石を含む。図1では、16個の永久磁石の内の2つの永久磁石60,63を示す。以下の図でも同様である。   The rotor 10 includes a rotor core 12 and a center hole 14. A rotor shaft that is an output shaft of the rotating electrical machine is fixed to the center hole 14 of the rotor core 12. The rotor 10 has eight magnetic poles and includes two permanent magnets per magnetic pole. The number of magnetic poles and the number of permanent magnets per magnetic pole are examples, and can be changed according to the specifications of the rotor 10. Each permanent magnet is disposed in a magnet insertion hole 30 which is a through hole provided in the rotor core 12. Therefore, the rotor 10 includes 16 magnet insertion holes 30 and 16 permanent magnets. In FIG. 1, two permanent magnets 60 and 63 of the 16 permanent magnets are shown. The same applies to the following figures.

永久磁石60,63は、軸方向に垂直な断面形状が矩形で、軸方向の長さはロータコア12の軸方向の長さよりやや短めの直方形の棒磁石である。軸方向は、中心穴14に固定されるロータ軸の軸方向である。図1には、軸方向と共に、周方向、径方向を示す。周方向は軸方向周りの方向であり、径方向はロータコア12の内周側と外周側を指す方向である。   The permanent magnets 60 and 63 are rectangular bar magnets having a rectangular cross-sectional shape perpendicular to the axial direction and a slightly shorter axial length than the axial length of the rotor core 12. The axial direction is the axial direction of the rotor shaft fixed to the center hole 14. FIG. 1 shows the circumferential direction and radial direction as well as the axial direction. The circumferential direction is a direction around the axial direction, and the radial direction is a direction indicating the inner peripheral side and the outer peripheral side of the rotor core 12.

永久磁石60,63の材質としては、ネオジムと鉄とホウ素を主成分とするネオジム磁石、サマリウムとコバルトを主成分とするサマリウムコバルト磁石等の希土類磁石が用いられる。これ以外にフェライト磁石、アルニコ磁石等を用いてもよい。   As the material of the permanent magnets 60 and 63, rare earth magnets such as neodymium magnets mainly composed of neodymium, iron and boron, and samarium cobalt magnets mainly composed of samarium and cobalt are used. Besides this, a ferrite magnet, an alnico magnet, or the like may be used.

ロータコア12は、所定枚数の磁性体薄板20を軸方向に積層した積層体である。ロータコア12を磁性体薄板20の積層体とするのは、ロータコア12に生じ得る渦電流を抑制するためで、所定の形状に成形される前の磁性体薄板20の両面には、絶縁コート等の絶縁処理が施される。これによって、積層された各磁性体薄板20の間が電気的に絶縁されて、外部変動磁界により発生し得る渦電流が小さなループに分割され、渦電流損失が抑制される。   The rotor core 12 is a laminated body in which a predetermined number of magnetic thin plates 20 are laminated in the axial direction. The reason why the rotor core 12 is made of a laminated body of the magnetic thin plates 20 is to suppress eddy currents that can be generated in the rotor core 12, so that both surfaces of the magnetic thin plate 20 before being formed into a predetermined shape are coated with an insulating coat or the like. Insulation is applied. As a result, the laminated magnetic thin plates 20 are electrically insulated, and the eddy current that can be generated by the externally varying magnetic field is divided into small loops, and eddy current loss is suppressed.

各磁性体薄板20は、同じ形状を有するが、軸方向に積層される際に、互いに1磁極分ずつずらす転積が行われる。図1のロータコア12は、磁極数=8であるので、1磁極分は、中心穴14から見た見込角度が45度である。したがって、各磁性体薄板20は、積層の際、中心穴14から見た見込角度で45度ずつ互いにずらして積み重ねる転積が行われる。   Each of the magnetic thin plates 20 has the same shape, but when being laminated in the axial direction, transposition is performed so as to be shifted by one magnetic pole from each other. Since the rotor core 12 of FIG. 1 has the number of magnetic poles = 8, the expected angle viewed from the center hole 14 is 45 degrees for one magnetic pole. Accordingly, the magnetic thin plates 20 are subjected to transposition in which the magnetic thin plates 20 are stacked while being shifted from each other by 45 degrees at an expected angle viewed from the center hole 14.

図1では、軸方向について、紙面上の上方側を一方端として、一方端側から他方端に向かって、4枚の磁性体薄板20−1,20−2,20−3,20−4を区別した符号を付して示す。磁性体薄板20−1と磁性体薄板20−2との間は、中心穴14から見た見込角度で45度ずれた配置関係となり、磁性体薄板20−2と磁性体薄板20−3との間も、中心穴14から見た見込角度で45度ずれた配置関係となる。以下同様に、隣接する磁性体薄板20の間では、中心穴14から見た見込角度で互いに45度ずれた配置関係となる。   In FIG. 1, four magnetic thin plates 20-1, 20-2, 20-3, and 20-4 are arranged from the one end side toward the other end with the upper side on the paper surface as one end in the axial direction. A distinction is given and shown. The magnetic thin plate 20-1 and the magnetic thin plate 20-2 are disposed at an angle of 45 degrees with respect to the expected angle seen from the center hole 14, and the magnetic thin plate 20-2 and the magnetic thin plate 20-3 are arranged. Also, the arrangement relationship is shifted by 45 degrees at the expected angle viewed from the center hole 14. In the same manner, the adjacent magnetic thin plates 20 are arranged so as to be shifted from each other by 45 degrees at an expected angle viewed from the center hole 14.

図2は、ロータコア12の上面図であり、これは、ロータコア12の軸方向の一方端側の1枚の磁性体薄板20−1の平面図でもある。ロータコア12における各磁性体薄板20は、いずれも同じ形状を有するので、磁性体薄板20−1についてその構成を述べる。磁性体薄板20−1は、ロータ軸を通す中心穴14と、16個の磁石挿入孔とを含み、所定の形状に成形された円環状形状を有する。かかる磁性体薄板20−1としては、電磁鋼板が用いられる。   FIG. 2 is a top view of the rotor core 12, which is also a plan view of one magnetic thin plate 20-1 on one end side in the axial direction of the rotor core 12. Since each magnetic thin plate 20 in the rotor core 12 has the same shape, the configuration of the magnetic thin plate 20-1 will be described. The magnetic thin plate 20-1 includes a center hole 14 through which the rotor shaft passes and 16 magnet insertion holes, and has an annular shape formed into a predetermined shape. An electromagnetic steel plate is used as the magnetic thin plate 20-1.

磁性体薄板20−1は、8個の磁極に対応し、中心穴14に対する見込み角度を45度とする8個の磁極部分を有する。8個の磁極部分は、4個の第一磁極部分P1と4個の第二磁極部分P2で構成され、これらが周方向に交互に配置される。第一磁極部分P1と4個の第二磁極部分P2との相違は、磁石挿入孔の形状と配置である。第一磁極部分P1と第二磁極部分P2とは、周方向に沿って交互に配置される。   The magnetic thin plate 20-1 has eight magnetic pole portions corresponding to eight magnetic poles and having a prospective angle of 45 degrees with respect to the center hole. The eight magnetic pole portions are composed of four first magnetic pole portions P1 and four second magnetic pole portions P2, which are alternately arranged in the circumferential direction. The difference between the first magnetic pole portion P1 and the four second magnetic pole portions P2 is the shape and arrangement of the magnet insertion holes. The first magnetic pole portions P1 and the second magnetic pole portions P2 are alternately arranged along the circumferential direction.

第一磁極部分P1は、一対の磁石挿入孔30,31を有し、第二磁極部分P2は、一対の磁石挿入孔32,33を有する。一対の磁石挿入孔30,31及び一対の磁石挿入孔32,33は、それぞれ磁極の中心線CPに対し線対称に配置され、外周側に向かって互いの間隔距離が拡がり内周側で互いに近接したV字状に配置される。   The first magnetic pole portion P1 has a pair of magnet insertion holes 30 and 31, and the second magnetic pole portion P2 has a pair of magnet insertion holes 32 and 33. The pair of magnet insertion holes 30 and 31 and the pair of magnet insertion holes 32 and 33 are arranged symmetrically with respect to the center line CP of the magnetic poles, and the distance between them increases toward the outer peripheral side, and close to each other on the inner peripheral side. Arranged in a V shape.

また、一対の磁石挿入孔30,31及び一対の磁石挿入孔32,33は、平面図において、永久磁石の短辺寸法よりやや大きめの孔幅を有し、長手方向には永久磁石の長辺の両端部からさらに延びた端部を有する。永久磁石の長辺の両端部からさらに延びた端部は、ロータコア12において磁束の流れを規制するため、ブリッジ部を形成する形状に設定され、また、永久磁石の固定のために充填される樹脂の注入口として用いられる。   In addition, the pair of magnet insertion holes 30 and 31 and the pair of magnet insertion holes 32 and 33 have a hole width slightly larger than the short side dimension of the permanent magnet in the plan view, and the long side of the permanent magnet in the longitudinal direction. And end portions further extending from both ends. The ends further extending from the both ends of the long side of the permanent magnet are set in a shape that forms a bridge portion in order to restrict the flow of magnetic flux in the rotor core 12 and are filled to fix the permanent magnet. It is used as an injection port.

永久磁石の固定のための樹脂としては、成形性と耐熱性に優れた熱硬化樹脂が用いられる。熱硬化樹脂としては、エポキシ系樹脂、ポリイミド系樹脂等が用いられる。   As the resin for fixing the permanent magnet, a thermosetting resin excellent in moldability and heat resistance is used. As the thermosetting resin, an epoxy resin, a polyimide resin, or the like is used.

ブリッジ部は、同じ磁極部分内の一対の磁石挿入孔の内周側の端部の間、隣接する磁極部分との境目において互いに隣接する磁石挿入孔の外周側の端部の間、及び、各磁石挿入孔の外周側の端部とロータコア12の外周面との間に形成される。図2において、ブリッジ部40は、第一磁極部分P1内における一対の磁石挿入孔30,31の内周側の端部の間のブリッジ部であり、ブリッジ部42は、第二磁極部分P2内における一対の磁石挿入孔32,33の内周側の端部の間のブリッジ部である。   The bridge portion is between the end portions on the inner peripheral side of the pair of magnet insertion holes in the same magnetic pole portion, between the end portions on the outer peripheral side of the magnet insertion holes adjacent to each other at the boundary with the adjacent magnetic pole portion, and each It is formed between the outer peripheral end of the magnet insertion hole and the outer peripheral surface of the rotor core 12. In FIG. 2, the bridge part 40 is a bridge part between the inner peripheral side ends of the pair of magnet insertion holes 30 and 31 in the first magnetic pole part P1, and the bridge part 42 is in the second magnetic pole part P2. It is a bridge part between the edge parts of the inner peripheral side of a pair of magnet insertion holes 32 and 33 in.

第一磁極部分P1における一対の磁石挿入孔30,31は、それぞれ、外周側の短辺において、永久磁石の位置決めをする外周側突起部50,51を有する。外周側突起部50,51は、磁性体薄板20−1の磁性体部分が永久磁石に向けて突き出す部分である。一対の磁石挿入孔30,31において、内周側の短辺には永久磁石の位置決め用の突起部が設けられない。   The pair of magnet insertion holes 30 and 31 in the first magnetic pole portion P1 have outer peripheral projections 50 and 51 for positioning the permanent magnets on the outer peripheral short sides, respectively. The outer peripheral projections 50 and 51 are portions where the magnetic body portion of the magnetic thin plate 20-1 protrudes toward the permanent magnet. In the pair of magnet insertion holes 30 and 31, no permanent magnet positioning projection is provided on the short side on the inner peripheral side.

これに対し、第二磁極部分P2における一対の磁石挿入孔32,33は、それぞれ、内周側の短辺において、永久磁石の位置決めをする内周側突起部52,53を有する。内周側突起部52,53は、磁性体薄板20−1の磁性体部分が永久磁石に向けて突き出す部分である。一対の磁石挿入孔32,33において、外周側の短辺には永久磁石の位置決め用の突起部が設けられない。   On the other hand, the pair of magnet insertion holes 32 and 33 in the second magnetic pole portion P2 have inner peripheral projections 52 and 53 for positioning the permanent magnets on the inner peripheral short side, respectively. The inner peripheral projections 52 and 53 are portions where the magnetic body portion of the magnetic thin plate 20-1 protrudes toward the permanent magnet. In the pair of magnet insertion holes 32, 33, no permanent magnet positioning projection is provided on the short side on the outer peripheral side.

上記のように、本実施の形態に係るロータ10は、磁極を形成する永久磁石の配置用の磁石挿入孔が周方向に沿って磁極数=8で配置された複数の磁性体薄板20を含む。ロータ10は、複数の磁性体薄板20について、互いに1磁極分ずつずらす転積が行われた状態で積層された積層体であるロータコア12において、各磁石挿入孔にそれぞれ永久磁石が挿入された状態で形成された回転電機のロータである。磁性体薄板20−1は、1磁極分として、磁極の中心線CPに対し線対称に配置され、ロータ10の外周側に向かって互いの間隔距離が拡がり内周側で互いに近接したブリッジ部40(または42)を形成するV字状に配置された一対の磁石挿入孔を有する。一対の磁石挿入孔30,31の外周側短辺のそれぞれに永久磁石の位置決めをする外周側突起部50,51を有し、内周側短辺のそれぞれには位置決め用の突起部を有さない磁極部分を第一磁極部分P1とする。また、一対の磁石挿入孔32,33の内周側短辺のそれぞれに永久磁石の位置決めをする内周側突起部52,53を有し、外周側短辺のそれぞれには位置決め用の突起部を有さない磁極部分を第二磁極部分P2とする。第一磁極部分P1と第二磁極部分P2とは、交互に周方向に配置される。   As described above, rotor 10 according to the present embodiment includes a plurality of magnetic thin plates 20 in which magnet insertion holes for arranging permanent magnets that form magnetic poles are arranged along the circumferential direction with the number of magnetic poles = 8. . The rotor 10 is a state in which a permanent magnet is inserted into each magnet insertion hole in the rotor core 12, which is a laminated body in which a plurality of magnetic thin plates 20 are laminated in a state where they are shifted by one magnetic pole. It is the rotor of the rotary electric machine formed by. The magnetic thin plate 20-1 is arranged symmetrically with respect to the center line CP of the magnetic pole as one magnetic pole, and the distance between each other increases toward the outer peripheral side of the rotor 10, and the bridge portions 40 that are close to each other on the inner peripheral side. It has a pair of magnet insertion holes arranged in a V shape forming (or 42). Each of the outer short sides of the pair of magnet insertion holes 30 and 31 has outer peripheral projections 50 and 51 for positioning the permanent magnet, and each of the inner peripheral short sides has a positioning protrusion. The magnetic pole part that does not exist is defined as a first magnetic pole part P1. Moreover, it has the inner peripheral side projection parts 52 and 53 which position a permanent magnet in each of the inner peripheral side short side of a pair of magnet insertion holes 32 and 33, and each of the outer peripheral side short side has a positioning projection part The magnetic pole portion not having the symbol is defined as the second magnetic pole portion P2. The first magnetic pole portions P1 and the second magnetic pole portions P2 are alternately arranged in the circumferential direction.

上記構成によれば、各磁石挿入孔30,31,32,33は、外周側短辺または内周側短辺のいずれかにのみ、永久磁石の位置決め用の突起部を有する。例えば、特許文献1に開示されるように、外周側短辺及び内周側短辺の双方に位置決め用の突起部を設けることに比べ、隣接する磁石挿入孔の間における磁束の漏れを抑制できる。   According to the said structure, each magnet insertion hole 30,31,32,33 has the projection part for the positioning of a permanent magnet only in either an outer peripheral side short side or an inner peripheral side short side. For example, as disclosed in Patent Document 1, it is possible to suppress the leakage of magnetic flux between adjacent magnet insertion holes as compared to providing positioning protrusions on both the outer peripheral short side and the inner peripheral short side. .

また、上記構成によれば、各磁石挿入孔30,31,32,33の配置、及び、永久磁石の位置決め用の外周側突起部50,51と内周側突起部52,53は、各磁極部分P1,P2の磁極の中心線CPに対し線対称に配置される。例えば、特許文献2に開示されるように、複数の磁極部分の内の1つの磁極部分にのみ永久磁石の位置決め用の突起部を設けることに比べ、ロータ10としての電磁力のアンバランスが生じない。   Moreover, according to the said structure, arrangement | positioning of each magnet insertion hole 30,31,32,33 and the outer peripheral side projection part 50,51 and the inner peripheral side projection part 52,53 for positioning of a permanent magnet are each magnetic pole. The portions P1 and P2 are arranged symmetrically with respect to the center line CP of the magnetic poles. For example, as disclosed in Patent Document 2, the electromagnetic force imbalance as the rotor 10 is generated as compared with the case where a permanent magnet positioning projection is provided only in one of the plurality of magnetic pole portions. Absent.

また、上記構成によれば、積層体であるロータコア12は、磁極数=8で配置された複数の磁性体薄板20について、互いに1磁極分ずつずらす転積が行われた状態で積層された積層体である。この転積によって、各磁石挿入孔30,31,32,33が、外周側短辺または内周側短辺のいずれかにのみ永久磁石の位置決め用の突起部を有していても、各永久磁石は、ロータコア12に対してしっかりと位置決めされる。   Further, according to the above configuration, the rotor core 12 that is a laminate is a laminate in which a plurality of magnetic thin plates 20 arranged with the number of magnetic poles = 8 are stacked in a state in which they are shifted by one magnetic pole. Is the body. Even if each magnet insertion hole 30, 31, 32, 33 has a protrusion for positioning a permanent magnet only on either the outer peripheral side short side or the inner peripheral side short side by this rolling, The magnet is firmly positioned with respect to the rotor core 12.

図2に示すように、第一磁極部分P1において磁石挿入孔30,31及び外周側突起部50,51は磁極の中心線CPに対し線対称であるので、磁石挿入孔30,31のいずれに挿入された永久磁石も同じような位置決めを受ける。そこで、第一磁極部分P1については、磁石挿入孔30に挿入される永久磁石60についての転積を述べる。同様に、第二磁極部分P2において磁石挿入孔32,33及び内周側突起部52,53は磁極の中心線CPに対し線対称であるので、磁石挿入孔32,33のいずれに挿入された永久磁石も同じような位置決めを受ける。そこで、そこで、第二磁極部分P2については、磁石挿入孔33に挿入される永久磁石63についての転積を述べる。   As shown in FIG. 2, in the first magnetic pole portion P1, the magnet insertion holes 30, 31 and the outer peripheral projections 50, 51 are symmetrical with respect to the center line CP of the magnetic pole. The inserted permanent magnet is similarly positioned. Therefore, for the first magnetic pole portion P1, the transposition of the permanent magnet 60 inserted into the magnet insertion hole 30 will be described. Similarly, in the second magnetic pole portion P2, the magnet insertion holes 32 and 33 and the inner peripheral projections 52 and 53 are symmetrical with respect to the center line CP of the magnetic pole, so that they are inserted into any of the magnet insertion holes 32 and 33. Permanent magnets are similarly positioned. Therefore, for the second magnetic pole portion P2, the transposition of the permanent magnet 63 inserted into the magnet insertion hole 33 will be described.

図3は、永久磁石60,63について転積による位置決めを示す図で、図3(a)は、図1に示す連続して積層された4枚の磁性体薄板20−1,20−2,20−3,20−4を分離して示す図である。(b),(c)は、永久磁石60,63のそれぞれについて、各磁性体薄板20−1,20−2,20−3,20−4において対応する磁石挿入孔に挿入された状態を示す図である。   FIG. 3 is a diagram showing positioning by permanent rolling for the permanent magnets 60 and 63, and FIG. 3A shows the four magnetic thin plates 20-1 and 20-2 stacked in succession shown in FIG. It is a figure which shows 20-3 and 20-4 separately. (B), (c) shows the state where each of the permanent magnets 60, 63 is inserted into the corresponding magnet insertion hole in each of the magnetic thin plates 20-1, 20-2, 20-3, 20-4. FIG.

(b)に示すように、永久磁石60は、磁性体薄板20−1では、第一磁極部分P1の磁石挿入孔30に挿入され、外周側突起部50によって外周側の位置決めが行われている。磁性体薄板20−2は、磁性体薄板20−1に対し、1磁極分である45度の見込角度分、中心穴14に対し回転されて転積される。したがって、永久磁石60は、磁性体薄板20−2において、第二磁極部分P2の磁石挿入孔32に挿入され、内周側突起部52によって内周側の位置決めが行われる。このように、転積によって、永久磁石60は、2枚の磁性体薄板20−1,20−2で、第一磁極部分P1の外周側突起部50と第二磁極部分P2の内周側突起部52の2つで、しっかり位置決めが行われる。   As shown in (b), the permanent magnet 60 is inserted into the magnet insertion hole 30 of the first magnetic pole portion P1 in the magnetic thin plate 20-1, and the outer peripheral side positioning is performed by the outer peripheral projection 50. . The magnetic thin plate 20-2 is rotated and rolled with respect to the central hole 14 with respect to the magnetic thin plate 20-1 by an expected angle of 45 degrees that is one magnetic pole. Therefore, the permanent magnet 60 is inserted into the magnet insertion hole 32 of the second magnetic pole portion P2 in the magnetic thin plate 20-2, and the inner peripheral side positioning is performed by the inner peripheral protrusion 52. In this way, by permanent rolling, the permanent magnet 60 is composed of the two magnetic thin plates 20-1 and 20-2, and the outer peripheral projection 50 of the first magnetic pole portion P1 and the inner peripheral projection of the second magnetic pole portion P2. The two parts 52 are firmly positioned.

図3の例では、磁性体薄板20−3,20−4についてもさらに転積が続けられる。永久磁石60は、磁性体薄板20−3では、第一磁極部分P1の磁石挿入孔30に挿入され、外周側突起部50によって外周側の位置決めが行われる。磁性体薄板20−4では、第二磁極部分P2の磁石挿入孔32に挿入され、内周側突起部52によって内周側の位置決めが行われる。   In the example of FIG. 3, the transposition is further continued for the magnetic thin plates 20-3 and 20-4. The permanent magnet 60 is inserted into the magnet insertion hole 30 of the first magnetic pole portion P1 in the magnetic thin plate 20-3, and the outer peripheral side positioning is performed by the outer peripheral projection 50. In the magnetic thin plate 20-4, it is inserted into the magnet insertion hole 32 of the second magnetic pole portion P2, and the inner peripheral side positioning is performed by the inner peripheral protrusion 52.

(c)に示すように、永久磁石63は、磁性体薄板20−1では、第二磁極部分P2の磁石挿入孔33に挿入され、内周側突起部53によって内周側の位置決めが行われている。転積によって、磁性体薄板20−2においては、永久磁石63は、第一磁極部分P1の磁石挿入孔31に挿入され、外周側突起部51によって外周側の位置決めが行われる。このように、転積によって、永久磁石63は、2枚の磁性体薄板20−1,20−2で、第二磁極部分P2の内周側突起部53と第一磁極部分P1の外周側突起部51の2つで、しっかり位置決めが行われる。磁性体薄板20−3,20−4についても同様である。永久磁石63は、磁性体薄板20−3では、第二磁極部分P2の磁石挿入孔33に挿入され、内周側突起部53によって内周側の位置決めが行われる。磁性体薄板20−4では、第一磁極部分P1の磁石挿入孔31に挿入され、外周側突起部51によって外周側の位置決めが行われる。   As shown in (c), the permanent magnet 63 is inserted into the magnet insertion hole 33 of the second magnetic pole portion P2 in the magnetic thin plate 20-1, and the inner peripheral side positioning is performed by the inner peripheral protrusion 53. ing. By rolling, in the magnetic thin plate 20-2, the permanent magnet 63 is inserted into the magnet insertion hole 31 of the first magnetic pole portion P1, and positioning on the outer peripheral side is performed by the outer peripheral projection 51. In this way, by permanent rolling, the permanent magnet 63 is composed of the two magnetic thin plates 20-1 and 20-2, and the inner peripheral protrusion 53 of the second magnetic pole portion P2 and the outer peripheral protrusion of the first magnetic pole portion P1. Positioning is firmly performed by two of the parts 51. The same applies to the magnetic thin plates 20-3 and 20-4. In the magnetic thin plate 20-3, the permanent magnet 63 is inserted into the magnet insertion hole 33 of the second magnetic pole portion P2, and the inner peripheral side protrusion 53 is positioned on the inner peripheral side. In the magnetic thin plate 20-4, it is inserted into the magnet insertion hole 31 of the first magnetic pole part P1, and the outer peripheral side positioning is performed by the outer peripheral projection 51.

このように、上記構成によれば、転積によって、各永久磁石は、磁石挿入孔における内周側の突起部と外周側の突起部とによって、ロータコア12に対する位置決めが行われる。   As described above, according to the above configuration, each permanent magnet is positioned with respect to the rotor core 12 by the inner ring side projection and the outer circumference projection in the magnet insertion hole.

上記のように、本実施の形態に係るロータ10によれば、ロータ10としての電磁力のアンバランスを防ぎながら、各永久磁石の位置決めと、隣接する永久磁石の間の磁束の漏れの抑制とを図れる。   As described above, according to the rotor 10 according to the present embodiment, while preventing imbalance of electromagnetic force as the rotor 10, positioning of each permanent magnet and suppression of leakage of magnetic flux between adjacent permanent magnets are possible. Can be planned.

10 (回転電機の)ロータ、12 ロータコア(積層体)、14 中心穴、20,20−1,20−2,20−3,20−4 磁性体薄板、30,31,32,33 磁石挿入孔、40,42 ブリッジ部、50,51 外周側突起部、52,53 内周側突起部、60,63 永久磁石。   10 (rotary electric machine) rotor, 12 rotor core (laminated body), 14 center hole, 20, 20-1, 20-2, 20-3, 20-4 magnetic thin plate, 30, 31, 32, 33 magnet insertion hole , 40, 42 Bridge portion, 50, 51 Outer peripheral projection, 52, 53 Inner peripheral projection, 60, 63 Permanent magnet.

Claims (1)

磁極を形成する永久磁石の配置用の磁石挿入孔が周方向に沿って配置された複数の磁性体薄板について、互いに1磁極分ずつずらす転積が行われた状態で積層された積層体において、前記磁石挿入孔のそれぞれに前記永久磁石が挿入された状態で形成された回転電機のロータであって、
前記磁性体薄板は、
前記1磁極分として、磁極の中心線に対し線対称に配置され、前記ロータの外周側に向かって互いの間隔距離が拡がり内周側で互いに近接したブリッジ部を形成するV字状に配置された一対の前記磁石挿入孔を有し、
前記一対の磁石挿入孔の外周側短辺のそれぞれに前記永久磁石の位置決めをする外周側突起部を有し、内周側短辺のそれぞれには位置決め用の突起部を有さない第一磁極部分と、
前記一対の磁石挿入孔の前記内周側短辺のそれぞれに前記永久磁石の位置決めをする内周側突起部を有し、前記外周側短辺のそれぞれには位置決め用の突起部を有さない第二磁極部分と、
が交互に周方向に配置されている、回転電機のロータ。
For a plurality of magnetic thin plates in which magnet insertion holes for arranging permanent magnets that form magnetic poles are arranged along the circumferential direction, in a laminated body that has been laminated in a state of being subjected to transposition that is shifted by one magnetic pole from each other, A rotor of a rotating electrical machine formed in a state where the permanent magnet is inserted into each of the magnet insertion holes,
The magnetic thin plate is
The magnetic poles are arranged symmetrically with respect to the center line of the magnetic poles, and are arranged in a V shape to form bridge portions that are close to each other on the inner peripheral side with the distance between the rotors increasing toward the outer peripheral side of the rotor. A pair of magnet insertion holes
A first magnetic pole having an outer peripheral protrusion for positioning the permanent magnet on each of the outer peripheral short sides of the pair of magnet insertion holes, and no positioning protrusion on each of the inner peripheral short sides Part,
Each of the inner peripheral short sides of the pair of magnet insertion holes has an inner peripheral protrusion that positions the permanent magnet, and each of the outer peripheral short sides does not have a positioning protrusion. A second magnetic pole portion;
A rotor of a rotating electrical machine in which are alternately arranged in the circumferential direction.
JP2016132440A 2016-07-04 2016-07-04 Rotating electrical machine rotor Active JP6607150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016132440A JP6607150B2 (en) 2016-07-04 2016-07-04 Rotating electrical machine rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132440A JP6607150B2 (en) 2016-07-04 2016-07-04 Rotating electrical machine rotor

Publications (2)

Publication Number Publication Date
JP2018007438A JP2018007438A (en) 2018-01-11
JP6607150B2 true JP6607150B2 (en) 2019-11-20

Family

ID=60949930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132440A Active JP6607150B2 (en) 2016-07-04 2016-07-04 Rotating electrical machine rotor

Country Status (1)

Country Link
JP (1) JP6607150B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009247131A (en) * 2008-03-31 2009-10-22 Fuji Electric Systems Co Ltd Rotor of permanent magnet motor
JP5974672B2 (en) * 2012-06-27 2016-08-23 トヨタ紡織株式会社 Method for manufacturing rotor core
CN104838565B (en) * 2013-02-08 2018-01-09 富士电机株式会社 Permanent magnet embedded rotating electrical machine
JP2016046949A (en) * 2014-08-25 2016-04-04 トヨタ自動車株式会社 Rotor for rotary electric machine

Also Published As

Publication number Publication date
JP2018007438A (en) 2018-01-11

Similar Documents

Publication Publication Date Title
US10110076B2 (en) Single-phase brushless motor
JP6508168B2 (en) Electric rotating machine
US9705366B2 (en) Embedded permanent magnet rotary electric machine
CN112838693B (en) Rotary electric machine
JP5382156B2 (en) Rotating electric machine
US10530203B2 (en) Rotor and reluctance motor
JP5472200B2 (en) Rotating electrical machine rotor
JP6589624B2 (en) motor
JP6512060B2 (en) Rotor of electric rotating machine
JP6048191B2 (en) Multi-gap rotating electric machine
JP2014045634A (en) Rotor and rotary electric machine including the same
JP2019154232A5 (en)
JP2013132124A (en) Core for field element
JP5310790B2 (en) Rotating electrical machine rotor
US10374474B2 (en) Permanent magnet motor
JP2018098936A (en) Magnet unit
JP6848808B2 (en) Rotating machine rotor
JP7001483B2 (en) Axial gap type transverse flux type rotary electric machine
WO2011089797A1 (en) Rotor, rotating electrical machine using same, and power generator
JP6607150B2 (en) Rotating electrical machine rotor
JP2019161828A (en) Rotary electric machine
JP2016129447A (en) Rotary electric machine
JP6990014B2 (en) Rotating machine
JP2019115205A (en) Rotor of dynamo-electric machine
JP5884464B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191007

R151 Written notification of patent or utility model registration

Ref document number: 6607150

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151