JP6606093B2 - Solanum lycopersicum plant with increased fruit yield - Google Patents

Solanum lycopersicum plant with increased fruit yield Download PDF

Info

Publication number
JP6606093B2
JP6606093B2 JP2016556714A JP2016556714A JP6606093B2 JP 6606093 B2 JP6606093 B2 JP 6606093B2 JP 2016556714 A JP2016556714 A JP 2016556714A JP 2016556714 A JP2016556714 A JP 2016556714A JP 6606093 B2 JP6606093 B2 JP 6606093B2
Authority
JP
Japan
Prior art keywords
gene
eggplant
genus
sp3d
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016556714A
Other languages
Japanese (ja)
Other versions
JP2017506906A (en
Inventor
ローベーク,イルヤ
イケマ,マリーケ
ファン・ステー,マタイン・ペトルス
デ・ブール,ヘルト・ヨハンネス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enza Zaden Beheer BV
Original Assignee
Enza Zaden Beheer BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enza Zaden Beheer BV filed Critical Enza Zaden Beheer BV
Publication of JP2017506906A publication Critical patent/JP2017506906A/en
Application granted granted Critical
Publication of JP6606093B2 publication Critical patent/JP6606093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

説明
本発明は、増加した果実収量を有するナス属lycopersicum植物および本発明に係るナス属lycopersicum植物の種子または果実に関する。また、本発明は、ナス属lycopersicum植物の果実収量を増加するための方法に関する。さらに、本発明は、本発明に係るナス属lycopersicum植物の種子および果実に関する。
DESCRIPTION The present invention relates to the eggplant lycopersicum plant having increased fruit yield and the seeds or fruits of the eggplant lycopersicum plant according to the present invention. The present invention also relates to a method for increasing the fruit yield of Solanum lycopersicum plants. Furthermore, the present invention relates to seeds and fruits of the solanaceous lycopersicum plant according to the present invention.

ナス属lycopersicum植物は、トマト属lycopersicum(L.)またはトマト属esculentumとも命名され、一般的にトマト植物として知られている。この種の植物は、南米アンデス山脈に起源し、食品としての使用は、メキシコに由来し、スペインによるアメリカ大陸の植民地化によって世界に広がった。その多くの品種は、現在も野外にまたは寒い気候の場合温室において、広く栽培されている。   The solanaceous lycopersicum plant is also named tomato lycopersicum (L.) or tomato esculentum and is generally known as a tomato plant. This type of plant originated from the South American Andes, and its use as a food originated in Mexico and spread throughout the world through the colonization of the American continent by Spain. Many of its varieties are still widely cultivated in the open air or in the greenhouse in the cold climate.

トマトは、多くの料理、ソース、サラダおよび飲料中に原料としてまたは成分として、多様な方法で消費されている。トマトは、植物学上果実としてみなされているが、料理目的では野菜であると考えられている。トマトは、有益な健康効果を有し得るリコピンを豊富に含む。ナス属lycopersicumは、Solanaceaeナス科に属する。この植物は、典型的には、1〜3メートルの高さに成長し、弱い茎を有するため、多くの場合、地面に寝そべりまたは他の植物に吊るす。この植物は、多くの場合、温暖気候で屋外に一年生として成長するが、本来の生息地では多年生である。より小さい品種およびより大きな品種が知られているが、普通のトマトの平均重量は、約100グラムである。   Tomatoes are consumed in a variety of ways, either as an ingredient or as an ingredient in many dishes, sauces, salads and beverages. Tomato is considered a fruit in botany, but is considered a vegetable for cooking purposes. Tomatoes are rich in lycopene that can have beneficial health benefits. The solanaceous lycopersicum belongs to the Solanaceae solanaceae family. Because this plant typically grows 1 to 3 meters high and has a weak stem, it often lies on the ground or hung on other plants. This plant often grows as a perennial outdoor in a warm climate, but perennial in its native habitat. Smaller and larger varieties are known, but the average weight of a normal tomato is about 100 grams.

ナス属lycopersicum植物の経済的重要性を考慮すると、植物育種分野において、この植物の果実収量を増加させることは、引き続き望まれる。   In view of the economic importance of the solanaceous lycopersicum plant, it is still desirable to increase the fruit yield of this plant in the field of plant breeding.

過去数十年間に、育種は、主に、収量、耐病性、および均一な熟成および味などの果実品質面に集中した。収量の改良は、新たな生産方法、改良された害虫管理、および新たな生産方法により適合する品種によって、達成されている。植物当たりに5個または15個の果実を多く有する新品種は、収量を2〜4%に増加した。   In the past decades, breeding has mainly focused on fruit quality aspects such as yield, disease resistance, and uniform ripening and taste. Yield improvements have been achieved by new production methods, improved pest management, and varieties that are more adapted to new production methods. New varieties with as many as 5 or 15 fruits per plant increased yield to 2-4%.

高収量品種の開発は、トマトの収量を決定する性質に関する知識の不足により妨げられた。仮説によると、従来の3枚の葉の代わりに、トラスの間に2枚の葉を有するトマト品種は、葉面積指数(LAI)が維持される場合、果実に向かって同化をシフトすることができ、より高い収量が得られる。   Development of high-yield varieties has been hampered by a lack of knowledge about the properties that determine tomato yield. According to the hypothesis, instead of the traditional three leaves, tomato varieties with two leaves between trusses can shift assimilation towards the fruit if the leaf area index (LAI) is maintained. And higher yields are obtained.

トラスの間に2枚の葉を有するナス属lycopersicumの栽培品種は、WO2009/021545に記載されている。WO2009/021545は、ナス属lycopersicumの近縁野生種、すなわちナス属pennelliに発見されたSP3Dプロモータが、トラスの間に2枚の葉を有するナス属lycopersicumを提供することができ、よって、果実の収量を増加することができることを開示している。しかしながら、その後の実験によって、例えば、ナス属pennelliのSP3D遺伝子またはプロモータをナス属lycopersicumに移入することによって提供されたトラスの間に2枚の葉を有する表現型は、常に安定しておらず、得られた後代の果実収量を妨げることが示された。   A cultivar of Solanum lycopersicum having two leaves between trusses is described in WO2009 / 021545. WO 2009/021545 provides a closely related wild species of Solanum lycopersicum, that is, the SP3D promoter found in Solanum pennelli can provide Solanum lycopersicum with two leaves between trusses. It is disclosed that the yield can be increased. However, in subsequent experiments, for example, the phenotype with two leaves between truss provided by transferring the SP3D gene or promoter of Solanum pennelli into Solanum lycopersicum is not always stable, It was shown to interfere with the yield of the resulting progeny fruits.

本発明の目的は、特に、増加した果実の収量を有するナス属lycopersicum植物を提供することである。本発明のさらなる目的は、トラスの間に2枚の葉を有する表現型を安定化することによって、ナス属lycopersicum植物の果実収量をさらに増加させることである。   The object of the present invention is in particular to provide Solanum lycopersicum plants with increased fruit yield. A further object of the present invention is to further increase the fruit yield of Solanum lycopersicum plants by stabilizing the phenotype with two leaves between trusses.

上記の目的は、特に、添付の特許請求の範囲に概説された本発明のナス属lycopersicum植物を提供することによって達成される。   The above objectives are achieved in particular by providing the solanaceous lycopersicum plants of the present invention as outlined in the appended claims.

具体的には、上記の目的は、特に、ナス属pennelliのSP3D遺伝子およびSP遺伝子または少なくともそのプロモータ配列を含み、増加した果実収量を有するナス属lycopersicum植物によって達成される。   Specifically, the above objectives are achieved in particular by the solanaceous lycopersicum plant comprising the SP3D gene and the SP gene of Solanum pennelli or at least its promoter sequence and having an increased fruit yield.

ナス属pennelliのSP遺伝子の不存在下で、ナス属pennelliのSP3D遺伝子を含むトマト植物のトラス間の葉数を示す図である。It is a figure which shows the number of leaves between truss of the tomato plant containing SP3D gene of Solanum pennelli in absence of SP gene of Solanum pennelli. 異なるナス属lycopersicumのハプロタイプのトラス間の葉数を示す図である。図中、SPpenは、ナス属pennelliのSP遺伝子の存在を意味し、SP3Dpenは、ナス属pennelliのSP3D遺伝子の存在を意味する。SPescは、ナス属lycopersicumのSP遺伝子の存在を意味し、SP3Descは、ナス属lycopersicumのSP3D遺伝子の存在を意味する。It is a figure which shows the number of leaves between truss of the haplotype of different Solanum lycopersicum. In the figure, SPpen means the presence of the SP gene of the genus Pennelli, and SP3Dpen means the presence of the SP3D gene of the genus Pennelli. SPesc means the presence of the SP gene of Solanum lycopersicum, and SP3Desc means the presence of the SP3D gene of Solanum lycopersicum. 異なるナス属lycopersicumのハプロタイプのトラスの数を示す図である。SPpenは、ナス属pennelliのSP遺伝子の存在を意味し、SP3Dpenは、ナス属pennelliのSP3D遺伝子の存在を意味する。SPescは、ナス属lycopersicumのSP遺伝子の存在を意味し、SP3Descは、ナス属lycopersicumのSP3D遺伝子の存在を意味する。It is a figure which shows the number of the haplotype trusses of different Solanum lycopersicum. SPpen means the presence of the SP gene of the genus Pennelli, and SP3Dpen means the presence of the SP3D gene of the genus Pennelli. SPesc means the presence of the SP gene of Solanum lycopersicum, and SP3Desc means the presence of the SP3D gene of Solanum lycopersicum.

驚くことに、本発明者らは、ナス属pennelliのSP3D遺伝子およびSP遺伝子の両方をナス属lycopersicumに組み合わせることによって、「トラスの間に2枚の葉を有する表現型」を安定に提供することができ、ナス属lycopersicum植物の全体的な果実収量を増加することができることを発見した。果実収量の増加に関して、トラス数の30%の増加が観察された。   Surprisingly, the present inventors stably provide a “phenotype having two leaves between trusses” by combining both the SP3D gene and the SP gene of Solanum pennelli with Solanum lycopersicum. And found that the overall fruit yield of Solanum lycopersicum plants can be increased. Regarding the increase in fruit yield, a 30% increase in the number of trusses was observed.

本発明の記載において、「遺伝子」という用語は、調節領域、転写領域および他の機能的な配列領域に関連付けられている遺伝単位に対応するゲノム配列の配置可能領域として理解すべきである。この用語「遺伝子」は、少なくとも、プロモータ領域および転写またはコード領域を含むゲノム配列を意味する。   In the description of the present invention, the term “gene” should be understood as a placeable region of a genomic sequence corresponding to a genetic unit associated with regulatory regions, transcription regions and other functional sequence regions. The term “gene” means a genomic sequence comprising at least a promoter region and a transcriptional or coding region.

ナス属pennelliという植物種は、トマト植物の近縁野生種である。ナス属pennelliの遺伝子は、従来の遺伝子移入または現代の分子生物学技術、例えば形質転換によって、ナス属lycopersicum植物に容易に導入することができる。トマト植物の他の近縁野生種のSP遺伝子およびSP3D遺伝子とトマト植物のSP遺伝子およびSP3D遺伝子または少なくともそのプロモータとの遺伝的な近似性を考慮すると、ナス属neorickii、ナス属chmielewskii、ナス属chilense、ナス属parviflorum、ナス属pimpinellifoliumおよびナス属peruvianumは、本発明の文脈内に含まれると考えられる。   The plant species of the genus Pennelli is a wild relative of the tomato plant. The gene of Solanum pennelli can be easily introduced into Solanum lycopersicum plants by conventional gene transfer or modern molecular biology techniques such as transformation. Considering the genetic closeness of the SP gene and SP3D gene of other related wild species of tomato plants with the SP gene and SP3D gene of tomato plants or at least the promoter thereof, Solanum neorickii, Solanum chmielewskii, Solanum chilense Eggplant parviflorum, Eggplant pimpinellifolium and Eggplant peruvianum are considered to be included within the context of the present invention.

当該SP3D遺伝子の転写領域は、配列番号1を有する配列と少なくとも90%、例えば91%、92%、93%または94%、好ましくは少なくとも95%、例えば96%、97%、98%または99%、より好ましくは実質的に100%の配列同一性を有するアミノ酸配列を含むタンパク質をエンコードする。本発明の文脈において、配列同一性は、所定の配列に同様の配列のアミノ酸の数が所定の配列番号を有するアミノ酸の総数で割り、100%を乗じることを意味する。   The transcription region of the SP3D gene is at least 90%, such as 91%, 92%, 93% or 94%, preferably at least 95%, such as 96%, 97%, 98% or 99%, with the sequence having SEQ ID NO: 1. More preferably encodes a protein comprising an amino acid sequence having substantially 100% sequence identity. In the context of the present invention, sequence identity means that the number of amino acids of a similar sequence divided by the total number of amino acids having a given sequence number multiplied by 100% for a given sequence.

当該SP遺伝子の転写領域は、配列番号2を有する配列と少なくとも90%、例えば91%、92%、93%または94%、好ましくは少なくとも95%、例えば96%、97%、98%または99%、より好ましくは実質的に100%の配列同一性を有するアミノ酸配列を含むタンパク質をエンコードする。   The transcription region of the SP gene is at least 90%, such as 91%, 92%, 93% or 94%, preferably at least 95%, such as 96%, 97%, 98% or 99%, with the sequence having SEQ ID NO: 2. More preferably encodes a protein comprising an amino acid sequence having substantially 100% sequence identity.

留意すべきことは、ナス属pennelliのSP3D遺伝子およびSP遺伝子を組み合わせることによって提供された本発明の「果実収量を増加した」安定な表現型は、エンコードされたタンパク質に起因するものではなく、両方の遺伝子の転写調節に起因するものであることである。具体的には、転写を調節する転写配列の少なくともプロモータ領域、すなわちゲノム領域の上流は、観察された効果に寄与する。換言すれば、「増加した果実収量」という本発明の特徴は、ナス属lycopersicumに比べて、ナス属pennelliにおけるSPおよびSP3Dの転写調節の違いに起因する。特に、トランスジェニック植物の場合に、転写配列またはcDNA配列の前に両方の遺伝子の少なくともプロモータ配列を操作可能に導入することは、本発明の表現型を提供する。   It should be noted that the “fruit-enhanced” stable phenotype of the invention provided by combining the SP3D and SP genes of Solanum pennelli is not due to the encoded protein, both This is due to the transcriptional regulation of the gene. Specifically, at least the promoter region of the transcription sequence that regulates transcription, ie upstream of the genomic region, contributes to the observed effect. In other words, the feature of the present invention of “increased fruit yield” is due to the difference in transcriptional regulation of SP and SP3D in Solanum pennelli compared to Solanum lycopersicum. In particular, in the case of transgenic plants, operably introducing at least the promoter sequence of both genes before the transcriptional or cDNA sequence provides the phenotype of the present invention.

したがって、特に好ましい実施形態によれば、本発明は、配列番号3を有するプロモータ配列により制御されるSP3D遺伝子またはcDNA配列および/または配列番号4を有するプロモータ配列により制御されるSP遺伝子またはcDNA配列を有するナス属lycopersicum植物に関する。   Thus, according to a particularly preferred embodiment, the present invention provides an SP3D gene or cDNA sequence controlled by a promoter sequence having SEQ ID NO: 3 and / or an SP gene or cDNA sequence controlled by a promoter sequence having SEQ ID NO: 4. It relates to an eggplant lycopersicum plant having.

本明細書中において、SP3DのcDNA配列は、配列番号5として提供され、SPのcDNA配列は、配列番号6として提供される。   In the present specification, the cDNA sequence of SP3D is provided as SEQ ID NO: 5, and the cDNA sequence of SP is provided as SEQ ID NO: 6.

本発明によれば、当該ナス属lycopersicum植物は、ヘテロ接合型ナス属pennelliまたはホモ接合型ナス属pennelliのSP遺伝子およびSP3D遺伝子を含むことができる。すなわち、当該ナス属lycopersicum植物内の少なくとも1つの対立遺伝子は、ナス属pennelliのSP遺伝子を含み、当該ナス属lycopersicum植物の少なくとも1つの対立遺伝子は、ナス属pennelliのSP3D遺伝子を含む。しかしながら、驚くことに、本発明者らは、本発明のプロモータまたは遺伝子の一方が両方の対立遺伝子にホモ接合型として存在する場合、果実収量のさらなる改善、例えばトラス数のさらなる改善を得ることができることを観察した。ナス属pennelliの両方の遺伝子がホモ接合型として存在する場合、果実収量の最適な増加が得られる。   According to the present invention, the solanaceous lycopersicum plant can contain the SP gene and SP3D gene of heterozygous eggplant genus pennelli or homozygous eggplant genus pennelli. That is, at least one allele in the solanaceous lycopersicum plant contains the SP gene of Solanum pennelli, and at least one allele of the solanaceous lycopersicum plant contains the SP3D gene of Solanum pennelli. Surprisingly, however, we can obtain further improvements in fruit yield, such as further improvement in truss number, when one of the promoters or genes of the invention is present as a homozygous form in both alleles. I observed what I could do. An optimal increase in fruit yield is obtained when both genes of Solanum pennelli are present as homozygous.

したがって、特に好ましい実施形態によれば、本発明は、ナス属pennelliのSP3D遺伝子または少なくともそのプロモータがホモ接合型として存在するナス属lycopersicum植物、またはナス属pennelliのSP遺伝子または少なくともそのプロモータがホモ接合型として存在するナス属lycopersicum植物、またはナス属pennelliのSP3D遺伝子または少なくともそのプロモータおよびナス属pennelliのSP遺伝子または少なくともそのプロモータがホモ接合型として存在するナス属lycopersicum植物に関する。本発明の文脈において、必要なプロモータの存在は、転写遺伝子配列またはcDNA配列に操作可能に連結されることによって、各々の機能性SP3Dタンパク質およびSPタンパク質をエンコードするDNA配列に操作可能に連結されたプロモータを意味する。   Therefore, according to a particularly preferred embodiment, the present invention relates to a plant of the genus Solanum lycopersicum wherein the SP3D gene of Solanum pennelli or at least its promoter is present as a homozygous form, or the SP gene of Solanum pennelli or at least its promoter is homozygous. The present invention relates to an eggplant lycopersicum plant that exists as a type, or an eggplant lycopersicum plant in which an SP3D gene of eggplant genus pennelli or at least its promoter and an SP gene of eggplant genus pennelli or at least its promoter exist as a homozygous type. In the context of the present invention, the presence of the required promoter is operably linked to the DNA sequence encoding each functional SP3D protein and SP protein by being operably linked to a transcribed gene sequence or cDNA sequence. Means promoter.

本発明のナス属lycopersicum植物が収量を著しく増加するため、さらなる態様によれば、方法は、増加した収量を有するナス属lycopersicum植物を提供するための方法に関する。本発明の方法は、ナス属pennelliのSP3D遺伝子およびSP3遺伝子またはそのプロモータをナス属lycopersicum植物のゲノムに導入する工程を含む。   Since the Solanum lycopersicum plant of the present invention significantly increases the yield, according to a further aspect, the method relates to a method for providing Solanum lycopersicum plants with increased yield. The method of the present invention includes the step of introducing the eggplant Pennelli SP3D gene and SP3 gene or a promoter thereof into the genome of the eggplant lycopersicum plant.

別の態様によれば、本発明は、ナス属lycopersicum植物の種子および果実にも関する。本質的に、本発明のこの態様の果実および種子は、上記に説明したように、ナス属pennelliのSP3D遺伝子およびSP遺伝子を含む。   According to another aspect, the present invention also relates to the seeds and fruits of Solanum lycopersicum plants. In essence, the fruits and seeds of this aspect of the invention comprise the SP3D and SP genes of the genus Pennelli as explained above.

以下の実施例を用いて、本発明をさらに詳細に説明する。実施例は、添付の図面を参照する。   The invention is explained in more detail using the following examples. Examples refer to the attached drawings.

SP遺伝子が増加した果実収量の表現型を安定化することができるか否かを確認するために、100個の遺伝子移入植物を栽培した。具体的には、これらの植物は、ナス属pennelliからのSP3DおよびSPをナス属lycopersicum(またはトマト属esculentum)に遺伝子移入することによって得られた。両方の遺伝子の存在は、標準分子解析によって確認した。   In order to confirm whether the fruit yield phenotype with increased SP gene could be stabilized, 100 transgenic plants were cultivated. Specifically, these plants were obtained by introgressing SP3D and SP from Solanum pennelli into Solanum lycopersicum (or Tomato esculentum). The presence of both genes was confirmed by standard molecular analysis.

植物は、標準条件下で成長させられ、トラス間の葉数は、カウントされる。図1に示すように、トラス間の葉の平均数は、2枚から3枚の間に変動する。さらに、図1は、ナス属pennelliからのホモ接合型SP3Dは、ヘテロ接合型SP3Dに比べて、よりも少ないトラス間の葉数をもたらしたことを示している。   Plants are grown under standard conditions and the number of leaves between trusses is counted. As shown in FIG. 1, the average number of leaves between trusses varies between 2 and 3. Furthermore, FIG. 1 shows that homozygous SP3D from Solanum pennelli resulted in fewer inter-truss leaf counts compared to heterozygous SP3D.

ホモ接合型pennelliのSP(SPpen/pen)が、ホモ接合型pennelliのSP3D(SP3Dpen/pen)またはヘテロ接合型pennelliのSP3D(SP3Dpen/pen)と組み合わせたヘテロ接合型pennelliのSP(SPpen/esc)よりも、トラス間に2枚の葉を有する表現型により大きく寄与しているか否かを検査するために、図2において、戻し交雑科に存在した異なるハプロタイプとトラス間の葉数との図面を作成した。図2に見られるように、SPpen/penおよびSP3Dpen/penの両方が植物においてホモ接合型pennelliとして存在する場合、トラス間の葉の平均数は、2枚である。一方、他のすべての組み合わせの場合、トラス間の葉の平均数は、2.25枚以上である。図1と比較すると、図2は、pennelliの存在は、トラス間に2枚の葉を有する表現型の安定性に寄与していることを示している。 Homozygous pennelli SP (SP pen / pen ) is combined with homozygous pennelli SP3D (SP3D pen / pen ) or heterozygous pennelli SP3D (SP3D pen / pen ) SP (SP In order to examine whether the phenotype with two leaves between trusses contributes more than ( pen / esc ), the number of leaves between different haplotypes and trusses in the backcross family in FIG. And made a drawing. As seen in FIG. 2, when both SP pen / pen and SP3D pen / pen are present as homozygous pennelli in plants, the average number of leaves between trusses is two. On the other hand, in the case of all other combinations, the average number of leaves between trusses is 2.25 or more. Compared with FIG. 1, FIG. 2 shows that the presence of pennelli contributes to the stability of the phenotype with two leaves between trusses.

本発明の植物の果実収量を評価するために、以下の交雑スキームに従って、Moneyberg(ナス属lycopersicum)バックグラウンドで、pennelliのSP3DおよびpennelliのSPの両方を遺伝子移入することによって得られた植物のトラスの数をカウントした。   To assess the fruit yield of the plants of the present invention, the plant truss obtained by introgressing both pennelli SP3D and pennelli SP in a Moneyberg (Nas lycopersicum) background according to the following crossing scheme: Counted the number of.

これらの植物は、6月から10月までの間に成長させられ、各々の植物のトラス数をカウントした。図3は、4つの異なる遺伝子型のトラスの数を示している。図3に明らかに示すように、pennelliのSP3DおよびpennelliのSPの両方がホモ接合型として存在した場合、植物のトラスの量は、改善される。   These plants were grown between June and October and the truss number of each plant was counted. FIG. 3 shows the number of trusses of four different genotypes. As clearly shown in FIG. 3, the amount of plant truss is improved when both pennelli SP3D and pennelli SP are present as homozygous.

Claims (15)

増加した果実収量を有するナス属lycopersicum植物であって、
ナス属pennelli、ナス属neorickii、ナス属chmielewskii、ナス属chilense、ナス属parviflorum、ナス属pimpinellifoliumおよびナス属peruvianumからなる群から選択されるナス属種のSP3D遺伝子およびSP遺伝子の両方を含む、ナス属lycopersicum植物。
An eggplant lycopersicum plant with increased fruit yield,
An eggplant comprising both the SP3D gene and the SP gene of an eggplant species selected from the group consisting of eggplant genus pennell i, eggplant genus neorickii, eggplant genus chmielewskii, eggplant genus chilense, eggplant genus parviflorum, eggplant genus pimpinellifolium and eggplant genus peruvianum Genus lycopersicum plant.
前記SP3D遺伝子は、配列番号1を有する配列と少なくとも90%の配列同一性を有するタンパク質をエンコードする、請求項1に記載のナス属lycopersicum植物。 The solanaceous lycopersicum plant of claim 1, wherein the SP3D gene encodes a protein having at least 90 % sequence identity with the sequence having SEQ ID NO: 1. 前記SP遺伝子は、配列番号2を有する配列と少なくとも90%の配列同一性を有するタンパク質をエンコードする、請求項1または2に記載のナス属lycopersicum植物。 The SP gene encodes a protein having at least 90% sequence identity with the sequence having SEQ ID NO: 2, claim 1 or Solanum lycopersicum plant according to 2. 前記SP3D遺伝子は、配列番号3を有するプロモータ配列を含む、請求項1〜3のいずれか1項に記載のナス属lycopersicum植物。   The solanaceous lycopersicum plant according to any one of claims 1 to 3, wherein the SP3D gene comprises a promoter sequence having SEQ ID NO: 3. 前記SP遺伝子は、配列番号4を有するプロモータ配列を含む、請求項1〜4のいずれか1項に記載のナス属lycopersicum植物。   The solanaceous lycopersicum plant according to any one of claims 1 to 4, wherein the SP gene comprises a promoter sequence having SEQ ID NO: 4. 前記SP3D遺伝子は、ホモ接合型として存在する、請求項1〜5のいずれか1項に記載のナス属lycopersicum植物。   The solanaceous lycopersicum plant according to any one of claims 1 to 5, wherein the SP3D gene is present as a homozygous type. 前記SP遺伝子は、ホモ接合型として存在する、請求項1〜6のいずれか1項に記載のナス属lycopersicum植物。   The solanaceous lycopersicum plant according to any one of claims 1 to 6, wherein the SP gene exists as a homozygous type. 改良した収量を有するナス属lycopersicum植物を提供するための方法であって、
ナス属pennelli、ナス属neorickii、ナス属chmielewskii、ナス属chilense、ナス属parviflorum、ナス属pimpinellifoliumおよびナス属peruvianumからなる群から選択されるナス属種のSP3D遺伝子およびSP遺伝子の両方を前記ナス属lycopersicum植物のゲノムに導入する工程を含む、方法。
A method for providing a solanaceous lycopersicum plant with improved yield comprising:
Eggplant genus Pennell i, eggplant genus neorickii, eggplant genus chmielewskii, eggplant genus chilense, eggplant genus parviflorum, eggplant genus pimpinellifolium, and eggplant genus peruvianum A method comprising introducing into the genome of a lycopersicum plant.
前記SP3D遺伝子は、配列番号1を有する配列と少なくとも90%の配列同一性を有するタンパク質をエンコードする、請求項8に記載の方法。 9. The method of claim 8, wherein the SP3D gene encodes a protein having at least 90 % sequence identity with the sequence having SEQ ID NO: 1. 前記SP遺伝子は、配列番号2を有する配列と少なくとも90%の配列同一性を有するタンパク質をエンコードする、請求項8または9に記載の方法。 The SP gene encodes a protein having at least 90% sequence identity with the sequence having SEQ ID NO: 2, claim 8 or method according to 9. 前記SP3D遺伝子は、配列番号3を有するプロモータ配列を含む、請求項8〜10のいずれか1項に記載の方法。   11. The method according to any one of claims 8 to 10, wherein the SP3D gene comprises a promoter sequence having SEQ ID NO: 3. 前記SP遺伝子は、配列番号4を有するプロモータ配列を含む、請求項8〜11のいずれか1項に記載の方法。   12. The method according to any one of claims 8 to 11, wherein the SP gene comprises a promoter sequence having SEQ ID NO: 4. 前記SP3D遺伝子は、ホモ接合型として導入される、請求項8〜12のいずれか1項に記載の方法。   The method according to any one of claims 8 to 12, wherein the SP3D gene is introduced as a homozygous type. 前記SP遺伝子は、ホモ接合型として導入される、請求項8〜13のいずれか1項に記載の方法。   The method according to any one of claims 8 to 13, wherein the SP gene is introduced as a homozygous type. 請求項1〜8のいずれか1項に記載の植物の種子または果実。   The seed or fruit of the plant of any one of Claims 1-8.
JP2016556714A 2014-03-13 2015-03-13 Solanum lycopersicum plant with increased fruit yield Active JP6606093B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2012426A NL2012426B1 (en) 2014-03-13 2014-03-13 Solanum lycopersicum plants with increased fruit yield.
NL2012426 2014-03-13
PCT/EP2015/055259 WO2015136065A1 (en) 2014-03-13 2015-03-13 Solanum lycopersicum plants with increased fruit yield

Publications (2)

Publication Number Publication Date
JP2017506906A JP2017506906A (en) 2017-03-16
JP6606093B2 true JP6606093B2 (en) 2019-11-13

Family

ID=50483456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016556714A Active JP6606093B2 (en) 2014-03-13 2015-03-13 Solanum lycopersicum plant with increased fruit yield

Country Status (9)

Country Link
US (1) US10465201B2 (en)
EP (1) EP3116899A1 (en)
JP (1) JP6606093B2 (en)
CN (1) CN106103723B (en)
CA (1) CA2941671C (en)
MX (1) MX368958B (en)
NL (1) NL2012426B1 (en)
RU (1) RU2696827C2 (en)
WO (1) WO2015136065A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018011046A1 (en) 2016-07-13 2018-01-18 Dsm Ip Assets B.V. Process to improve crop yield
KR20210125977A (en) * 2018-10-16 2021-10-19 신젠타 파티서페이션즈 아게 Tomato plants producing fruits with modified sugar content

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US329796A (en) * 1885-11-03 Organ-coupler
US6100449A (en) 1995-04-13 2000-08-08 Yeda Research And Development Co. Ltd. Transgenic tomato plants containing a fusarium resistance gene
BRPI0508322A (en) * 2004-03-01 2007-07-24 Cropdesign Nv method for increasing plant yield, method for producing a transgenic plant, plants, construction, harvestable plant parts, and use of an isolated nucleic acid encoding a cdkd or a functional variant thereof
JP5259717B2 (en) 2007-08-10 2013-08-07 エンザ・ザーデン・ベヘール・ベスローテン・フェンノートシャップ Promoter sequences and gene constructs for increasing tomato yield
PL2442636T3 (en) * 2009-06-17 2020-06-29 Monsanto Invest B.V. Tomato plants resulting from the introgression of a trait from Solanum pennellii into S. lycopersicum and having an increased yield

Also Published As

Publication number Publication date
US20170107529A1 (en) 2017-04-20
RU2016140220A3 (en) 2018-09-18
NL2012426A (en) 2015-11-23
CA2941671C (en) 2020-12-15
US10465201B2 (en) 2019-11-05
WO2015136065A1 (en) 2015-09-17
NL2012426B1 (en) 2016-01-06
MX368958B (en) 2019-10-23
EP3116899A1 (en) 2017-01-18
JP2017506906A (en) 2017-03-16
CN106103723B (en) 2019-10-18
MX2016011408A (en) 2016-12-07
CN106103723A (en) 2016-11-09
CA2941671A1 (en) 2015-09-17
RU2016140220A (en) 2018-04-13
RU2696827C2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
Amirul Alam et al. Genetic improvement of Purslane (Portulaca oleracea L.) and its future prospects
Ruiz et al. Synthetic polyploidy in grafted crops
US20140115736A1 (en) Hybrid seed potato breeding
US20130219566A1 (en) Multileaf spinach
JP5259717B2 (en) Promoter sequences and gene constructs for increasing tomato yield
US10815466B2 (en) Mildew resistance gene in kalanchoe
JP6606093B2 (en) Solanum lycopersicum plant with increased fruit yield
KR20100017774A (en) Broccoli plants tolerant to hollow/split stem disorder
JP2015231366A (en) Methods for screening parental lines for producing brassica plants with a trait of extra-late bolting and brassica plants with a trait of extra late bolting using the same
US9832944B2 (en) Hybrid tomato variety 13N954353 designated 72-630 RZ
US11533863B2 (en) Melon variety NUN 16058 MEM
JP2007521809A (en) High lycopene tomato varieties and their use
Khokhar et al. 3. Applications of biotechnological tools in citrus improvement: A review
US10849303B2 (en) Fertilisation independent fruit formation in eggplant
CN109152345B (en) Powdery mildew resistance gene in carrot
US11492634B2 (en) Tomato plant producing fruits with anthocyanins
Castro et al. A new introgression line collection to improve'Piel de Sapo'melons
Nur Asniyati Analysis of histone deacetylation as an epigenetic factor in somaclonal variation of Ananas comosus variety MD2/Nur Asniyati Abdul Halim
DK178924B1 (en) Mildew resistance gene in kalanchoe
Yadav et al. Genomic approaches to impart extended shelf-life in tomato
EA032843B1 (en) Solanum lycopersicum plants having non-transgenic alterations in the acs4 gene
Gowda Biotechnological intervention for the improvement of pomegranate and minor fruits
Sultana et al. Biotechnological approaches of watermelon to meet the future challenges for next decades
EP3010331A1 (en) Resistance against hyaloperonospora parasitica in diplotaxis tenuifolia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191017

R150 Certificate of patent or registration of utility model

Ref document number: 6606093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250